
UC Merced
Proceedings of the Annual Meeting of the Cognitive Science 
Society

Title
Characterizing the Difference between Learning about Adjacent 
and Non-adjacent Dependencies

Permalink
https://escholarship.org/uc/item/3bn9d644

Journal
Proceedings of the Annual Meeting of the Cognitive Science Society, 37(0)

Authors
Wang, Felix Hao
Mintz, Toby

Publication Date
2015
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3bn9d644
https://escholarship.org
http://www.cdlib.org/


Characterizing the Difference between Learning about Adjacent  

and Non-adjacent Dependencies 
 

Felix Hao Wang (wang970@usc.edu), Toby Mintz (tmintz@usc.edu)  
Department of Psychology, 3620 McClintock Avenue 

SGM 501, Los Angeles, CA 9008 USA 

 

 

Abstract 

Many studies of human sequential pattern learning 
demonstrate that learners detect adjacent and non-adjacent 
dependencies in many kinds of sequences. However, it is 
often assumed that the computational mechanisms behind 
extracting these dependencies are the same. We replicate the 
seminal finding that adults are capable of learning 
dependencies between non-adjacent words (Gómez, 2002). 
When we eliminate the positional information about the 
statistical structures by embedding the structure in phrases, 
learners can no longer learn the dependencies. Our methods 
allow us to study the learning mechanisms that are more 
representative of the patterns in natural languages, and show 
that when directly compared, adjacent and non-adjacent 
dependencies are not equally learnable. We suggest that 
learning non-adjacent dependencies in language involves a 
different computational mechanism from learning adjacent 
dependencies. 

Keywords: Artificial language; Non-adjacent 
dependencies 

Introduction 

Language acquisition is one of the most complex tasks that 

humans solve. In order to study the underlying mechanisms, 

researchers identify linguistic structures that serve important 

functions in language, and devise ways of investigating how 

a language learner might learn them. Distributional patterns 

provide structures that serve important functions, and it is 

crucial for language learners to learn and represent the 

various structures in a language.  

Distributional analyses based on word sequences are 

viable candidates for the analyses leaners initially perform 

to acquire knowledge of these structures (e.g., Gómez & 

Gerken, 2000). For example, distributional information 

provides information about grammatical categories in a 

variety of languages (Chemla, Mintz, Bernal, & Christophe 

2009; Mintz, 2003; Redington, Chater, & Finch, 1998; St. 

Clair, Monaghan & Christiansen 2010; Wang & Mintz, 

2010; Wang, Höhle, Ketrez, Küntay, & Mintz, 2011) that 

appears to be used by adult and infant learners alike (Mintz, 

Wang, & Li, 2014; Mintz, 2006; Shi & Melançon, 2010). 

While other cues may provide sources for categorization, 

they are not as reliable cross-linguistically. For example, 

phonological cues vary across languages, and can even work 

in the opposite way across languages (for a discussion, see 

Mintz, Wang & Li, 2014). It is therefore crucial to 

understand how distributional structures are learned in terms 

of specifying the specific conditions under which different 

structures are learnable. One way to address this issue is to 

study how language learners acquire these distributional 

patterns with an artificial language learning paradigm. In 

these paradigms, researchers identify the important 

distributional structures that are present in language, and 

devise an artificial language with the same structures but 

with nonsense words. These words or syllables make up a 

sequence without the influence of semantics, and the design 

of the sequence allows inference regarding how learning 

happens. For example, early studies focused on adjacent 

dependencies, where it was shown that the transitional 

probability between the syllables is computed and that 

humans are able to represent the adjacent dependencies 

(e.g., Saffran, Aslin, & Newport, 1996). In these studies, 

infants heard syllable streams in which a given syllable 

either perfectly predicted the next syllable (high transitional 

probability) or provided no predictive power (low 

transitional probability). The results indicated that infants 

naturally chunk the elements connected by the high 

transitional probabilities. In other words, they represent 

adjacent dependencies base on high transitional 

probabilities, which was argued to be important for tasks 

such as word segmentation. 

While these adjacent dependencies are important in 

natural language, researchers study other kinds of structures, 

called non-adjacent dependencies (Gómez, 2002; Newport 

& Aslin, 2004; Peña, Bonatti, Nespor, & Mehler, 2002). In 

these structures, the patterns in question concern the stable 

transitions between elements that are at least one element 

away, rather than immediately adjacent transitions. Gómez 

(2002) further suggested that learning non-adjacent 

dependencies between words occurs when the adjacent 

transitional probabilities are low. One way to achieve this is 

to have many different words in the intermediate position 

across occurrences of a given non-adjacent dependency. 

While both adjacent and non-adjacent dependency 

patterns occur in natural languages, it is not clear whether 

the mechanisms that detect and use these types of patterns 

are the same, and most experiments have focused on one 

type of dependency or the other. However, some explicit 

comparisons of the learning conditions for the two types of 

dependencies suggest that different mechanisms are at work 

(Newport & Aslin, 2004; Peña et al, 2002), and that they are 

engaged under different circumstances. Romberg and 

Saffran (2013) provided some of the first evidence that 

learners are learning both of these types of statistical 

patterns concurrently. In their study, they provided learners 

with three-word utterances (similar to Gómez, 2002), and 

systematically manipulated the internal statistical structure 

within the three-word utterance. They showed that adult 

learners can readily learn both the adjacent and non-adjacent 
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dependencies at once, and that local dependencies influence 

the learning of both adjacent and non-adjacent 

dependencies. According to these descriptions of learning 

adjacent and non-adjacent dependency, the computational 

level difference between the two is simply the linear 

distance between elements that co-occur. Data from these 

studies suggest that participants are perfectly able to tract 

adjacent and non-adjacent dependencies, and the authors 

took this as evidence that the computational mechanism 

underlying the learning process is the same. 

However, one feature of these studies is worth noting. In 

Gómez (2002) and Romberg & Saffran (2013), subjects 

were only exposed to three word strings in which the non-

adjacent dependency involved the first and last string, which 

is not representative of how dependencies arise in natural 

languages.  Specifically, both adjacent and non-adjacent 

dependencies are often embedded in larger sequences. We 

wondered whether this aspect of these artificial languages 

could have engaged learning mechanisms differently than if 

the dependencies occurred as could do in natural languages, 

embedded in larger sequences.   In this study, we addressed 

this question by investigating the effects of embedding 

statistical patterns in other linguistic materials.  

The purpose of studying the effect of embedding is 

twofold. First, we wanted to eliminate the positional 

information about the statistical structures. In the studies 

mentioned above, the elements involved in the non-adjacent 

dependencies were at sequence edges, which have been 

argued to engage different learning mechanisms (Endress, 

Nespor & Mehler, 2009). By removing the confound of the 

dependencies always at edge positions, we can study the 

learning mechanisms that is perhaps more representative of 

the patterns in natural languages. Second, embedding 

provides the extra degrees of freedom necessary to equate 

the statistical information in different dependency 

structures, so that learning can be directly compared. 

Furthermore, embedding makes it harder to learn structures 

in general. This is useful when one wishes to examine subtle 

differences between two learning processes, while avoiding 

ceiling effects. 

The current experiments are set up as follows. In 

Experiment 1, we explore whether non-adjacent 

dependencies can be learned under embedded situations, 

providing a baseline for comparisons in subsequent 

experiments. In Experiment 2, we replicate a set of results 

from Gómez (2002) and compare them to an embedded 

version. In Experiment 3, we observe the effects of 

changing the regularities in the embedding material. Finally, 

in Experiment 4, we embed adjacent dependencies in 

sentences to allow for comparisons between adjacent and 

non-adjacent dependencies.   

Experiment 1 

In this experiment, we designed the material to be similar to 

the Gómez material, with one critical difference. Here we 

embedded the non-adjacent dependencies in other linguistic 

material. 

Methods 

Participants  Twenty-four undergraduate students at 

University of Southern California recruited from 

psychology subject pool participated. Subjects were divided 

nearly equally into two counterbalancing conditions (see 

Design and Procedure). 

Stimuli  The stimuli were recorded by a female American 

English speaker (we used the same source material as in 

Mintz et al., 2014). The speaker pronounced one word at a 

time in list citation prosody, and words were digitized at 

44.1 kHz for later processing. We then digitally spliced the 

recording into individual word files that began at the onset 

of each word. Word files generated from this procedure 

were all shorter than 0.8 seconds, so the files were padded 

with silence to make each file 0.8 seconds. This allowed us 

to concatenate word files into sentences with words 

occurring every 0.8 seconds. Between each artificial 

sentence, there was a 0.8 second pause in between to signal 

the start and end of each sentence. 

Design and Procedure  The artificial language preserved 

the Gómez (2002) study design with 3 frames  and 6 

intervening words (AiXjCi, where i=3 and j=6). Each frame 

was presented 158 times, and each different intermediate 

word was presented 79 times with all the frames, resulting 

in 474 presentations in total in terms of the frame frequency. 

In addition, we added 1-3 words both preceding and 

following the AXC trigram (buffer words). The words at X 

position are all bisyllabic words, following Gomez (2002), 

whereas the buffer words are either monosyllabic or 

bisyllabic. Given that trigrams are surrounded by buffer 

words, we consider each whole phrase (front buffer words + 

frame + end buffer words) a sentence. The artificial material 

was made up such that each word occurred every 0.8 

seconds, with 0.8 second of silence between all the 

sentences. 

Buffer words consisted of 16 words that were not used in 

either frames position (A, C words) or the intermediate 

position (X words). For each sentence, a random shuffle of 

these words was generated, and sets of 1-3 words were 

selected from the list be added to the start (or end) of the 

sequence with the non-adjacent dependency. In other words, 

no words repeat within each sentence. As such, the AXC 

trigram could occur only after at least 1 word is presented, 

and the end of the trigram (C word) would not be the last 

word within a sentence to be heard. The buffer words under 

this design are randomly distributed, so there is no 

distributional information available in the initial and end 

part of the sentence that predicts the middle of the sentence. 

The experiment was composed of two phases: learning 

and testing. The participants were asked to listen to the 

material to “learn a language”, and they were told that they 

would answer questions about the language after hearing it.  

In the learning phase, participants sat at a computer and 

listened to the stimuli through headphones. After 

presentation of 43 sentences without interruption, a quiz 
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question appeared: “What was the last word that you 

heard?” A numbered list of words was displayed, and 

participants were prompted to press a number key to 

respond. After the subject answered, the screen went blank 

and the auditory stimuli resumed. These ‘quizzes’ were 

designed to encourage subjects to attend to the material. 

Testing sequences were three-word sequences, composed 

of either words that were consistent with the non-adjacent 

dependency that was in the language (AiXjCi), or a sequence 

where the C word did not match the A word in the 

dependency (AiXjCk, i~=k). In the test phase, a total of 12 

test sequences were presented. Two languages were created, 

such that the correct answers in one language were the foils 

in the other. 

Subjects heard testing sequences through headphones, and 

on each trial answered the question on the screen: Did you 

hear this sequence before? A Y/N keyboard response was 

collected for this question. After a short pause, the next test 

trial began. After the study ended, we thanked our 

participants and debriefed them of the purpose of the study. 

Results 

To assess the performance in the testing session, we coded 

each response as a binary variable (1 = correct, 0 = 

incorrect) from subjects’ yes/no responses. Average 

proportion of correct responses was 52%. A mixed-effect 

logistic regression with subject as a random effect showed 

that performance on the test items were not different from 

chance (βintercept=0.041, p=0.724, ns). Given that Gómez 

(2002) reported an effect of the number of intermediate 

words on the learning of non-adjacent dependencies, it is 

unclear whether the unsuccessful learning of the non-

adjacent dependencies was due to the fact they were 

embedded in other words, or that there were too few 

intermediate words (6). In the next experiment, we address 

this issue. 

Experiment 2 
 

Gómez (2002) proposed that when there were only a 

small number of X words in the AXC structure, learners 

focused on adjacent rather than non-adjacent patterns, and 

that high variability in the intermediate position facilitates 

learning the non-adjacent dependencies. Although Gómez 

found some evidence of learning when there were only 6 X 

words, learning was more robust with more intervening 

words. Therefore, the failure to learn in Experiment 1 could 

have been due to the lack of variability (n=6).   To test this, 

in Experiment 2 we replicated the Gómez (2002) study with 

24 intermediate words (Experiment 2A) and then investigate 

the effects of embedding the sequences that have greater X-

word variability (Experiment 2B).  

Methods 

Participants  A total of 50 undergraduate students at 

University of Southern California in the psychology subject 

pool participated, half in Experiment 2A (Gómez, 2002 

replication) and half in 2B (the embedded version). Two 

participants were excluded from the analysis because they 

performed below the predetermined 65% criterion in the 

quizzes (60%, 0%). In each version of the experiment, there 

were two counterbalancing conditions, such that correct test 

items in one condition were foils in the other (see Design 

and Procedure). Eleven and 13 of the participants 

participated in each condition. Further counterbalancing was 

done for the testing condition (see below for details), and 

subjects were further divided for that purpose. 

Stimuli  We used the stimuli from Experiment 1. 

Design and Procedure Experiment 2A replicated the 

design of Gómez (2002, Experiment 1) with 24 intermediate 

words. As in Experiment 1, the dependencies followed an 

AiXjCi structure, with 3 A-C frames. Each frame was 

presented 144 times, and each different intermediate X-

word was presented 6 times in each frame, resulting in 432 

presentations in total in terms of the frame frequency. 

In Experiment 2B, the dependency structures were the 

same as in 2A, but they were embedded in buffer words as 

in Experiment 1. Sixteen buffer words that were not any of 

the A, X, or C words were added to the start and end of the 

non-adjacent sequence, with the constraint that no words 

repeated within a sentence. Two languages were created, so 

that the correct answers in one language were the foils in the 

other. 

The procedure was similar to Experiment 1 in that there 

was a learning phase and a testing phase. The learning phase 

followed the same procedure as Experiment 1.  In contrast 

to Experiment 1, the testing phase (of Experiment 2A and 

2B) was designed to test knowledge of both adjacent and 

non-adjacent dependencies. Knowledge of adjacent patterns 

was tested by presenting bigrams that were part of an AXC 

sequence (e.g., AX, or XC). Foil items were made up by 

presenting the reverse of the bigrams, for example, XA or 

CX. In order to not induce test effects, the same AX was not 

tested (for example, if A1X5 was tested, X5A1 was not). The 

choice of X words that occur in AX context and XA context 

was counterbalanced between subjects (the last 

counterbalancing step mentioned in the previous section). 

There were a total of 12 bigram test items. Non-adjacent 

dependency test items were made up similar to those in 

Experiment 1, where the three word sequence were either 

consistent from the non-adjacent dependency in the 

language (AiXjCi), or not (AiXjCk, k~=i). There were 6 non-

adjacent dependency test items in total. 

To avoid test effects, we tested bigrams first, then non-

adjacent dependencies. If subjects were tested on the non-

adjacent dependencies first, they might deduce that some of 

the bigrams are correct and others not by assuming that test 

items are informative. This deduction can be made because 

all the non-adjacent dependency items have the correct 

configuration as far as AX & XC bigrams are concerned. 

Because these bigram tests are constructed differently 

(positional changes) from the non-adjacent dependency test 

items (co-occurrence change) and the bigram test in 
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Experiment 4, direct quantitative comparisons can only be 

made for adjacent tests between Experiments 2A, 2B and 3. 

As in Experiment 1, subjects listened to testing sequence 

through headphones and responded (yes or no) to the test 

questions via computer keyboard. 

Results 

Experiment 2A successfully replicated Gómez (2002): 

Participants learned the non-adjacent dependencies 

(M=71.4%, βintercept=0.916, p=0.0003). Participants also 

successfully learned the adjacent dependencies (M=76%, 

βintercept= 1.15, p=9*10
-6

). We therefore found no evidence 

that attention to the non-adjacent patterns was triggered by 

difficulty in remembering the adjacent sequences.  These 

findings are consistent with those in Romberg & Saffran 

(2013), where subjects demonstrated simultaneous learning 

of adjacent and non-adjacent dependencies. 

Recall that the dependency structures in Experiments 2A 

and 2B were identical; the only difference between the 

experiments was in the embedding of the dependencies in 

2B. However, in contrast to 2A, participants in 2B did not 

show evidence of learning the non-adjacent dependencies 

(M=52.8%, βintercept=0.111, p=0.505, ns). Furthermore, we 

found no evidence that participants learned the adjacent 

dependencies either (M=52.8%, β=0.111, p=0.346, ns).  

Taken together, these results suggest that embedding non-

adjacent dependencies hinders successful learning of 

adjacent and non-adjacent dependencies. The same patterns 

that were successfully learned when they were presented in 

isolation were apparently not-learnable when surrounded by 

other words.  

One factor in the embedding version of this experiment 

(Experiment 1 and Experiment 2B) is that the buffer words 

in which the dependency structures were embedded were 

uniformly random and did not follow a grammar. This 

means that there was no reliable statistical information in 

these parts of the language. Given that the first few words of 

most sentences are buffer words, subjects may have simply 

“tuned out” when there was no discernable pattern to be 

found, disengaging the mechanism that would typically 

learn the dependency patterns (Gerken, Balcomb, & Minton, 

2011).  Experiment 3 was designed to address this question. 

Experiment 3 
 

In Experiment 3, we modify our embedding of non-adjacent 

dependencies by making the buffer words appear in a fixed 

sequence. 

Methods 
 

Participants  A total of 24 undergraduate students at 

University of Southern California in the psychology subject 

pool participated. Half of the participants participated in 

each condition, and further counterbalancing of the bigram 

testing was done by evenly dividing the subjects in the same 

condition, similar to Experiment 2B. 

Stimuli  We used the same word stimuli as in Experiment 

2B. 

Design and Procedure  Experiment 3 differed from 

Experiment 2B only that instead of the buffer words 

occurring in random order, they now adhered to a consistent 

order.  For example, when there was only one sentence 

initial buffer word, it was the same word each time.  When a 

sentence started with two words, it was always the same two 

words (that did not include the buffer word that only 

occurred as a singleton buffer word). In this way, the 

transitional probability within the buffer portion of the 

sentences is kept at 1; the transitional probability between 

the buffer word and the A word, the first word in AXC 

structure is 1/3 because each word that immediately 

precedes any A word precedes all of them in equal 

proportion.  

Two languages were created, so that the correct answers 

in one language were the foils in the other. 

Results 

As in Experiment 2B, participants showed no evidence of 

learning the non-adjacent dependencies in this embedding 

condition (M=53.5%, βintercept=0.139, p=0.4, ns). 

Furthermore, there was no evidence that participants learned 

the adjacent patterns either: (M=52.8%, βintercept=0.111, 

p=0.346, ns).   Thus, providing predictable patterns in the 

buffer material did not make the embedded dependencies 

easier to learn. 

In light of the findings so far, it is important to note that 

the frequencies of adjacent and non-adjacent patterns in 

these languages are very different. For example, in 

Experiment 3, each non-adjacent dependency occurred 144 

times, whereas each adjacent dependency occurred only 6 

times. It is possible that there were different reasons why 

adjacent and non-adjacent dependencies were not learned.  

In the case of adjacent dependencies, the frequency of the 

bigrams may have been too low for the pattern to have been 

detected and remembered. Experiment 4 addresses this. 

Experiment 4 

In Experiment 4, tested only adjacent dependencies, making 

them statistically equivalent to the non-adjacent 

dependencies in Experiments 1-3.  

Methods 

Participants  Twenty-five undergraduate students at 

University of Southern California in the psychology subject 

pool participated. Twelve and 13 of the participants 

participated in each condition. 

Stimuli  We used the same word stimuli we used in 

Experiment 1. 

Design and Procedure  Experiment 4 was based on 

Experiment 2B, except the middle X position in the AiXjCi 
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structure was removed, making the former non-adjacent 

pattern adjacent.  Each AiCi sequence occurred 144 times. 

Two languages were created, so that the correct answers 

in one language are the foils in the other. 

In the testing session, we used 6 test items, similar to the 

non-adjacent tests in previous experiments. These 6 items 

consisted of 3 correct bigram pairs (AiCi), and 3 foil bigram 

pairs (AiCk, k~=i). 

Results 

Mixed-effect logistic regression revealed that participants 

learned the bigrams successfully (M=60.7%, βintercept=0.433, 

p=0.01). The fact that there were only 3 high frequency 

adjacent dependencies apparently induced learning, even 

though the surrounding buffer words were completely 

random and unpredictable. 

Discussions 

In a series of experiments, we explored the effects on 

learning of embedding adjacent and non-adjacent 

dependency patterns within a larger sequence of words. Our 

study is the first we know of that contrasts embedded non-

adjacent dependency with embedding adjacent dependencies 

with language learning (see Van den Bos & Christiansen, 

2009 for data from symbols sequence learning). While both 

the structured embedding (Experiment 3) and unstructured 

embedding (Experiment 1 & 2B) yielded no detectible 

learning of non-adjacent dependencies, embedding bigrams 

within larger random sequences did not impede their 

detection when they were very frequent (Experiment 4), but 

did when they were less frequent (Experiment 2A vs. 

Experiment 2B).  Thus, for non-adjacent dependencies, the 

alignment of one or both of the dependent entities with edge 

positions may be important (Endress et al., 2009; primacy & 

recency effects, Deese 1959).  

The present findings raise questions for theories of 

language acquisition.  If adult learners cannot extract non-

adjacent dependencies when they are embedded within 

utterances, does this mean that those dependencies cannot 

be learned from distributional analyses?  In evaluating the 

implications of these findings for theories of grammatical 

acquisition, it is important to consider other ways in which 

these artificial languages differ from natural ones.  One way 

is that the utterances used here do not implement natural 

language prosody.  We have preliminary evidence that 

placing a prosodic contour on the utterances may facilitate 

learning non-adjacent dependencies in embedded materials 

(Reddy, Wang &  Mintz, in prep). The continuous nature of 

a prosodic contour may focus leaners on relations between 

items in the contour, especially non-adjacent ones. 

A related difference between these artificial languages 

and natural ones is in the timing of words.  In these 

experiments, utterances were concatenated words with brief 

intervening pauses, such that there was always 0.8 s 

between word onsets.  This is a relatively slow rate of 

speech, with unnatural timing characteristics. It is 

conceivable that this mode of presentation makes detecting 

patterns of non-adjacent elements more difficult because 

they are not temporally close. Future studies are needed to 

determine the degree to which these stimulus properties 

could influence non-adjacent pattern detection. 

Finally, it is worth noting that partially embedded non-

adjacent dependencies in which dependent items sometimes 

occur at edges enables the detection of non-adjacent patterns 

(Mintz et al., 2014; Reeder, Newport & Aslin, 2013). It is 

possible that having exposure to elements at edge positions 

may be necessary for initially detecting non-adjacent 

dependencies, but that once a pattern is recognized, it can be 

detected in fully embedded contexts as well. We leave this 

question for future research. 

 It is also possible that the Gómez paradigm adopted here 

may not be well suited for testing implicit learning. 

Statistical learning is often characterized as tapping into 

implicit learning (Saffran, Newport, Aslin, Tunick, & 

Barrueco 1997, Turk-Browne, Jungé, & Scholl 2005). 

Studies on implicit learning suggest that the learning 

process does not require explicit instructions, and the 

representations resulted from learning can be probed with 

implicit measures. Vuong, Meyer, and Christiansen (in 

press) used an SRT task to measure sequence learning, and 

it would be important to see if the same pattern from the 

motor domain shows up in language learning. Asking 

yes/no questions about whether particular phrases are in a 

language requires some explicit representation for the 

phrases, and this may not be the most relevant way of 

testing whether implicit learning is successful. Indeed, many 

participants in our experiments answer yes to all the 

questions, which attribute to the null results. Yet, analyzing 

the data only with individuals who showed variability in 

their responses does not qualitatively change the pattern of 

the data. We are working on new measures of non-adjacent 

dependency learning that do not require testing explicit 

representations.  However, what our findings clearly show is 

that when subjects learn non-adjacent dependencies, they 

also detect patterns in adjacent items, consistent with 

findings in Romberg & Saffran (2013). What we seem to 

have shown is that whatever mechanism is robustly 

detecting adjacent dependencies is not operating over a 

wider range of input. It is an open question (at least from 

our data) whether that means that when learners do detect 

non-adjacent relationships that a different mechanism is 

engaged, or whether it is the same mechanism that is guided 

by additional information (e.g., edges, etc.).  This is a 

question for future research. 

An alternative explanation for our findings is that 

detecting non-adjacent patterns is simply harder (e.g., due to 

the additional degrees of freedom compared to adjacent 

patterns) and that embedding the patterns made their 

detection even more difficult given relatively brief exposure 

to the language, but with more exposure, subjects would 

detect the patterns.  We cannot rule out the possibility that 

more exposure would have lead to successful learning.  

However, in Experiment 3, the embedded contexts did not 

add a large amount of complexity since the buffer patterns 
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were highly predictable, and yet subjects did not detect the 

dependencies.  At minimum, these findings suggest that 

learners’ ability to detect non-adjacent patterns is highly 

constrained. 

In conclusion, this study shows that one should be 

cautious about the conclusions one draws regarding learning 

in artificial languages when the patterns in question are 

made prominent.  A motivation behind using artificial 

languages is that one can design the language to focus on 

particular mechanisms of interest.  Although this can be an 

extremely useful and fruitful approach, the process of 

simplifying can change the learning problem in unintended 

ways.  We are by no means the first to raise this issue, but 

here we have provided evidence of one way in which 

(perhaps) seemingly peripheral design considerations could 

have important consequences.  But this situation has also 

given rise to the insight that learning adjacent and non-

adjacent lexical patterns may engage different mechanisms 

that are sensitive to different kinds of information, as has 

been proposed for patterns within words (Endress et al, 

2009; Peña et al., 2002; but see also Pacton & Perruchet, 

2008). Taken together, these results suggest that the 

mechanism for learning non-adjacent lexical dependencies 

is more nuanced than previously believed. While adjacent 

dependencies can be learned in embedded context, learning 

non-adjacent dependencies is very sensitive to the details of 

the context, and may involve factors beyond mere statistical 

regularity. 
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