
UC Irvine
ICS Technical Reports

Title
Design of a GSM vocoder using SpecC methodology

Permalink
https://escholarship.org/uc/item/3bn667jf

Authors
Gerstlauer, Andreas
Zhao, Shuqing
Gajski, Daniel D.

Publication Date
1998-02-26

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3bn667jf
https://escholarship.org
http://www.cdlib.org/

Notice: This Material
may be protected , i -
by Copyright Law ^
(Title 17 U.S.G.)

rco-

Design of a GSM Vocoder using SpecC Methodology

Technical Report ICS-99-11
February 26, 1999

Andreas Gerstlauer, Shuqing Zhao, Daniel D. Gajski

Department of Information and Computer Science
University of California, Irvine
Irvine, CA 92697-3425, USA

(949) 824-8059

{gerstl, szhao, gajski}@ics.uci.edu

Arkady M. Horak

Motorola Semiconductor Products Sector
System on a Chip Design Technology

Austin, TX 78731, USA

RVKA30@email.sps.mot.com

Abstract

This report describes the design ofa voice encoder/decoder (vocoder) based on the European GSM standard
employing the system-level design methodology developed at UC Irvine. The project is a result ofa cooperation
between UCI and Motorola to demonstrate the SpecC methodology. Starting from the abstract executable
specification written in SpecC different design alternatives concerning the system architecture (components
and communication) are explored and the vocoder specification is gradually refined and mapped to a final
HW/SW implementation such that the constraints are satisfied optimally. The final code for downloading onto
the processors and the RTL hardware descriptions for synthesis of the ASICs are generated for the software
and hardware parts, respectively.

Design of a GSM Vocoder using SpecC Methodology

— Executive Summary —

A. Gerstlauer, S. Zhao, D. Gajski A. Horcik

Information and Computer Science Motorola Semiconductor Products Sector

University of California, Irvine System on a Chip Design Technology

Irvine, CA 92697-3425, USA Austin, TX 78731, USA

Project Objective

The objective of the Vocoder project, sponsored by Motorola, was to prove and demonstrate
the IP-centric SpecC methodology developed at UCI to show future directions in SOC design
at the system level. Starting from a common executable specification in the SpecC language,
the methodology based on the specify-explore-refine (SER) paradigm uses a set of well-defined
and easy to understand models and refinement transformations at each step for exploration of
different HW/SW system implementations.

For the vocoder project the implementation of a GSM voice encoder/decoder (vocoder) stan
dard was used as an example. The initial reference implementation of the vocoder standard had
a complexity of 14,000 lines of C code.

Project Tasks

The SpecC methodology based on the SER paradigm was applied to the vocoder, including;

• Analysis of vocoder standard and C code.

• Development of vocoder specification in SpecC.

• Simulation and profiling of vocoder specification.

• Exploration of system architecture and selection of DSP core.

• Partitioning of specification into software and hardware.

• Software Synthesis;

- Software scheduling and generation of C code.

- Compilation and manual optimization of assembly code.

- Creation of a custom operating system kernel for scheduling, synchronization and I/O.

- Development of a custom cosimulation engine for verification and profiling.

- Debugging of generated code and operating system kernel.

• Hardware Synthesis;

- Development of behavioral hardware model.

- Component selection and design of custom datapath.

- Scheduling of behavioral hardware model.

- Development of RTL structural hardware model.

• Documentation.

Project Accomplishments

• Software was implemented for a Motorola DSP56600 processor core running at 60 MHz
while custom hardware was synthesized for the codebook search part.

• The initial specification was partitioned into 12,000 lines ofcode for SW compilation and
2,000 lines of code for HW synthesis.

• The final implementation consists of 70,500 lines of compiled assembly code and 45,000
lines of synthesized RTL code.

• The transcoder delay is 26 ms and the time for encoding and decoding a speech frame is
11ms, meeting the timing requirements of 30 and 20 ms, respectively.

• The vocoder project involved 2 non-expert students working part-time over the course of
6 months performing most of the tasks manually since the corresponding tools are not
completed yet and standard EDA tools are inadequate.

• With the availability of the SpecC exploration environment the design would have been
completed in 12 weeks.

Methodology Benefits

• A large gain in productivity from:

- Simplified design process based on well-defined and clear models at each exploration
step.

- Methodology geared towards easy integration of IP components.

- Methodology that enables quick exploration and synthesis using automated tools.
- Methodology that minimizes communication among designers and customers and al

lows design and manufacturing globalization.

® Simplified product evolution and product customization:

- Fast redesign, easy integration of new features and quick incorporation of customer
feedback.

- Easy upgrade to new technologies.

- Easy reuse of existing models by adding or changing features, or customization of
product templates for a product-on-demand business model.

• Reduction in the amount of resources required for SOC design:

- Significantly reduced man power for completion ofa system design.
- Fast learning curve and low designer expertise required.

Contents

1 Introduction 1

1.1 GSM Enhanced Pull Rate Vocoder 1

1.1.1 Human Vocal Tract 2

1.1.2 Speech Synthesis Model 2
1.1.3 Speech Encoding and Decoding 2

1.2 System-Level Design 3
1.2.1 SpecC Methodology 3
1.2.2 SpecC Language 4

1.3 Overview 4

2 Specification 4
2.1 General 4

2.1.1 Formal, Executable Specification 4
2.1.2 Modeling Guidelines 5

2.2 Vocoder Specification 5
2.2.1 Overview 6

2.2.2 Coder Functionality 6
2.2.3 Decoder Functionality 7
2.2.4 Constraints 8

3 Architectural Exploration 9
3.1 Models 9

3.1.1 Specification Model 9
3.1.2 Architecture Model 10

3.2 Exploration Flow 11
3.3 Analysis and Estimation 11

3.3.1 General Discussion 11
3.3.2 Initial Simulation and Profiling 12
3.3.3 Estimation 12
3.3.4 Vocoder Analysis and Estimation 13

3.4 Architecture Allocation 15
3.4.1 General Discussion 15

3.4.2 Allocation Flow 16

3.4.3 Vocoder Architecture 17

3.5 Partitioning 18
3.5.1 General Discussion 18
3.5.2 Partitioning Flow 19
3.5.3 Partitioning for Vocoder 20

3.6 Scheduling 22
3.6.1 General 22
3.6.2 Vocoder Scheduling 23

3.7 Results 23

4 Communication Synthesis 24
4.1 Protocol Selection 24
4.2 Transducer Synthesis 25
4.3 Protocol Inlining 25
4.4 Vocoder Communication Synthesis 26

4.4.1 Protocol Selection 26
4.4.2 Protocol Inlining 27

4.5 Results 28

5 Backend 29
5.1 Software Synthesis 29

5.1.1 Code Generation 29
5.1.2 Compilation
5.1.3 Simulation

5.2 ASIC exploration
5.2.1 Behavioral Model

5.2.2 Architecture Exploration
5.2.3 Performance analysis . . .

30

30

32

33

35

40

6 Conclusions ^2

References

A C Reference Implementation Block Diagrams 40
A.l Coder: coder 4Y

A.1.1 Encoding: coder_12k2 48
A.2 Decoder: decoder 53

A.2.1 Decoding: decoder_12k2 54
A.2.2 Post-processing: Post_Filter 55

B Vocoder Specification 55
B.l General (shared) behaviors 5g
B.2 Coder

B.2.1 Preprocessing: pre_process 58
B.2.2 Linear prediction analysis and quantization 58
B.2.3 Open-loop pitch'analysis 59
B.2.4 Closed loop pitch analysis 00
B.2.5 Algebraic (fixed) codebook analysis 52
B.2.6 Filter memory updates 05
B.2.7 Serialization: Prin2bits_12k2 05

B.3 Decoder qj
B.3.1 Parameter extraction: Bits2prm_12k2 07
B.3.2 Decoding of LP filter parameters 07
B.3.3 Decoding subframe and synthesizing speech 08
B.3.4 Post-filtering: Post_Filter 09
B.3.5 Up-scaling 70

C Simulation Results 72
C.l Software 72

D ASIC Datapath Schematic 77

E SpecC Source Listing for the code book search 78

F Behavioral VHDL Source Listing for the code book search 95

G RTL VHDL Source Listing for the code book search 123

List of Figures

1 Speech synthesis model 2
2 SpecC methodology 3
3 Vocoder 5

4 Coder 6

5 Encoding 7
6 Decoder 7

7 Timing constraints 8
8 General specification model 9
9 General model for architectural exploration 10
10 Architectural exploration fiow 11
11 Sample operation profile 12
12 Estimates for computational complexity of coder parts 14
13 Breakdown of initial coder delays 14
14 Initial coder delay. 14
15 Estimates for computational complexity of decoder parts 14
16 Breakdown of initial decoder delays 14
17 Initial decoder delay 14
18 Examples of mixed HW/SW architectures 16
19 Allocation search tree 16

20 Component matching 17
21 Computational requirements 17
22 Example of an encoder partitioning 19
23 Criticality of vocoder behaviors 20
24 Balancing resource utilization 20
25 Final vocoder partitioning 21
26 Channel partitioning 22
27 Sample encoder partition after scheduling 22
28 Final dynamic scheduling of vocoder tasks 23
29 Breakdown of coder delays after exploration 24
30 Breakdown of decoder delays after exploration 24
31 Architecture model 24

32 General model after protocol selection 24
33 Sample model after transducer synthesis 25
34 General communication model after inlining 25
35 Vocoder model with processor bus protocol selected 26
36 Vocoder communication model after inlining 26
37 Vocoder hardware/software interfacing model 27
38 Original C source code example 31
39 Assembly output of Motorola compiler 31
40 Assembly code after optimizations 31
41 HLS design flow 32
42 State-oriented models 33

43 The sample encoder partition 34
44 Scheduled encoder ASIC partition (Note: Datain and DataOut FSMD for behaviors other than the

2nd Levins on-Durbin are omitted.) 34
45 The scheduled codebook search CHSFSMD model 35

46 Data-flow view of codebook search behavioral model 36

47 A generic control unit/datapath implementation 37
48 Hardware exploration 38
49 Operation profile for one sub-frame 38
50 Behavior pref liter FSMD 39

iii

51 Datapath diagram 39
52 A FSMD implementation with a decomposed-CU 40
53 Control unit decomposition 40
54 sub-FSM in VHDL 41
55 Execution time distribution • 42
56 Critical path candidates 43
57 Vocoder project tasks schedule 45
58 Coder 57
59 LP Analysis 53
60 Open-loop pitch analysis 59
61 Closed loop pitch search gO
62 Algebraic (fixed) codebook search 52
63 Filter memory update 55
64 Coder block diagram gg
65 Decoder 57
66 LSP decoding 57
67 Subframe decoding gg
68 Post filtering 70
69 Decoder block diagram 7I

IV

Design of a GSM Vocoder using SpecC Methodology

A. Gerstlauer, S. Zhao, D. Gajski

Information and Computer Science

University of California, Irvine

Irvine, CA 92697-3425, USA

Abstract

This report describes the design of a voice en
coder/decoder (vocoder) based on the European GSM
standard employing the system-level design methodol
ogy developed at UC Irvine. The project is a result of
a cooperation between UCI and Motorola to demon
strate the SpecC methodology. Starting from the ab
stract executable specification written in SpecC differ
ent design alternatives concerning the system archi
tecture (components and communication) are explored
and the vocoder specification is gradually refined and
mapped to a final HW/SW implementation such that
the constraints are satisfied optimally. The final code
for downloading onto the processors and the RTL hard
ware descriptions for synthesis of the ASICs are gen
erated for the software and hardware parts, respec
tively.

1 Introduction

For the near future, the recent predictions and
roadmaps on silicon semiconductor technology all
agree that the number of transistors on a chip
will keep growing exponentially according to Moore's
Law,]mshing technology towards the System-On-Chip
(SOC) era. However, we are increasingly experiencing
a productivity gap where the chip complexity that can
be handled by current design teams falls short of the
possibilities offered by technology advances. Together
with growing time-to-market pressures this drives the
need for innovative measures to increase design pro
ductivity by orders of magnitude.

It is commonly agreed on that the solutions for
achieving such a leap in design productivity lie in a
shift of the focus of the design process to higher lev
els of abstraction on the one hand and in the mas

sive reuse of predesigned, complex system components
(intellectual property, IP) on the other hand. In or
der to be successful, both concepts eventually require

A. Horak

Motorola Semiconductor Products Sector

System on a Chip Design Technology

Austin, TX 78731, USA

the adoption of new methodologies for system design
in the companies, backed-up by the availability of a
corresponding set of system-level design automation
tools.

At UC Irvine, evolving from a background in be
havioral or high-level synthesis, research has been con
ducted in this area for a number of years now. An
IP-centric system-level design methodology including
a new system specification language called SpecC was
developed. Currently, work in progress at UCI deals
with the creation of algorithms and tools for automa
tion of the steps in this design process.

UCI, in cooperation with Motorola, launched a
project in June 1998 with the goal of demonstrat
ing the SpecC methodology on a real design example.
For this purpose, the design and implementation of a
voice encoder/decoder (vocoder) for cellular applica
tions was chosen as an example. The actual design
of the vocoder was done at UCI whereas Motorola

is responsible for the final integration, implementa
tion, and eventually manufacturing of the chip. In
this report we document the design of the vocoder
chip employing the SpecC methodology as a result of
the project part done at UC Irvine.

1.1 GSM Enhanced Full Rate Vocoder

The vocoder used in this project is based on the stan
dard for speech coding and compression in the Euro
pean cellular telephone network system GSM (Global
System for Mobile Communications). The codec
scheme was originally developed by Nokia and the
University of Sherbrooke [10]. The so called Enhanced
Full Rate (EFR) speech transcoding is now standard
ized by the European Telecommunication Standards
Institute (ETSI) as GSM 06.60 [9]. In addition, the
same codec has also been adopted as a standard for the
American PCS 1900 system by the Telecommunica
tions Industry Association (TIA) [11]. In general, this
codec scheme and variations thereof are widely used

Long-Term
Pitch Filter

Delay / Adaptive codebook

Residual

Pulses

Fixed codebook

Short-term

Synthesis Filter

lOth-order LP filter

Speech

Figure 1: Speech synthesis model.

in voice compression and encoding for speech trans
mission (e.g. [12]).

1.1.1 Human Vocal Tract

Conceptually, the main idea of a speech synthesis
vocoder is based on modeling the human vocal tract
using digital signal processing (DSP) techniques in or
der to synthesize or recreate speech at the receiving
side.

Human speech is produced when air from the lungs
is forced through an opening between the two vocal
folds called the glottis. Tension in the vocal chords
caused by muscle contractions and forces created by
the turbulence of the moving air force the glottis to
open and close at a periodic rate. Depending on the
physical construction of the vocal tract, these oscilla
tions occur between 50 to 500 times per second. The
oscillatory sound waves are then modified when they
travel through the throat, over the tongue, through
the mouth and over the teeth and lips.

1.1.2 Speech Synthesis Model

The model assumes that the speech signal is produced
by a buzzer at the end of a tube. The glottis produces
the buzz which is characterized by intensity (loudness)
and frequency (pitch). The vocal tract (throat and
mouth) is modeled by a system of connected lossless
tubes.

Figure 1 shows the GSM vocoder speech synthesis
model. A sequence of pulses is combined with the out
put of a long-term pitch filter. Together, they model
the buzz produced by the glottis and they build the
excitation for the final speech synthesis filter which
in turn models the throat and mouth as a system of
lossless tubes.

The initial sequence of so called residual pulses
is constructed by assembling predefined pulse wave
forms taken out of a given, fixed codebook. The code-
book contains a selection of so called fixed code vectors
which are basically fixed pulse sequences with varying

frequency. In addition, the pulse intensities are scaled
by applying a variable gain factor.

The output of the long-term pitch filter is simply
a previous excitation sequence, modified by scaling it
with a variable gain factor. The amount by which ex
citations are delayed in the pitch filter is a parameter
of the speech synthesis model and can vary over time.
The long-term pitch filter is also referred to as adap
tive codebook since the history of all past excitations
basically forms a codebook with varying contents out
of which one past excitation sequence, the so called
adaptive code vector, is chosen.

Finally, the excitation which is constructed by
adding fixed and adaptive codebook vectors is passed
through the short-term speech synthesis filter which
simulates a system of connected lossless tubes. Tech
nically, the short-term filter is a tenth order linear pre
diction filter meaning that its output is a linear com
bination (linear weighted sum) of ten previous inputs.
The ten linear prediction coefficients are intended to
model the reflections and resonances of the human vo
cal tract.

1.1.3 Speech Encoding and Decoding

Instead of transmitting compressedspeech samples di
rectly, the input speech samples are analyzed in or
der to extract the parameters of the speech synthesis
modelwhich are then transmitted to the receiving side
where they are in turn used to synthesize the recon
structed speech.

On the encoding side, the input speech is analyzed
to estimate the coefficients of the linear prediction fil
ter, removing their effects and estimating the inten
sity and frequency. The process of removing the lin
ear prediction effects is performed by inverse filtering
of the incoming speech. The remaining signal called
the residual is then used to estimate the pitch filter
parameters. Finally, the pitch filter contribution is re
moved in order to find the closest matching residual
pulse sequence in the fixed codebook.

At the receiver, the transmitted parameters are de
coded, combining the selected fixed and adaptive code
vectors to build the short-term excitation. The linear
prediction coefficients are decoded and the speech is
synthesized by passing the excitation through the pa
rameterized short-term filter.

All together, this speech synthesis method has the
advantages of achieving a high compression ratio since
it tries to transmit only the actual information inher
ent in the speech signal. All the redundant relation
ships which are due to the way the human vocal tract
is organized are captured by the filters of the speech

Synthesis flow

model

Architecture exploration

Behavior partlioning

Channel partitioning

variable partitioning

Architecture
mode

Communication synthesis

Backend

Compilation

Protocol selection

Transducer synthesis

Protocol tnfining

Communication
model

High level
synthesis

implementation
model

Manufacturing

Interface
synthesis

Anerysls and vaJidstlon (low

validation of

Bigorithm and
functionality

Estimation

Validation ol

furwtionallty arvJ
synchronization

Estimation

Validation of

furwtionality and
performance

Estimation

Validation of

timing arvJ
performance

Estimation

Simulation
model

Simulation
model

Simulation
model

Simulation
model

Figure 2: SpecC methodology.

synthesis model. The vocal tract model provides an
accurate simulation of the real world and is quite effec
tive in synthesizing high quality speech. In addition,
encoding and decoding are relatively efficient to com
pute.

1.2 System-Level Design

1.2.1 SpecC Methodology

The system-level design methodology which has been
developed at UC Irvine is shown in Figure 2 [3, 5]. The
sj'stem methodology starts with an executable specifi
cation. This specification describes the functionality
as well as the performance, power, cost and other con
straints of the intended design. It does not make any
presumptions regarding the implementation details.

As shown in Figure 2, the synthesis flow of the code-
sign process consists of a series of well-defined design
steps which will eventually map the executable specifi
cation to the target architecture. In this methodology,
we distinguish two major system level tasks, namely
architecture exploration and communication synthe
sis.

Architecture exploration includes the design steps of
allocation and partitioning of behaviors, channels and

variables. Allocation determines the number and the
types of the system components, such as processors,
ASICs and busses, which will be used to implement
the system behavior. Allocation includes the reuse of
intellectual property (IP), when IP components are
selected from the component library.

Behavior partitioning distributes the behaviors (or
processes) that comprise the system functionality
amongst the allocated processing elements, whereas
variable partitioning assigns variables to memories and
channel partitioning assigns communication channels
to busses. Scheduling is used to determine the order of
execution of the behaviors assigned to the processors.

Architecture exploration is an iterative process
whose final result is the definition of the system archi
tecture. In each iteration, estimators are used to eval
uate the satisfaction of the design constraints. As long
as any constraints are not met, component and con
nectivity reallocation is performed and a new archi
tecture with different components, connectivity, par
titions, schedules or protocols is evaluated.

After the architecture model is defined, commu
nication synthesis is performed in order to obtain a
design model with refined communication. The task
of communication synthesis includes the selection of
communication protocols, synthesis of interfaces and
transducers, and inlining of protocols into synthesiz-
able components. Thus, communication synthesis re
fines the abstract communications between behaviors

into an implementation.
It should be noted that the design decisions in each

of the tasks can be made manually by the designer,
e. g. by using an interactive graphical user interface,
as well as by automatic synthesis tools.

The result of the synthesis how is handed-off to the
backend tools, shown in the lower part of Figure 2.
Code for the software and hardware parts is gener
ated automtatically. The software part of the hand-
off model consists of C code and the hardware part
consists of behavioral VHDL or C code. The backend

tools include compilers and a high-level synthesis tool.
The compilers are used to compile the software C code
for the processor onto which the code is mapped. The
high-level synthesis tool is used to synthesize the func
tionality mapped to custom hardware and the inter
faces needed to connect different processors, memories
and IPs.

During each design step, the model is statically
analyzed to estimate certain quality metrics such as
performance, cost and power consumption. This de
sign model is also used in simulation to verify the
correctness of the design at the corresponding step.

For example, at the specification stage, the simulation
model is used to verify the functional correctness of
the intended design. After architecture exploration,
the simulation model will verify the synchronization
between behaviors on different processing elements
(PEs). After communication synthesis, the simulation

V model is used to verify the performance of the system
including computation and communication.

^ 1.2.2 SpecC Language

, The methodology described in the previous section is
supported by a new system-level description and spec
ification language called SpecC [1, 2, 4] which was de
veloped at UC Irvine in realization that existing lan
guages lack many of the features needed for system-
level design [3]. At all stages of the SpecC method
ology, the current state of the design is represented
by a model described in the SpecC language. In this
homogeneous approach transformations are made on
the SpecC description in contrast to a heterogeneous
approach where each step also transforms the design
into a new language, ending up with a mix of design
representations at different stages of the process.

SpecC is being built as a superset of ANSTC [6]
which allows easy reuse of the existing algorithmic and
behavioral C descriptions that are common in todays
industrial practice. SpecC contains all of the features
required to support system-level design including IP
integration in general and the SpecC methodology in
particular:

• Structural and behavioral hierarchy.

• Concurrency.

• Communication with explicit separation of com
putation {behavior) from communication {chan
nel).

• Synchronization.

• Exception handling (traps and interrupts).

• Timing.

• Explicit state transitions (FSM modeling).

All these features are explicitly specified in a clear and
orthogonal manner which makes it easy to understand
and analyze given SpecC descriptions both for humans
and for automation tools. This is an essential require
ment to enable successful design automation and syn
thesis of high-quality results.

SpecC descriptions axe translated into a C-I-+
model by the SpecC compiler. These C-f-f descrip
tions are then in turn compiled into a native exe
cutable for simulation and verification. This results
in very high simulation speeds due to the fact that
the design is compiled instead of interpreted.

1.3 Overview

The rest of the report is organized as follows; Sec
tion 2 describes the specification of the vocoder stan
dard in SpecC, including a more detailed description
of the functionality and other requirements. In Sec
tion 3 the different steps performed during architec
tural exploration are shown. Starting with a gen
eral overview the final vocoder architecture is devel
oped. The process of mapping the abstract commu
nication onto real protocols, busses, etc. is described
in Section 4. Communication synthesis also shows the
requirements for successful integration of intellectual
property (IP). Again, a general discussion is followed
by the vocoder specifics. Finally, Section 5 concen
trates on the synthesis of the system's software and
hardware parts in the backend. Section 6 concludes
the report with a summary.

2 Specification

2.1 General

The first step in any design process is the specifica
tion of the system requirements. This includes both
functionality as well as other requirements liketiming,
power consumption or area.

2.1.1 Formal, Executable Specification

As outlined in the introduction, in the SpecC system
the specification is formally captured and written in
the SpecC language. As opposed to the informal spec
ifications (e.g. in plain English) that have been com
monly used in the past, a formal specification of the
system has two main advantages:

1. It is executable for simulation and verification of

the desired functionality or for feasibility studies
at an early stage.

2. The formal, executable specification directly
serves as an input to the following synthe
sis and exploration stages that eventually lead
to the final implementation without the need
for time-consuming modifications or translations
into other languages and models.

2.1.2 Modeling Guidelines

The initial SpecC specification should model the sys
tem at a very abstract level without already introduc
ing unnecessary implementation details. In addition,
a good synthesis result using automated tools also re
quires the user to follow certain modeling guidelines
when developing the initial specification. Basically,
the specification should capture the required system
functionality in a natural way and in a clear and con
cise manner. Specifically, some of the main guidelines
for developing the initial system specification are:

• Separating communication and computation.
Algorithmic functionality has to be detached
from communication functionality. In addition,
inputs and outputs of a computation have to be
explicitly specified to show data dependencies.

• Exposing parallelism inherent in the system
functionality instead of artificially serializing be
haviors in expectancy of a serial implementation.
In essence, all parallelism should be made avail
able to the exploration tools in order to increase
room for optimizations.

• Using hierarchy to group related functionality
and abstract away localized effects at higher lev
els. For example, local communication and local
data dependencies are grouped and hidden by
the hierarchical structure.

• Choosing the granularity of the basic parts
for exploration such that optimization possibil
ities and design complexity are balanced when
searching the design space. Basically, the leaf
behaviors which build the smallest indivisible

units for exploration should reflect the division
into basic algorithmic blocks.

• Using state transitions to explicitly model the
steps of the computation in terms of basic algo
rithms or abstracted, hierarchical blocks.

The SpecC language provides all the necessary sup
port to efficiently describe the desired system features
following these guidelines. Each of the modeling con
cepts like parallelism or hierarchy is reflected in the
SpecC description in an explicit and clear way.

2.2 Vocoder Specification

The GSM 06.60 standard for the EFR vocoder con

tains a detailed description of the required vocoder
functionality [9]. The standard description was trans
lated into a formal, executable SpecC specification

speech

coder

bits vocoder

•N

decoder

J

speech

Figure 3: Vocoder.

building the basis for the following synthesis and de
sign steps. In addition, the specification was simulated
to verify the vocoder functionality.

The SpecC specification was developed following
the guidelines mentioned in the previous section. In
our case, part of the vocoder standard is a complete
implementation of the vocoder functionality in C (see
Appendix A). The C code is based on a 16-bit fixed-
point implementation of the algorithms and it serves
as a bit-exact reference for all implementations of the
vocoder standard, i.e. the C code specifies the vocoder
functionality down to the bit level.

Therefore, for the vocoder, the C reference im
plementation builds the basis for the specification in
SpecC. However, a great amount of time had to be
spent on analyzing and understanding the standard
including the 13,000 lines of C code in order to extract
the high-level structure and the global interdependen-
cies. Once this was done, a mapping into a SpecC rep
resentation was straightforward. Using the guidelines
of Section 2.1.2, the high-level picture of the vocoder's
abstracted functionality could be directly and natu
rally reflected in its SpecC specification.

As will be seen in the following sections this greatly
eases understanding of the vocoder basics and there
fore supports quick exploration of different design al
ternatives at the system level in the first place. At
each level, the SpecC description hides unnecessary
details but explicitly depicts the major aspects, focus
ing the view of the user and the tools onto the im
portant decisions at each step. For example, at the
lowest level, detailed algorithmic code is hidden in the
leaf behaviors whereas the relations between the be

haviors are made explicit through state transitions.
In terms of the actual algorithmic behavior, SpecC

being build on top of ANSI-C made it possible to di
rectly plug the C code of each basic function in the C
description into the corresponding leaf behavior of the
SpecC specification.

•oMchneoj

Lrmbt prMidnn upon loop

pr«_procau

Algabrslc (lii«d)

FiBir tnxiioiy

Figure 4: Coder.

2.2.1 Overview

Figure 3 shows the top level of the vocoder specifica
tion in SpecC consisting of independent coding and
decoding subbehaviors running in parallel. The coder
receives an input stream of 13 bit wide speech samples
at a sampling rate of 8 kHz, corresponding to an input
bit rate of 104 kbit/s. It produces an output bit stream
of encoded parameters with a bit rate of 12.2kbit/s.
Decoding, on the other hand, is the reverse process of
synthesizing a reconstructed stream of speech samples
from an input parameter bit stream. The following
sections will describe the encoding and decoding pro
cesses in more detail in so far as they are relevant
for the following discussions about the vocoder design
process. See Appendix B for an in-depth description
of the vocoder functionality in SpecC.

2.2.2 Coder Functionality

Coding is based on a segmentation of the incoming
speech into frames of 160 samples corresponding to
20 ms of speech. Speech parameters are extracted on
a frame-by-frame basis. For each speech frame the
coder produces a frame of 244 encoded bits resulting
in the aforementioned output bit rate of 12.2kbit/s.

Figure 4 shows the first two levels of the coder hi
erarchy. At the top level, the coder consists of three
main parts which execute in a pipelined fashion:

1. Pre-processing: Buffering of the incoming
speech stream into frames of 160 samples. Initial
high-pass filtering and downscaling of the speech
signal.

2. Encoding: The main encoding routine which
extracts a set of 57 speech synthesis parameters
per speech frame. Encoding will be described in
more detail in the following paragraphs.

3. Serialization: Conversion and encoding of the
parameter set into a block of 244 bits per frame.
Transmission of the encoded bit stream.

Due to the pipelined nature, all three parts operate
in parallel but each on a different frame, i.e. while a
frame is encoded the next frame is pre-processed and
buffered, and the previous frame is serialized.

In general, encoding uses an analysis-by-synthesis
approach where the parameters are selected in such a
way as to minimize the error between the input speech
and the speech that will be synthesized on the decod
ing side. Therefore, the encoder has to simulate the
speech synthesis process.

In order to increase reaction time of certain filters,
the main encoding routine (also shown in Figure 4)
further subdivides each frame into subframes of 40
samples (or 5ms) each. Depending on their criticality,
parameters are computed either once per frame, once
every two subframes or once per subframe.

Encoding Encoding itself basically follows the re
verse process of speech synthesis. Given the speech
samples, in a first step the parameters of the LP filter
are extracted. The contribution of the LP filter is then

subtracted from the input speech to get the remain
ing LP filter excitation. The LP filter parameters are
encoded in so called Line Spectral Pairs (LSPs) which
reduce the amount of redundant information. Two
sets of LP parameters are extracted per frame, taking
into account the current speech frame plus one half of
the previous frame. LP analysis produces a block of 5
parameters containing the two LSP sets.

Next, using the past history of excitations, all the
possible delay values of the pitch filter are searched
for a closest match with the required excitation. The
search is divided into an open-loop and a closed-loop
search. A simple open-loop calculation of delay esti
mates is done twice per frame. In each subframe a
closed-loop, analysis-by-synthesis search is then per
formed around the previously obtained estimates to
obtain the exact filter delay and gain values.

The long-term filter contribution is subtraced from
the excitation. The remaining residual is the input
to the following fixed codebook search. For each sub-
frame an extensive search of the codebook for the clos

est code vector is performed. All possible code vectors

LSP

Ouantlzation
InteipoIaUon A

LSP •> A(2)
•

InMrpolallMl i
LSP -> Aq(z)

Find opan loop
pitch d«tay

Open_k>op

pitch dalay

2 Mibtramaa

CloMdJoop

2xp«rtrain«

Update nJtar

tnamorlcs

Cweulatc

eodcbook gain

OuanUza

codabookgaln

Figure 5: Encoding.

are searched such that the mean square error between
code vector and residual is minimized.

For each subframe the coder produces a block of 13
parameters for transmission. Finally, using the calcu
lated [jarameters the reconstructed speech is synthe
sized in order to update the memories of the speech
synthesis filters, reproducing the conditions that will
be in effect at the decoding side.

Figure 5 exposes the next level of hierarchy in the
encoding part, showing more details of the encoding
process. Note that for simplicity only the behavioral
hierarchy and no structural information is shown, i.e.
the diagram doesn't include the information about
connectivity between behaviors. A complete block di
agram of the coder which provides an idea about the
complexity by exposing all levels of hierarchy down
to the leaf behaviors can be found in Appendix B on
page 66 (Figure 64).

As can be seen, at this level, the coder specification
exhibits some limited explicit parallelism. However, in
general, due to the inherent data dependencies both
the coder and decoder parts of the system are mostly
sequential in their natures.

LP paramtMr*

pmil13|

1 d»coc

8yn[h|40]

1 Po«l_PIIMr

Figure 6; Decoder.

2.2.3 Decoder Functionality

Decoding (Figure 6) basically follows the speech syn
thesis model in a straightforward way and is more or
less the reverse process of encoding. The decoder re
ceives an encoded bit stream at a rate of 12,2kbits/s
and reproduces a stream of synthesized speech samples
at a sampling rate of 8 kHz. For each incoming frame
of 244 encoded bits a frame of 160 speech samples is
generated.

Incoming bit frames are received and the corre-

spending set of 5 + 4 * 13 = 57 speech parameters
is reconstructed. The first 5 parameters containing
the Line Spectral Pairs are decoded to generate the
two sets of LP filter parameters. Then, once for each
subframe the following blocks of 13 parameters each
are consumed, decoded and the speech subframe of 40
samples is synthesized by adding the long-term pitch
filter output to the decoded fixed code vector and fil
tering the resulting excitation through the short-term
LP filter. Finally, the synthesized speech is passed
through a post filter in order to increase speech qual
ity.

A more detailed block diagram of the decoder show
ing all levels of hierarchy down to the leaf behaviors
can be found in Appendix B, Figure 69 on page 71.
Compared to the encoding process, decoding is much
simpler and computationally much cheaper.

2.2.4 Constraints

Transcoder Delay The GSM vocoder standard
specifies a constraint for the total transcoder delay
when operating coder and decoder in back-to-back
mode. According to the standard, back-to-back mode
is defined as passing the parameters produced by the
encoder directly into the decoder as soon as they are
produced. Note that this definition doesn't include
encoding and decoding, parallel/serial conversions, or
transmission times of the encoded bit stream. Back-

to-back mode is not considered as the connection of

the coder output with the decoder input. Instead, the
57 parameters produced by the encoder are assumed to
be passed directly into the decoder inside the vocoder
system.

The transcoder delay is then defined as the delay
starting from the time when a complete speech frame
of 160 samples is received up to the point when the last
speech sample of the reconstructed, synthesized frame
leaves the decoder. The GSM EFR vocoder standard

specifies a maximum timing constraint of 30 ms for
this transcoder delay.

Analysis and Budgeting In addition to the explic
itly given transcoder delay constraint the requirements
on the input and output data rates pose additional
constraints on the vocoder timing. All requirements
of the standard were analyzed to derive timing bud
gets for different parts of the vocoder, resulting in the
actual constraints of the SpecC description.

Figure 7 depicts an analysis of the transcoder de
lay constraint. Note that the time difference between
the first and the last sample of synthesized speech

Opon.loop

Coda '•

Sublrama ;

D.isp : :

OacDda •

Subframe ;

-I-

Figure 7: Timing constraints.

at the decoder output is 20ms (with the given sam
pling rate). Therefore, if encoding and decodingwould
happen instantaneously in zero time the theoretically
achievable minimum for the transcoder delay is 20ms,
too. In other words, the first sample of reconstructed
speech has to leave the decoder not more than 10 ms
after the input speech frame is received.

Hence, encoding and decoding of the first subframe
of 40 speech samples has to happen in less than 10 ms.
This includes all the information needed for the first

subframe, i.e. encoding and decoding of the 5 LP
filter parameters plus the set of 13 parameters for
the first subframe. Then, while the speech samples
are written to the decoder output at their sampling

rate, the following three subframes have to be encoded
into blocks of 13 parameters and decoded into recon
structed speech subframes such that the following sub-
frames are available at intervals of at most 5 ms.

However, while encoding and decoding of the cur
rent frame take place the next frame is already re
ceived and buffered, and processing of the next frame
will have to start once its last sample is received.
Therefore, an additional, implicit constraint is that
encoding and decoding of a complete frame of 160
samples have to be done in less than the intra-frame
period of 20 ms. Hence, decoding of the last subframe
will have to be done before that time or—in relation

to the transcoder delay constraint—up to 10 ms before
the last sample of the synthesized speech frame at the
decoder output. Note that this requires a buffering of
the decoded speech subframes at the decoder output.

To summarize the constraints for the vocoder, there
are two basic timing constraints derived from the given
time budgets:

• The encoding and decoding delay for the first
subframe (5-1-3 parameters) has to be less than
10 ms.

• The time to encode and decode a complete frame
(all 57 parameters) has to be less than 20 ms.

3 Architectural Exploration

The goal of architectural exploration is initially to
quickly explore a large number of target architectures,
comparing them to each other after an initial mapping
of the design onto the architecture has been done and
finally pruning the design space down to a few can
didate architectures. These system architectures are
then evaluated further, trying to improve the map
ping of the design onto the architecture and possibly
modifying certain aspects of the system until a final
architecture is selected.

Exploration is a part where the design process
can benefit to a great deal from human experience.
Therefore, interactivity is an important requirement
of system-level design environments. However, with
the help of automated tools that quickly search large
parts of the design space, provide feedback about de
sign quality, perform tedious, time-consuming jobs au
tomatically, etc. the designer will be able to explore
a large number of promising design alternatives in a
shorter amount of time. In general, exploration is an
iterative process where the different steps described
in the next sections are repeated for different archi-

1

0 i
1

1

1

1

Figure 8: General specification model.

tectures. Design automation tools significantly reduce
the time needed for each iteration.

Since the corresponding tools are not yet available
at this time exploration for the vocoder project had
to be done mostly manually. However, manual explo
ration strictly followed the flow and the step-by-step
procedures proposed for the implementation of the au
tomated tools. Nevertheless, due to the lack of tools
we had to restrict ourselves to a very small number of
candidate architectures.

3.1 Models

3.1.1 Specification Model

The initial specification written by the designer is
the basis for architectural exploration. The specifi
cation model at the input to architectural exploration
is shown in Figure 8. The specification model is a su
perstate finite state machine (SFSM) with hierarchy
and concurrency.

At each level of hierarchy, the superstates (SpecC
behaviors) are decomposed further into either paral
lel or sequential substates. Superstates at the bottom
of the hierarchy are called leaf states (or leaf behav
iors). They finally contain actual program fragments
describing the algorithmic behavior of the leaf states.

In a sequential composition of states at any level of
hierarchy the states are traversed in a stepwise fashion.
After flattening of the hierarchy, the model resembles
a standard state machine with the additional feature

of parallelism. In contrast to a classical low-level FSM
or FSMD, however, superstates can take an arbitrary

CPU core

ASIC2

MPEG IP

DSP core

Q Q

ASIC3

ASIC1

Bus

DSP Bus

Figure 9: General model for architectural exploration.

amount of time to execute the statements or substates

contained within. Much like a dataflow model, a state
doesn't start to execute until all of its predecessors are
finished. In addition, control flow is introduced by the
possibility to augment transitions with conditions.

3.1.2 Architecture Model

Figure 9 shows the general target or output model of
architectural exploration. An architecture consists of
a set of processing, memory and communication com
ponents. Processors and memories are connected to
gether by communication links, forming a bipartite
gra])h. During exploration, given the initial specifica
tion, bolun-iors are mapped to processors and commu
nication is mapped to the network in the architecture.
The architecture can contain multiple instances of the
same component.

Components are taken out of a library or database
of available component types. The library contains
the functional models for simulation together with in
formation for exploration (e.g. about speed or cost).

In general, the functionality of the library com
ponents ranges from fully customizable components
which can implement any behavior and any interface
to fixed components with predefined behaviors and in
terfaces. Flexibility in the component functionality is
exploited by synthesizing customized versions of the
components during the design process. If part or all of
the component functionality is fixed the components
are also referred to as intellectual property (IP) com
ponents.

10

Processing Components In general, processing
elements (EEs) can be arbitrary programmable soft
ware processor cores or non-programmable hardware
EEs. Examples for software processors are digital sig
nal processing (DSP) cores or general purpose (CP)
CPU cores. Examples of hardware processors are
fully synthesized application specific integrated cir
cuit (ASIC) components or IP components with fixed,
predefined functionality. Processors are considered to
have a single thread of control. If a processor can exe
cute behaviors in parallel it is split into logical single-
threaded processing components for exploration. For
example, an architecture with multiple hardware pro
cessors will have several custom-hardware FSMDs al

though all logical HW processors or FSMDs might end
up on the same physical chip.

Processing components are fully synthesized or
taken out of an IP library. In general, IP processing
components are hardware modules with all or parts
of their functionality fixed, e.g. an MPEC hardware
component or a software processor which can be pro
grammed to implement a large range of behaviors but
nevertheless has a fixed, predefined interface, for ex
ample. Processing components in the library are char
acterized by their functionality and parameters like
cost, power, speed, etc.

Memory Components In addition to the pure
functionality, system-level processing components
generally include some sort of local memory. Along
with the behaviors, variables and storage in general is
mapped onto the local memories of the processors. A
special case of system components are (shared) memo
ries. The functionality of memory components is lim
ited to simple reading and writing of their local mem
ories. Global variables in the specification which are
shared by two behaviors mapped to two different pro
cessors can either be mapped to the local memories of
the processor or to a shared memory in case such a
component is included in the system architecture.

Communication Components The communica
tion components of the interconnect network handle
the communication between the processing and mem
ory components. Therefore, they include any type of
communication media used to implement system-level
communication. For example, busses are commonly
used for interconnection at the system level.

Similar to processing components, communication
components are taken out of a library of available in
terconnect types characterized by their functionality
(protocol) and parameters like delay, throughput, etc.

Specification

Allocation

Components

Partitioning

Impiementation

Scheduling

Architecture

Simulation

Profiling

Estimation

Estimation

Figure 10: Architectural exploration flow.

Protocols in the library are usually at least partly pre
defined, implementing industry standards like PCI or
VME. On the other hand, protocols are customized or
full-custom protocols are synthesized during the de
sign process.

3.2 Exploration Flow

The general flow of steps performed during architec
tural exploration is shown in Figure 10. With the
design specification at the input, exploration creates
an architecture for implementation of this design.

Initially, during simulation the specification is pro
filed to extract estimates about the design com
plexity and the dynamic behavior. Using these
implementation-independent estimates a set of com
ponents is selected out of a library during allocation.
Allocation is based on matching components with the
computational requirements and the available paral
lelism of the specification.

Once a set of components has been selected, design
metrics like cost, delay, etc. of implementing the parts
of the specification on these components are estimated
taking into account information obtained during ini
tial profiling. In the next step, partitioning is per
formed to map the design onto the components based

on these component-related estimates. During parti
tioning design trade-offs related to implementation of
behaviors on different components and parallel versus
sequential execution of behaviors are explored.

After the design has been mapped onto the al
located components the design space is reduced to
a single implementation of the design parts on the
components they are bound to. A more accurate re-
estimation of this implementation is then performed.
Finally, the design is scheduled with this information
to derive the actual system timing. Constraints are
verified and depending on the severity of the viola
tions a new iteration of the exploration loop is started
with reallocation or repartitioning until an optimal ar
chitecture has been found.

3.3 Analysis and Estimation

3.3.1 General Discussion

The basis for any exploration of the design space—
including system-level architectures—is the availabil
ity of good and useful design quality metrics. On
the one hand, metrics are closely related to the de
sign constraints like performance, power or cost (area,
code size, etc.). On the other hand, other metrics can
provide additional useful information. Basically, these
metrics are the only means of deciding how good a cho
sen architecture is in comparison with other possible
architectures. Therefore, analysis of the specification
and estimation of the design metrics for different im
plementations is an integral part of the design process.

Behavior Estimation During architectural explo
ration behaviors are mapped to the processing com
ponents of the architecture. For each type of target
processor the behaviors will exhibit different metrics,
i.e. different cost, different performance, etc. There
fore, by combining the properties of the specification
with the abstracted properties of the target compo
nents estimates about the behavior metrics are ob

tained without actually implementing the behavior on
the component.

However, different implementations of a behavior
on the same processor resulting in different metrics
have to be considered during architectural exploration,
too. For example, the behavior can be optimized for
cost resulting in the least-cost solution. At the other
end of the spectrum, a behavior can be optimized for
performance to achieve the fastest execution possible.
Based on the estimated values, the exploration tools
will assign budgets for cost or performance, for exam
ple, to behaviors or groups of behaviors. This infor-

11

mation is then passed to the backend where it is used
to guide the synthesis process.

Communication Estimation In general, the over
head of communicating data values between the be
haviors of the specification can not be neglected when
evaluating possible target architectures. For behaviors
mapped to the same component, communication be
tween those behaviors is handled according the compo
nent's communication model and is therefore included

in the behavior estimation. For example, on software
processor the call overhead of pushing/popping values
to/from the stack is part of the software implementa
tion of the caller and callee on the processor.

On the other hand, communication among behav
iors mapped to different processing components re
quires transferring data over the channels in the sys
tem architecture. Estimates for the overhead of this

communication are taken into account during explo
ration. The main communication overhead is due to

the delay of transmitting values from one component
to the other.

Basic estimates about the time needed for commu

nication are obtained by evaluating the size of the data
block to be transmitted divided by the channel data
rate. More elaborate estimates are obtained by con
sidering the protocol overhead of the channel includ
ing possibly the segmentation of the data block into
smaller packets for transmission.

3.3.2 Initial Simulation and Profiling

In the first step an analysis of the initial specification
independent of any implementation is performed by
profiling the specification during initial simulations.
Simulation of the initial specification is necessary in
any case to verify functional correctness. Therefore,
these simulations can be augmented to obtain valuable
information which will be used for implementation-
dependent estimations and exploration in general.

Estimates about the relative computational com
plexity and the computational requirements of differ
ent parts of the specification are obtained by count
ing basic arithmetic operations (additions, multiplica
tions, etc.), logic operations (and, or, shift, etc.), and
memory access operations (moves) during simulation.
For each behavior an operation histogram (Figure 11)
is created in which the complexity of an execution of
the behavior is broken down into the number of oc

currences of each basic operation.
Operation profiles are summed according to the

specification hierarchy such that total profiles for each

O

O

A

Operations

Figure 11: Sample operation profile.

constrained execution path axe obtained. The compu
tational requirements for each path can then be cal
culated by summing the operation counts counti and
dividing the sum bythe path's timingconstraintTpath-

MOPS =
counti

^path

giving the complexity in million operations per second
(MOPS). Note that these initial estimates are archi
tecture independent and therefore don't have to be
recalculated during exploration.

In addition, with dynamic profiling information
about the dynamic dependencies both among the be
haviors and inside the behaviors can be derived. For

example, for data dependent loop bounds information
about the worst case execution is obtained by counting
the number of loop iterations. In general, a dynamic
analysis of the possible paths through the specifica
tion and through the behaviors from inputs to outputs
along with the frequency at which each path is taken
is performed and the results are stored for future esti
mations.

3.3.3 Estimation

In contrast to the architecture independent initial sim
ulation and profiling the actual estimation during ar
chitectural exploration is concerned with deriving the
metrics for an implementation of the specification on
an underlying architecture. Using the previously col
lected profiling data a retargetable estimator is used
to obtain metrics for a wide range of HW and SW im
plementations. Depending on the stage in the explo
ration flow the estimator can work at different levels

of accuracy in return for estimation speed.

12

Coarse Estimation For the initial exploration, a
relative comparison of a large number of architectures
has to be done in order to select the best candidates.

Therefore, at this point absolute accuracy is not of
utmost importance. The estimates should rather be
obtained very quickly and provide a good relative ac
curacy, the so called fidelity. On the other hand, in
order to evaluate different architectures estimation of

an implementation on the currently selected target ar
chitecture has to be performed.

With the help of retargetable profilers and estima
tors the behaviors are analyzed statically on the basic
block level. For each basic block the number of cy
cles required for execution of that block on each of
the allocated processors are estimated. With the ad
ditional dynamic information about the relations of
basic block executions and execution frequencies that
were obtained during simulation and profiling of the
initial specification final estimates about the execution
times of the behaviors on the allocated components are
computed.

Estimation is very fast this way since both unopti-
mized synthesis and basic block profiling can be per
formed quickly. Extensive, time-consuming simulation
of the complete specification is not necessary. Due to
the unoptimized nature of the implementations, the
absolute accuracy of these results is low. However,
under the assumption that optimization gains are in
dependent of the actual target these estimates exhibit
a high fidelity.

In addition, in each iteration of the exploration loop
estimates have to be derived for the newly allocated
comi)onents only. For previously allocated compo
nents the information about behavior execution times

from quick or accurate estimates of previous iterations
are retained.

Fine Estimation Later, as the design progresses,
the solutions have to be evaluated in relation to the

design constraints thus requiring estimates with high
absolute accuracy. However, the closer the design gets
to a final implementation the smaller is the number
of architectures under consideration. Major decisions
have already been made. For each behavior the com
ponent on which it will execute is known after par
titioning. Since estimation is fixed to one implemen
tation per behavior more time can be spent on its
analysis. Therefore, estimation run times are traded
off for absolute accuracy.

Basically, accurate estimation creates an actual, op
timized hardware or software implementation of the
behaviors. Using the backend process, software is

compiled and hardware is synthesized with all opti
mizations enabled in the same manner as for the final
design. Accurate estimated are obtained by combin
ing a static analysis of the final hardware and software
execution times with the dynamic information com
puted during initial simnlation and profiling. Since
static analysis is done only once for each basic block—
the dynamic nature of multiple executions is captured
through the initial analysis information—estimation is
faster than extensive simulation of the complete im
plementation.

Only when a final architecture has been selected
and pushed through the backend, an overall simulation
of the final design will be done in order to verify both,
the functionality of the final implementation and the
satisfaction of design constraints.

3.3.4 Vocoder Analysis and Estimation

For the vocoder example, the goal was basically to
come up with the least-cost solution that satisfies the
given timing constraints. Therefore, the specification
was analyzed to obtain estimates about the execution
times and hence eventually the actual delays of the
different vocoder parts.

Initial Analysis Initially, analysis of the vocoder
specification was performed with the goal of obtaining
estimates about the relative computational complexity
of the behaviors in the specification. Computational
complexity is directly related to execution times on
different platforms. The higher the complexity the
longer it will take to compute the result on any plat
form.

In case of the vocoder example, the C reference
implementation of the vocoder standard (see Ap
pendix A) already provided initial estimates through
dynamic profiling by counting basic arithmetic, logic
and memory access operations. The operations are
counted on a frame-per-frame basis, weighted accord
ing to their estimated relative complexity and fi
nally combined into the so called WMOPS estimate
(weighted million operations per second) by divid
ing the sum through the time allowed for each frame
(20 ms).

Figure 12 and Figure 15 show the WMOPS es
timates for the coder and the decoder, respectively.
The estimates are broken down into the major parts
LP analysis, closed-loop search, open-loop search and
codebook search for the coder, and LSP decoding, sub-
frame decoding and post filtering for the decoder. For
each part both the total per frame and the major con
tributing subbehaviors are shown. Each subbehavior

13

5.0 -

4.5 •

<0
0.

4.0 •

o
3.5 •s

£ 3.0 •
(/)
0.

O 2.5 •

s
•o 2.0 •
a>

%- .c 1.5 -
Ui

,

o

5
1.0 -

0.5 -

0.0 •

QTotal per frame • Single execution

Figure 12: Estimates for computational complexity of
coder parts.

a First subframe • Remaining frame •Single execution

1200000

1000000

800000

o 600000

400000

200000

y.'P V^ ^ 6- "O vA® • hP

Figure 13: Breakdown of initial coder delays.

10 ms 20 ms 30 ms 40 ms 50 ms

• LP_analysis GOpenJoop DCIosedJoop SCodebook

Figure 14: Initial coder delay.

14

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

STotal per frame

El b

• Single execution

Figure 15: Estimates for computational complexity of
decoder parts.

180000

160000

140000

120000

8 100000
o

^ 80000

60000

40000

20000

0

a Firstsubframe B Remaining frame • Singleexecution

iii

Figure 16: Breakdown of initial decoder delays.

P ii^S

i' ' \

®fil

Cms 1ms 2 ms 3 ms 4 ms 5 ms

• DJsp • Decode.12k2 • Post.filter

Figure 17: Initial decoder delay.

of the different vocoder parts can be executed sev
eral times per frame (e.g. in a loop or once for each
subframe). Therefore, for the subbehaviors both the
total complexity per frame and the complexity of a
single execution, i.e. the total complexity divided by
the number of executions are shown.

Accurate Estimation In order to obtain more ac

curate estimates about the real execution times on the

target platform, a quick and straightforward compila
tion of the behaviors for the target processor under
consideration was done next.

Due to the unavailability of the retargetable estima
tors and profiles, the target analysis of the vocoder was
done by compiling the behavior code for the chosen
target processor (Motorola DSP56600 family, see Sec
tion 3.4) using the official compiler Motorola provides
for their processors. The resulting machine code was
then simulated on the Motorola Instruction Set Sim

ulator (ISS) to obtain cycle-accurate execution times.
Simulations were performed using typical input

data. The results given here represent average execu
tion times per frame or per execution. An analysis of
the code reveals that the execution times at this level

have only minimal dynamic data dependencies in the
order of a few statements difference (at most 10% dif
ference between worst case and average case). Some
subbehaviors exhibit static execution time variations

through constant parameters passed into the routines
depending on the calling environment but these vari
ations are averaged out at the higher levels of the hi
erarchy.

Figure 13 and Figure 16 show the execution time
results (in number of cycles) for the coder and de
coder, again broken down into parts and their major
subbehaviors. .According to the timing budgets de
rived from the constraints in the initial specification
(see Section 2.2.4), the figures show cycles for encod
ing or decoding of the first subframe plus the rest of
the frame totaling in the cycles per complete frame.
In addition, the cycles for a single execution of each
behavior are included in order to show the complexity
of each behavior in comparison with the initial esti
mates.

Finally, Figure 14 and Figure 17 show the sequences
of execution of the parts for one frame as time pro
gresses in the coder and decoder. The given times are
given based on a processor clock frequency of 60 MHz.
As can be seen easily, for this initial implementation
both timing constraints are severely violated. For a
complete list of simulation results, see Appendix C,
Section C.l.

As mentioned earlier, the results confirm that the
coding part is the major contributor to the delays and
the computational complexity in general. Therefore,
architectural exploration should focus on this part of
the system.

Inside the coder, overall, the codebook search is
the most critical part since it contributes the most to
the violation of the two timing constraints. Also, the
largest indivisible leaf behavior in terms of execution
time is the actual search routine (search_10i40) in
side the codebook search.

Furthermore, comparing the actual execution times
with the initial WMOPS estimates suggests that an
implementation of the codebook search on the pro
cessor introduces a higher overhead of operations not
directly related to the computation than the software
implementation of the other parts. Analysis of the
specification shows that most of the time of the other
parts is spent inside very tight loops with loop bod
ies of a few statements only but a large loop count
as they are typical in DSP-style applications. These
loops promise very good opportunities for optimiza
tions even in software. An exception to this is the
codebook search since it is relatively irregular with
large and hard to optimize code blocks.

3.4 Architecture Allocation

3.4.1 General Discussion

The first step in each iteration of the search through
the architectural design space is the choice of an archi
tecture to be evaluated further. Architecture alloca

tion selects the types of components and the number
of components of each type in the system. Along with
the selection of processors, architecture allocation also
defines the general connectivity between the proces
sors by selecting the types and numbers of communi
cation components between processing components.

Typically, processing elements (PEs) are either pro
grammable processor cores running software or proces
sors implementing a fixed functionality in hardware.
Under the aspect of design reuse the architecture can
include predefined components taken out of an in
tellectual property (IP) library, either from in-house
sources or provided by a third-party vendor. Usually
the functionality of these IP components is fixed and
limited to a small range of possible behaviors. An ex
ception are the software processors. Although they are
taken out of the library of predefined IP components
they are fully programmable and able to implement
basically any behavior.

Possible system architectures range from pure soft-

15

SW PE1

SWPE

(a) (b)

* Figure 18: Examples of mixed HW/SW architectures.

ware solutions using one or more processing elements
up to full-custom hardware implementations with one
or more ASICs. In between is a vast range of mixed
HW/SW architectures based on a combination of SW
and HW processors (Figure 18).

3.4.2 Allocation Flow

-Allocation successivelywalks through the design space
guided by the information obtained during initial anal
ysis and estimation, selecting components out of the
library based on their characteristics. The goal is to
select architectures which promise to satisfy timing
constraints while staying within the given bounds for
other constraints like cost and power.

Figure 19 shows the basic search tree for processor
selection. Starting with no components allocated, in
each iteration a new component is added to the ar
chitecture, possibly replacing another one. With the
hell) of heuristics and pruning techniques like branch-
and-bound the breadth-first search through the tree is
directed towards promising architectures.

Component Selection Given the requirement to
execute a certain number of basic operations in a cer
tain amount of time a set of processing components
has to be selected such that their computational power
promises to run the operations in the given time. The
goal is to satisfy the timing constraints while keeping
the cost low.

The principle of component selection is based on
choosing a set of processors that achieve the required
MOPS rate as defined in Section 3.3. The spe
cific properties and capabilities of the components are
matched with the properties of the instruction mix of
the specification in order to get more realistic esti
mates.

Each component in the library has an associated
set of operation weights w, that reflect the number

sw

SW+HW SW+SW

SW+SW+HW

Figure 19: Allocation search tree.

of instruction cycles typically needed to execute each
basic operation in the specification. In addition, the
components are tagged with their MIPS rate (million
instructions per second). Together with the opera
tion counts Ci in the histogram obtained during initial
analysis and estimation the rate at which each com
ponent will approximately execute the specification is
calculated to

MOPSc = -MIPSc.
iCi

An exampleof a graph is shownin Figure 20. Com
ponents are sorted by their cost. Although in general
the computing power increases with increasing cost
there are local maxima and minima in the operation
rates. Basically, certain components match the op
eration profile better than others. For example, the
vocoder profile includes a large number of multipli
cations and multiply-accumulates (MACs). A digital
signal processor (DSP) with dedicated hardware mul
tipliers and MAC units that operate in one instruction
cycle can thereforeachieve a higher operation through
put than a general-purpose processor with the same
MIPS rate.

Given the local maxima of the operation rate graph,
sets of components are then selected such that their
added MOPS rates satisfy the MOPS requirement of
the specification, at the same time trying to minimize
the combined cost of the components.

Allocation Strategy During allocation, trade-offs
between resource and timing requirements are ex
plored. Depending on the parallelism available in
the specification adding resources (processing compo
nents) increases cost but reduces the overall delay. On
the other hand, reducing the number of components
requires serialization of the specification and increases
the delays. Orthogonal to the concept of parallelism.

16

en
CL

O

Spec

Cost

Components

Figure 20: Component matching.

the speed of the components as described in the pre
vious paragraphs, determines how fast the operations
of the specification will run.

To combine the parallelism available in the specifi
cation with the computational requirements, the spec
ification SFSM is divided into basic steps according
to the boundaries between the leaf behaviors. In each

step along a path from inputs to outputs the operation
profiles of the behaviors obtained during initial esti
mation are combined. In case a behavior covers multi

ple steps its operational requirements are distributed
evenly among the range of steps.

Figure 21 shows an example of the graph obtained
for the given SFSM assuming unit operation require
ments per behavior. The graph shows the combina
tion of computational requirements and available par
allelism in each step. Note that the duration of each
step can and will vary depending on the processors
on which the corresponding behaviors will be imple
mented.

Given the graph, parallelism in the specification is
explored by dividing the operations along the graph
into chunks assigned to run on different processors in
parallel. The amount of operations to be executed on
each processing element together with the total tim
ing constraint determines the required MOPS rates
for component selection. On the other hand, given a
selection of well-matching components a fitting cut of
the operation graph can be found.

In general, exploration of parallelism focuses on bal
ancing resource utilization and keeping the allocated
parallel components busy. In addition to the explo
ration of overall parallelism, single peaks in the oper
ation waveform that temporarily exceed the process
ing rate of the selected components can be cut and
flattened by allocating a small and fast coprocessor
(ideally an IP component or a small custom ASIC)
that will run the operations in a short time. Depend-

Operations

Figure 21: Computational requirements.

ing on the available parallelism other processors are
either idle or can run other parallel behaviors while
the coprocessor is executing.

3.4.3 Vocoder Architecture

As mentioned previously, for the vocoder project we
were restricted to evaluating one architecture. The
goal is an implementation which is as cheap as possible
while satisfying the constraints.

Initially, a pure software solution based on a sin
gle, cheap programmable processor core is assumed to
be the cheapest possible solution. Due to the signal-
processing nature of the vocoder the instruction pro
files of digital signal processors (DSP) conform the
best with the application's operation histograms.

Since the vocoder is based on a 16-bit fixed-point
implementation out of the class of DSP components
a 16-bit architecture matches best. Increasing the bit
width of the DSP to 24 bits, for example, just increases
cost without reducing the number of instructions re
quired since the additional precision is not needed and
therefore not used.

For the vocoder we selected the DSP56600 family
[13] out of the DSPs available from Motorola as the
one satisfying the above mentioned criteria.

However, the execution time estimation described
in Section 3.3 showed that even under the assumption
of a poor accuracy of the results the given constraints
can't be satisfied by a software solution on the DSP.
In the analysis it was also noted that the parallelism

17

inherent in the vocoder is quite limited. Therefore,
architectures with multiple parallel processing com
ponents will not prove to be beneficial. Since there is
not much parallelism to be exploited no speedup can
be expected by adding parallel components. In con
trast, since the utilization of these components will be
low such architectures are cost-ineffective.

Therefore, the option of adding additional process
ing elements is not considered further. This leaves two
options for decreasing the vocoder delays, choosing a
faster processor or adding an ASIC component and
moving parts of the vocoder functionality into hard
ware. In the former case, since the DSP architecture
is already optimal for the given application faster soft
ware execution can only be achieved by increasing the
processor clock frequency. However, with increasing
processor frequency and speed in general both power
consumption and cost increase dramatically.

Under these assumptions, moving to a faster pro
cessor is not the most cost-effective next step at this
point. Instead, adding a small ASIC component for
sequential implementations of vocoder parts in simple
hardware promises a significant speedup at a reason
able cost increase.

In conclusion and under consideration of all these

points at the end of the process an architecture as
shown in Figure 18(a) with one DSP (DSP56600)
and one ASIC connected through one communica
tion channel was selected for implementation of the
vocoder.

3.5 Partitioning

3.5.1 General Discussion

.A.fter an architecture has been selected for evaluation

the next step is to map the specification onto the archi
tecture. This includes partitioning the behaviors onto
the system processors and partitioning the behavior
communication according to the system connectivity.
Note that partitioning is closely related to scheduling
(Section 3.6) in the sense that partitioning has to be
followed immediately by scheduling in order to get the
total delay and therefore feedback about the quality
of the partition.

Behavior Partitioning Behavior partitioning dis
tributes the functionality of the system onto the avail
able system processing components. The goal is to
reach a near optimal partition under consideration of
design constraints like cost, timing, power, etc., e.g.
by looking for a solution that satisfies the timing con
straints with minimal cost in the case of the vocoder.

18

During partitioning several options for trading off
different design aspects exist. Mapping behaviors to
different types of components results in different ex
ecution times where a speedup is usually associated
with an increase in cost. For example, implementing
a behavior in hardware instead of software will de
crease the delay. On the other hand, multiple process
ing components of the same or different type allow the
exploration ofparallelism among behaviors and among
components during partitioning and scheduling.

Partitioning will also insert additional synchroniza
tion in places where it is necessary to coordinate the
execution of the components operating generally in
parallel. For example, in case of data dependencies
successive behaviors mapped to different components
have to be synchronized in order to ensure correct
ness and equivalence with the semantics of the original
specification.

Figure 22 shows an example of a HW/SW parti
tioning for the encoding part of the vocoder based on
the selected target architecture with one DSP and one
ASIC. Although the available parallelism in the en
coder is limited, the partition tries to exploit the par
allel execution on the DSP and the ASIC. Mostly, how
ever, the partition is based on moving computation
ally expensive parts into hardware, thereby reducing
execution times and satisfying constraints even when
DSP and ASIC operate in a serialized fashion.

Note that the example shown is only one partition
out of thousands of possible mappings. Again, this
justifies the need for automated partitioning and esti
mation tools in order to be able to quickly explore a
large number of different architectures and partitions.

Channel and Variable Partitioning Similar to
the mapping of behaviors onto processing compo
nents, after behavior partitioning the communication
and synchronization of behaviors across component
boundaries has to be mapped onto the available sys
tem interconnectivity.

The abstract communication between behaviors in

two different processors is grouped into abstract sys
tem channels- corresponding to the mapping of each
communication onto the available connectivity be
tween the processing components in the system archi
tecture. In reference to behavior partitioning, channel
partitioning selects the type of system connection to
be used to implement a given abstract communication.
After channel partitioning and successive scheduling
of communication the grouping into abstract channels
reflects the mapping of communication onto system
connections.

Software behaviors

Hardware behaviors

LP.analytiB

[i 1
Wndowlnp A

Autoc«rr*latfon

' Windowing &
Autocorroiatton1

i
L»vlnao^

Dwbln

Lavtnaon-

Dufb^

I i 1

Intirpolatton k

UP->A(z)

IntarpolaUon A
LSP -> A<i{z)

Find open loop
pilet) delay

. laipulaa y'Targat, "
raaponta .algnal

Preni(«r mm CalcuJata
.coda vactor M eoda^k gain

-Update fUter
' tnemoilaa

Figure 22; Example of an encoder partitioning.

In case of communication through variables or
buffers in general, the task of variable partition
ing maps these component-global variables into local
memories or into a shared memory if a global memory
has been included into the system architecture.

3.0.2 Partitioning Flow

In each iteration of the exploration loop the parti
tioning step refines the current partition by moving
selected behaviors between components. After each
change, the partition is rescheduled. This process is
repeated until a partition is found that promises to
satisfy the timing constraints. If no partition can be
found a reallocation will become necessary.

Similar to the situation during allocation partition
ing can either focus on the speed of the components
trying to satisfy the timing constraints or it can try to
balance and maximize resource utilization. The selec

tion of a strategy or a combination of both strategies is
done in each iteration of the exploration loop depend
ing on the constraints the the component capabilities.
Strategies are switched between iterations to explore
different dimensions of the design space and to opti
mize for different constraints.

Timing-Driven Partitioning The basis for
timing-driven partitioning is a strategy with the goal

of satisfying the timing constraints while keeping
implementation cost low. Behaviors on the critical
paths are speeded up by moving them to faster
processing components. Under the assumption that
the implementation costs of all behaviors are approx
imately the same, a least-cost solution is achieved by
making moves that exhibit the highest gains in total
path delay.

The general principle for timing-driven partitioning
is based on a measure of so called criticality. Given a
current partition, the criticality tries to measure the
contribution of a behavior mapped to a certain com
ponent to the violated overall timing constraints. For
each critical path the delay a behavior on that path
contributes to the overall path delay is given by the
behavior execution time d and the number of times n

the behavior is executed. The criticality of a behav
ior is then the sum of its relative contributions on all

critical paths:

Criticality =

paths p

Tip X dp

with Tp being the total delay of path p, i.e. the
sum of behavior execution times with behaviors be

ing mapped to different components along the path.
Note that by summing over all paths behaviors that
contribute to multiple critical paths are favorized. As

19

60.00%

50.00%

40.00%

30.00%

20.00%

10.00%

0.00%

O First subframe

m

df

1 Total frame

Figure 23: Criticality of vocoder behaviors.

an example, Figure 23 shows the criticality for the
top-level behaviors of the vocoder.

Under consideration of increases in cost due to be

havior moves, timing-driven partitioning then tries to
speed up the most critical behaviors by moving them
to faster components. Behaviors are selected depend
ing on the gain in criticality that is achieved by a move.
Note that moving the most critical behavior doesn't
necessarily result in the highest gain when other be
haviors experience higher speedups dnring a move.
In addition, information about available parallelism
among critical behaviors can be included in deciding
which behavior to select. Additional speedups can be
obtained by moving critical behaviors such that they
can execute in parallel with other critical behaviors.

Resource-Driven Partitioning In contrast to
timing-driven partitioning, resonrce-driven partition
ing tries to speed up the design as much as possible
by balancing resource usage and thereby utilizing the
resource parallelism maximally. The peak computa
tional power of the system is reached when all the
components are fully utilized.

The basic idea is to assign parallel behaviors to the
components in such a way that the slack is minimized.
The slack (see Figure 24) of a parallel decomposition
of behaviors is the total amount of unutilized compu
tational power resulting from components being idle
during the execution of the graph. If the slack is zero
all components are fully utilized and peak performance
is reached.

Mapping the behaviors to different components re
sults in different execution times for the same be

havior. Theoretically, the shortest delay that can be
achieved is given by the critical path after choosing
the fastest implementation of every behavior. How-

•

B2 B3

Time

PE1 PE2

*

P

Slack

Figure 24: Balancing resource utilization.

ever, parallel behaviors mapped to the same compo
nent have to be serialized and dependencies among
the behaviors have to respected. In general, both iter
ative and constructive approaches for slack minimiza
tion and optimization of resource utilization are pos
sible.

3.5.3 Partitioning for Vocoder

In case of the vocoder, the target system architecture
consists of one DSP and one ASIC connected by one
system channel.

Behavior Partitioning The objective is to move
parts of the vocoder functionality into the ASIC,
achieving a speedup through implementation in hard
ware in order to satisfy the timing constraints. To
keep the cost low the ASIC should be kept as small as
possible while the software has to fit into the selected
processor (i.e. program and data memory).

Starting from a pure software solution where all
behaviors are mapped to the DSP, the basic strategy
followed for partitioning of the vocoder example onto
the selected architecture was to successively move the
most critical behaviors in terms of violation of the tim

ing constraints from the DSP into the ASIC until the
constraints are satisfied. At the same time, on the
other end, starting with the least critical behaviors the
software implementation was improved by optimizing
the code. Assuming that the cost of implementing
each behavior in hardware is is in the same order of

magnitude, moving behaviors first where the largest

20

bns_in

Pre_procef«

. Open.loop •

DJsp

<j

Figure 25: Final vocoder partitioning.

gain in execution time is expected will eventually re
sult in the least-cost solution.

As the analysis in Section 3.3 has shown, the code-
book search is the most critical part under consider
ation of both timing constraints. In addition, it has
been noted that the codebook search comes with a

high software overhead and is not as amenable to opti
mizations compared to the other parts with their tight
DSP-style loops.

Therefore, it was decided initially to move the
codebook search into hardware. To reduce the ex

pected communication overhead between the DSP
and the ASIC not only the actual search routine
(search_10i40) but the complete codebook search
part (Codebook) including the prefiltering, gain cal
culation, etc. was mapped onto the ASIC.

As it turned out, the implementation of the code-
book search in hardware (described in Section 5.2)
together with the optimization of the software code
(see Section 5.1) was already sufficient to satisfy the
given constraints. Hence, no more behaviors had to
be moved into the ASIC.

Figure 25 shows the SpecC model after final par

21

titioning of the vocoder including coder, decoder and
all the external interfacing. The interfaces are respon
sible for parallel/serial conversions, initial buffering,
synchronization and protocol handling at the external
ports, etc. Since they include all the functionality that
has to be performed in parallel to the actual encod
ing and decoding they are implemented as separate,
independent hardware modules running in parallel.

Therefore, the final partition consists of six paral
lel behaviors: the central processor running the main
coder and decoder behaviors, a dependent coprocessor
implementing the codebook search, and interfaces for
incoming and outgoing speech sample and encoded bit
streams.

Parallel, independent coder and decoder task are
assigned to the processor. Executions of the tasks are
triggered by events from the external input interfaces.
The tasks then receive the frames of input data from
their corresponding input interfaces. During one exe
cution they produce a frame of output data which is
send to the corresponding output interfaces, respec
tively.

The speech input interface receives the constant
stream of speech samples, buffering one frame of sam
ples each. Once the frame buffer is full, the coder
task in the processor is signaled and the PE copies the
frame buffer to its local memory. Note that after the
last sample in the buffer has been received the copying
of the frame has to be started before the next speech
sample arrives. As will be seen later, satisfaction of
this constraint will be ensured after communication
synthesis.

During execution, the coder task triggers the hard
ware codebook search by sending the search data to
the ASIC. The coder then waits until the result is re

turned by the codebook search routine. Basically, the
ASIC is a dependent coprocessor whose executions are
triggered by the master processor.

Encoded speech parameters are sent directly to
the coder's output interface as soon as they are pro
duced during the coder run. The output interface
then converts the parameters into encoded bit blocks
and transmits them according to the external protocol.
Once the coder has finished one execution it returns

to its initial state, waiting for the next input frame
(for simplicity, the outer loops are not shown in the
figure).

On the other hand, the decoder's input interface
performs the reverse process of receiving the encoded
bit packets from the external world, decoding them
into parameters sets. Each time a complete subblock
of LP or subframe parameters is received it is sent to

Channel

Figure 26; Channel partitioning.

the decoder task in the processor.
The decoder task in the DSP runs in an endless

loop. For each frame it waits for the LP parameters,
decodes them and repeatedly waits for the four blocks
of subframe parameters, decoding them to produce a
subframe of speech as they arrive. The synthesized
speech subframes are sent to the speech output inter
face as they arrive. The speech interface then buffers
the output speech samples and generates the speech
stream at the external interface.

As can be seen, communication between the six be
haviors combines data transfers with synchronization.
At this step, all the communication of the six behav
iors at the system level is implemented through ab
stract channels. The channels are automatically in
serted during partitioning. In case of the vocoder,
channels based on the abstract semantics of syn
chronous, blocking message passing are used. Note,
that the channels just define the abstract communica
tion model without any decision on their actual im
plementation.

Channel Partitioning In case of the vocoder, only
one system channel exists which connects DSP and
ASIC. Therefore, all communication between behav
iors mapped to the DSP and behaviors mapped to the
ASIC is grouped into one channel representing the sys
tem connectivity at an abstract level (Figure 26).

3.6 Scheduling

3.6.1 General

Partitioning is immediately followed by the task of
scheduling. Both are closely related since the quality
of a partition is not finally revealed until scheduling
has been performed.

Wherever necessary, scheduling determines the or
der of execution of the behaviors in relation to each

other under consideration of the given constraints. For
example, parallel behaviors in the specification which
are supposed to be implemented on the same sequen
tial, single-threaded hardware or software component
have to be ordered and serialized. The serialization of

Wlndea4f9a

Auloeb'tTBkliofi

fftnoenino S

UO-aLSP

IntMpoiMlcfiA
LSPoAW

n—pOHMl

Upw«t*rg*l
AracpenM

Updsl*

Figure 27: Sample encoder partition after scheduling.

one component is done on the system level in combina
tion with scheduling of behaviors in other processors,
maximizing resource utilization and minimizing delays
due to waiting for input data.

Finally, scheduling not only determines an order
ing for behavior executions but it also selects the fi
nal communication implementation. Similar to the
aspects for behaviors and processors, the final map
ping of communication channels to actual instances
of connections in the system is determined. If nec
essary, this requires a serialization of communication
mapped to the same communication component, for
example. On the other hand, due to the serializa
tion of behaviors certain synchronizations might have
become redundant and are therefore removed during
scheduling.

Scheduling may be done statically or dynamically.
In static scheduling, each behavior is executed accord
ing to a fixed schedule. The scheduler computes the
best schedule at design time and the schedule does not
change at run time. On the other hand, in dynamic
scheduling, the execution sequence of the subtasks is
determined at run-time. During scheduling priorities
are assigned to the different tasks running in paral
lel. An application-specific run-time scheduler is au
tomatically generated. On the software side the sched
uler becomes part of the embedded operation system
whereas on the hardware side the control arbiter FSM

will be synthesized as part of the ASIC. The run
time scheduler or arbiter maintains a pool of behaviors
ready to be executed. A behavior becomes ready for

22

ASIC]

rnH Codcbook I

D«cod«.12k2'

speech sublrame out

Figure 28: Final dynamic scheduling of vocoder tasks.

execution when all of its predecessor behaviors have
been completed and all inputs are available. With a
non-preemptive scheduler, a behavior is selected from
the ready list as soon as the current behavior finishes,
whereas for a scheduler with preemption, a running
behavior may be interrupted in its computation when
another behavior with higher priority becomes ready
to execute.

Figure 27 shows an example of a schedule for the
sample partition from Figure 22. Software behaviors
are serialized and execution of software and hardware

behaviors is overlapped where possible in order to ex
ploit the available parallelism between ASIC and DSP.

3.6.2 Vocoder Scheduling

For the vocoder example, the behaviors mapped onto
the processor have to be scheduled. At the top level,
this requires serialization of the parallely executing
coder and decoder tasks. The coder and decoder tasks

themselves are already inherently sequential.
Due to the dynamic nature of the relation between

coder and decoder—in general, the timing relationship
of coder and decoder execution depends on external
triggers and will only be determined at run-time—
a dynamic scheduling approach is needed. A fixed
schedule would possibly incur unwanted additional de
lays through required buffering if the external input
doesn't directly conform with the fixed schedule.

23

The SpecC model of the dynamic scheduling ap
proach chosen for the vocoder is depicted in Figure 28.
The coder task builds the main program which exe
cutes in synchronization with the external input, i.e.
a new iteration of the main loop is started as soon as
a new speech input frame arrives. The coder commu
nicates with the coprocessor for offloaded executions
of the codebook search.

Apart from that, the coder task is interrupted asyn
chronously whenever a new piece of decoder data ar
rives. Depending on the type of incoming parameters
either LP or subframe decoding is executed and the
control flow returns to the coder at the point where it
was interrupted.

This is a simple implementation of dynamic
scheduling as a degenerated version of the general case.
A general dynamic scheduler would require additional
schedulingcode whichwouldrun as the main program.
The scheduler would execute at regular intervals, ei
ther interrupt-driven or by splitting the tasks into sep
arately executed chunks. At each execution the sched
uler would select which of the two task to execute in

the next interval. However, due to the limited num
ber of tasks and the simple relationship between the
tasks such a general scheduler is not needed for the
vocoder and this simple scheduling scheme with a low
overhead is sufficient.

In terms of communication scheduling, since
the processor is the master of all external
communications—data transfers are synchronous
and are initiated by the processor, possibly in reac
tion to external events—and since the processor itself
is sequential, there is no need to serialize external
communication on the system channels. It is ensured
that at no point two data transfers can happen at the
same time.

3.7 Results

The results for the vocoder after architectural explo
ration are summarized in Table 1. Codebook search is

implemented in hardware and the software behaviors
have been optimized (see Section 5).

Note that at this point, the given delays do not

First subframe Total frame

Cycles ms Cycles ms

Coder

Decoder

287943

29648

4.80

0.49

511130

89596

8.52

1.49

Combined 317591 5.29 600726 10.01

Table 1: Delays after architectural exploration.

B Unoplimized SW • Optimized SW • Hardware

1200000 -

1000000

800000

600000

400000

200000

Figure 29: Breakdown of coder delays after explo
ration.

160000

140000

120000

100000

80000

60000

40000

20000

xi? x<f
..t

• Unoptimized SW

JECl El
xe A, <b

• Optimized SW

jn

Figure 30: Breakdown of decoder delays after explo
ration.

yet include the overhead for communication between
DSP and the hardware blocks. However, as the results

show both timing constraints are satisfied with enough
margin to include even very conservative estimates for
the communication delays.

The results even suggest that it will be possible
to slow down processor and/or ASIC, e.g. by reducing
the clock frequency, resulting in a significantly reduced
final power consumption.

Finally, Figure 29 and Figure 30 show the delays
broken down into the major parts and major subbe-
haviors per part for the coder and decoder, respec
tively. Both initial, unoptimized delays as well as de
lays for hardware and optimized software are shown
in comparison. The data confirms that a significant
speedup can be obtained by optimizing the software.
However, even a moderately simple hardware imple
mentation results in considerably larger gains com
pared to optimized software.

4 Communication Synthesis

Channel ASIC

Figure 31: Architecture model.

In the SpecC architecture model obtained as a re
sult of architectural exploration the communication
between system components is still modeled on a
high level through abstract channels (Figure 31). Al
though the channels represent the grouping according
to the mapping onto underlying communication media
like busses etc. they don't yet contain any informa
tion about the actual implementation of sendO and
receive O primitive's semantics.

Communication synthesis, therefore, has the pur
pose of gradually refining the channels in the system
model down to an actual implementation with data
transfers over wires. This comprises the steps of pro
tocol selection, transducer synthesis and protocol in-
lining.

4.1 Protocol Selection

^ System ^

Channel

Figure 32: General model after protocol selection.

During protocol selection, for each abstract channel
on the system level an actual communication protocol
is selected out of the library of available protocols.
The protocols in the library are described as SpecC
channels and include, for example, standardized, pro
prietary or custom bus protocols like PCI, VME, etc.

The selected protocol is then hierarchically inserted
into its system channel and the abstract communica
tion of the system channel is transformed into an im
plementation based on the primitives provided by the
protocol. For example, this includes assembling and
disassembling system messages into protocol packets.

As an example. Figure 32 shows the SpecC model
after a system bus protocol has been selected for im
plementation of the communication between the pro
cessing elements.

24

PE1
System

Bus D
^ ^ Channel
Transducer

Figure 33: Sample model after transducer synthesis.

4.2 Transducer Synthesis

Some system components including in particular non-
synthesizable and IP components come with a fixed
protocol on their external interfaces. This also in
cludes processing elements in general since the exter
nal processor bus is usually fixed to a protocol defined
by the provider. If the protocol of such components is
not compatible to the protocol selected for the chan
nels connected to the component interfacing hardware
has to be inserted which translates between the two
protocols.

In these cases, the task of transducer synthesis
therefore inserts an additional behavior, a so called
transducer between the component and the channel in
the SpecC model. In the system model, the behavior
of the IP component is replaced with a true functional
model enclosed into a wrapper (Figure 33). The wrap
per encapsulates the proprietary component protocol
and provides the abstract canonical interface for com
munication with the IP. The transducer performs the
necessary protocol translations between the wrapper
and the channel communication primitives. Note that
transducers are not required for interfacing to syn-
thesizable components since they can be designed to
implement any selected system protocol.

In caseof processor IP, application-specific I/O rou
tines are synthesized and added to the embedded op
erating system on the software side when replacing the
behavior with the processor model. The calls of the
abstract channel routines in the software behaviors are
replaced with system calls to these I/O routines. The
routines in turn handle the interfacing to the external
world which includes external data transfers, memory-
mapped I/O, interrupt handling, etc.

In general, wrappers together with the clear sepa
ration of computation (behaviors) and communication
(channels) are the key for IP plug'n'play. At any time
during the design flow it is possible to replace a com
bination of a general, synthesizable component and a
channel with an IP component plus wrapper in the
SpecC model. As will be shown later on the vocoder
example (Section 4.4, Figure 35), in such a case two
general components connected through a general sys
tem channel are replaced with a general component
being directly connected to an IP component using the

Interface

Figure 34: General communication model after inlin-
ing.

proprietary IP protocol for communication. However,
since the wrapper abstracts the IP protocol onto the
same canonical interface as used by the other system
channels the replacement is possible without any fur
ther modifications. Only later, after protocol inlining,
will the IP protocol be exposed.

Again, the key is the separation of communication
and computation and the abstraction through chan
nels, features provided by the SpecC language. A mix
of behavioral functionality with communication func
tionality would require to separate those two before
the behavior could be replaced with functionality pro
vided by an IP component. A process that is tedious
and almost impossible to do automatically.

4.3 Protocol Inlining

Protocol inlining is the final step in communication
synthesis. It is the process of inlining the channel
functionality into the connected behaviors, exposing
the actual ports, wires, etc. of the system connectiv
ity. After inlining the final system model consists of
components connected through wires and ports (Fig
ure 34).

Inlining moves the communication functionality
into the components, adding it to the already existing
behavioral functionality. Naturally, this can only be
done for flexible components where the channel func
tionality will be synthesized into SW or HW together
with the other behavior. In all other cases, a trans
ducer has been inserted before and the channel func
tionality will be inlined into the transducer resulting
in the final interfacing hardware.

The final communication model obtained in this
step includes all information about communication
and the corresponding overhead and delays. It is sim
ulated to verifyboth functional and timing correctness
of the design including communication details before
the model is finally handed off to the backend (Sec
tion 5).

25

56600 - speech in

bits out

synth out

Speech
' input

encoded

bit stream

received

bit stream

decoded

speech

Figure 35: Vocoder model with processor bus protocol
selected.

It should be noted that after inlining has been per
formed it is no longer possible to exchange and re
place components since communication and computa
tion are interleaved and not distinguishable any more.

4.4 Vocoder Communication Synthesis

4.4.1 Protocol Selection

In the vocoder example, the system channel simply
connects the DSP with the ASIC and the interfacing
hardware. Due to the limited number of components
and since the hardware modules can be synthesized
to implement any communication protocol there is no
need to select a standard protocol out of the library
for the system channel.

Instead, the proprietary processor bus protocol was
selected for system communication. On the processor
side, this eliminates the need for a transducer. The
hardware modules, on the other hand, will be synthe
sized to interface with the given processor bus.

Figure 35 shows the vocoder model after protocol
selection and after the DSP behavior and the system
channel have been replaced with a model of the real
DSP56600 processor consisting of functional compo
nent plus wrapper. As mentioned previously, at any
time during the design process behavior/channel com
binations can be replaced with IP components (plus
wrappers) without the need for any modifications in
side the behaviors or channels. Therefore, as the
vocoder example shows, integration of IP is easily pos
sible in the SpecC models.

In the vocoder example after protocol selection, the
processor is the central component and all data trans
fers on the processor bus from and to the dependent
hardware modules are initiated by the software on
the processor. Apart from that, the hardware compo
nents can send asynchronous events to the processor

56600

T56600 Bus

Figure 36: Vocoder communication model after inlin
ing.

by triggering interrupts. Based on this protocol, the
abstract synchronous message-passing communication
of the vocoder is implemented as follows.

On the software side, abstract communication
primitives are replaced with calls to I/O routines and
interrupt handlers. Address ranges on the external bus
are assigned to the different communication links. On
the DSP56600, external data transfers are performed
by accessing program memory locations above $8000
(hexadecimal). Therefore, external communication is
replaced by writing to or reading from the selected
program memory locations.

Externally, through calls to the processor wrapper's
communication routines, the hardware modules de
code their assigned address ranges and map matching
bus accesses to reads and writes of their local memo

ries or registers. Events sent to the hardware modules
are signaled by writes to selected memory locations,
e.g. start of processing is triggered by receiving the
last item of an input data block transfer.

On the other hand, hardware components send
events to the software by raising interrupts through
their wrapper calls. For example, the hardware sig
nals the availability of new data (e.g. new incoming
speech or parameter frames) or computation results
(e.g. codebook search results) to the processor. On
the software side, the interrupt handlers receive these
events and transfer the data one word at a time by
handshaking with the ASIC over the bus. The han
dlers repeatedly execute instructions that initiate read
cycles on the external bus, putting the data words read
from the bus into the local processor mernory. After
the complete data block has been read the handlers
either start the corresponding behavior execution im
mediately (e.g. decoding in the vocoder) or they set a
flag which can be tested by the program.

26

Memory

DSP56600

Processor

Memory

ASIC

Figure 37: Vocoder hardware/software interfacing
model.

4.4.2 Protocol Inlining

Finally, inlining of the wrapper functionality into the
hardware components is performed (Figure 36). There
the address decoding, interrupt generation, and bus
protocol handling functionality is combined with the
hardware behavior. Both parts will then be synthe
sized together to generate the final hardware compo
nents. After inlining the actual processor ports and
their connections to the ports of the hardware modules
are exposed and visible, resulting in the final system
model as actually seen after implementation.

Figure 37 shows the implementation of the inter
facing between hardware and software in case of the
vocoder after final inlining. A typical flow for trans-
fering control and data in the vococoder would look
like this:

1. The processor successively writes the block of
data for the hardware onto the bus one word at
a time by initiating a sequence of bus write cy
cles with addresses corresponding to the desired
hardware module.

2. The hardware modules listening on the bus de
code the addresses, take the data words from the
bus and write them into their local memories if

the address falls into their assigned range.

3. When the last item has been written control in

the hardware module is transfered from the bus

decoder to the execution of the corresponding
(computational) behavior.

4. The behavior reads the values from the memory,
processes them and writes the result back into
the memory.

5. When the behavior has finished execution it trig
gers the processor by raising the interrupt line.

6. The processor in the vocoder reads the block of
result data over the bus one word at a time by

initiating a sequence of successive bus read cy
cles. Again, the hardware modules interfacingto
the bus decode the corresponding adresses and
supply the requested values out of their local
memories.

In case of the vocoder it is assumed that the synthe
sized hardware will be fast enough to react to trans
fers initiated by the master processor at the maxi
mal bus speed (2 processor cycles per bus transfer).
Otherwise, wait states would have to be added to
the bursts of bus transfers on the processor side or
a more elaborate handshaking scheme (e.g. DMA or
interrupt-based acknowledgements of single transfers)
would become necessary.

The bus decoder and interrupt generation logic are
parts of the wrapper channel which after inlining into
the hardware module are combined with the compu
tational logic. Note that in general there are many
different ways of implementing the transfer function
ality and a choice about the final hardware design has
to be made at this point, (e.g. to combine or to sepa
rate the decoder and computation state machines).

When waiting for an event without any further pro
cessing to be done, the program suspends itself by
halting the processor. For example, on the vocoder
the main coder program waits for the start of a new
frame after processing of the previous one has finished.
After an interrupt has woken up the program it will
check the flag for the correct event type and will ei
ther continue waiting or if will start processing of the
received data.

Table 2 summarizes the results of protocol selec
tion for the communication between processor and the
different hardware modules in the vocoder. It lists
all the address and interrupt assignments for the im
plementation of the synchronous, blocking message-
passing communication as described in the previous
paragraphs. Each message is assigned an exclusive
address range.

Note that for each message the processor transfers
the data items sequentially over the bus. Each data
word of each message has been assigned a different ad
dress on the external processor bus. By decoding the
bus addresses the hardware modules can determine
which item of a message is being transfered. Note
that items are transfered one word at a time and that
the sequences and the transfers in a sequences are ini
tiated by the processor in a fixed order. Hence, as an
implementation alternative it would be possible to as
sign only a single address each for communication with
the hardware modules. All data transfers between a
certain hardware module and the processor would be

27

Message Address range SW Trigger HW Trigger

Speech In $8000-$809F Interrupt A

Bits/Prm Out LSP $8500-18504 Write to $8504

Prm 1-4 $8505-$8538 Write to $8511, $851E, $852B, $8538

Bits/Prm In SID, TAF $953A-$953B Interrupt B, #0

BFI, LSP $9500-$9505 Interrupt B, #0

Prm 1-4 $9506-$9539 Interrupt B, #1-4

Speech Out Subframe 1-4 $9000-$909F Write to $9027, $904F, $9077, $909F

Codebook Data (ASIC In) $A000-$A0C9 Write to $A0C9

Codebook Result (ASIC Out) $A0CA-$A124 Interrupt C

Table 2: Vococeder interrupt and address assignment.

Priority

Interrupt A high (2)
Interrupt B middle (1)
Interrupt C high (2)

Table 3: Vocoder Interrupt priorities.

handled using the same address on the bus. However,
this would require the hardware modules to keep track
of the history of data transfers in order to recognize
the end of the sequence, for example. Therefore, the
implementation as shown in Table 2 was chosen for
the vocoder example.

On the processor side, incoming messages are as
signed to different interrupts. However, due to the
limited number of available interrupts all incoming
parameter blocks (LSP and subframe parameters) are
mapped to the same interrupt. Since the parameter
order is fixed and given, different blocks are distin
guished by their index in the sequence of incoming
messages.

Table 3 lists the priorities assigned to the different
interrupts. Interrupt priorities define the ordering in
which overlapping interrupts are processed. Interrupts
of lower priority are disabled while a high-priority in
terrupt is processed in its handler.

The vocoder priorities are selected such that incom
ing speech frames have priority over incoming parame
ter blocks. It is time-critical that the hardware speech
buffer is copied into the processor as soon as it be
comes full. The selected priorities ensure that this
data transfer can't be interrupted and therefore will
be finished before the next speech sample will arrive
at the buffer. Note that interrupts A and C (incoming
speech and codebook done signal) can never happen
simultaneously and therefore can share the same pri
ority.

4.5 Results

A final simulation of the communication model includ

ing interrupt handling, external data transfers, etc.
was done by extending the instruction set simulator of
the processor to include an emulation of the hardware
module functionality at the interface to the processor
(Section 5.1.3). The resulting co-simulation was used
to verify functional correctness of the results produced
by interface synthesis and to the obtain final timing
data including communication overhead.

Cycles ms Constraint

First subframe 366809 6.11 10 ms

Total frame 642351 10.71 20 ms

Table 4; Worst-case delays for vocoder in back-to-back
operation.

Table 4 lists the simulation results for both con

straints in terms of worst-case delays for operating
coder and decoder in back-to-back mode as required
by the specification (see Section 2.2.4). Also, com
paring the delays of Table 4 to the estimates obtained
after architectural exploration (Table 1 in Section 3.7)
shows the additional delays due to the communication
overhead.

As these results show, both constraints are easily
satisfied and there is even room for other optimiza
tions, trading of speed for other parameters of the
design space. For example, by lowering the clock fre
quency power consumption can be reduced at the ex
pense of execution times and delays.

28

5 Backend

At the end of the SpecC design process the final com
munication model is handed off to the backend tools.

For the software parts code is generated which will be
compiled into a program that runs on the correspond
ing processors. For the hardware parts high-level syn
thesis is performed to create an RTL description which
will then be further processed using traditional logic
synthesis and P&R tools.

^ 5.1 Software Synthesis

Software synthesis is the process of generating exe
cutable machine code to run on the processors in the
system. Given the final SpecC model, C code is gener
ated for behaviors mapped to processors. Using spe
cialized or general, retargetable compilers the 0 code
is compiled and optimized for the given processor.

Finally, using an instruction set simulator (ISS),
again either specialized or retargetable, the software
generated for each behavior is simulated to obtain de
tailed timing information. For the final verification of
the communication model the different parts of the
system are cosimulated at the native C level using
the detailed timing information to emulate the de
lays of the behaviors at their interfaces. Therefore,
the functionality and the timing of the communication
between the behaviors can be simulated without the

need for slow, cycle-accurate simulation of the hard
ware and software behaviors themselves.

5.1.1 Code Generation

During code generation, the SpecC model of the soft
ware behaviors mapped to the processor is translated
into a C program for that processor. Due to the fact
that SpecC is based on ANSI-C this translation pro
cess is straightforward.

The software behavior hierarchy is converted into a
hierarchy of C functions where the functions are called
in the order given by the scheduled SpecC model. The
C code contained in leaf behaviors is directly used as
the body of the corresponding 0 function.

In addition, the behavioral C code is linked with
the customized operating system kernel as determined
during scheduling and communication synthesis. The
operating system kernel is generated using a library of
templates and standard modules. The corresponding
schedulers, interrupt handlers, I/O routines, etc. are
customized according to the specifics of the given pro
cessor (e.g. mapping to interrupt vector addresses).

29

The SpecC language includes certain extended fea
tures (e.g. bit vector data types) not available in
ANSI-C. Using a library, operations can be mapped
to function calls of library routines implementing the
desired functionality on the target processor. In gen
eral, depending on the features of the processor in con
nection with their support by the C compiler, special
ized operations are either emulated or directly imple
mented using the processor's capabilities.

Since the corresponding tools for automated code
generation in the SpecC environment were not yet
available, for the vocoder project the following tasks
were instead performed manually:

• Scheduling of the software behavior hierarchy
into a sequential hierarchy of C function calls,
largely based on the model of the initial C ref
erence implementation.

• Parts of the runtime library provided with the
Motorola C compiler were linked to the vocoder
code. The linked assembly code (art module)
is responsible for initializing the C runtime en
vironment (e.g. stack, etc.) on the DSP core.
Since they are not used by the vocoder code,
the C standard library routines were not linked
with the program, saving memory space.

• A customized operating system kernel consisting
of interrupt handlers, I/O routines for external
bus accesses, process synchronization operations
and the interrupt-based dynamic scheduling of
coding and decoding processes was created.

• Appropriate calls of the operating system ker
nel routines were inserted into the C code to

synchronize with incoming events and to trans
fer data between the processor and the external
hardware.

• The 16-bit saturated fixed-point arithmetic of
the algorithms in the vocoder behaviors was
implemented using native assembly instructions
provided by the DSP core. Therefore, the ex
plicit saturations and fixed-point adjustments
(shifting, etc.) of the basic operations in the
original specification were replaced with corre
sponding native assembly code and the previ
ously generated processor initialization routines
were modified to switch the processor into sat
urated arithmetic mode. Also, complex op
erations like multiply-accumulate (MAC) were
mapped onto equivalent machine instructions as
far as they were available in the DSP instruction
set.

5.1.2 Compilation

Following code generation, the sources have to be com
piled into an executable program for the chosen pro
cessor. During compilation, general and processor-
specific optimizations of the code have to be performed
to improve code quality. This requires good, optimiz
ing compilers for each processor in the system. In
general, a retargetable compiler provides the basis for
generating optimized code for a large range of typical
embedded processors.

Compilation of the C code for the vocoder's soft
ware parts was accomplished using the compiler pro
vided by Motorola for their DSP processors. Initial
compilation of the software was done with all com
piler optimizations enabled, including post-processing
with the assembly-level optimizer.

Unfortunately, analysis of the code produced by the
compiler revealed that the Motorola compiler does a
poor job optimizing for the DSP56600. The Motorola
compiler is based on a retargeted GCC. However, GCC
is a compiler for general-purpose processor and there
fore doesn't include DSP-specific optimizations. Es
pecially for the typical tight loops, the code produced
by the compiler for the loop bodies spends most of
the time spilling register data to and from memory
compared to performing actual computations.

For the vocoder example the objective was to pro
duce code that is comparable to the level that could
be expected as output of a good, state of the art com
piler. To get results that are similar to the ones ob
tained once the compilers of the SpecC environment
are available the following three-step procedure was
employed:

1. The generated C code of the behavior hierar
chy assigned to the processor was compiled into
assembly code for the DSP core using the GCC-
based Motorola compiler.

2. The assembly code was profiled using the in
struction set simulator (ISS) for the DSP core
supplied by Motorola (see also Section 5.1.3).
The results were presented in the section about
initial analysis and estimation of the vocoder
complexity (Section 3.3, for a complete list of
results see Table 8 and Table 9, Section C.l in
Appendix C).

3. The loops in the assemble code that dominated
the execution times were manually optimized.
Basically, register allocation was optimized to
reduce the spill code and memory moves inside

the loop bodies. Modifications were made to im
prove execution times without increasing code or
data memory size.

In general, only straightforward manual modifications
were made without applying any sophisticated opti
mization strategies even a good compiler wouldn't be
capable of doing automatically. Figure 38, Figure 39
and Figure 40 show examples of the assembly code
produced by the Motorola compiler and the assembly
code after optimization for a simple filtering loop (part
of SynJilt).

As the results (presented in Section 3.7 and Sec
tion C.l) show, this simple optimization strategy al
ready leads to significant gains in terms of execution
times:

• Up to 94% improvement of the loop execution
times could be achieved.

• On average, the execution time gain for the op
timized software behaviors was about 82%.

The data clearly indicates the importance of compiler
techniques for system design. A system design process
that produces good results mandates the availability
of a good optimizing compiler.

5.1.3 Simulation

After compilation, the final program code has to be
simulated to verify software synthesis results in combi
nation with the results of hardware synthesis. Similar
to the compiler aspects, a simulator for every proces
sor in the system has to be available. Again, a re
targetable simulator, possibly derived from the same
processor description as the retargetable compiler, will
cover simulation requirements for a large number of
processor architectures. In order to get cycle-accurate
results the different software blocks are simulated on

retargetable instruction set simulators (ISS) that em
ulate the cycle-true behavior of the target processors
on a simulation host machine.

Once accurate timing and delay results for each
hardware and software block have been obtained the

whole system can be cosimulated to verify the interac
tion among the different parts. For fast cosimulation
the different parts of the system are simulated at the
native C level, i.e. the C code of the behaviors is com
piled into a native program on the simulation host.
Using the previously obtained timing data the C code
emulates the cycle-accurate timing and the behavior
of the different hardware and software parts at their
interfaces without actually simulating the cycle-per-
cycle behavior inside the blocks.

30

10

/♦ Do the filtering . */
for (i = 0 ; i < Ig ; i+4-)
{

s = L.mult (x[i], a[0]);
for (j = 1 ; j <= m; j++)
{

s = L.msu (s , a[j], yy[-j]) ;

s = L.shl (s , 3);
* yy++ = round (s);

Figure 38: Original C source code example.

; for (i = 0; i < Ig ; i++) {
cmp yO , b
jge L96
move r4 , r5

5 do yO,L97

; s = L.mult (x[i], a[0]);
move y: (r2), yl
move y ; (r5) + , xl
MPY xl,yl,b

10 ; for a = 1; j <= m; j++) {
clr a r2 , xl
add #1 ,a
move al , y : (r6 4-(-5))
add xl,a

16 move al , r4

do #10,L95

; s = L.msu (s, a[jj, yy[-jj);
move r 1 , a

move y : (r6+(-5)), xl
20 sub xl,a y:(r4) + ,xl

move al , rO
move y : (rO), y 1
MAC —x 1 , y 1 , b

.• — }
25 move y : (r6+(-5)), r7

move (r7) +
move r7 , y : (r6+(-5))

L95

; s = L.shl (s , 3);
30 ASL # 3 , b , b

ADD #0,b
; *yy + + = round (s);
tfr b, a

RND a

35 ; }
move al , y :{ rl)+

L97

nop

L96

Figure 39: Assembly output of Motorola compiler.

; Do the filtering
M3VE#12,n5
M3VE (r5)-
]VE)VEy:(r6+(-82)), nO

5

DO nO, XOOP2
MOVE a, r4
MOVE y ; (r4)+ , xO
MQVEy:(rl) + ,xl

10 MPYxO,xl,b y:(r5) —,xl

DO#10,XOOP3
MCfV® y : (r4)+, xO
MAC—xO,xl,b y;(r5) —,xl

15 X00P3

ASL#3,b,b
RND b (rS)+ii5
MOVE b, y: { r5)

X00P2

yy[-i])
0

for (; < Ig ;)
&a[]
a[0]
x[i]
L.mulO, yy[-l]

for (; m;)
afj]
L.msu 0, yy[-jj

L.shl ()
round (), & yy[i]
store in yy[i]

Figure 40: Assembly code after optimizations.

This cosimulation strategy provides cycle-accurate
results for the interactions among system parts at a
high simulation speed. Behavior and timing of hard
ware and software parts is emulated at the full speed
of the simulation host in contrast to traditional time-
consuming cosimulation where a slow simulation of the
hardware at the structural or gate level is combined
with a slow simulation of the software processor at the
instruction level.

Due to the fact that the retargetable simulators
and cosimulation engines of the SpecC environment
are still under development, the cosimulation of the
vocoder example had to be done using a combina
tion of specialized standard tools and manually cre
ated simulators:

• The execution of the compiled program parts on
the DSP56600 processorwassimulated usingthe
instruction set simulator (ISS) made available
by Motorola [14]. The cycle-accurate execution
time results presented previously were obtained
this way.

• For timing-accurate simulation of the interac
tions between processor and external hardware
in the final communication model a specialized
cosimulator was developed based on the source
code of the Motorola ISS for the DSP core.

As described above, for cosimulation of hardware and
software an emulation of the hardware modules' be
havior at the C level was added to the source code of
the instruction set simulator. The ISS sources were
modified such that in each cycle the conditions at the
processor interface as seen by the software running

31

on the simulated processor reflect the actual expected
hardware behavior. Finally, the resulting cosimulator
source code was compiled into a program to run on
the simulation host.

Basically, after each simulated cycle the cosimula
tor program checks for accesses of the software to the
processor bus, catching and handling them appropri
ately. In case of write cycles the values written by
the simulated software are passed into a call of the
C function that emulates the corresponding hardware
module. On the other hand, given the knov/n timing
of the hardware modules, interrupts in the simulator
are scheduled at certain regular intervals or after cer
tain delays. Once the simulation has reached a cycle
with an interrupt condition the control in the sim
ulated processor is transfered to the appropriate in
terrupt handler. Finally, at bus read cycles initiated
by the software the simulator supplies the values re
turned by the previous call of the C function for the
corresponding hardware module.

For example, once the simulator program recog
nizes that the DSP program has triggered a codebook
search by writing the search input data to the proces
sor bus it calls the codebook search C function with

the given parameters. The simulator program will
then schedule a codebook search interrupt after the
given hardware delay (see Section 5.2). Once the in
terrupt cycle is reached the interrupt condition in the
DSP is simulated. The DSP program will then try to
read the search result over the DSP bus and the sim

ulator program supplies the result calculated during
the C function call to the simulated read cycles.

In terms of interfacing to the external world, in the
simulator program corresponding interrupts are gen
erated at regular intervals according to the input data
rates. Again, the values read by the DSP program
over the processor bus are supplied by the simula
tor program. On the other end, the simulator pro
gram takes results produced in the simulated DSP and
stores them in a file along with their timing informa
tion.

For verification of the timing constraints, the simu
lator program runs the vocoder in back-to-back mode
as required by the specification. Output parameter
blocks generated by the coder in the DSP and written
to the processor bus cause the simulator program im
mediately to raise an parameter input interrupt. The
parameters written to the bus at the coder output are
directly supplied to the bus read cycles of the decoder
input.

HL synthesis

Behavioral
description

"" i
Compiler

Netlist

generator

Logic/Sequential synthesisiis"^
T

Memory Control Datapath
synthesis synthesis synthesis

Physical design

Design
constraints

ASIC exploration

RTL

DB

Architecture,
topology,
resource

selection

Design
quality

assessment

Designer

Figure 41: HLS design flow.

5.2 ASIC exploration

ASIC exploration is based on principles of high level
synthesis (HLS) which can be defined as a translation
process from a behavioral description into a register-
transfer level (RTL) structural description. Usually
the input to HLS tools is a behavioral description
written in an HDL or a general purpose programming
language. The output of a HLS tool consists of two
parts: an RTL datapath structure and a description
of the finite state machine (FSM) that controls the
datapath. At the RTL level, a datapath is composed
of three types of components: functional units (e.g.
ALUs, multipliers or shifters), storage units (e.g. reg
isters or memories), and interconnection units (e.g.
busses or multiplexers). The FSM specifies a set of
register transfers executed by the datapath in every
control step.

A typical HLS tool design flow (Figure 41) usually
starts with a pre-synthesis step in which the behav
ioral description is compiled into an internal represen
tation such as control/dataflow graph (CDFG). It of
ten includes a series of compiler optimizations such as
code motion, dead code elimination, constant propa
gation, common subexpression elimination, loop un
rolling etc. This step is followed by the core HLS
process which typically contains three tasks: schedul
ing, resource allocation and binding. Scheduling as
signs operations of the behavioral description to con
trol steps. A control step usually corresponds to a
cycle of the system clock, the basic time unit of a syn
chronous digital system. Resource allocation chooses
functional units and storage elements from the compo
nent library. There may be several alternatives among
which the synthesis tool must select the one that best
matches the design design constraints and maximizes

32

y=0

x=0

S2) y=l

x=0

S3 j y=0

tempi =a(i)-(-b(i)
S2 j temp2 =c(i)+d(i)

count = count -1

S3 J s(i)= tempi * iemp2

C Program

variable A; array! I••20)of integer

•••ii

/y=<

variable i. max: integer;

max

for i = 1 to 20 do

ye3

(a) FSM (b) FSMD
(c) SFSMD

(d) Concurrent Hierarchical SFSMD

Figure 42: State-oriented models.

the optimization objective. Binding assigns operations
to functional units, variables to storage elements, and
data transfers to wires or busses.

Those three steps will be addressed in detail in the
following sections using the hardware design of the
codebook search ASIC in the vocoder project as an
example.

5.2.1 Behavioral Model

The input to HLS is a behavioral description which
specifies the hardware functionality. A natural lan
guage description is often ambiguous and incomplete.
Therefore, a more formal model is needed. A model is
a system consisting of objects and composition rules.
It provides a high-level view of a system in which dif
ferent details are abstracted for different applications.

Generic models Figure 42 shows several state-
oriented models for describing the behavior. A finite-
state machine (FSM) is the most popular control
model. It consists of a set of states, a set of transitions
between states, and a set of assignments to boolean
control variables associated with these states. Tra

ditionally, every state is associated with one control
step or one clock cycle. However, for a computation
ally intensive system a FSM model may suffer from a
state explosion problem. For example, a 16-bit inte
ger data value represents 65536 different FSM states.
To solve this problem the FSMD {FSM with datap
ath) model is introduced where non-boolean variables
and complex data structures can be used in state as
signments in order to reduce the numbers of states.
However, neither FSM nor FSMD models are suitable
for specifying complex systems since neither one sup
ports concurrency and hierarchy which are the two
essential characteristics exhibited by the real world

system. Therefore, superstate FSMD (SFSMD) and
concurrent hierarchical SFSMD (CHSFSMD) are in
troduced. A SFSMD extends a FSMD by adding the
concept of a superstate which associates a behavior,
an algorithm or a program with each state. In this
case, each superstate is assumed to execute in more
than one control step. Finally, a CHSFSMD adds hi
erarchy and concurrency to the SFSMD model. The
CHFSMD model basically consists of a hierarchy of
program states in which each program state represents
a computational functions or procedures. At any given
time only a subset of program states will be active.
Within its hierarchy the model consists of composite
and leaf program states. A composite program state
is a state that can be further decomposed into either
concurrent or sequential program substates. If they
are concurrent all the program substates will be ac
tive whenever the program state is active. If they are
sequential the program substates are actived one at
a time while the program state is active [8]. SpecC
supports this CHFSMD model.

Model for vocoder hardware The vocoder is

specified by a simplified CHFSMD model in which
there are only TOG (transition on completion) arcs
but no T1 (transition immediately) arcs (Figure 22).
The TOG arcs not only specify the control transitions
but also imply that the data will be ready for the
next superstate behavior. After hardware/software
partitioning some TOG arcs are crossing the bound
ary between the processor and the custom hardware as
shown in Figure 43. To maintain the semantics regard
ing the availability of data a separate FSMD has to
be added which implements the data transfer for each
TOG arc between hardware and software. These FS-
MDs are supposed to be introduced during communi-

33

AutoeocMlMloA

__ ^au-oui

Figure 43: The sample encoder partition.

cation synthesis through channel insertion and proto
col selection, etc. For example, a simple handshaking
protocol could be selected to synchronize the hardware
and software execution by exchanging Start and Done
signals between the processor and the ASIC. A full-
fledged CHFSMD model with TI arcs complicates the
hardware model after partitioning significantly. This
issue is still an ongoing research topic which will not
be discussed in this report.

The CHSFSMD model needs to be described with

a language which can support both hierarchy and con
currency. In this project, SpecC was used to specify
the CHSFSMD. For comparison, the VHDL model for
the codebook search has also been included in Ap
pendix F. At this level it is not much different from
the SpecC code except for some syntax variations and
the fact that the pointers in the SpecC code have been
converted to array accesses. However, expressing con
currency in VHDL at this level would be more difficult
than in SpecC because of the different semantics of sig
nals and variables in VHDL. In VHDL a process can
be used to model concurrency of leaf program states
such as blocks prefilter or pitch_contr shown in
Figure 45 and Figure 46. However, only signals can
be used to communicate data between processes. Un
fortunately, signals are not efficient in modeling algo
rithms because of their delta delay property. Gener
ally speaking, algorithms always assign values to tem
porary storage and use them immediately in the fol
lowing computation. If signals are used instead, one
needs to insert many "wait 0 ns;" statements in order

•"baiaOut*

Done!

Done2

LSP

Quanlizatioti

•e4 /

Open-loop
pitch search

FSM implementation

Done] & c2)

Donel & c2

Sn JDone2=l

Figure 44: Scheduled encoder ASIC partition (Note:
Datain and DataOut FSMD for behaviors other than
the 2nd Levinson-Durbin are omitted.)

to ensure correct data values. This makes it unnatural

for the designer to describe algorithms using VHDL at
the behavioral level.

Usually, each hardware module has a single thread
of control because the behaviors in the module typi
cally share the same datapath. Therefore, the CHSF
SMD model has to be scheduled at the behavioral level

such that all concurrent behaviors are serialized. Con

ceptually, additional TOC arcs between those concur
rent behaviors will be inserted as shown inFigure 27.
The execution of a behavior is triggered when its in
coming TOC arc is traversed. To implement the se
mantics of this model each behavior functionality is
adjusted as shown in Figure 44. One initial state will
be inserted before the behavior in which the incom

ing TOC arc conditions will be checked to determine
whether the behavior should be executed. In the last

state of each behavior instance i, a completion signal
Done(i) signal is asserted. In addition, an end state
will be added after the behavior in which the Done(i)
signal is de-asserted and the completion signal Done
of the top level behavior will be polled to determine
whether to advance back to the initial state. In this

way the ordering and the mutual exclusiveness among
the behaviors will be preserved. Moreover, this pro
vides additional flexibility in implementing the con-

34

Dataln
Codebook

1Start

pltch_contr_xn' pitch_contr_res Prefilter_h

code_l0i40 35bits

cor h X

set_sign

cor h

search 10140

build code

r
Prefllter_code Gain code

Done _X>ataOut

Figure 45: The scheduled codebook search CHSFSMD
model.

troller. The controller can be implemented as one
combined FSM or several separate FSMs. In the for
mer case only the the initial and end states of each be
havior have to be removed. All behavior states will be

chained to form the controller FSM. For the latter case

the controller will be decomposed so that each behav
ior has its own control FSM and all the behavior FSMs

are coordinated with each other through Done(i) and
Done signals. The independent FSMs' control out
puts are combined in the primary output logic (e.g.
OR gates) to form the datapath control word. Fig
ure 45 shows the scheduled CHSFSMD model of the

codebook search algorithm which has been selected
for the final hardware implementation. The following
discussions will be based on this model.

So far we have discussed the hardware system from
a control-flow view only. A data-flow view (Figure 46)
shows the exact I/O relationships between the par
titioned hardware and software parts. It is obtained
by data-flow analysis which can determine the input

data, i.e. variables that are alive at the point of en
trance, and the output data, i.e. variables that are
defined/redefined in the hardware portion and need
to be alive across the exit point. This data-flow view
actually implies the memory hierarchy of the imple
mentation. Despite registers and register files in the
design, a larger memory is also needed as a buffer that
holds the input/output data and big temporary array
variables such as rr[40][40] inside codeA0i40-35hits in
Figure 46.

5.2.2 Architecture Exploration

Up To this point, we have focussed on how the system
should be described and modeled. An architecture

is has to be dervied in order to specify how it will
actually be implemented. ELS is a process of turning
the model into an architecture under given constraints.

Architecture selection The architecture model for
exploration always consists of a control unit and a
datapath. A generic implementation is shown in Fig
ure 47. The control unit is usually described with a
FSM. It contains a set of state registers and two combi
natorial blocks computing the next-state and output
functions, respectively. The FSM in this project is
state-based (a so-called Moore machine), i.e. the FSM
output depends only on the current state. As a result
some extra states will be introduced as opposed to a
transition-based FSM. On the other hand, the critical
path length will be reduced. The datapath consists
of functional units, storage units and interconnection
units as shown in Figure 47. The exploration of the
datapath consists of selecting the functional unit types
and numbers, their connectivity and pipelining stages.

Scheduling and Allocation Scheduling and re
source allocation are two major tasks of ELS archi
tecture exploration.

Resource allocation determines the number and

types of RT components to be used in the design.
Components are taken out of a library which may
contain multiple types of functional units, each with
different characteristics (e.g. functionality, size, delay
and power dissipation).

Scheduling is the key to determining whether archi
tecture exploration will satisfy the timing constraints.
It assigns operations in the behavioral description to
control steps which correspond to clock cycles. The
number of clock cycles along with the clock period
thus determine the execution time of the hardware.

Scheduling also affects resource allocation. Remem
ber that within a control step a separate functional

35

exc[4(

gain_pit

Pitch_contr Pitch_contr

J gain_pit
TO

n [>U80] n
code[10]

Prefilter

hl[40..79|

res2[40]

Code_10i40_35bits

code[4(] TO nitshaV

Gain_code Prefilter

gain_code y2[40] ana[10] code[40]

Figure 46; Data-flow view of codebook search behavioral model.

code[40]

unit is required to execute each operation assigned to
that step. Hence, the total number of functional units
required in a control step directly corresponds to the
number of operations scheduled into it. If more oper
ations are scheduled into each control step more func
tional units are necessary which results in fewer con
trol steps for the design implementation. On the other
hand, if fewer operations are scheduled into each con
trol step fewer functional units are needed but more
control steps are required. Therefore, scheduling is
the most important factor in determining the tradeoff
between design cost and performance.

Scheduling and allocation are closely interdepen
dent. For example, an optimal schedule of operations
to control steps without explicit information about
performance and cost of allocated components is im
possible. Similarly, an optimal allocation of compo
nents cannot be performed without exact informa
tion about their computation profiling data. Further
more, performance/cost tradeoffs have to be consid
ered when performing scheduling and allocation. For
example, the most area-efRcient design consists of the
minimum number of the slowest components that re
quires the largest number of control steps. On the
other hand, allocating more components allows to ex

o-

ploit parallelism resulting in higher performance at the
expense of area cost. Hence, a design space can be
constrained by adjusting parameters such as resource
limits, timing requirements or both. In a HW/SW
CO design environment it is almost always the case that
the hardware part is intended to achieve some speedup
over a software solution. Therefore, timing constraints
are usually the dominant factor while resource con
straints play a secondary role.

For these reasons, a timing-constrained approach
for combining scheduling with resource allocation was
used in this project. The major steps are shown in
Figure 48. It has two phases: in the first phase, we
tried to find a feasible and reasonable solution that can

satisfy the timing constraints by exploiting the paral
lelism in the specification and minimizing the number
of resources needed to satisfy the timing constraints.
In the second phase the allocated resources were ad
justed to reduce the implementation cost while still
satisfying the timing constraints.

The first phase starts with an initial set of re
sources, i.e. storage elements for every variable, func
tional units for every operator and connections for ev
ery data transfer. We initially chose the fastest re
source or the one with the maximum number of stages

36

State reg.

Next-state

function

Control unit

Control inputs

Output
function

Control outputs

Datapath

control

Status

Data input

Mem RF Registers

ALU

V

Data output

Figure 47: A generic control unit/datapath implementation.

in case of a pipelined resource to get the best perfor
mance.

Next, the feasibility analysis phase was started by
gradually exploiting the parallelism in the specifica
tion. Simple ASAP (as soon as possible) and ALA?
(as late as possible) scheduling algorithms were per
formed to expose the parallelism based on the data
dependencies. The goal was then to find a sched
ule which utilizes the components maximally there
fore requiring a minimal number of components. We
achieved this objective by uniformly distributing op
erations of the same type into all available control
steps. A uniform distribution ensures that resources
allocated to operations in one control step are used
efficiently in other control steps, leading to a high re
source utilization rate. The expected operator cost
(EOC) for any operation type in each control step is
given by the product of the resource cost and the sum
of the probabilities that this operation will be sched
uled into this control step. Finally, the goal is to bal
ance the EOC value for each operation type. See [7]
for further details. The schedule is checked to find

whether the timing constraints can be satisfied. If the
timing constraint ds satisfied a feasible schedule has
been found, otherwise the process fails.

The first phase of the algorithm finds the fastest
solution which guarantees to satisfy the performance
constraints. However, the cost of such a solution may
be excessive due to the large number of resources allo
cated. Therefore, the objective of the second phase is
to minimize the number of the resources types, there

fore minimizing the overall cost of the hardware imple
mentation while still satisfying the performance con
straints.

First, we decided to choose a strategy to relax
the stringent condition for the components by using
slower components, less pipelined components, multi
functional units or multiport memories. Alternatively,
the number of operation types can be reduced by elim
inating the least utilized resource. For example, the
utilization profile of the operations in the codebook
search algorithm is illustrated in Figure 49. Opera
tion div-s can be chosen to be eliminated, replacing it
by an algorithm performing divs using sub and shift
operators. Rescheduling is then required in order to
ensure that the timing constraints are still satisfied.
This process is repeated until the timing constraint is
violated or the cost cannot be reduced any further.

RTL behavioral model The strategy above will
generate a clock accurate schedule that can be de
scribed by an RTL behavioral model which is depicted
as a FSMD in Figure 50. This scheduled RTL model
can be used for synthesis by RTL synthesis tools that
have the capability to perform binding. In addition,
it can be used to verify the functional correctness of
the schedule by simulation.

With the scheduled result the final resource

allocation—resource types and quantities-can be ob
tained fairly straightforward. The results for the code-
book search are summarized in Table 5 and Figure 51.

37

C3tart

Initial allocation

' '

ASAP/ALAP

Resource utilization balancing

Timing constrain

tisfied?

Resource reallocation

ASAP/ALAP

Resource utilization balancing

Timing constrain

tisfied?

Figure 48: Hardware exploration.

Operations frequency per sub-frame

6000

.g 4000

2000

^ ^ ^ oP cp
<P w V-' v-' ^ V VJ1 .aCpV V''

operation type

Figure 49: Operation profile for one sub-frame.

FU Operations # Delay{ns) Area(/xTn^)
ALU add ,sub.negate, round,

L^dd,L^ub,L-abs
1 3.02 99531.25

Shifter shl,shr.L_shl,L_shr 1 3.00 128171.87

Multiplier mult.L.muit 1 4.09 271212.50

MAC L_mac,L_msu 1 4.79 479598.43

NORM norm J 1 3.00 8429.68

MEM storage access 1 2.6 1550156

REG32 temp, storage access 5 .75 27442.18

REG16 temp, storage access 4 .73 11578.12

COUNTERS array index generation 4 .40 6987.50

Table 5: Functional Unit Selection Result.

Binding Binding is the process of mapping the vari
ables and operations in the scheduled RTL model onto
functional, storage and interconnection units while en
suring that the design functions correctly on the se
lected set of components. For every operation in the
RTL behavioral model a specific functional unit that
is capable of executing the operation is needed. For
every variable that is used across several control steps
in the scheduled RTL model a storage unit to hold the
data values during the variable's lifetime has to be se
lected. Finally, for every data transfer we need a set
of interconnection units that will handle the commu

nication.

Functional Unit Binding Having selected a set
of units, functional unit binding in this project was
straightforward. Each operation in the behavioral de
scription can be mapped onto one of the selected func
tional units only.

38

IStart

SI] i=T0;j=0;

Done

)Done_pref=l (S3)

SEnd) Done_pref=0

!Done

^S4^ R_mult=MUIT(R_raml, R_ram2);

)
R_raml=x(i);

i
J R_alu=ADD(R_ramI, R_mult);

x(i)=R_alu
i=i+l; j=j+l;

Figure 50: Behavior pref ilter FSMD.

Storage Binding Storage binding maps data
carriers (e.g. constants, variables, and data structures
like arrays) in the behavioral description to storage
elements (e.g. ROMs, registers and memory units) in
the datapath. Constants, such as coefficients in a DSP
algorithm are usually stored in a ROM. If their num
ber is small they can be hardwired to VCC or ground
like the 16 constants in the codebook search algorithm.
Variables are stored in registers or memories. As dis
cussed previously, variables whose lifetime intervals do
not overlap with each other may share the same reg
ister or memory location. Actually the last step of
register allocation in the scheduling algorithm has al
ready determined the binding of the variables, i.e. se
lecting whether a variable will live in a register or in
the memory. The memory addresses of each variable
are listed in Table 6.

39

Address Variables

0 xn[40]/y32[40]
40 yl[40]
80 xn2[40]
120 exc[40]/dn[40]
160 res2[40]
200 hi [80]
280 sign[40]
320 rr[40][40]
1920 h2[40] / en[40] /rrv[40] / scaLy2[40]
1960 code[40]
2000 y2[40]
2040 codevec[10],ana[10],-sign[10],ipos[10]
2080 posmax[5]

Table 6: Memory Addresses.

Interconnection Binding Every data transfer
(i.e. a read or a write) needs an interconnection path
from its source to its sink. Two data transfers can

share all or part of the interconnection path if they
do not take place simultaneously. The objective of
interconnection binding is to maximize the sharing of
interconnection units. Therefore, interconnection cost
is minimized while conflict-free data transfers required
by the register-transfer description are still ensured.

RTL structural Model The unit binding gener
ates the final RTL structural model which consists of
a control unit and a datapath as mentioned earlier.

The control unit can be obtained by synthesizing
a single central FSM in which the chained behavior
FSM are merged together. Alternatively, when the
combined FSM becomes too large each behavior FSM
can be synthesized into a separate control unit and

j SHIFTER 1 \ ALU / 1 NORM 1

^t^uli1 t* r!h 1 K-ilu 1 F7b

Figure 51: Datapath diagram.

SUrKDonwM) AKC

I I
I ;

DaU input

Figure 52: A FSMD implementation with a
decomposed-CU

connected as specified in Figure 44 The hardware ar
chitecture of the decomposed design in shown in Fig
ure 52. One motivation for the decomposed controller
is that the heuristics algorithms for state assignment
and logic optimization used in logic synthesis tools
such as Synopsys DesignCompiler^^ provide supe
rior results for smaller designs. A reasonable decom
position may lead to a more economical realization
in terms of area. The performance of a decomposed
design may also be better due to a smaller critical
path delay achieved by logic optimization. Due to
these reasons, in this project the latter alternative
has been chosen. The control unit FSM decomposi
tion is shown in Figure 53. Every sub-FSM of the
control unit can be modeled with a HDL case state

ment as accepted by logic synthesis tool like Synopsys
DesignCompiler^'^. An example is shown in Fig
ure 54.

The datapath has been designed with Synopsys
SGE'^"' as a schematic from which a structural
VHDL netlist of components can be generated auto
matically. The schematic is shown in Appendix D.

5.2.3 Performance analysis

The two most important quality metrics are the cost
and performance. The most common cost metrics is
the design area which is a measure of the silicon area
required by the implementation.

Area For a given FSMD design the area cost in
cludes the area needed for the control unit, the dat
apath and the wiring area required to connect these
components.

40

Daiain

i(Sw->Hw)

Stan ^0 .01

pnl

SialusL^

•
Slalui^

—03

pn3
J35

.04

cor.h

Stains^

—07

search_I0i40 buiId_codc q-p

SlatiK ^ Stauii^
•SiaiiKp

G
Staiu^

_Qa

Prefiller.code Gain code

Siaiu^
j(Sw->Hw) :

1
I State reg. |

1=^T
Next-state Output

function (unction

\ \ Congpl oug)m

,4^

Figure 53: Control unit decomposition

Datapath The datapath consists of three kinds
of RT components: storage units (memories and regis
ters), functional units (ALUs) and interconnect units
(busses and multiplexers). The total area of the data
path as the sum of the three kinds of component areas
is a total of3,847,342 puf. Wiring also contributes to
the overall area. Unfortunately, estimating the wiring
area requires knowledge about the placement and the
physical layout of the units. Fast floor planners have
been used by engineers to obtain this placement in
formation. Alternatively, statistical wiring models
have been used. In this project we arbitrarily as
sumed that wiring requires 10% of the components
area. Hence, the total area of the datapath is approx
imately 4,232,076

Control Unit The control unit of the hardware

uses the FSM decomposition approach and is decom
posed into 11 sub-FSMs(Figure 53). The area of the
control unit can be simply calculated by adding the
are for the 11 FSMs area and the area for the big OR
gate, totalling 1,094,255 /^m^.

case State is

State PP_SO

when pr_so •>

--r_raiiil <= gain_pit;

R1_BASE <" A_gain_pit;

Rl_OPFl_SEL <• dont_care(2 downto 0);

Rl_OFF2_SEL <• dont_cara(l downto 0);

R1_0P <• "00";

RZNl <» '1'}

RR1_I.D <• '1';

—r_raia2 <• CONV_STD_LOOIC_VECTOR(TO, 16);

R2_BASK <- A_TO;

R2_0FF1_SEL <» dont_care<l downto 0);

R2_0P <- "OO";

RBN2 <B '1';

RR2_LD <• '1';

Naxt_8tate <• PF_S1;

State PF_S1

when PF_S1 •>

Figure 54: sub-FSM in VHDL

Hence the total estimated area of the design is

area = area{CU) + area{DP) = 5,326,331 «
5 mm-

Performance Performance metrics can be classified

into three categories: clock cycles, control steps and
execution times. Execution time is the final measure

and the other two metrics contribute to its calculation.

We define the execution time as the time inter

val needed for process the complete input data set
and generating the complete output data set. This
will cover both a pipelined and a non-pipelined de
sign. If the number of clock cycles of the interval is
nurri-cycles and the clock cycle delay is dock-cycle
the execution time can be computed as follows:

execution-time = num-cycles x clock-cycle

Clock cycle Given the FSMD design shown in
Figure 56 the clock cycle can be determined as the
maximum of the critical path candidates as follows:

(a) Delay of path pi, computing the next state of
the FSM:

A(pl) = delay{SR) -I- delay{CL) -1- delay{CMP) 4-
delay{NL) + setup{SR) » 8.9 ns

(b) Delay of path p2, reading data from the mem
ory:

A(p2) = delay {SR)+delay{CL)+delay{AGEN) +

Units Delay(ns)

AGEN 1.94

MEM 2.6

MULT 4.09/2
SHIFTER 3.0

ALU 3.02

NORM 1.25

MAC 4.79/2
CMP 1.22

REG32 .75

REG32(setup) .59

REG16 .73

REG16(setup) .59

CU 3.85

Table 7: Unit delays.

delay{MRD) -H setup{MR) rs 8.5 ns

(c) Delay of path p3, performing the arithmetic op
eration:

A(p3) = delay{SR) -b delay{CL) -b delay{AU) -b
setup{RR) K. 7.0 ns

where delay{SR) is the delay of reading the
state registers, delay{CL) is the delay of the con
trol logic, delay{CMP) is the delay of the com
parator, delay{NL) is the delay of next state logic,
setup{SR) is the setup time of the state registers,
delay{AGEN) is the delay of the address generation
unit, delay {MRD) is the delay of reading the memory,
setup{MR) is the setup time of the register connected
to the memory read port, delay{MR) is the delay of
reading the register connected to the memory read
port, delay{AU) is the delay of the ALU, setup{RR)
is the setup time of the registers storing the functional
unit results. Table 7 lists the delays of the functional
units.

Hence, the minimum clock cycle is

clock-cycle —Maa:(A(pl), A(p2), A(p3)) « 9ns

Even when adding a 10% engineering margin the
hardware part can still run at 100 MHz, i.e. with a
clock cycle of 10 ns.

Number of execution cycles For a data-flow
dominant design like this project the number of cycles
needed for execution can simply be obtained by pro-
flling the RTL model. A profiling result is shown as
Figure 55. The number of cycles for one sub-frame of
voice data samples is around 33,000. Therefore, the
total number of cycles for one frame is 132,000.

41

Behaviors execution time distribution

15000 -

f, 10000

5000

behavior Instances

Figure 55: Execution time distribution.

The performance of the hardware part, i.e. the total
execution time for one frame of voice data samples is

execution.time = 132,000 x 10 ns ?« 1.3 ms

6 Conclusions

In this report we presented the SpecC system-level
design methodology applied to the example of design
ing and implementing a GSM EFR vocoder. We have
shown the various steps in the SpecC methodology
that gradually refine the initial specification down to
an actual implementation model. The well-defined na

ture of the models and transformations provides the
basis for design automation tools and in general en
ables application of formal methods, e.g. for verifica
tion or equivalence checking.

Starting with the executable SpecC specification,
architectural exploration—supported by estimators
and analysis tools—creates an architectural model of
the design through the steps of allocation, partition
ing and scheduling. We demonstrated how a large part
of the design space can be quickly explored to select
the best architecture. Communication synthesis then
transforms the abstract communication of the archi

tectural model into an implementation. After protocol
selection, transducer synthesis and protocol inlining
the final communication model is obtained.

At any point the design is represented by a model

in SpecC. We perform equivalence checking and simu
lation on each model to validate the transformations.

The SpecC language explicitly supports all the fea
tures necessary for system-level design including hier
archy, timing, concurrency, communication and syn
chronization, exceptions, state transitions, etc. On
the other hand, the fact that SpecC is a superset of
C allows to draw from the large body of existing al
gorithms. The clear separation of communication and
computation in SpecC facilitates reuse of system com
ponents and enables easy integration of IP.

After finishing the design on the system level the
communication model is handed off to the backend

for synthesis of the software and hardware parts. For
the software parts C code including a custom real
time operating system kernel for scheduling, task syn
chronization and I/O is generated, compiled, and op
timized for the chosen processor. For the hardware
parts a behavioral description is generated and synthe
sized into a custom RTL implementation using behav
ioral or high-level synthesis tools. The structural RTL
design is then further transformed down to a gate- or
transistor-level netlist using traditional logic synthesis
tools.

In case of the vocoder, the initial CSM standard
including the C code was analyzed and a SpecC spec
ification was developed. The 14,000 lines of the spec
ification were partitioned into 12,000 lines of code for
a software part running on a Motorola DSP56600 core
at 60 MHz and 2,000 lines of code for a custom hard
ware part implementing the codebook search. The
final implementation of the vocoder consists of 70,500
lines of compiled assembly code and 45,000 lines of
synthesized RTL code. The transcoder delay of the fi
nal implementation is 26 ms and the time for encoding
and decoding a speech frame is 11ms, easily meeting
the constraints of 30 ms and 20 ms, respectively.

The design of the vocoder has been done by two
people working at the project part-time over the
course of six months. The schedule of the different

tasks in the vocoder project is shown in Figure 57.
Most of the time was actually spent on initial under
standing of the standard including its complex, un
structured C code specification, and on tedious, man
ual software and hardware synthesis in the backend.
Simply following the well-defined steps of the SpecC
methodology helped to reduce the design effort signif
icantly.

With the availability of automated tools that will
cover a large part of the tedious and error-prone syn
thesis tasks performed mostly manually in the vocoder
project the time-to-silicon will be reduced even fur-

42

State reg.

Next stale

logic

^ontrol word

" /
II /

) (I

pi

> \
» \

Status

A

V

CMP

counter

j

counter

k

counter

dec

^r_mult

A

V

. >P3

SHIFTER

r_sh

<A

ral

ra2

MEM

p21

wen

elk

^ r_raml

ALU

>r_alu

^ r_ram2

NORM

Figure 56: Critical path candidates.

ther. The time spent on the actual design tasks of the
vocoder project was about 12 weeks only.

.All in all, the project has shown that the SpecC
methodology will result in significant productivity
gains. A simplified design process based on well-
defined, clear and structured models at each explo
ration step enables quick exploration and synthesis. In
addition, a well-defined IP model allows easy integra
tion and reuse of IP components. In general, commu
nication among designers and customers is minimized,
allowing for design and manufacturing globalization
and Internet-based design strategies.

Furthermore, due to the formal nature of the de
sign process and the models, product evolution and
product customization is greatly simplified. Redesign,
integration of new features and incorporation of cus
tomer feedback (e.g. in case of changing requirements)
as well as upgrades to new technologies are all easily
achieved. In addition, the high abstraction levels of
the specification models allow easy reuse of existing
models by adding or changing features as necessary or
by customization of product templates for a product-

on-demand business model.

Finally, focussed design concepts and design pro
cesses together with a uniform and formal methodol
ogy based on automated tools significantly reduce the
amount of resources and the man power required to
complete a System-On-Chip design. A steep learning
curve and the low designer expertise needed reduce
the training overhead and limit the demand for highly
qualified designers.

Acknowledgments

The authors would like to thank Motorola for support
ing this project. Also we would like to thank Lukai
Cai, Hongxing Li from UCI and Justin Denison, Mike
Olivarez from Motorola for help in synthesis of the
codebook search.

43

References

[1] D. Gajski, J. Zhu, R. Domer, The SpecC+ Lan
guage, University of California, Irvine, Technical
Report ICS-TR-97-15, April 15, 1997.

[2] J. Zhu, R. Domer, D. Gajski, Syntax and Seman
tics of the SpecC-h Language, University of Califor
nia, Irvine, Technical Report ICS-TR-97-16, April
1997.

[3] D. Gajski, J. Zhu, R. Domer, Essential Issues in
Codesign, University of California, Irvine, Techni
cal Report ICS-TR-97-26, June 1997.

[4] J. Zhu, R. Domer, D. Gajski, "Syntax and Seman
tics of the SpecC Language," Proceedings of the
Synthesis and System Integration of Mixed Tech
nologies 1997, Osaka, Japan, December 1997.

[5] D. Gajski, G. Aggarvifal, E.-S. Chang, R. Domer,
T. Ishii, J. Kleinsmith, J. Zhu, Methodology for
Design of Embedded Systems, University of Cal
ifornia, Irvine, Technical Report ICS-TR-98-07,
March 1998.

[6] R. Domer, J. Zhu, D. Gajski, The SpecC Language
Reference Manual, University of California, Irvine,
Technical Report ICS-TR-98-13, March 1998.

[7] D. Gajski, N. Dutt, C.H. Wu, Y.L. Lin, High-Level
Synthesis: Introduction to Chip and System De
sign, Kluwer Academic Publishers, Boston, Mas
sachusetts, 1991

[8] D. Gajski, F. Vahid, S. Narayan, J. Gong, Specifi
cation and Design of Embedded Systems, Prentice
Hall, Englewood Cliffs, Nevi' Jersey, 1994

[9] European Telecommunication Standards Institute
(ETSI), Digital cellular telecommunications sys
tem.; Enhanced Full Rate (EFR) speech transcoding
(GSM 06.60), Final Draft, November 1996.

[10] K. Jarvinen et. al, "GSM Enhanced Full Rate
Speech Codec," Proceedings ICASSP '97, pp. 771-
774, 1997.

[11] Telecommunications Industry Association (TIA),
TR-46, PCS1900 Enhanced Full Rate Codec USl
(SP-3612), Ballot Version, August 1995.

[12] R. Salambi et. al, "Design and Description of
CS-ACELP: A Toll Quality 8 kb/s Speech Coder,"
IEEE Transactions on Speech and Audio Process
ing, Vol. 6, No. 2, pp. 116-130, March 1998.

44

[13] Motorola, Inc., Semiconductor Products Sec
tor, DSP Division, DSP56600 16-bit Digital Sig
nal Processor Family Manual, DSP56600FM/AD,
1996.

[14] Motorola, Inc., Semiconductors Products Sector,
DSP Division, Motorola DSP Simulator Reference
Manual, 1995.

Oi

Oq

o
o
p-
o
>-l

X)
f-l

a>'
o

&
CD

P-
P

Week

Specification

Analysis of standard
(functionality, complexity)

SpecC specification
(develop spec)

Exploration

Allocation, Partitioning

(Select DSP, HW/SWpartition)

Software

Setup Software Environment
(compiler, simulator, profiler)

Develop Simulator/Profiler
(iSS w/ function profileand HWsim.)

Optimize assembly code
(coding, debugging, profiling)

RTOS: sctieduling, HW interface
(coding, debugging, profiling)

Hardware (Codebook)
Befiavioral model development

Datapatti design

RTL betiavioral model development

RTL structural model development

Documentation

Tectinical Report

Jun-98 Jul-98 Aug

23 24 25 26 27 28 29 30 31 32 33

•98 Sep-98 Oct-98 I4ov-98 Dec-98
34 35 36 37 38 39 40 | 41 | 42 | 43144145 | 46 | 47 | 48149150 | 51 52

*11

I r

Legend: ^^Ccmpretiension Co-design

Note: Double tieigfitstands for two-person work.

' Tools setup 3C->VHDL Manual syntfiesis Documentation

A C Reference Implementation Block Diagrams

This appendix contains the detailed block diagrams describing the architecture of the ANSI-C reference imple
mentation of the GSM vocoder. The C implementation is supplied with the ETSI Enhanced Full Rate (EFR)
speech transcoding standard GSM 06.60 [9] and it represents the bit-exact reference for any implementation of
the standard.

46

encoderjioming

frame test

reset_nag CODER BLOCK DIAGRAM

cz>
new_speech[160]

160 samples / 20 ms
(4x SmsMOsamples) High-pass filter (2nd order)

Remote reset capability (in-hand signalling)

3.1

pre_process

0,19

coder 12k2

new_speech[160]

txdix Ctrl

prm[57
Prm2bits_12k2

serial[244] sid_codeword serial p
_encoding

SID: Silence Descriptor

txdtx_ctrl
j

prm[57]

Comfort Noise

CN_encoding

syn(for debug)

legend: input of a bidirectional port

IZ> module I/O port

^ inter-page I/O port
inter-invocation I/O (state)

[].0.P

• • communicate by shared variable

~ communicate by explicit parameter passing

Hierarchical functional block

Section

function_name

WMOPS

Comment

Function

Call

Block

Conditional functional block

I logical block of grouped statements

prm[57]

o
o
CL
fD
1-1

n
o
(X
(D

A.1.1 Encoding: coder_12k2

A.1.1.1 Linear prediction analysis

Short term analysis:

Extract Linear Prediction (LP) Filter H(z) = J/A(z)parameters (aO, al, a9)

speech[160] I >
Speech speech[-80..0] [>-

new_speech[I60J

3.2.1

Autocorr

0.21

r_h rJ

3.2.1

Lag_window

0.01

rJ

3.2.2

Levinson

0.12

rc

A_t

3.2.3

Az_lsp

0.45

seal acf
3.2.1

Windowing
&.

Autocorrelation

I
Levinson-

Durbin

I
A(z)

p_window_mic

F_gammal

lsp_old

Crim en LP parameters

to Line Spectral Pairs lsp_mid

LSP

LSP

Qitantizatirm

I
T

LSP. LSP'

Interpolation for

1st and 3rd subframe

lsp_old

3.2,6, 3.2.4

lnt_lpc2
A_t

0.7

48

p_window

F gamma2

Autocorr

0.21

r_h r_l

3.2.1

Lag_window

0.01

r 1 rj

3.2.2

Levinson

0.12

A_t

3.2.3

Azjsp

0.45

lsp_new

scaljcf.

1 '^/
1 ;
> /

lsp_old

—I > prni

lsp_old_q

txdtx_ctrl
3.2.5

Q plsf 5

1.29

lsp_mid_q lsp_new

V '
3.2.6, 3.2.4

Aq_t
Intjpc W

1.3[> •
lsp_old_q

A.1.1.2 Open-loop pitch analysis

Long Term/Pitch Analysis (adaptive codebook) 1/2

>-

speech[i-10..i+40]

Filter Apl(z)
(= reverse I/Apl(z))

Apliz) = A(z/gammal j
(apli = at Xgammal, i = 0..9)

Weight_Ai 4 A_t[i]
3.3

Residu

0.03

F_gammal

wsp[i..i+40]

Ap2(z) = A(z/gamma2)
(ap2i = ai x gamma2, i = 0..9)

-4 A_t[i]Filler 1/Ap2(z) 3.3 Ap2 3.3

Syn_fill Weight_Ai

\> ^ 0.04 > 0.01

mem w F_gamma2

wsp[i..i+40]

wsp[-143..0]

wsp[-l43..80] wsp[-63..160]

Pitch 01

wsp[18..l60] ^

T0_mm[0]

•

T0_max[0]

Pitch ol

Shift weighted speech buffer
to the left by 160 samples

49

TO_min[l]

•

TO_max[I]

^lags

to VAD

-0 wsp[-143..0]

Oa' 5*

S' S

52 f's

^ -ti.
II ^

5 2

1 "

Cs

2
2

find

open-loop

lag estimates

A.1.1.3 Closed loop pitch analysis

Long Term/Pitch Analysis (adaptive codebook) 2/2

Apl[i] Calculate residual rin)

(filter speech through A'(z))

3.5

Residu

•2?
S

Ci.

3.4

Syn_filt
004c>—^

zero

hi

1 3.4

! Syn_filt
1 004

hi

T0_min[i/8|0] ^
T0_max[i/^0] •"

3.6

-•< Aq_t[i] •-
I>-

Apl[i] •-

nn3l

3.5

Syn_filt
004

error

3.5

Residu

0 03

-< Ap2[i] •-
I>-^

mem wO

xn

3.5

Syn_filt
004

3.6

Pitch_fr6
exc[i-154..i+3')]

TO
T0_min[i/8|0] •<-
T0_max[i/^0] <"

Enc_lag6

exc[i..i+39].^

hi "4-

yl 4-

gain_pit

txdtx_ctrl

nOl

TO frac

Interpolate

codebook
vector v(n)

(excitation)

y(n) = filtered v(n)

Compute gain to
match x(n) andy(n)

Codebook gain

quantization

3.6

Pred_lt_6

0 05
exc[i-154..i]

exc[i..i+39]

3.6

Convolve

, 0.21

lyl yl = exc[i]*hl

3.6

G_pitch

0.071

I gain_pit

3.6

q gain pitch

Qil2

50

speech[i-10..i+40]

res2 ,

05

a Ci, rti

2 g- a
''a ^

a ^ ^

•3,

exc[i-154..i+39]

-<1

find best pitch lag
(find bestfiltered past excitation)

-[zy prm

> TO

5

t

-1^ prm

A.1.1.4 Algebraic codebook analysis and filter updates

Target signal (speech),

residual (excitation)

minus pitch contributioh

Algebraic (innovative) codebook search

exc[i] res2 xn yl gain_pit TO hi

1 , xn2:= xn - yl*gain_pit
' ' res2:= res2 - exc[i]*gain_pit

res2

, hl:=hl+hl(-TO)*gain_pit

hi

txdtx_ctrl

Consider algebraic prefilter

F(z) t.V including it in
impulse response h(n)

' xn2
I

I

I

Codebook sear<^h:

return code vector c(ti) and
filtered code vettorz(n)

3.7

code_10i40_35bits

433J

-I—> p™

Calculate codebook gain

Gain
Quantization

y2

3.7

G code

onsi

gain_code

3.8

q_gain_code
on?

exc

0
prm

y2,

code I
Filter code vector c(h) through prefilter F(z)

; I
I code:= code ^ TO i

+code(-TO)*gain_pit | ^ ^ 1

code
gain_pit I

mem_syn

gain_code

exc[i]

.1

3.9

Syn_filt
004

synth

exc[j]:= gain_pit*exc[j]

^ +gain_code*code|j]

ibl excitation signal u(n)

-0 exc[i]

-A Aq_t[i]

mem_syn Synthesize speech

speech[i]
inem_err:= speech[i]-synth

-gain_code'*
-gain_pit*y

^ gain_pit

xn
mem_wO:= xn-gain_code*^2

A""

mem err V V mem wO

Update filter memories

o

speech[80..160] I

exc[6..160]

Shifi buffers to the left

by 160 samples

speech[-80..0]

-{> exc[-154..0]

51

Ol
to

xn2 I >-

hi [Z>

res2 •!>

d(n) = currekninn between target .x2(n) anil impulse responseh(n)

d'(n) = d(n)sign[h(n)]
cor h X

0,313
set_sign

pos_max

Depth-first search (with pruning?)

search 10i40

2.643

cor h

1.034

codvec

Compute matrix of correlations ofh(n)

Filter and encode

codebok vector

build code

0. 46

1 > code

y2

prm

xji2 ^

hi ,

rp,s2 ^
code_10i40_35bits

code

y?-

• pnja

>
M

M

W

O
o
CL
CO
cr
o
0
or

01

(0

o
13-

n
o
P-
0)

o
H-

0
1
CO
CJI
u"
H-
ct
W

01
CO

serial[0..246]

parm[0..57]

TAF

serial [245]

serial [246]

Legend. ^ ^bidirectional port

CD module I/O port

^ inter-page I/O port
C> inter-invocation I/O (state)

^ jloop
Section

function_name

WMOPS

Comment

Function

Call

Block

DECODER BLOCK DIAGRAM

decoder_homing
_frame_test

decoder_12k2

reset_flag

synth[0..159]

Az_dec[0..43]

Postfiltering

6.2.1

Post_Filter

communicate by shared variable

communicate by explicit parameter passing

Hierarchical functional block

Conditional functional block

I logical block ofgrouped statements

synth[0..159]

(4 X5ms/40samples)
160 samples /20 ms

>
1n3

d
O
n
O
a
CD

(D
n
o

a-
(0
i-i

A
.2

.1
D

e
c
o

d
in

g
:

d
eco

d
er_

1
2

k
2

exc[-154..0]
<]

\Shiftexcitation
bufferleftby160sam

ples^^—
exc[6..160]

i
D

ecode
alg

eb
raic

(fixed)

codebook
vector

an
d

gain

D
ecode

adaptive
codebook

(pitch
lag

an
d

gain)

b
o

a
.

5
4

A.2.2 Post-processing: Post_Filter

Ap3

syn[i-10..i+40]
h[0..10]

h[11..22]=0

Produce residual

Tilt filter

Post-filtered
speech

mem_syn

syn[i]

LZ>

syn[0..10]

[:i>—

Residu

uml

res2

preemphasis

res2

Syn_filt

zero

temp2

mem_syn

Syn_fi!t

Poslfilter

impulse
response

Compute
tilt factor

syn_pst[i]

age
Adaptive Gain Control (AGC)

mnl

syn_pst[i]

syn[-10..0] :=syn[0..10]

syn[0..159] := syn_pst[0..159]

syn[0..159]

Az[0..44]

55

Ap4

6.2.

<ZJ Az[i]Weight_Ai

(LQl
F_gamma3

< I Az[i]Weight_Ai

am
F_gamma4

i=[0,40,80,120]

syn[-10..0]

syn[0..159]

Post_Filter
syn[0..159]

B Vocoder Specification

This appendix describes the overall SpecC [1, 2, 4, 6] specification of the GSM Enhanced Pull Rate Vocoder [9],
The SpecC blocks are directly derived from the blocks of C reference implementation (see Appendix A).

B.l General (shared) behaviors

SynJilt Implement the LP filter (synthesis filter) 1/A{z).

Given an input sequence x{n), n = 0 ... 39, the LP filter coefficients a{k), = 1... 10 and the filter memory
y{m —10) = mem(m), m = 0... 9, the output sequence is

10

y{n) = x{n) —̂ a{k)y{n —k), n = 0... 39.
k=i

In addition, the filter memory can be updated, too:

mem(m) = 1/(30 + m), m = 0...9.

Residu Implement the LP inverse filter A{z) (to get the residual).

Given an input sequence x{n), n = -10.. .39 and the LP filter coefficients o(fc), k = 1... 10 the output
sequence is

10

y{n) = x{n) + ^ a{k)x{n —k), n = 0... 39.
k=l

56

B.2 Coder

sample ' coder

pre_process

speech! 160]

code 12k2

prmiST]

prm2bits_12k2

speechflBO

Linear prediction

(LP) analysis

Open loop

pitch search

Closed-loop

pitch search

Algebraic (fixed)

codebook search

Filter memory

update

code 12k2

Figure 58: Coder

Encoding is based on finding the parameters for the speech synthesis model at the receiving side which will
then be transmitted to the decoder over the medium.

The speech synthesis model is code-excited linear predictive (CELP) model: to synthesize speech in the decoder
a 10th order linearpredictive (LP) synthesis filter JT(2:) = 1/^(2:) (responsible for the short term effects) is excited
with a signal constructed by adding two vectors from two codebooks:

• The so-called adaptive codebook is based on a pitch synthesis filter which is responsible for covering long
term effect. The output of the pitch filter is simply a previous excitation signal delayed by a certain amount
(lag) and scaled with a certain gain. Since the delay/lag of the pitch filter can be fractional the delayed
excitation has to be interpolated (using a FIR filter) between the two adjacent (delayed by an integer lag)
excitation values.

• The so-called fixed or algebraic codebook covers any remaining pulseexcitation sequence left after removing
the short-term and long- term contributions. The fixed codebook contains 5 tracks with 8 possible positions
each. For each track two positions are chosen (10 pulses all together) and transmitted.

In general, the parameters for the two codebooks are chosen such that the error between the synthesized speech
(at the output of the LP synthesis filter!) and the original speech is minimized. However, for the codebook
searches the original speech is weighted (by a weighting filter W{z)) in order to account for the special properties
of human acoustic perception.

57

B.2.1 Preprocessing: pre_process

The pre-processing consists of high-pass filtering and signal down-scaling (dividing the signal by two to reduce the
possibility of overflows) of the input speech samples. The high-pass filter Hhi{z) is as given in the specification.

Given the input signal x{n) and the filter coefficients a and b the output sequence y{n) of the pre-processing
step is

2/(") = y2:(n) + ya:(n - 1) -I- -2) +aiy(n - 1) -I- a2y(n - 2).

B.2.2 Linear prediction analysis and quantization

5
speech

-• \

Windowing & Windowing &
Autocorrelation Autocorrelation

Levlnton Levlnson

interpolation &
LSP •> A(z)

A{z)-> LSP

LSP g
Quantization

Interpolation
LSP -> Aq(2)

speech

Autocorr Autocorr

Lag_wlndow Lag_window

Levlnaon Levlnaon

Az LSP

3
Q_pl9f_5 t

[nt_lpc2

Intjpc

Figure 59; LP Analysis

Determine the parameters (coefficients) of the LP (short term) synthesis filter twice per frame, encode them
for transmission and recompute the coefficients for every subframe (e.g. to include the effects due to encoding
losses):

Autocorr Windowing and autocorrelation computation.

Two fixed windows (see specification) •w{n) are applied to 80 samples from the past speech frame plus the
160 samples from the current frame to get the windowed speech

s'{n) = s{n)w{n), n = 0...239.

The autocorrelation r{k) of the windowed speech is then computed as

239

r[i) —̂ s'(n)s'(Ti —i), i = 0... 10.

58

In addition, the C reference implementation normalizes r(i) and checks for overflows.

Lag_window Lag windowing of the autocorrelations.

r{k) = r{k)wiag{k), fc = 1... 10

where the fixed window wiag (k) is as given in the specification.

Levinson Levinson-Durbin algorithm to recursively compute the LP (linear prediction) filter coefficients a{k),
k=1...10.

Az_lsp Convert LP filter coefficients to fine spectral pairs (LSPs) q{k), k = 1... 10.

Q_plsf _5 Quantization of the two set of line spectral pairs (LSPs) per frame.

Int_lpc, IntJ.pc2 Interpolation of the quantized and unquantized LSPs for intermediate subframes and re
conversion of the LSPs to LP filter coefficients.

The two sets of LSPs, qiik) and 94 (fc) previously computed are used directly for the 2nd and 4th subframes.
For the 1st and 3th subframe two sets of LSPs are calculated by linearly interpolating the LSPs from
adjacent subframes

qi(fc) = 0.54g4,oid(fc) + 0.5^2(fc),
q3(fc) = 0.5g2(fc) + 0.54q4(fc), fc = 1... 10.

For the unquantized case of the 2nd and 4th subframes the LP filter coefficients are already directly available.
For all other cases (quantized LSPs and unquantized but interpolated LSPs for 1st and 3rd subframes);

LspJlz Convert the LSPs back to LP filter coefficients.

Once the LP filter parameters are found in the next steps the signals at the input of the LP filter, i.e. the two
codebook conttributions have to be found.

B.2.3 Open-loop pitch analysis

speech ^ A(2)^

Weighted
speech ^

-<

Find open loop

pitch delay

Aw(z)

"W
speech

Filter ^w1(z) I

1
Filter 1/Aw2(z) I

Weighted
Coefficients

Aw1(z)

A(z)

Weighted
Coefftcients

, Aw2(z)

Figure 60; Open-loop pitch analysis

Open-loop pitch analysis determines delay/lag estimates for the (closed-loop) calculation of the pitch filter
parameters in order to narrow the actual adaptive codebook search.

59

Weight_Ai Calculate the two sets of weighted filter coefficients for the implementation of the weighting filter:

ai{k) = a{k)'yi{k), fc = 1... 10, i = l,2

where the spectral expansion factors 7i(A:) are given as in the specification.

Residu, SynJilt, weighted coeflficients For each of the 4 subframes filter the speech signal through the
weighting filter W{z) = to obtain the weighted speech signal.

Pitch_ol Perform open-loop pitch analysis based on the weighted speech twice per frame to obtain two pitch lag
estimates Top(s), s = 0,1.

Open-loop pitch analysis is done by finding maximal correlations in the weighted speech signal.

Finally, using the two open-loop pitch lag (pitch delay) estimates the closed-loop pitch analysis search ranges
[TOmin,TOmax] for the 1st and 3rd subframes are preset to

FOminCs) = Top{s) - 3, rO,„i„(s) > 18,
TOmaxis) = Top{s) + 3, rO„„,(s) < 143, s = 0,1.

B.2.4 Closed loop pitch analysis

Aq(z) Aw(z) Speech TO mirVmax

Impulse I -
response |.

^ Target
I signal

h(n)

Find

pitch delay

Compute
code vector

Calculate

pitch gain

x(n)

^^^
prm h(n) gain_pit x(n) v(n) TO

Figure 61: Closed loop pitch search.

Based on the open-loop lag estimates search for the pitch filter parameters in the given intervals.

B.2.4.1 Impulse response computation For each subframe the impulse response /i(n) of the weighted
synthesis filter H{z)W{z) = ^is computed by

SynJilt, quantized coeflficients a{k), zero-filled memory Filtering of the weighted filter coefficients
ai(/c) = a(fc)7i(/c) through the quantized synthesis filter \IA{z).

60

SynJilt, weighted coeflScients 02(/c) = a(fc)72(fc), zero memory Filtering of the intermediate result
through the weighted filter 1/A{zl^2)-

The impulse response is needed in the codebook searches to model the effects a certain excitation vector will have
on the error at the output of the LP synthesis filter.

B.2.4.2 Residual computation For each subframe the residual signal resLp{n) is calculated by

Residu, quantized coefflcients a{k) Filter the speech signal s{n) through the inverse quantized synthesis filter
A{z).

The residual is basically the signal needed at the input of the LP filter in order to get the original speech back at
its output.

B.2.4.3 Target signal computation For each subframe calculate the target signal x{n) (weighted speech
minus effect of weighted synthesis filter H{z)W{z)) for the adaptive codebook search:

Synjfilt, quantized coefficients a{k) Filter the residual resLp{n) through the quantized synthesis filter
llA[z).

Residu, SynJilt, weighted coefficients Filter the result through the weighting filter W{z) =

The filters for the target signal computation use a special memory which is updated separately using additional
filters (see B.2.6).

B.2.4.4 Adaptive codebook search For each subframe compute the adaptive codebook parameters (de
lay/lag and gain of the pitch filter).

First, the pitch delay/lag is found and encoded for transmission:

PitchjfrG Closed-loop search to find the best pitch delay/lag TO (integer and fractional parts) such that the
error between the target signal x{n) (original speech) and the past LP filtered excitation (past excitation
convolved with impulse response h{n)) at delay TO is minimized.

First, the integer part of the lag is found. Then, the fractional part (with resolution 1/6) is found by
interpolating the error between the adjacent integer boundaries.

Since the past excitation for delays inside the current subframe is not known yet the excitation buffer for
the current subframe is initialized with the residual resLp{n).

Enc_lag6 Encoding of the pitch lag TO into 9 bits (1st and 3rd subframes) or 6 bits (2nd and 4th subframes). If
necessary, adjusts the fractional part of TO for the following gain calculations.

For the 1st and 3rd subframes thelag is encoded with a resolution of1/6 in therange [17|,94|] and integers
only in the range [95,143]. In the latter case the fractional part of the pitch lag is set to zero.

For the 2nd and 4th subframes the lag is encoded with a resolution of 1/6 in an interval around the lag in
the previous (1st or 3rd) frame.

In addition, in the 1st and 3rd subframes the search ranges [TOminyTQrnax] are updated for upcoming searches
in the 2nd and 4th subframes, respectively.

TOmin(s) = [TO] - 5, TOmm(s) > 18,
TO„ax(s) = [TO] 4-4, TO„ja;!;(s) < 143, S=0,1.

In the 2nd and 4th subframe the search ranges are based on the integer pitch lag parts [TO] found in the 1st and
3rd subframe.

Then, the actual adaptive codevector is calculated in order to compute the adaptive codebook gain:

61

Pred_lt_6 Compute the adaptive codebook vector v(n) by interpolating the past excitation at TO using two FIR
filters.

Convolve Filter the adaptive codebook vector v{n) through the weighted synthesis filter H{z)W{z) byconvolving
it with the impulse response h{n)-. y{n) = v{n) * h{n), i.e.

y{n) = '̂ 2x{i)h{n - i), n = 0...39.
i=0

G_pitch Calculate the adaptive codebook gain

x(Ti)y(n)
9p= y ° 0<gp<1.2

VEtoyWyW

q_gain_pitch Quantize the adaptive codebook gain for transmission.

B.2.5 Algebraic (fixed) codebook analysis

TO h(n) gain_pit x(n) v(n)

E
Prefilter

response

h(n)^

^ Search
codebook

^ ^

2(n)

Update
target

x2(n)

I'j

^ Prefilter
code vector

m

LJ LJ

Calculate

codebook gain

^
prm code gain_code 2(n)

Figure 62: Algebraic (fixed) codebook search

B.2.5.1 Update target signal and residual The remaining target signal X2{n) and residual resLXpin)
(after removing long-term prediction contributions) are computed for the fixed codebook search by subtracting
the adaptive codebook effects:

X2{n) = x{n) - gpy{n), resiTpin) = resip{n) - v{ti), n = 0...39.

where x{n) and resLp{n) are the target signal and the residual for the adaptive codebook search (see B.2.4.3)
and B.2.4.2), gp is the quantized adaptive codebook gain and v{n) is the adaptive codebook vector.

62

B.2.5.2 Update impulse response The impulse response h{n) is updated for the fixed codebook search by
including a prefilter Fe{z) = —.L|ro) (where gp, Qp < 1.0 is the quantized pitch gain and [TO] is the integer part

of the pitch lag) which enhances spectral components to improve quality:

hsin) = h{n) + ^h{n - [TO]), n == [TO].. .39.
8

B.2.5.3 Codebook search: code_10i40_35bits

corJi_x Compute the correlation between the target X2{n) and the impulse response hE{n):

39

d{n) =^^^X2{n)hE{i —n), n=:Q...39.
i=n

The vector d{n) corresponds to the backward filtered target signal.

The C reference implementation adds some normalization of d{n) such that the sum of the maxima of d{n)
for each of the 5 tracks will not saturate.

set_sign Calculate the pulse sign information

sign{n) = sign[en{n)], n = 0...39

with en{n) being the sum of the normalized long term residual and the normalized correlation vector d{n):

..... - , d{n) „ ^ „ 33

The sign information is then included into d{n)\

d{n) = d{n)sign{n), n = 0...39.

.A.Iso. the position with maximum correlation in each of the 5 tracks is computed:

poSmax{t) = p s.t. en{p)sign{jp) = max en{j)sign{j), t = O..A.

Finally, the starting positions of ea>.h pulse are calculated:

ipos(O) = ipOs{5) = t s.t. pOSmax{t) = maX pOSmaxU),
j=O..A

ipos{i) = ipos{i + 5) = {ipos{0) + i) mod 5, i = 1... 4.

corJh Compute the matrix of correlations of the impulse response hEin) and include the sign information in it:

rr{i,j)= ^^hE{n ~i)hEin -j)^ sign{i)sign{j), i>j, z,i =0...39.
search_10i40 Search the algebraic (fixed) codebook to find the optimal pulse positions mj:

/* Fix position of first pulse to global maximum position */
io = POSmax{ipOs{Q))-,
/* Four iterations over local maxima in other tracks */
for each track t = 1... 4 do

= poSmax{ipos(l))-, /* max. pos. in track */

63

/* Successively add pulses in pairs */
for each pair (a, b) = (2,3), (4,5), (5,7), (8,9) do

/* Search pair positions to maximize mean square error A */
for ia = ipos{a)... 39, step 5 do

for ib = ipos{b)... 39, step 5 do

^D =Te E]=o rriijAj) +| E5=o Ei=o rriikAj);
if ^ > E"'"" then

•^D D jTTiax

^•max — ^D,Tnax —^D\
^^max —^aj '̂ brnax —^6)

end if

end for

end for

/* Set pair positions to maximizer */
ia —i^maxi ib —ibmaxy

end for

/* All pulse positions assigned, is it global maximum? */
~j2
^max ^
D ,max

-^max —

if

Eo.max '
/* Remember pulse positions */
for j = 0.. .9 do THj = ij end for

end if

/* Cyclically shift starting positions for next iteration */
ipos{l... 9) = ipos{2... 9,1);

end for

build_code Given the positions and signs of the 10pulses build the fixed codebook vector c(n) and encode it for
transmission.

In addition, the fixed codebook vector is filtered by convolving with the impulse response hB{n)-.

n

z{n) =''̂ c{i)hE{Ti —i), n = 0...39.
i=0

B.2.5.4 Codebook gain

G-code Calculate the fixed codebook gain

„ _ Ef=o3;2(n)^(n)
3'^ — ^39

En=o z{n)z{n)

B.2.5.5 Quantization of fixed codebook gain In a preprocessing step, the fixed codebook vector c(n) is
filtered through the prefilter Fe{z):

CE{n) = c(n) + ^c(n- [TO]), n= [TO]... 39.
O

(see B.2.5.2) followed by:

q_gain_code Quantize the fixed codebook gain for transmission.

64

x(n) z(n) v(n) gainj3it Aq(z)

^

Synthesize
—^ 3 speech I

Updatefilter ^
I .memories

code gain_code

Quantize

codebook gain

Figure 63: Filter memory update

B.2.6 Filter memory updates

In this final step, the memories of the synthesis and weighting filters for the calculation of the pitch analysis
target signals (B.2.4.3) are updated for the next subframe.

The excitation signal u{ti) in the present subframe is calculated:

u{n) = gpv{n) + gcCEin), n = 0...39

where gp and gc are the quantized gains, v(n) is the adaptive codebook vector and C£;(n) is the filtered fixed
codebook vector. The excitation signal is also copied to the past excitation buffer for the pitch synthesis filter.

SynJilt, quantized coefScients a(fc) Synthesized the speech s(n) locally by filtering the excitation signal
u(n) through the LP filter 1/A{z).

The memories of the synthesis and weighting filters are then updated to

e(n) = s(n) —s(n), n = 30 ... 39

and

e,„(n) = x{n) - gpy{n) - gcz{n), n = 30 ... 39,

respectively.

B.2.7 Serialization: Prm2bits_12k2

Conversion of the set of parameters obtained by the encoder for a complete frame into a serial stream of 244 bits
corresponding to a transfer rate of 12.2 kbit/s.

65

Oq
C

<yi

O
o
o-
o

n

P
Oq

•-S

P

3

Pre_proces8

AutMorr Autocorr

i ___
window Lag_wlndow

Lavlnson Lavlnson

A«J.p A.J.P

WalghLAl Walght.AI

n

Prsflttar pltch_eontr

SMreh_10l40

B.3 Decoder

Bits2prm_12k2

prm[57J

Decode

LP parameters

A(z)

prm[13]

\ decode_12k2

j

synth[40]
•

1

1
f

N

3 Post_ Filter

J

synth[40]

decoder

speech[160]

Figure 65; Decoder

Decoding is basically the reverse process of encoding in the sense that simply the synthesis model described in
B.2 is implemented. Therefore, the steps are very similar to the routines described in the encoding part and the
reader is referred to the first part for details.

B.3.1 Parameter extraction: Bits2prm_12k2

Extract the decoder parameter set from the serial stream of 244 bits for a complete frame.

B.3.2 Decoding of LP filter parameters

For each complete frame:

prm[5]
W

23

Decode

LSPs

N a 53 /

LSP

Interpolate
filter coeff.

E3

A(z)

Figure 66: LSP decoding

67

D_plsf _5 The received LSP indices are used to reconstruct the two LSPs for the 2nd and 4th subframes.

Int_lpc Interpolation of the LSPs for the 1st and 3rd subframes and conversion of the LSPs to LP filter coefficients
a{k), /c = 1... 10 for all 4 subframes.

B.3.3 Decoding subframe and synthesizing speech

pitch gain

Compute
adaptive ved

Adaptive
gain control

Figure 67: Subframe decoding

B.3.3.1 Decoding of the adaptive codebook vector For each subframe, the received pitch lag is decoded
and used to construct the adaptive codebook vector v{n) from the past excitation buffer.

Dec_lag6 Decode the received pitch index to construct the integer and fractional parts of the pitch lag TO.

Pred_lt_6 Compute the adaptive codebook vector v{n) by interpolating the past excitation at TO.

B.3.3.2 Decoding of the adaptive codebook gain For each subframe:

d_gain_pitch Decode the received gain index to construct the adaptive codebook gain Qp.

B.3.3.3 Decoding of the algebraic codebook vector For each subframe:

dec_10i40_35bits The received fixed codebook index is used to reconstruct the signs and positions of the 10
pulses which then give the fixed codebook vector c(n).

After decoding, the prefilter Fe{z) (see B.2.5.2) is applied to the fixed codebook vector:

CE{n) =c{n) 4- %c(n - [TO]), n=[TO]... 39
8

where Qp and [TO] are the previously decoded pitch gain and integer part of the pitch lag.

68

B.3.3.4 Decoding of the algebraic codebook gain For each subframe:

d_gain_code Given the codebook vector cjg(n) and the received gain index the fixed codebook gain is calculated.

B.3.3.5 Computing the reconstructed speech In each subframe, the basic excitation at the input of the
LP synthesis filter is

u{n) = gpv{n) + gcCE{n), n = 0...39

given the previously decoded codebook vectors and gains.
If gp > 0.5 then the excitation is modified to emphasize the contribution of the adaptive codebook vector:

u{n) =u{n) + Y^ppu(n), n=0... 39

is calculated and the excitation u{n) is updated by

agc2 Adaptive gain control to compensate for the difference between u{n) and u{n).

The gain scaling factor is

and the final excitation signal is then calculated to

u{n) = T}u{n), n = 0...39.

In other cases {gp < 0.5) the excitation signal u(n) is not modified.
Finally, the speech is synthesized by passing the excitation through the synthesis filter 1/A{z):

)
Syn_Filt, coefficients a{k), /c = 1... 10 Filter the excitation signal u{n) through the LP synthesis filter to get

the reconstructed speech signal s(n).

B.3.4 Post-filtering: Post_Filter

In each of the 4 subframes a post-filtering of the synthesized speech is performed.

WeightJii Calculate the weighted filter coefficients

d„(fc) = d(fc)7„(fc),

dd(fc) = a{k)'yd{k), = 1... 10.

for the formant postfilter Hf{z) = /fracA{zl^n)A{zl"fd)-

B.3.4.1 Produce residual signal

Residu, coefficients d„ Filter the speech s{n) through the LP inverse filter A{zl^ri) to get the residual r(n).

B.3.4.2 Tilt compensation filter First, calculate the truncated impulse response hf{n) of the formant
postfilter:

Synjf ilt, coefficients dd, zero memory Filter the coefficients dn(fc) through the LP filter l/A(2:/7d).

69

Tilt niter I

speech

Adaptfve
gain control

^ sim_psl[40|

tfi A(Z)

Weighted Weighted

Compute
tilt factor

Figure 68: Post filtering

Next, the correlations of the impulse response are calculated:

21-i

^ + i), 1= 0,1.
j=0

The tilt factor is then given by

0-8SS). ••.(1)>0
I 0 otherwise

Finall}', the residual is passed through the tilt compensation filter Ht{z) = 1- /i2;~T

Preemphasis Filter the residual f(n) through the tilt compensation filter:

f (n) = f (n) - ij,f{n - 1), n = 39... 0.

B.3.4.3 Post-filtered speech

Syn_f ilt, coefHcients aj Filter the compensated residual f(n) through the LP filter \IA{zl^d) to get the post-
filtered speech signal Sf{n).

age Given the synthesized speech signal s(n) and the post-filtered speech signal s/(n) perform adaptive gain
control to compensate for the gain difference.

Computes the final gain-scaled post-filtered speech signal s'{n).

B.3.5 Up-scaling

Reverse the signal down-scaling done in the encoder by multiplying the post-filtered speech signal s'(n) by 2.
Finally, the signal is truncated to 13 bits according to the output format.

70

Figure 69; Decoder block diagram.

71

C Simulation Results

C.l Software

The following tables list the cycle-accurate results obtained for simulating the coder and decoder on the ISS for
the Motorola DSP5600. Tables are given for unoptimized, initial code and for the software after optimizations.

72

Routine calls

max

cycles
total avg. max

instructions

total avg

FAutocorr 18ae 6 104958 629748 104958 53938 323628 53938

FAzJsp 16df 6 41258 246714 41119 24798 148315 24719

FChebps 1822 628 322 202216 322 200 125600 200

FCoder.l2k2 llcc 3 2715917 8142878 2714292 1561164 4680860 1560286

FConvolve 19a0 24 29702 712848 29702 16181 388344 16181

FEncJagb 2852 12 99 928 77 52 503 41

FG-code 2bd2 12 937 11244 937 842 10104 842

FG-pitch 28ae 12 2826 33818 2818 1625 19449 1620

FGetJsp-pol 36c4 36 1530 55080 1530 963 34668 963

FIntJpc 30e4 3 14879 44629 14876 9471 28409 9469

FIntJpc2 3140 3 7618 22840 7613 4866 14591 4863

FInterpoLb 37e6 70 270 18340 262 134 9180 131

FInv-Sqrt 3788 252 135 30946 122 77 17668 70

FLag_max 25b0 18 86950 916735 50929 60707 641995 35666

FLag-window 2fd2 6 443 2658 443 318 1908 318

FLevinson 2cb7 6 18650 111788 18631 10373 62168 10361

FLsf-lsp 358b 6 404 2421 403 239 1434 239

FLsf_wt 34af 6 419 2490 415 293 1758 293

FLsp_Az 363b 18 3628 65195 3621 2300 41347 2297

FLspdsf 35bc 6 1960 11616 1936 945 5606 934

FNorm.Corr 271b 12 64233 733169 61097 39419 448217 37351

FPitch_fr6 2669 12 66638 757923 63160 40623 460564 38380

FPitch-ol 248b 6 158656 946007 157667 111212 664359 110726

FPre_Process 383c 3 15248 45744 15248 10268 30804 10268

FPredJt.6 2c34 12 21995 263828 21985 11516 138150 11512

FPrm2bits_12k2 3013 3 9599 28592 9530 4731 14152 4717

FQ-plsf.5 318f 3 116512 348864 116288 75269 225521 75173

FReorderJsf 361c 6 207 1239 206 126 756 126

FResidu 29d0 36 12528 451008 12528 8063 290268 8063

FSet-zero 34f7 9 1299 3119 346 1289 3029 336

FSynJilt 306f 72 11124 792192 11002 5885 418248 5809

FVq_subvec 3331 12 22498 184014 15334 14900 122334 10194

FVq_subvec.s 33be 3 48033 143853 47951 30655 91860 30620

FWeight_Ai 2a20 48 132 6336 132 110 5280 110

Fbuild-code 2363 12 5730 68159 5679 3190 37976 3164

Fcode_10i40-35bits 19f7 12 246805 2957399 246449 132574 1589235 132436

FcorJi lc25 12 80454 965331 80444 44758 537033 44752

FcorJr_x la74 12 31074 371601 30966 17096 204580 17048

Fencoder-reset 47a3 1 3553 3553 3553 3322 3322 3322

Fq-gain_code 2a7d 12 2471 28688 2390 1415 16661 1388

Fq_gain-pitch 2a40 12 584 6450 537 299 3402 283

Fq.p lbf7 120 60 6360 53 31 3120 26

Fsearch-10i40 ld21 12 124153 1485073 123756 64517 772537 64378

Fset-sign lbl7 12 4633 55127 4593 2673 31697 2641

Table 8: Initial delays for coder behaviors.

73

Routine calls

max

cycles
total avg. max

instructions

total avg
FBin2int 195c 1425 160 119720 84 97 70635 49
FBits2prni.l2k2 1920 25 6533 162495 6499 3676 91485 3659
FD_plsf_5 lbl4 25 2888 72194 2887 1801 44968 1798
FDecJagG 1516 100 140 12475 124 72 6453 64
FDecoder_12k2 116c 25 192021 4730059 189202 105919 2607675 104307
FGetJsp_pol la06 200 1278 255600 1278 809 161800 809
FInit_Decoder_12k2 112c 1 775 775 775 719 719 719
FInit_Post_Filter 13b6 1 270 270 270 235 235 235
FlntJpc 15b4 25 12295 306844 12273 8009 200022 8000
FInv-sqrt lab6 191 142 27098 141 76 14504 75
FLog2 IfeS 200 118 23600 118 64 12800 64
FLsfJsp 206f 50 470 23475 469 246 12300 246
FLsp_Az 1993 100 2982 297244 2972 1934 193072 1930
FPostJFilter 13cc 25 153541 3838501 153540 85951 2148763 85950
FPow2 2035 100 84 8308 83 42 4154 41
FPred_lt_6 14a8 100 21645 2163702 21637 11321 1131815 11318
FReorderJsf 1973 50 261 13025 260 144 7200 144
FResidu 1848 100 17044 1704400 17044 9300 930000 9300
FSet-zero 1806 104 635 7334 70 625 6192 59
FSyn_filt 189c 300 11078 2821100 9403 5882 1497600 4992
FWeight_Ai 1653 200 132 26400 132 110 22000 110
Fagc 1673 100 2585 258476 2584 1778 177788 1777
Fagc2 1747 91 2291 208481 2291 1607 146237 1607
Fd.gainxode IdSl 100 1242 123217 1232 742 73929 739
Fd_gain_pitch ldl2 100 109 10550 105 67 6560 65
Fdec-10i40_35bits lf7e 100 845 82905 829 492 48455 484
F decoderJiomingJrame_test 2753 24 47 1128 47 24 576 24
Fdecoder_reset 2774 1 1373 1373 1373 1222 1222 1222
Fpreemphasis 1815 100 490 49000 490 384 38400 384
Freset_dec 27f7 1 2454 2454 2454 1776 1776 1776
Freset_rx_dtx 21fe 1 1064 1064 1064 545 545 545
Frx_dtx 22e8 25 127 3175 127 48 1200 48
Fupdate.gain_code_history_rx 2550 100 29 2609 26 11 1100 11
FupdateJsfJiistory 2470 25 715 17875 715 548 13700 548

Table 9: Initial delays for decoder behaviors.

74

Routine calls

max

cycles
total avg. max

instructions

total avg

FAutocorr 1888 12 6228 74736 6228 5806 69672 5806

FAzJsp IGcc 12 34209 405440 33786 18818 223085 18590

FChebps 1820 1244 251 312244 251 142 176648 142

FCoder_12k2 llc9 6 1437055 8610119 1435019 812501 4866760 811126

FConvoive 4077 48 2297 110256 2297 1926 92448 1926

FEncJagG 2680 24 98 1860 77 51 1007 41

FG-code 2963 24 1231 29544 1231 805 19320 805

FG.pitch 26da 24 2448 58585 2441 1291 30903 1287

FGetJsp.poi 41cf 72 1276 91872 1276 807 58104 807

FIntJpc 2cc5 6 11911 71466 11911 7746 46476 7746

FIntJpc2 2dl5 6 6096 36576 6096 3969 23814 3969

FInterpoi-6 30ca 154 259 38478 249 124 18568 120

FInv.sqrt 306c 504 142 68625 136 76 36765 72

FLagnnax 4033 36 13620 290418 8067 12517 265881 7385

FLag.window 2c3a 12 226 2712 226 187 2244 187

FLevinson 29d5 12 14092 168872 14072 7549 90443 7536

FLsfJsp 2fb2 12 470 5634 469 246 2952 246

FLsf.wt 2ee4 12 379 4470 372 231 2746 228

FLsp.Az 4166 36 2898 104286 2896 1882 67752 1882

FLspJsf 2fe0 12 2572 30364 2530 1216 14372 1197

FNorm.Corr 25ad 24 15928 352299 14679 10859 241341 10055

FPitcii.frG 2505 24 18283 403716 16821 11979 265867 11077

FPitcii_oi 23f5 12 28097 328942 27411 24770 291140 24261

FPreT'rocess 311d 6 10766 64596 10766 7226 43356 7226

FPredJt.G 408a 24 2319 55617 2317 1938 46486 1936

FQ_pisf_5 2d58 6 53627 321478 53579 37723 226206 37701

FReorderJsf 304c 12 261 3126 260 144 1728 144

FRe.sidu 401f 72 1457 104904 1457 1126 81072 1126

FSet,_zero 2f20 9 339 908 100 328 809 89

FSymfilt 3fec 144 1692 239712 1664 1263 179664 1247

FVcj-Subvec 40ae 24 9020 149286 6220 6694 110736 4614

FVq_subvec j 40f5 6 20551 123306 20551 15150 90900 15150

FWeight.Ai 27db 96 102 9792 102 80 7680 80

Fbuiid-code 22ea 24 5326 126266 5261 2809 66806 2783

Fcode-10i40.35bits 18eb 24 248694 5958414 248267 128118 3070280 127928

FcorJi laf7 24 82634 1983120 82630 42753 1026024 42751

FcorJiJc 1965 24 28544 682536 28439 14511 347144 14464

FencoderJiomingTrame.test 3f46 6 25 150 25 12 72 12

Fencoderj-eset 3f59 "1 1242 1242 1242 999 999 999

Fq.gain.code 282f 24 2194 50136 2089 1097 25578 1065

F q_gain_pitch 27f8 24 566 12840 535 267 6160 256

Fq-p lade 240 41 8400 35 18 3480 14

Fsearch-10i40 Ibdc 24 126468 3023685 125986 65225 1560428 65017

Fset.sign laOO 24 5199 122983 5124 2640 61886 2578

Table 10: Coder delays after software optimization.

75

Routine calls

max

cycles
total avg. max

instructions

total avg

FBin2int 17da 1425 143 109285 76 78 57010 40
FBits2prm_12k2 179e 25 6099 152060 6082 3131 77860 3114
FD_plsf-5 186c 25 2588 64694 2587 1501 37468 1498
FDecJag6 148a 100 140 12475 124 72 6453 64
FDecoder_12k2 1168 25 72030 1736836 69473 44869 1087593 43503
FGetJsp-pol 26f6 200 1276 255200 1276 807 161400 807
FInitJDecoder_12k2 1128 1 283 283 283 225 225 225
Flnit-PostJFilter 139e 1 120 120 120 83 83 83
FIntJpc 1528 25 11911 297775 11911 7746 193650 7746
FInv_sqrt 180e 191 142 27104 141 76 14507 75
FLog2 lcf2 200 118 23600 118 64 12800 64
FLsfJsp ld79 50 470 23475 469 246 12300 246
FLsp_Az 268d 100 2898 289675 2896 1882 188200 1882
FPost-Filter 13b4 25 29825 745607 29824 21315 532866 21314
FPow2 IdSf 100 84 8308 83 42 4154 41
FPredJt-6 25bl 100 2319 231729 2317 1938 193686 1936
FReorderJsf 17ee 50 261 13025 260 144 7200 144
FResidu 2546 100 1457 145700 1457 1126 112600 1126
FSet_zero 1753 104 173 3392 32 162 2146 20
FSynJilt 2513 300 1692 433400 1444 1263 322600 1075
FWeight_Ai 15bb 200 102 20400 102 80 16000 80
Page 15d8 100 2228 222782 2227 1421 142091 1420
Fagc2 16a0 91 1934 175994 1934 1250 113750 1250
Fd_gain_code laac 100 1097 108717 1087 597 59429 594

Fd.gain.pitch la40 100 97 9350 93 55 5360 53
Fdec_10i40_35bits lc8e 100 711 69505 695 357 34955 349
Fdecoder_homingTrame_test 2421 25 47 1175 47 24 600 24
Fdecoder_reset 2442 1 646 646 646 489 489 489
Fpreemphasis 175e 100 372 37200 372 266 26600 266
Freset_dec 24b9 1 1629 1629 1629 938 938 938
Freset_rx.dtx leff 1 966 966 966 440 440 440
Frx_dtx lfe3 25 127 3175 127 48 1200 48
Fupdate_gain-CodeJristory_rx 222f 100 29 2609 26 11 1100 11
Fupdatedsf-history 215b 25 505 12625 505 338 8450 338

Table 11: Decoder delays after software optimization.

76

