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and 

Katsuhiro Nakamura(b) 
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ABSTRACT 

For a yttrium iron garnet sphere at room temperature, an experimental 

study is made of the first order Suhl spinwave instability using perpendicular 

pumping at 9.2 GHz with the de field parallel to the (111] crystal axis. The 

dynamical behavior of the magnetization is observed under high resolution by 

varying two control parameters, de field (580 < H0 < 2100 G) and microwave 

pump power (1 < Pin < 200 mW). Within this parameter space quite varied 

behavior is found: ( i) onset of the Suhl instability by excitation of a 

single spinwave mode with very narrow linewidth (<0.5 G); (ii) when two or 

more modes are excited, interactions lead to collective oscillations 

("auto-oscillations") with a systematic dependence of frequency (10 4 to 106 

Hz) on pump power, these oscillations displaying period-doubling to chaos; 

(iii) quasiperiodicity, locking, and chaos occur when three or more modes are 

excited; (iv) abrupt transition to wide band power spectra (i.e., turbulence), 

with hysteresis: (v) irregular relaxation oscillations and aperiodic spiking 

behavior. A theoretical model of coupled modes is numerically evaluated and 

found to exhibit a behavior pattern similar to those observed experimentally. 

PACS numbers: 76.50.+g, 05.45.+b, 47.20.Tg, 75.30.Ds 
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In ferromagnetic resonance experiments, as the microwave pumping power is 

increased, instabilities may be observed, 1 • 2 characterized by abrupt onset of 

anomalous noisy absorption. Suh1 3 gave a theory for this behavior, remarking 

(1957) that it resembled turbulence in fluid dynamics. From the viewpoint of 

nonlinear dynamical systems theory one may view spinwaves in a ferrite sphere 

as a set of coupled nonlinear standing wave modes with the dynamics controlled 

by a low dimensional at tractor. 4 Accordingly, certain uni versa! aspects of 

the behavior are expected on quite general grounds. At the Suh1 threshold 

power a single microwave spinwave mode becomes exponentially excited, being 

critically driven by the uniform precession mode. When the next mode is 

excited, these two microwave modes (frequency f = 10 10 Hz) can interact by a 

four-magnon scattering process to produce a low frequency collective oscilla-

tion at a frequency fco = 10 4 to 10 6 Hz. It was predicted 5 and observed 6 that 

this collective oscillation would show a period-doubling cascade to chaos. 

When a third microwave mode is excited, it was found from more detailed 

experimental and theoretical studies 7 • 8 • 9 that a second collective oscillation 

frequency 
, 

fco may arise, with the system displaying quasiperiodicity, 

frequency entrainment, and chaos. Although most spinwave systems studied have 

a very large number of accessible modes, they often display a rich low-

dimensional behavior and are the subject of renewed experimental and theoreti-

cal interest. 10- 20 

In this papeP we describe some codimension-two experiments on a yttrium 

iron garnet (YIG) sphere in which we excite the Suhl first-order perpendicular 

pumped instability, the so-called "subsidiary absorption."' The data are then 

compared to the numerical iteration of a theoretical model of coupled modes. 

Consider spins Sj on the crystal lattice of the ferrite sphere in an external 

magnetic field H0 , with Zeeman, exchange, and dipolar terms in the hamiltonian 
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JC = -fi'YI: s .. it - 2J I: s .. Sj. + I:Hd 
j J 0 j,j' J 

where 'Y is the gyromagnetic ratio and J (J>O) the Heisenberg nearest neighbor 

exchange energy. The Zeeman interaction leads to a uniform precession of the 

crystal magnetization M about H0 at frequency ~0 = 'YH0 , and to a narrow ferro-

magnetic resonance absorption at ~P = ~0 when driven by a small ac field H1 

sin(~pt), perpendicular to H0 . The exchange term gives rise to spinwaves with 

the dispersion re1ation21 

for spinwaves of frequency ~k and wave vector k in the direction ek relative 

to H0 : for our sample, 'Y = 1.77x10 7 sec- 1 G- 1 : D = 5.4xl0- 9 Gcm 2 : ~m = 

3.0xl0 10 sec- 1 • The instability described in this paper occurs when the de 

field is set near H0 = <~p/2'Y). At this field a pump photon ~P = 2~ can 

excite a uniform magnon which scatters by a three-magnon process into a pair 

of magnons <~k.k) and <~k• -k), i.e. a spinwave "mode," with maximum wave 

vector k = 3x10 5 cm- 1 at ek = 0, as shown in Fig. 1(a). When the driving 

field H1 exceeds the Suhl threshold value, the amplitude increases exponen-

tially for the first mode to go unstable. The experiment is performed at room 

temperature with a sphere of pure single crystal YIG (diameter d = 0. 066 em, 

spherical to !d/d = 6xlo-s, smooth to within 0.15 ~). mounted in a resonator 

with the crystal axis [111] n H0 l H1, with incident microwave power Pin from 

a klystron oscillator (fp = ~p/271" = 9.2 GHz) coupled via a waveguide and 

precision attenuator to the sphere: see Fig. l(b). Power not absorbed is 

reflected to a diode detector, giving a de signal S0 and also a video 

frequency signal S(t), 10 to 10 6 Hz, from which is obtained the power spectrum 

P( f). 
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Experimental results. The regions and boundaries of some of the observed 

behavior are shown in Fig. 2 in the parameter space of the de field H0 and the 

pumping power Pin a: H1 2 • The Suhl threshold, shown as the solid line, is 

experimentally determined by an abrupt change in S0 , which is reversible 

except in the shaded area where it is abrupt and hysteretic, accompanied by a 

large increase (50 dB) in the video signal S(t), with no resolved spectral 

features in P(f). This wide-band "noise" is deterministic: the hysteresis can 

be understood from the model. In another region of parameter space (1600 < H0 

< 2000 G) the de signal S0 shows a series of sharp dips as H0 is increased 

above the Suhl threshold [Fig. 3(a)], believed to be high-order spatial 

resonances of single spinwave modes within the sphere. 22 For a small change 

in wave vector Ak = n/d, the field change computed from the dispersion 

relation for k = 3x10 5 cm- 1 is AH0 = 0.152 G, compared to the observed spacing 

0.157 G in Fig. 3(a). The first few dips in S0 are not accompanied by a video 

signal S ( t) , an indication that only single microwave spinwave modes are 

excited (these are not detected by the video detector) . However, as H0 is 

further increased, a sinusoidal signal S(t) [e.g. Fig. 4(a)] may arise owing 

to the overlap of two microwave modes. This collective oscillation, at 

frequency fco = 10 4 to 10 6 Hz, typically, is found to display period doubling 

(Fig. 4(b)] for very small changes in H0 , or in Pin• or in crystal orien­

tation, or in microwave frequency fp· A period-doubling cascade to chaos 

[Fig. 4(e)] can be observed. There is a marked dependence of the frequency 

fco on pump power [e.g. Fig. 3(b)] owing to the dynamic interaction between 

modes. The data are fit by the expression f 2 co = k[(Pin/Pc)-1] where Pc is 

the threshold value of the pump power Pin and k is a constant if all other 

parameters are held fixed. This frequency dependence is numerically predicted 

by our model, Fig. 3(c). 
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- -The phase diagram (Fig. 2) in the broad regions 1600 < H0 < 2100 G, 5 < 

-Pin < 10 dB, is filled with many small regions of size AH0 /H0 = 10- 5 , AH1/H1 = 
10-3 displaying single frequency collective oscillations, fco• many of which 

do not display a period-doubling cascade to chaos before interruption by the 

appearance of a second incommensurate frequency f~0 which we associate with 

the excitation and overlap of a third microwave mode; close examination of 

Fig. 3(a) shows several series of weak peaks with different spacings. Figure 

4(c) shows the resulting time series for two-frequency quasiperiodicity, 

resembling the amplitude of two coupled pendula. The power spectrum P(f) (not 
, 

shown) shows sharp peaks at nfco + mfco with n,m integers. For very small 

changes in any parameter, these two collective oscillations will display 

frequency locking [e.g. Fig. 4(d)] and a quasiperiodic route to chaos. Two-

frequency quasiperiodic! ty and chaos are abundantly found in this region of 

the phase diagram. We have no reproducible experimental evidence for three-

frequency quasiperiodicity. 

In other regions of the phase diagram [Fig. 2] we find additional types 

of behavior: (i) "relaxation oscillations" [Fig. 4(f)] characterized by a 

fast rise and slow decay, with power spectra having no resolved spectral 

peaks; these are sometimes seen as irregularly spaced spikes. ( i1) This 

spiking behavior has a reasonably well defined onset to the region labelled 

"very noisy collective oscillations," characterized by a high level feature-

less wide-band power spectrum. (iii) "High amplitude oscillations" are 

observed at still higher pump power in a region near H0 = 1900 G: these 

oscillations show periodic, quasiperiodic, and chaotic b~havior, all super-

"' imposed on a high level broad-band background signal. 

Theoretical model. Figure l(b) shows schematically the elements of our 

theoretical model for the experimental system: a collection of coupled 
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oscillators or modes. 7 • 8 • 9 • 23 The Hamiltonian includes the photon resonator 

mode (A), uniform magnon mode (B), and spinwave modes bk with energies ~P' ~0 • 

and GJk, respectively. These oscillators are mutually coupled with coupling 

constants G between A and B, gk between B and bk, and four-magnon interactions 

Tkk', Skk' among {bk}· The driving field (Pin) 1 / 2 x exp(-i~pt) couples with 

A. From the Hamiltonian, we obtain the equations of motion for A, B and bk, 

and add phenomenological damping terms with their constants r, 7o, and 7k, 

respectively. We transform to slow variables Ck via bk = Ck exp(-i~pt/2) and 

adiabatically eliminate A,B, assuming r >> 7k· We assume Ck = c_k and arrive 

at a set of coupled equations for Ck: 

{1) 

where ~Qk a c~k-~p/2) = 2~~fk is the detuning parameter, and parameters Q and 

E are functions of G, ~0 • ~P' r, and 70 • 

The fixed points of Eq. {1} may be determined exactly if only one mode is 

excited. The equation ~k = 0 may be put in the form of a point on a unit 

circle, M + NICkl 2 = (Ck) 2 /1Ckl 2 , where M = i{7k + i~Ok)/QPin 1 / 2 gk, and N = 

-(2Tkk + Skk + Elgki 2 )/QPin 1 / 2 gk. The Suhl threshold occurs at IMI = 1. For 

Pin > Pt (Pt = threshold power) the stability of the trivial fixed point {Ck = 

0} is lost in a symmetry-breaking bifurcation. This occurs in two forms: (1) 

If Re(M/N} > 0, one obtains a supercritical bifurcation in which stable 

nonzero fixed points emerge from the origin as Pin crosses Pt. (2) For 

Re(M/N) < 0 a subcritical bifurcation occurs in which stable nonzero fixed 

points appear below Pt, and the system will jump to these at Pin = Pt, 

resulting in hysteretic behavior. The experimentally observed hysteresis is 

probably a related effect involving the cooperation of neighboring modes. 

Equation { 1) corresponds to a set of k = 1 to n coupled damped driven 
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nonlinear oscillators, each characterized by a detuning parameter 2nAfk and by 

other physical parameters that may be reasonably well chosen from knowledge of 

the YIG ferrite material and its resonance and relaxation properties. To 

explore the behavior of Eq. (1) we perform a numerical iteration24 for n 1, 

then n = 2, etc. For n = 1, the system is always attracted to a fixed point, 

but a hysteresis may be displayed as noted above. For n = 2, periodic 

oscillations are found [Figs. 5(a) and 5(b)]: Mode 2 exhibits an asymmetric 

orbit while mode 1 exhibits a symmetrical orbit at twice the period. We 

simulate the spatial modes of Fig. 3(b) by choosing detuning parameters Af 1 

fs - 500 kHz [corresponding to the 0.15 G splitting of Fig. 3(a)] and Af2 = 

fs, and shift fs to simulate the de field shift. The computed behavior [Figs. 

5(c) and S(d)] shows period doubling and symmetry breaking, respectively, and 

eventually chaotic behavior [Figs. 5(e) and 5(f)] for both modes. 

For n = 3 modes, new behavior arises: Fig. 5(g) shows quasiperiodic 

behavior with a smooth Poincare section of a torus; at higher excitation the 

section [Fig. 5(h)] is a chaotic attractor. For some other· parameter values 

the behavior shows chaotic bursts [Fig. 5 ( i)] and other forms of aperiodic 

behavior similar to that observed [Fig. 4(f)]. 

In summary, the model is found to moderately explain the experimentally 

observed phenomena, in particular: The hysteresis at the Suhl threshold; 

onset of collective oscillations, period doubling and chaos; quasiperiodicity, 

locking and chaos; aperiodic spiking; and dependence of collective oscillation 

frequency on pump power . Taken together, the high resolution experimental 

data and the numerical iteration calculations give a reasonably good picture 

;.; of spinwave dynamics in YIG spheres in the chaotic regime. 

This work was supported in part by the U.S. Department of Energy under 

Contract No. DE-AC03-76SF00098; and by the Office of Naval Research under 
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FIGURE CAPTIONS 

Fig. 1 - (a) Spinwave dispersion diagram, "'k vs. k, computed for YIG sphere 

with H0 = 1700 G. The uniform mode excited by microwave perpendi­

cular pumping at "'p can excite a spinwave pair (k,-k) travelling in 

the azimuthal direction e. The first-order Suhl instability occurs 

when the population of this spinwave mode exponentially increases. 

(b) Schematic diagram of the experimental system, together with the 

elements of the corresponding theoretical model. 

Fig. 2 - Regions and boundaries of types of experimentally observed behavior 

in the perpendicular pumped spinwave instability in a YIG sphere: de 

field H0 vs. microwave pump power Pi m Ht 2 · Pin= 20 dB corresponds 

to H1 = 5 G. 

Fig. 3 - (a) Single spinwave modes from the region indicated in Fig. 2 in a 

YIG sphere for microwave pumping at fp = 9. 2 GHz. The modes are 

spaced by AH0 = 0.157 G. (b) Square of observed collective oscilla­

tion frequency fco vs. microwave pump power Pin relative to threshold 

value Pc· The solid line is a fit to the data. (c) 10 x fc 0
2 vs. 

Pin/Pc computed from model: solid line is a fit to the computed 

points. 

Fig. 4 - Observed ac signals S(t) in spinwave instability showing (a) periodic 

oscillation at 16 kHz: (b) period doubled: (c) quasiperiodic: (d) 

frequency locking; (e) chaotic: (f) aperiodic relaxation oscillation. 

Fig. 5 - (a) Computed behavior for two modes: phase portrait for periodic 

oscillations, asymmetric mode: At 1 = -300 kHz, Af2 = 200 kHz. (b) 

Symmetric mode. (c) Period doubling of asymmetric mode: Af1 = -385 

kHz, At1 = 115 kHz. (d) Symmetry breaking of symmetric mode. (e) 

Chaotic orbit following period doubling cascade: Aft = -410 kHz, Af2 
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= 90 kHz. (f) Power spectrum of chaotic orbit, fmax = 2.5 MHz. (g) 

Computed phase portrait for quasiperiodic behavior for three modes, 

with Poincare section. (h) Poincare section of chaotic orbit; 

proximity to period-5 locking produces the five points. (i) Chaotic 

bursts. 
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