
UC Davis
IDAV Publications

Title
Dyadic Splines

Permalink
https://escholarship.org/uc/item/3bk667xm

Author
Duchaineau, Mark A.

Publication Date
1996

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3bk667xm
https://escholarship.org
http://www.cdlib.org/

Dyadic Splines

By

Mark Alan Duchaineau

Department of Computer Science

University of California, Davis

May, 1996

Copyright by

Mark Alan Duchaineau

1996

Permission is hereby granted that this dissertation or any portions thereof may be
copied for any purpose without fee, so long as full acknowledgement of authorship
and reference to the full source document are clearly given.

Dyadic Splines

By

Mark Alan Duchaineau

B.S. (California State University, Hayward) 1987
M.S. (University of California, Davis) 1990

DISSERTATION

Submitted in partial satisfaction of the requirements for the degree of

DOCTOR OF PHILOSOPHY

in

COMPUTER SCIENCE

in the

GRADUATE DIVISION

of the

UNIVERSITY OF CALIFORNIA

DAVIS

Approved:

Committee in Charge

May, 1996

i

Acknowledgements

This dissertation exists only because of the support of many people. The �rst
tentative steps along these lines of research began when my friend David Thomas
gave me a stack of periodicals containing early work in fractals. Inspired, Y. Rorke
Weigandt and I worked in parallel and we both managed to synthesize terrain. My
undergraduate mentor, Christopher Morgan, gave me the opportunity to develop a
more logical set of subdivision rules and encouraged my various research pursuits.
His enthusiasm, generousity and depth of mathematical insight gave me the skills,
con�dence and opportunities to continue my research at the graduate level.

Ken Joy took me into his
edgling computer graphics research group and has
been untiring in his support throughout my years in Davis. The worlds of geometric
modeling and image synthesis came alive as never before through his lectures and
collaboration. The essences and culture of these �elds came through clearly, and I
have taken them to heart. At every step on the long road leading to this dissertation,
Ken has been a staunch and skilled supporter.

The Davis graphics group has included some exceptionally talented students over
the years who have helped me in numerous ways. Jim Reus has always been a fount
of all knowledge, and a model of dedication to the myriad projects that whirl around
him. Mark Miller was the �rst user of these ideas, helping me to clarify the concepts
and make them work in the \real world." He did the �rst research into compression
using dyadic splines [30]. Carlos Borges gave me an explanation of least-squares
�tting that resonates in me to this day. All three waded through early manuscripts
of this work and provided thoughtful suggestions.

Many other students and faculty members have read pieces of this work, attended
my talks and examined my demonstrations. Their feedback has been invaluable. I
would particularly like to thank Bob Estes, Ben Garlick, Drew Harrington, Peter
Linz, Nelson Max, Richard Moster, Todd Reed and Stan Stoneking.

On a more personal note, my family has stood by me throughout every trial. Their
unfailing love and boundless faith in me has kept my health sound and spirits high.

Lastly, I dedicate this dissertation to the late Paul Andersen, who guided me back
to the high road.

ii

Contents

1. Introduction 1

1.1 Overview : 1

1.2 Dissertation Outline : 6

2. Related Representations 7

2.1 Space Trees : 7

2.1.1 Bintrees : 8

2.2 B-splines : 10

2.2.1 Blossoms and B-splines : 10

2.2.2 Pyramid Diagram : 12

2.2.3 Dyadic Re�nement : 12

2.2.4 Alternative Derivation of Dyadic Re�nement : : : : : : : : : : : : : : : : : 13

2.2.5 B-spline Least-Squares Fitting : 19

2.2.6 Multivariate B-splines : 20

2.3 Hierarchical B-splines : 22

2.3.1 Forsey-Bartels O�sets : 22

2.3.2 Hierarchical B-spline Fitting : 23

2.4 Wavelet Multiresolution Analysis : 23

2.5 Fractals : 27

3. Function Synthesis 30

3.1 Formulation : 30

3.2 Sampling and Bounding : 33

3.3 Interval-Query Evaluation : 36

4. Function Analysis 42

4.1 Least-Squares Prediction : 42

4.2 Compacting the Displacements : 47

iii

4.3 Finite-Width Filters : 49

4.4 Improving the Displacements : 52

4.4.1 Canonical Displacements : 53

4.4.2 Displacement Fitting : 54

4.4.3 Incremental Fitting : 55

5. Function Approximation 57

5.1 Bottom-Up Approximation : 58

5.2 Top-Down Approximation : 61

5.2.1 Local Estimates : 61

5.2.2 Ideal Fit of the Estimate : 63

5.2.3 Top-Down Algorithm : 66

5.2.4 Top-Down Approximation Results : 70

6. Curve Design 73

6.1 Displacement Edits : 74

6.2 Neighborhood Smoothing : 75

6.3 O�set Displacements : 77

6.4 Neighborhood Roughening : 78

6.5 Template Edits : 80

6.5.1 Template Approximation : 81

6.5.2 O�set-Frame Templates : 82

6.5.3 Orienting the Details : 84

6.5.4 Combinations of the Optional Template E�ects : : : : : : : : : : : : : : : 84

6.6 Sculpting : 85

6.7 Summary of Curve Design Results : 88

7. Multivariate Functions 89

7.1 Synthesis : 89

7.2 Analysis : 91

7.3 Approximation : 92

iv

7.4 Surface Design : 95

7.4.1 Displacement Edits : 96

7.4.2 Smoothing : 96

7.4.3 O�set-Frame Displacements : 98

7.4.4 Roughening : 99

7.4.5 Template Edits : 100

7.4.6 Sculpting : 103

7.5 Applications of Dyadic-Spline Fractals : : : : : : : : : : : : : : : : : : : 105

7.6 Summary of Tensor-Product Extensions : : : : : : : : : : : : : : : : : 107

8. Conclusions and Future Work 108

8.1 Outline of Future Research : 109

References 112

v

1

Chapter 1

Introduction

Dyadic splines are a simple and e�cient function representation that supports
multiresolution design and analysis. These splines are de�ned as limits of a process
that alternately doubles and perturbs a sequence of points, using B-spline subdivision
to smoothly perform the doubling. An interval-query algorithm is presented that
e�ciently and
exibly evaluates a limit function for points and intervals. Methods
are given for �tting these functions to input data, and for minimizing the energy and
redundancy of the representation. Several methods are given for designing dyadic
splines by controlling the perturbations of the limit process. Several applications are
explored, including shape design, synthesis of terrain and other natural forms, and
compression.

1.1 Overview

Function representations are the foundation of systems to model geometry and
light interactions. As geometric scenes and lighting e�ects more closely resemble the
complex world around us, there is an increasing need to reference their de�ning func-
tions at multiple levels of detail, and to construct the functions only in neighborhoods
that signi�cantly impact the result. Furthermore, increasingly large datasets must be
analyzed and stored compactly with a graceful loss of accuracy. Finally, designers of
functions want intuitive controls that have desirable e�ects at appropriate scales and
localities. Dyadic splines facilitate these goals.

The idea of doubling and perturbing is depicted in Figure 1.1.1. An initial sequence
of points is doubled using weighted averages. Each point is split into two children.
The left and right children are initially set to be one quarter of the way from the
parent to the parent's left or right neighbor, respectively. This is the doubling step
with weights that will be seen to produce smoothly-joined quadratic pieces in the
limit function. The perturbation step is shown next. Each of the points produced by
the doubling step is moved by adding some displacement to its position. It is these
displacements that provide design handles and �tting parameters to the dyadic-spline
function. This process is repeated, resulting in the limit function shown.

2

double

perturb

double

perturb

...

limit

Figure 1.1.1: doubling and perturbing

3

This limit function exhibits the generality of dyadic splines. It has continuous
derivatives of all orders except at a third of the way from the left, where there is a
discontinuity in the �rst derivative. The �rst third of this function is linear, and the
remainder is a transcendental function.

It is the perturbations that are the key to the generality exhibited in the example.
The doubling process by itself produces quadratic pieces that are joined with �rst-
order continuity (other weighting schemes can produce higher degree pieces that join
more smoothly). By adding perturbations, limit functions may contain various types
of discontinuities, may be nowhere di�erentiable (e.g. fractals), or may be transcen-
dental functions. Indeed, all of the functions used in geometric modeling and image
synthesis can be represented by dyadic splines.

The power of the doubling process comes from maintaining a sequence of approx-
imations and in predicting �ner approximations from coarser ones. The sequence
of approximations double in resolution at each step. By maintaining copies of the
function at each resolution, dyadic splines become an example of a multiresolution

representation. Multiresolution representations allow geometry, texture and lighting
computations to be carried out using optimum levels of detail.

The predictive power of the doubling process allows function energy to be pushed
to coarse resolutions. This improves the accuracy of the approximations early in the
doubling process, and facilitates compression of the function data. This prediction
process is termed a multiresolution analysis. Figure 1.1.2 shows the multiresolution
analysis for the limit function just given. On the left of the �gure the sequence of
perturbations are shown. It turns out that for special prediction processes that give
perfect predictions whenever possible, the perturbations are redundant and contain
twice as many values as needed. The right side of Figure 1.1.2 shows the perturbations
after this redundancy has been removed.

In the dyadic-spline construction the simplest design handles are provided by
the perturbations. Two curve modi�cations are depicted in Figure 1.1.3. The �rst
creates a sharp indentation, while the second causes a broad rise. Clearly it would be
tedious or impossible to achieve these e�ects with direct edits to a single-resolution
representation. The term multiresolution design is introduced here for this kind of
editing.

More sophisticated forms of multiresolution design are possible. For example, the
shape of a speci�c tool could be used to sculpt the function, as shown in Figure 1.1.4.
This is an example where the perturbations are controlled indirectly by the designer's
actions.

4

Figure 1.1.2: multiresolution analysis
(a) perturbations (b) redundancy removed

Figure 1.1.3: direct multiresolution edits

5

Figure 1.1.4: sculpting with a tool

6

1.2 Dissertation Outline

The remainder of this dissertation
eshes out the ideas outlined above. The
next chapter gives detailed background on the representations most closely related
to dyadic splines, namely bintrees, B-splines, hierarchical B-splines, wavelets and
fractals.

Chapter 3 describes the synthesis of a limit function from the perturbations and
doubling rules that de�ne it. The double/perturb limit process is �rst de�ned math-
ematically, and then an interval-query evaluation method is introduced. This evalua-
tion mechanism provides an e�cient and
exible means for applications to access the
function at multiple resolutions.

Prediction and analysis is covered in Chapter 4. The primary tools described in
this chapter are: (1) a bottom-up process for converting high-resolution uniform B-
splines into the multiresolution form of dyadic splines, (2) a process of compacting the
dyadic-spline perturbations to remove a factor-of-two redundancy, and (3) a modi�-
cation to the conversion and compaction operations to allow e�cient computation.

Chapter 5 describes two algorithms for approximating target functions with dyadic
splines. The �rst algorithm is a direct application of the simple bottom-up analysis
process. Starting from detailed knowledge of the target function, the perturbations
with smallest magnitudes are removed in order to decrease data complexity. This
bottom-up approximation algorithm runs in time that is proportional to the amount
of detailed data provided for the target function. The second algorithm uses advanced
techniques to increase data complexity in a top-down fashion until the approximation
is within tolerance. The running time is proportional to the complexity of the output
approximation. This top-down algorithm can be hundreds of times faster than the
bottom-up algorithm.

Curve editing techniques are described in Chapter 6 which make extensive use of
the synthesis, analysis and approximation algorithms. The dyadic-spline represen-
tation provides a unifying methodology for describing a wide variety of possibilities
for curve design. The design mechanisms discussed are: displacement editing, local
smoothing, local roughening, o�set-frame displacement editing, template edits and
sculpting.

The extension to multiple variables is given in Chapter 7. This extension is based
on the tensor-product B-splines. The univariate synthesis, analysis, approximation
and design techniques have natural counterparts in the tensor-product setting. Also
discussed is the application of dyadic-spline fractals to modeling natural phenomena.
Finally, Chapter 8 concludes the dissertation. A summary of the work is given, includ-
ing a discussion of the strengths and weaknesses of the dyadic-spline representation
and an outline of future research directions.

7

Chapter 2

Related Representations

In this chapter, various representations are reviewed that have inspired the dyadic-
spline formulation. These representations are outlined in some depth, and their de-
sirable features are identi�ed. In the case of bintrees, the basic principle of splitting
up space into well-organized pieces is of essential value. B-splines provide a means
of approximating a wide variety of functions while facilitating re�nement, di�erentia-
tion and bounding. Hierarchical B-splines provide a means of designing functions at
di�erent levels of detail simultaneously, and allow multiresolution �tting that brings
all points to within tolerance. Wavelet multiresolution analysis provides a means of
approximating a wide variety of functions in a manner that facilitates compression
of control vectors and the solution of physical equations. Finally, fractals allow nat-
ural multiresolution detail to be added automatically, thus providing what has been
termed data ampli�cation. The dyadic splines will make use of the features of these
representations.

2.1 Space Trees

In modeling and rendering, numerous schemes are used for decomposing space into
disjoint pieces. These include quadtrees, octrees, bintrees, k-d trees and BSP trees
[33]. Collectively, such methods are herein referred to as space trees. Space trees do
not by themselves represent continuous-valued functions, but instead represent sets
or partitions of space. The space-tree methods form excellent spatial organizations
within which functions can be represented.

All space-tree representations have several properties in common. They consist
of a tree where each node represents a subset of space. The children of a node are
disjoint, and their union is the parent. Each leaf node is labeled with a partition
index, which in the simplest case just indicates whether the leaf is in or out of a set.
For each node, there is a simple means of deciding which child a point resides in. The
tree is constructed in its entirety before being used, and the means of construction is
\forgotten."

Space trees are useful for compression of uniform partitions since children with the
same label can be merged into a single parent. These trees allow additional detail to
be added just where it is needed. Space trees are also useful for speeding up geometric
searches and for providing useful orderings of space.

8

By de�nition, a partition is a complete, disjoint collection of subsets of a space
X. In mathematical notation, a partition is expressed as fXi � <n j i = 1; : : : ; mg,
where X =

S
iXi and Xi \ Xj = ; for i 6= j. If each of the children Xi of X are

recursively partitioned, then a general tree is formed. The mathematical notation for
this is more readable if a child indexing function c(i; j) is used to reference the jth
child of node Xi. The function jmax(i) will indicate the number of children that Xi

has. With these functions, the general tree partition is then denoted

Xi =
Sjmax(i)
j=1 Xc(i;j)

where Xc(i;j) \Xc(i;k) = ; for j 6= k. The root node is X0 = X.

The remaining mathematical notation regards the partition labeling functions.
For each nonleaf node Xi, the function pi :Xi ! f1; : : : ; jmax(i)g is given as

pi(x) = c(i; j) for the unique j such that x 2 Xc(i;j)

This determines which child Xc(i;j) of Xi contains the point x. This can be applied
recursively to obtain the leaf node Xp(x) that contains x:

p(x) = q(0; x)

where

q(i; x) =

(
i if Xi is a leaf
q(pi(x); x) otherwise

Instances of this abstract method depend on how nodes are split up into children.
The most general technique uses arbitrary linear halfspaces. The space trees formed
this way are called Binary Space Partition (BSP) trees. At the other extreme are
the quadtrees and octrees, where nodes are squares and cubes respectively with four
and eight children having the same shape as the parent but with smaller dimensions.
The k-d trees are similar to BSP trees, but with the normal to the halfspace always
parallel to an axis (i.e. x; y; : : :). Finally, bintrees are like k-d trees but where splitting
is always done in the center, and where each axis is split in order, cycling repeatedly
through the axes.

2.1.1 Bintrees

Bintree partitions are simple in that every node is an interval and is split in
half along one axis to give its children. They promote
exible and e�cient use and
access because each level of the space tree is a uniform grid of intervals. These grids
are the most common partitions of the various function representations, yet allow
neighborhoods with general shapes to be formed by taking the union of grid intervals
from various tree levels.

9

The de�nition of a bintree can be based on the dyadic rationalsn
i=2` j i; ` 2 Z

o
A hierarchy of one-dimensional intervals may be indexed by level ` and position i,
as shown in Figure 2.1.1 for the subintervals of [0; 1). These intervals are de�ned
concisely as

I`;i =
h
i=2`; (i+ 1)=2`

�
The partition index is easily determined as p(`; t) =

j
2`t
k
.

Level Index

` = 0
0

` = 1
0 1

` = 2
0 1 2 3

` = 3
0 1 2 3 4 5 6 7

...
...

Figure 2.1.1: dyadic interval hierarchy

For higher dimensions, the hierarchy of one-dimensional intervals becomes a hi-
erarchy of two- or three-dimensional intervals by splitting intervals in half along one
axis at a time, as shown in Figure 2.1.2.

2-D 3-D

Figure 2.1.2: higher-dimensional interval hierarchies

The intervals here now have a level `, current axis a, and n indices i1; : : : ; in:

I`;a;i1;:::;in = I`+1;i1 � � � � � I`+1;ia�1 � I`;ia � � � � � I`;in

Partition indices can be determined seperately for each axis.

10

2.2 B-splines

B-splines are functions formed as piecewise polynomials with speci�c basis func-
tions that facilitate analysis and re�nement of the \pieces." For multivariate func-
tions, the formulation considered here is the tensor-product form. B-splines have been
found to be useful in a wide variety of modeling and rendering problems [2, 15].

The most elegant rigorous treatment of B-splines and re�nement is through the use
of symmetric n-a�ne functions called blossoms [32]. Using this general theory, along
with a special theory introduced for dyadic re�nement, several results are described
in this section that are essential to the de�nition and application of dyadic splines in
subsequent chapters.

Section 2.2.1 gives the univariate blossom formulation for B-splines with general
(nonuniform) \pieces." De�nitions are given for knots, suites, blossoms and control

points. The extraction of piecewise polynomial B-spline functions from the blossom
formulation is described.

Section 2.2.2 describes the blossom pyramid diagram used as a schematic for eval-
uation and re�nement algorithms. This diagram also makes clear certain properties
of B-splines that will be needed for e�cient evaluation and bounding of B-spline
functions.

The special case of dyadic re�nement is central to this dissertation, and warrants
examination from two viewpoints. The blossoming viewpoint (Section 2.2.3) is used
to obtain concisely a weighted-average algorithm for performing dyadic re�nement.
As an alternative viewpoint, linear operators are used in Section 2.2.4 to obtain the
re�nement algorithm. These linear operators give a clear, concise way to express re-
�nement, and will be valuable in introducing a set of analysis and synthesis operators
in Chapter 4.

Least-squares �tting of B-splines to general target functions is discussed in section
2.2.5. This notion is critical for understanding hierarchical B-spline �tting (section
2.3), and is related to various �tting, prediction and approximation processes dis-
cussed in Chapters 4 and 5.

The discussion of B-splines concludes with a straightforward extension to multiple
variables in section 2.2.6.

2.2.1 Blossoms and B-splines

A sequence of blossoms is constructed for a degree n and knot sequence

� � � t�2 � t�1 � t0 � t1 � t2 � � �

The blossoms are denoted fi(x1; : : : ; xn), and are associated with the domain [ti; ti+1].

11

If the interval is degenerate (i.e. ti = ti+1), no blossom is generated. As shown in
Figure 2.2.1, each set of n consecutive knots is grouped into a suite which will be
used as arguments to the blossoms at the control points for the B-spline.

� � � � � �

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10
| {z }

f5

f(t2; t3; t4; t5)

f(t6; t7; t8; t9)

Figure 2.2.1: blossom control suites (n = 4)

Each blossom is uniquely determined by �xing its values at each of the n + 1
control-point suites that touch its associated domain:

fi(ti�n+1; : : : ; ti)
fi(ti�n+2; : : : ; ti+1)

...
fi(ti+1; : : : ; ti+n)

The nth-degree polynomial function Fi(t) for domain piece [ti; ti+1] is then extracted
from the diagonal of blossom fi:

Fi(t) = fi(t; t; : : : ; t)

By insisting that fi(tk1; : : : ; tkn) = fj(tk1; : : : ; tkn) when the two blossoms have the
control suite in common, then the de�nition of the B-spline (and its unique associated
blossoms) is complete (in fact, one may simply say f(tk1; : : : ; tkn) without ambiguity
in this case).

This section has given a very short review of a rich subject. See Lyle Ramshaw's
extensive technical report [32], in which the term blossoming is introduced. Inde-
pendent work was introduced by de Casteljau [10]. An excellent introduction to this
material is found in [11].

12

2.2.2 Pyramid Diagram

All properties and algorithms for B-splines pivot around the pyramid diagram for
a given blossom f :

f(1; 2; 3)
f(2; 3; 4)
f(3; 4; 5)
f(4; 5; 6)

>f(x1; 2; 3)

>f(x1; 3; 4)

>f(x1; 4; 5)

>f(x1; x2; 3)

>f(x1; x2; 4)
>f(x1; x2; x3)

This is a generalization of the de Boor algorithm [9] and the de Casteljau algorithm

[10]. The case n = 3 with ti = i is shown for domain piece [3; 4].

One combination step diagram in the general case is

f(x1; : : : ; xk; tj; : : : ; tj+n�k�1)
f(x1; : : : ; xk; tj+1; : : : ; tj+n�k)

>f(x1; : : : ; xk+1; tj+1; : : : ; tj+n�k�1)

for k = 0; : : : ; n� 1. This diagram is shorthand for the equation

f(x1; : : : ; xk+1; tj+1; : : : ; tj+n�k�1) = (1� u) f(x1; : : : ; xk; tj; : : : ; tj+n�k�1) +
u f(x1; : : : ; xk; tj+1; : : : ; tj+n�k)

where

u =
xk+1 � tj
tj+n�k � tj

All of the properties of B-splines can be readily deduced from the formulation
above. For example, the value Fi(t) = fi(t; : : : ; t) is a convex combination of the
control points touching [ti; ti+1]. Another property is that when ti�1 < ti < ti+1, then
Fi�1(t) and Fi(t) meet at ti in their �rst n� 1 derivatives.

The most important tool that falls out of the above formulation is a means by
which control points can be obtained when new knots are added to the domain parti-
tion. The new control points are simply blossom evaluations at the new control point
suites. This viewpoint is simpler that the original development of general B-spline
re�nement [7].

2.2.3 Dyadic Re�nement

In the development of the dyadic splines, the cases of interest are when partitions
are made up of successive levels of dyadic rationals, that is, going from a partition
t`;i = i=2` to t`+1;i = i=2`+1. Let the control points for the t`;i partition be

P`;i = f(t`;i�b(n�1)=2c; : : : ; t`;i+bn=2c)

13

From the pyramid diagram it can be seen that P`+1;2i and P`+1;2i+1 are weighted
averages of P`;i+j for j = �b(n+ 3)=4c; : : : ; b(n+ 2)=4c. In fact, there are precisely
two cases for each n:

P`;2i =
P

j �n;jP`�1;i+j
P`;2i+1 =

P
j �n;jP`�1;i+j

where the �n;j and �n;j weights are given in Figure 2.2.2a. A diagram of the domain
intervals involved is given in Figure 2.2.2b.

Degree j = �1 j = 0 j = 1
n = 1 � 0 2=2 0

� 0 1=2 1=2
n = 2 � 1=4 3=4 0

� 0 3=4 1=4
n = 3 � 1=8 6=8 1=8

� 0 4=8 4=8
n = 4 � 5=16 10=16 1=16

� 1=16 10=16 5=16

P`�1;i�1 P`�1;i P`�1;i+1

P`;2i P`;2i+1

Figure 2.2.2: Dyadic Re�nement
(a) weights (b) intervals

2.2.4 Alternative Derivation of Dyadic Re�nement

A simple view of dyadic B-spline re�nement is obtained through the application of
linear operators on sequences of control points (see [12]). The subdivision operators
obtained in this section play a central role in the de�nition of dyadic splines in Chapter
3. Similar operators are used throughout this dissertation.

Assume that a function is represented at a �xed level of resolution ` by a sequence
of points P`;i indexed by i = : : : ;�2;�1; 0; 1; 2; : : :. These point sequences will be
referred to as control-point vectors. An example of a control-point vector is graphed
in Figure 2.2.3a. The domain spacing between the graphed points is 1=2`. The goal
is to repeatedly double the control-point vectors, that is, halve the domain spacing,
while smoothing out the function in some reasonable way. The example control-point
vector P` from Figure 2.2.3a is doubled in part (b), giving P`+1 with domain spacing
1=2`+1. Starting at level ` = 0, this gives a sequence of control-point vectors, P` for
` = 0; 1; 2; : : :, that hopefully converge to a smooth limit function.

14

(a)

(b)

P`;i

P`+1;2i
P`+1;2i+1

| {z }
1=2`

| {z }
1=2`+1

Figure 2.2.3: control-point vectors
(a) original (b) doubled

Before explaining how to double a control point vector, the general notion of ap-
plying linear operators to point sequences must be given. Let Q be a point sequence
with elements Qj for j = : : : ;�2;�1; 0; 1; 2; : : :. A linear operator A on such se-
quences has elements Ai;j for i; j 2 f: : : ;�2;�1; 0; 1; 2; : : :g. Applying operator A to
point sequence Q gives a new point sequence

R = AQ

with elements
Ri =

X
j

Ai;jQj

The simplest way to double a control-point vector is to make two copies of each
point. Let the linear operator that does this be called the split operator S. The
elements of S can be de�ned as

Si;j =

(
1 if j = bi=2c
0 otherwise

For illustration, this simple split operator may be displayed as a section of an in�nite

15

matrix:

Si;j =

2
666666666666664

...

1 0 0

1 0 0

� � � 0 1 0 � � �

0 1 0

0 0 1

0 0 1
...

3
777777777777775

Note that the origin of the in�nite matrix (i = j = 0) has been underlined. Applying
S to perform the split on a control-point vector is expressed as

P`+1 = SP`

The limit as level ` increases is a step function. An example of this is shown in Figure
2.2.4.

P0

P1

P2

P3

limit

...

Figure 2.2.4: simple splitting gives a step function

16

To obtain a smoother limit function, doubling operators will be devised that act
indirectly like the simple split operator. Instead of directly splitting the control-point
vectors to obtain a piecewise constant limit function, the new doubling operators will
cause the nth di�erences of control-point vectors to undergo simple splitting. Because
a properly de�ned nth di�erence has the nth derivative as its limit, the new doubling
operators will produce piecewise polynomials. The discussion that follows will de�ne
nth di�erences based on a di�erence operator, and then will de�ne the new doubling
operators that cause simple splitting of the nth di�erence.

The elements of di�erence operator D are de�ned as

Di;j =

8><
>:
�1 if j = i
1 if j = i + 1
0 otherwise

This has the inverse D�1 where

D�1
i;j =

(
1 if j < i
0 otherwise

These operators are displayed as

Di;j =

2
66666664

...

�1 1 0 0

� � � 0 �1 1 0 � � �

0 0 �1 1
...

3
77777775

and

D�1
i;j =

2
66666664

...

1 0 0 0

� � � 1 1 0 0 � � �

1 1 1 0
...

3
77777775

The sequence of nth di�erences for a sequence of control-point vectors P` is
2n`DnP`. The factor 2n` is needed since the domain spacing is cut in half for each
increase in level. For the sequence of control-point vectors P`, the nth derivative of
the limit function corresponds to the limit of the nth di�erences.

Simple splitting of control-point vectors produces a step function at the limit. A
new doubling operation on P` will cause the points of the nth di�erence 2n`DnP` to
undergo simple splitting. With this property of the new doubling operation, the limit
function's nth derivative will be a step function. This implies that the limit function
will be a piecewise nth-degree polynomial.

17

Let the nth-degree smoothing operator be de�ned as

M(n) = 1=2nD�nSDn

It remains to show that applying this operation as

P`+1 =M(n)P` (2.2.1)

causes simple splitting of the nth di�erence. This can be seen from the following:

2n(`+1)DnP`+1 = 2n(`+1)DnM(n)P`
= 2n(`+1)Dn(1=2nD�nSDn)P`
= S(2n`DnP`)

How does this relate to dyadic re�nement of B-splines? By multiplying the in�nite
matrices together, the rows of the smoothing operatorM(n) are seen to be the dyadic
re�nement weights in Figure 2.2.2 (with a shift in indices). The columns of M(n) are
scaled and translated copies of row n + 1 of Pascal's triangle

2nM
(n)
i;j =

n+ 1

2j + 1� i

!
=

(n + 1)!

(n+ i� 2j)!(2j + 1� i)!

This can be demonstrated by induction on n. For n = 0, this is true by inspection.

Assuming 2nM
(n)
i;j =

n+ 1

2j + 1� i

!
, observe that

2n+1M
(n+1)
i;j = 2n(D�1M(n)D)i;j

= 2n
P

u;v2Z D
�1
i;uM

(n)
u;vDv;j

=
P

u<i(2
nM

(n)
u;j�1 � 2nM

(n)
u;j)

=
P

u<i

n + 1

2(j � 1) + 1� u

!
�

n + 1

2j + 1� u

!!

=
P

w>2j�i

n+ 1
w � 1

!
�

n+ 1
w + 1

!!

=

n+ 1
2j � i

!
+

n+ 1

2j + 1� i

!

=

n+ 2

2j + 1� i

!

The last step is Pascal's triangle recurrence. The cases n = 1; 2; 3 are depicted as
follows:

18

1
2

2
666666666666666666664

...
0 0 0
1 0 0
2 0 0
1 1 0

� � � 0 2 0 � � �
0 1 1
0 0 2
0 0 1

...

3
777777777777777777775

1
4

2
666666666666666666664

...
1 0 0
3 0 0
3 1 0
1 3 0

� � � 0 3 1 � � �
0 1 3
0 0 3
0 0 1

...

3
777777777777777777775

1
8

2
666666666666666666664

...
1 0 0
4 0 0
6 1 0
4 4 0

� � � 1 6 1 � � �
0 4 4
0 1 6
0 0 4

...

3
777777777777777777775

Figure 2.2.5a shows an example of the application of the piecewise-linear subdi-
vision operator M(1) = 1=2D�1SD. Note that the limit function interpolates the
initial control points. Part (b) of the �gure shows the corresponding sequence of �rst
di�erences and the limit derivative, which is a step function.

P0

P1

P2

P3

limit

...

DP0

1
2
DP1

1
4
DP2

1
8
DP3

limit

...

Figure 2.2.5: piecewise-linear subdivision
(a) control-point vectors (b) �rst di�erences

Figure 2.2.6 shows an example of the application of the piecewise-quadratic sub-
division operator M(2) = 1=4D�2SD2. Note that the limit function no longer inter-
polates the initial control points, but instead creates a smooth function that approx-
imates the control points. Part (b) shows that the second di�erences converge to a
step function|the second derivative of the limit function.

19

P0

P1

P2

P3

limit

...

D2P0

1
4
D2P1

1
16
D2P2

1
64
D2P3

limit

...

Figure 2.2.6: piecewise-quadratic subdivision
(a) control-point vectors (b) second di�erence

2.2.5 B-spline Least-Squares Fitting

Since B-spline functions depend linearly on their control points, it is straightfor-
ward to reduce least-squares �tting to matrix factorization.

Any B-spline function can be written as

f(x) =
X
i

PiBi(x)

where Pi are the control points and Bi are the basis functions. This can be written
in vector form as

f = P TB

Least-squares �tting is formulated for some target function g(x) as �nding the f
that minimizes

kf � gk2 =

 Z
x2[x0;x1]

(f(x)� g(x))2
!1=2

This notation can be shortened into operator form as

kf � gk2 = ((f � g) � (f � g))1=2

20

and may be simpli�ed by noticing that the norm is minimized whenever (f�g)�(f�g)
is minimized.

The minimization may be converted to a matrix formulation as follows:

(f � g) � (f � g) = (P TB � g) � (P TB � g)
= (P TB) � (P TB)� 2(P TB) � g + g � g
= P T (BBT)P � 2(gBT)P + g � g
= P THP � 2QTP + C

where matrix H is given by

Hi;j = Bi �Bj =
Z
x2[x0;x1]

Bi(x)Bj(x)

which is sparse. The vector Q is given by

Qi = g �Bi =
Z
x2[x0;x1]

g(x)Bi(x)

and constant C is given by

C = g � g =
Z
x2[x0;x1]

g(x)2

The minimum of P THP � 2QTP + C is then found by computing the zero of its
derivative with respect to P , that is, �nd P such that

2HP � 2Q = 0

which is equivalent to solving the matrix equation

HP = Q

This matrix equation can be solved by well-known sparse matrix factorization algo-
rithms, such as band Cholesky [21, p. 154].

2.2.6 Multivariate B-splines

There are two predominant means of admitting more than one variable to a B-
spline function. The one pioneered by de Casteljau forms an m-variate function for
simplicial (e.g. triangular) domain pieces [10]. In this case, the blossoming formula-
tion remains largely intact and the pyramid diagram becomes a sequence of nested
triangular arrays of points. In the second method, the univariate basis functions are
multiplied together to form m-variate basis functions|the tensor product B-splines
[15]. This latter formulation is the one examined in this thesis.

21

The tensor-product B-splines are formulated for m axial degrees n1; : : : ; nm and
m knot vectors t1;i1 ; t2;i2; : : : ; tm;im , where i1; : : : ; im 2 Z. Using the blossoming for-
mulation, the blossoms are

fi(x1;1; x1;2; : : : ; x1;n1 ; x2;1; x2;2; : : : ; x2;n2 ; : : : ; xm;1; xm;2; : : : ; xm;nm)

where i = (i1; i2; : : : ; im) and each group (xj;1; : : : ; xj;nj) is now a suite as in the
univariate case. Here the blossom remains a�ne in each of its arguments, but is only
symmetric for interchanges amongst members of a single suite. The control points
are then

f(t1;i1; : : : ; t1;i1+n�1; t2;i2; : : : ; t2;i2+n�1; : : : ; tm;im ; : : : ; t1;im+n�1)

and the multivariate function is extracted from the diagonal as

F (x1; : : : ; xm) = f(x1; : : : ; x1; x2; : : : ; x2; : : : ; xm; : : : ; xm)

Finally, the pyramid diagram can be constructed independently for any interchange
suite (xj;1; : : : ; xj;nj) when the other blossom arguments are �xed and equal.

For example, suppose m = 2, n1 = 2 and n2 = 3. In this case, with knot vectors
(: : : ;�2;�1; 0; 1; 2; : : :) on both axes, the pyramid diagrams come out as follows:

f(1; 2; 1; 2; 3)
f(2; 3; 1; 2; 3)
f(3; 4; 1; 2; 3)

>f(x1; 2; 1; 2; 3)

>f(x1; 3; 1; 2; 3)
>f(x1; x2; 1; 2; 3)

f(1; 2; 2; 3; 4)
f(2; 3; 2; 3; 4)
f(3; 4; 2; 3; 4)

>f(x1; 2; 2; 3; 4)

>f(x1; 3; 2; 3; 4)
>f(x1; x2; 2; 3; 4)

f(1; 2; 3; 4; 5)
f(2; 3; 3; 4; 5)
f(3; 4; 3; 4; 5)

>f(x1; 2; 3; 4; 5)

>f(x1; 3; 3; 4; 5)
>f(x1; x2; 3; 4; 5)

f(1; 2; 4; 5; 6)
f(2; 3; 4; 5; 6)
f(3; 4; 4; 5; 6)

>f(x1; 2; 4; 5; 6)

>f(x1; 3; 4; 5; 6)
>f(x1; x2; 4; 5; 6)

f(x1; x2; 1; 2; 3)
f(x1; x2; 2; 3; 4)
f(x1; x2; 3; 4; 5)
f(x1; x2; 4; 5; 6)

>f(x1; x2; y1; 2; 3)

>f(x1; x2; y1; 3; 4)

>f(x1; x2; y1; 4; 5)

>f(x1; x2; y1; y2; 3)

>f(x1; x2; y1; y2; 4)
>f(x1; x2; y1; y2; y3)

With the tensor-product blossoms, re�nement may be performed on any combi-
nation of axis knot vectors. For the purposes of dyadic splines, dyadic re�nement is
performed on one axis at a time, corresponding to the partitions and split axes in a
bintree. For this, the weighting scheme given earlier is applied along the split-axis di-
rection. Thus the tensor product formulation works well with the bintree partitioning
scheme.

22

2.3 Hierarchical B-splines

The idea of re�ning a B-spline domain has been around for many years. In the
early schemes, detail was added by �rst applying a uniform re�nement to the entire
domain, and then modifying the control points. Forsey and Bartels [18] developed
the concept of hierarchical B-splines, where o�set detail could be added to a B-spline
function as it is re�ned. This gave the designer the ability to retain coarse control of
the function while adding detail through re�nement.

Forsey and Bartels describe a further enhancement to the de�nition of the o�sets
so that they are speci�ed with respect to local coordinate frames derived from the
coarse, unperturbed parent surface. This has the desirable e�ect that the o�set shape
tracks any changes in the base surface in an intuitive way. A further enhancement
along these lines was introduced in Barghiel's thesis [1], where more general o�set
placement and overlaps are considered.

2.3.1 Forsey-Bartels O�sets

Forsey and Bartels utilize B-spline re�nement to convert coarse control points to
a �ner set. Detail is then introduced by specifying o�sets to the �ner set of control
points. These o�sets are added to the (unperturbed) �ne set of control points to
produce the �nal control points de�ning the function. The resulting function can be
controlled at both coarse and �ne levels of detail, where the detail control is relative
to the coarse control. Finally, this process of re�ning and o�setting can be repeated,
resulting in a hierarchy of control o�sets at multiple levels of detail.

The Forsey-Bartels o�sets are grouped into disjoint domain rectangles at each
layer of re�nement. Each o�set rectangle from one layer must be a subset of an
o�set rectangle at the next coarser level. Each o�set rectangle contains at its center
the o�set control points that are to be manipulated, and these are surrounded by a
bu�er of null o�sets to preserve continuity. When additional points are to be o�set, a
rectangle is expanded to accommodate this. When two rectangles for a layer overlap,
they are merged into one large rectangle.

Although the formulation of Forsey and Bartels provides intuitive multiresolution
control, it su�ers from two drawbacks. First, de�ning and maintaining the Forsey-
Bartels o�sets is complex, requiring o�set rectangles to be re�ned and merged for all
possible tensor-product knot partitions. Furthermore, very sparse collections of o�set
points can cause the Forsey-Bartels rectangles to degenerate into the entire domain.
For example, consider o�set points along a diagonal in the domain.

The dyadic spline formulation and evaluation mechanism will be di�erent from
that of Forsey and Bartels, but will preserve the primary desirable qualities of their
method. These qualities are: multiresolution control, multiresolution �tting, and

23

reduction to B-spline pieces. Dyadic splines do not use the general knot placement
available to Forsey and Bartels' hierarchical B-splines. Such general knot placements
are advantageous in some applications. However, the multiresolution nature of dyadic
splines implies that the e�ect of nonuniform knot placements can be achieved as
accurately as desired by using �ner details.

2.3.2 Hierarchical B-spline Fitting

With hierarchical B-splines, the goal of �tting is to create a hierarchy of o�sets
that cause a hierarchical B-spline to closely approximate a given function. This
setting creates challenges and opportunities beyond the usual least-squares �tting
of conventional B-splines. Since re�nement can occur inde�nitely, hierarchical B-
splines can be �t to within any desired tolerance of a function, using pointwise error
measurements (the supremum norm) in addition to least-squares error norms. The
reason for using hierarchical B-splines over traditional B-splines is that the resulting
representation can be much more compact (although the problems identi�ed earlier
with the Forsey-Bartels formulation will defeat this in signi�cant cases).

The �tting algorithm described in Forsey's PhD thesis [17], and in a subsequent
paper [19], is organized as follows. The algorithm proceeds top-down, using a stack of
rectangular o�set domains. For each o�set domain, an error metric is stored, and only
those rectangles whose error is above a certain tolerance are kept. Initially, the stack
contains a single, coarse o�set rectangle. The top of the stack is repeatedly popped,
�t and analyzed. Fitting for a single o�set rectangle is done using least-squares
�tting, as described in the previous section but with sampled data. If the portion of
the hierarchical B-spline associated with this o�set rectangle is within tolerance, it
is output. Otherwise the analysis consists of checking for disjoint subrectangles that
cover all intolerance regions. If such intolerance subrectangles are found, they are
pushed on the stack. If not, the region is re�ned uniformly and pushed back on the
stack.

This �tting method takes advantage of the situation where isolated intolerance
regions exist. In this way, sparse collections of o�sets are formed. However, the
structure of the Forsey-Bartels formulation prevents the algorithm from functioning
well in the case of sparse but non-isolated intolerance regions. A further di�culty
is that the search for intolerance regions involves using �ll algorithms on a raster of
the error. Dyadic splines will overcome these di�culties while retaining the desirable
behavior.

2.4 Wavelet Multiresolution Analysis

The most useful wavelets in practice are de�ned through multiresolution analysis,
as pioneered by Mallat [26]. In multiresolution analysis, a scaling function �(t) is

24

dilated and translated to form basis functions for a nested sequence of function spaces

� � �V�2 � V�1 � V0 � V1 � V2 � � �

Typically, V`+1 is made twice the resolution of V`. The basis for V` is

f�`;i j i 2 Zg

where
�`;i(t) = �(2`t� i)

The compliment spaces W` are de�ned as

V`+1 = V` +W`

and wavelets

 `;i(t) = (2`t� i)

form bases for W` for an appropriate choice of . The wavelets `;i are derived so
that they form bases for the di�erences in functions stored at successive resolutions
(in e�ect, the wavelets at resolution ` + 1 restore detail that can't be maintained at
the coarser resolution `).

Multiresolution analysis consists of a sequence of �lter banks to decompose and
reconstruct a function f . To understand �lter banks, one fact to note is that the
scaling and wavelet functions at resolution level `, �`;i 2 V` and `;i 2 W`, can be
expressed as linear combinations of scaling functions �`+1;i from level ` + 1 (this
follows immediately from the fact that V` � V`+1 and W` � V`+1). Let these linear
relationships be denoted

�`;i =
X
j

�j�`+1;2i+j

and
 `;i =

X
j

�j�`+1;2i+j

The weights � and � form the columns of the reconstruction operators M and E:

Mi;j = �j�2i

and
Ei;j = �j�2i

Reconstruction (i.e. synthesis) is de�ned as follows. Let f` = P` � �` and g` = Q` � `.
Then

P`+1 =MP` +EQ`

25

is the reconstruction step in a �lter bank. The operator M is the re�nement or
subdivision operator, while the E operator expands the missing detail. This can be
expressed as a single operator:

P`+1 = [MjE]

"
P`
Q`

#

The decomposition (i.e. analysis) step is then formally de�ned as"
P`
Q`

#
= [MjE]�1 P`+1

The decomposition operator is split into a �t operator F and a compaction of di�erence
operator C: "

F

C

#
= [MjE]�1

The decomposition step can now be expressed in two parts,

P` = FP`+1

and
Q` = CP`+1

A diagram of the decomposition and reconstruction cycle is shown in Figure 2.4.1.

P1 Q1

P2 Q2

P3 Q3

P4 Q4

...

...

F M C
E

F M C
E

F M C
E

Figure 2.4.1: wavelet �lter bank

26

Mallat's original paper uses orthonormal scaling function bases �`;i, but the tech-
nique also works for nonorthogonal scaling function bases such as those associated
with uniform B-splines1 under dyadic re�nement [6, 35]. The multiresolution basis
functions for cubic uniform B-splines are shown in Figure 2.4.2.

�0;i

...

...

�1;i

...

...

�2;i

...

...

Figure 2.4.2: �`;i for cubic dyadic re�nement

Many di�erent wavelets may be chosen to compliment the scaling functions �.
Figure 2.4.3 depicts cubic wavelets of minimal support (sometimes called B-wavelets)
[6].

 0;i

...

...
 1;i

...

...
 2;i

...

...

Figure 2.4.3: example `;i for cubic dyadic re�nement

Researchers in many �elds are using wavelets to good e�ect. Examples include
image compression [24], image understanding [26], multiresolution editing [3, 16], and

1Chui [6] refers to uniform B-splines as cardinal splines.

27

solution of di�use global illumination [22]. Compression is a natural byproduct of the
wavelet transform since coe�cients of transformed functions tend to have large mag-
nitudes concentrated at coarse resolutions or along edges. The bulk of the coe�cients
are small and can be eliminated or stored with a small number of bits. Image com-
pression ratios have been reported that are are signi�cantly better than JPEG for a
range of signal-to-noise ratios.

Although wavelets have had many outstanding bene�ts in several �elds (including
graphics), several improvements are needed. First, the wavelet coe�cients obtained
after decomposition do not make good design handles, whereas B-spline control points
do. Also, B-splines have more elegant re�nement, bounding and di�erentiation prop-
erties. Wavelet decompositions tend to be preprocessed, yet detail should be produced
exactly where it is needed. Furthermore, wavelet approximations are constructed
bottom-up, and a top-down approximation method is often necessary. Finally, a sim-
ple family of exact �nite-width decomposition and reconstruction �lters are needed
for smooth wavelets. Dyadic splines o�er these improvements.

2.5 Fractals

The development of fractals has brought with it a host of mathematical and algo-
rithmic tools for synthesizing the geometry of a wide variety of natural phenomena.
A key technique is the use of functions of one, two or three variables that are \rough"
in a sense that may be quanti�ed through Fourier analysis, statistical measures of
self-similarity, or a fractal dimension. Numerous algorithmic constructions have been
proposed for such functions which vary widely in their simplicity, speed, data space,
function quality, and
exibility of use. A survey of these construction methods may
be found in [34], while a more general treatment of fractals is given in [27].

The simplest time- and space-e�cient technique is that of midpoint displacement
[20]. Unfortunately the functions produced in this way have creases where �rst-
derivative discontinuities are introduced along grid lines. To solve this problem,
slower, more complicated variants on midpoint displacement were later introduced
[29, 28].

The univariate midpoint displacement construction is depicted in Figure 2.5.1.
Initially, two endpoints are given at level ` = 0 that de�ne a line segment over an
interval. This segment is split at its midpoint, which is then perturbed by an amount
chosen at random from a given distribution (such as a uniform distribution over
[�1; 1]). This yields the two-segment function at level ` = 1. This process is repeated
to produce subsequent levels, but with the expected size of the perturbation halved
at each level. An example limit function is shown.

28

...

Figure 2.5.1: midpoint displacement

Random fractal functions have been used extensively to produce synthetic models
of landscapes, clouds and mineral formations. From the point of view of geometric
modeling and rendering, the primary advantage of fractals is that natural detail can
be produced automatically to increase the realism of synthetic models and images.

The midpoint displacement construction carries with it many of the desirable
qualities of B-spline recursive subdivision. First, the output may be produced to any
level of detail just where it is needed, without preprocessing. In contrast, the methods
for computing random fractals before [20] emphasized preprocessing at �xed, uniform
resolutions. Second, midpoint displacement fractals can be recursively subdivided in
the same manner as B-splines. This gives midpoint displacement the same opportu-
nities that B-splines have for taking advantage of scale-optimization e�ciencies, such
as culling geometry that is outside the �eld of view at the coarsest possible resolution.

A disadvantage of midpoint displacement and the other traditional methods of
producing random fractals is that the process is di�cult to control to produce speci�c

29

features in the output geometry. This is perhaps the most critical factor in using
fractal functions to design synthetic natural forms: having the ability to control
the function shape in an intuitive way. The traditional fractal formulations do not
facilitate editing of either the positions or the random-number processes.

Another disadvantage of traditional fractal constructions is that they are either
strictly preprocessed (e.g. [27]) or strictly online (e.g. midpoint-displacement recursive
subdivision). If the construction is preprocessed, the expensive function evaluations
can be reused, but the function must then be computed where it is not needed or
to insu�cient accuracy. If the construction is online, then computation reuse is
abandoned in favor of adaptability to runtime conditions.

Dyadic splines overcome these limitations. Because dyadic splines are closely re-
lated to B-splines and hierarchical B-splines, powerful editing mechanisms are avail-
able for dyadic-spline fractals. As discussed in section 3.3, evaluation of dyadic splines
can simultaneously gain the advantages of preprocessing and online processing. Most
important, dyadic splines allow fractal functions to be smoothly integrated into the
diverse applications that use multiresolution functions.

30

Chapter 3

Function Synthesis

This chapter describes the formulation and evaluation mechanisms for dyadic
splines of one variable. The general recurrence formula relating control displace-
ments and range positions is given �rst. The technique developed here is to view
the function domain as a simple hierarchy of intervals (the bintree), to provide con-
trol through displacements at each interval, and to compute resulting positions using
the B-spline dyadic re�nement weighting scheme. After giving the dyadic-spline re-
currence formula, the problem of evaluation is discussed. First, it is observed that
dyadic splines behave like B-splines locally, and can thus be sampled and bounded
by recursively evaluating local B-splines. Next, based on this observation, speci�c
implementation strategies and solutions are given.

3.1 Formulation

This section will de�ne dyadic splines based on bintree domain intervals, displace-
ments and positions. The dyadic-spline recurrence will be given that relates displace-
ments and positions. Dyadic spline functions will be de�ned in terms of limits of the
positions.

Recall from section 2.1 that the bintree intervals for a univariate domain are
I`;i =

h
i=2`; (i+ 1)=2`

�
. Displacements and range positions associated with I`;i will

be denoted by D`;i and P`;i respectively. An interval is called left if i is even and right

if i is odd. For simplicity, assume that initial positions are given at level ` = 0.

The index relationships and domain intervals for a generic parent and its children
are shown in Figure 3.1.1a. A tree of indices is shown in 3.1.1b for t 2 [0; 1].

The combined weighting and displacement scheme is written as the left and right
recurrences of the general form

P`;2i =
P

j �n;jP`�1;i+j +D`;2i

P`;2i+1 =
P

j �n;jP`�1;i+j +D`;2i+1

This is a generalization of the recurrence given earlier in section 2.2.3 for B-spline
dyadic re�nement, and the degree n weight masks �n;j and �n;j remain the same. The
application of these weight masks is depicted in Figure 3.1.2 for the cubic case. Note
that the left and right child positions are both computed as weighted averages of a
neighborhood of positions around their parent.

31

Level
parent

`

`+ 1

i

2i 2i + 1

left
child

right
child

t = i
2`

t = i+1
2`

t

Level Index Tree

t = 0 t = 1t

...

0 0

1 0 1

2 0 1 2 3

3 0 1 2 3 4 5 6 7

4 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Figure 3.1.1: domain indices
(a) parent and children (b) indices for t 2 [0; 1]

Pi�1 Pi Pi+1

P2i

1
8

6
8

1
8

Pi�1 Pi Pi+1

P2i+1

4
8

4
8

Figure 3.1.2: cubic weight masks
(a) left child (b) right child

0 1=8 4=8 6=8 4=8 1=8 0

0 1 0

Degree Footprint Scale
n = 0 1 1 1
n = 1 1 2 1 1=2
n = 2 1 3 3 1 1=4
n = 3 1 4 6 4 1 1=8
n = 4 1 5 10 10 5 1 1=16

...

Figure 3.1.3: (a) cubic footprint (b) general footprints

32

Another view of the weighting scheme is obtained by examining the footprint of
weights that a parent contributes to a neighborhood around its children. The footprint
in the cubic case is shown in Figure 3.1.3a. The footprints for general degree n are
shown in Figure 3.1.3b. Note that these footprints are scaled copies of the rows in
Pascal's triangle, as demonstrated earlier in section 2.2.4. These footprints appear in
the columns of the subdivision operators2 M(n):

� � � M(2) =
1

4

2
66666666666666666666664

...
3 0 0 0
3 1 0 0
1 3 0 0
0 3 1 0

� � � 0 1 3 0 � � �
0 0 3 1
0 0 1 3
0 0 0 3
0 0 0 1

...

3
77777777777777777777775

M(3) =
1

8

2
66666666666666666666664

...
4 0 0 0
6 1 0 0
4 4 0 0
1 6 1 0

� � � 0 4 4 0 � � �
0 1 6 1
0 0 4 4
0 0 1 6
0 0 0 4

...

3
77777777777777777777775

� � �

In operator notation, the dyadic-spline recurrence is

P`+1 =MP` +D`+1
(3.1.1)

where M =M(n) for some n � 0.

A function f(t) is now de�ned at any point t as the limit of the positions P`;i
associated with intervals containing t. Any function f(t) that is well de�ned by this
limit process will be called a dyadic spline. Of course, such a limit does not exist
without restricting the displacements in some way. In practice, a simple, slightly
conservative restriction will be used. This restriction involves insisting that all but a
�nite number of displacements for f satisfy

jD`;ij < ���` (3.1.2)

for some constants � > 0 and � > 1. This restriction will apply to automatically
generated displacements, such as those used to produce natural detail (e.g. fractals).
The exceptions will be user edits of displacements, either direct or indirect.

2Note that the rows have been shifted down compared to the re�nement operators derived in
section 2.2.4, but are otherwise identical. This shift is used to center the basis functions around the
bintree interval associated with its index. This shift is consistent with the indexing used earlier in
section 2.2.3.

33

3.2 Sampling and Bounding

For robust evaluations of the limit function, it is vital to provide guaranteed
bounds on the image of domain intervals, as well as for derivatives of the function. It
is generally better to know how a function behaves over a whole interval rather than
at a single point. Nevertheless, it is convenient to provide point-sample evaluations
at corners of intervals in the domain hierarchy (e.g. for tessellations). Both corner
samples and guaranteed bounds for interval images are readily computed from the
range positions P and displacements D of the dyadic spline.

Consider the function shown in Figure 3.2.1, which has nonzero displacements only
at level ` = 0. The dyadic-spline formulation reduces to uniform B-spline subdivision
in this case. To see this, note that without displacements, Equation 3.1.1 is identical to
the operator form of uniform B-spline subdivision given in Equation 2.2.1. Therefore,
this dyadic-spline function is a uniform B-spline with control points P0;i = D0;i. For
uniform B-splines it is a simple matter to evaluate the function and its derivatives for
arbitrary points t and for any interval I`;i [15].

...

= arbitrary displacement = zero displacement

f(t)

t
I

bound
on f(I)

Figure 3.2.1: function with displacements at ` = 0

For an interval I`;i, upper and lower bounds on f(t) for t 2 I`;i can be quickly
determined by taking the minimum and maximum P`;i+j for a small neighborhood
around I`;i, as shown in the �gure. Note that these bounds tend to be loose, but are
inexpensive to compute. The neighborhood of positions P`;i+j that in
uence f(t) for

34

t 2 I`;i are shown in Figure 3.2.2a. Looking at this another way, Figure 3.2.2b shows
the intervals I`;i+j that are in
uenced by a range position P`;i. Also notice that D`;i

in
uences I`;i+j exactly when P`;i does.

Degree

n = 0

n = 1

n = 2

n = 3

n = 4

Figure 3.2.2: (a) P`;i+j's in
uencing an interval I`;i
(b) intervals I`;i+j in
uenced by P`;i

The observation that f(t) is a B-spline also holds for any level ` when displace-
ments D`0;i are zero for lower levels `0 > `. The points P`;i determine the exact
limit function by acting as control points for a uniform B-spline, but now at a higher
resolution.

The observation can be broadened further by noting that f(t) will be a B-spline
locally over an interval I`;i whenever the displacements that in
uence I`;i below level
` are zero. The displacements that must be zero are depicted for the cubic case in
Figure 3.2.3. This set of displacements can be derived in the general case by applying
Figure 3.2.2a to all the descendents of I`;i.

With the observations so far, a dyadic-spline function f : [0; 1]! < with a �nite
number of nonzero displacements can be converted to a �nite collection of local B-
splines. The conversion algorithm recursively descends the domain interval tree when-
ever f(t) is not guaranteed to be a B-spline locally for t 2 I`;i. The algorithm stops

35

recursing when f(t) is a B-spline over I`;i. Figure 3.2.4 shows the local B-spline inter-
vals that result for a cubic dyadic spline with three nonzero displacements. Corner
samples are marked that delimit the B-spline pieces.

...

I

Figure 3.2.3: zero displacements for local cubic B-spline

Figure 3.2.4: cubic B-spline pieces for three displacements

When there are an in�nite number of nonzero displacements, evaluation depends
on the restriction that the displacements die o� exponentially in magnitude as the
level increases|recall requirement 3.1.2, that jD`;ij < ���` hold for all but a �nite
number of displacements. The �nite number of exceptions can be treated exactly
as before, and what remains are approximate local B-spline pieces. The error in the
approximation for f(t) over I`;i has a magnitude smaller than

36

�(`) =
1X

`0=`+1

���`
0

which is a convergent series for � > 1. An approximate local B-spline and its error
bound are shown in Figure 3.2.5. Tighter bounds occur for the children of I`;i. The
children may be recursively split to whatever accuracy is desired.

Figure 3.2.5: approximate B-spline pieces and error bounds

3.3 Interval-Query Evaluation

In order to turn dyadic splines into a useful tool, the functions must be given an
interface which e�ciently provides local geometric information on demand to appli-
cation programs. Many applications need to access local function geometry in a way
that is robust, e�cient and
exible to use.

The most common way to evaluate a function is simply to compute f(t) for point
samples. However, this is ine�cient on two counts. First, the work in computing f(t)
is thrown away. If a subsequent evaluation f(t0) is made where t0 is close to t, then
much of the work in computing f(t) can be reused. Second, only an in�nitesimal

37

bit of knowledge is obtained about the behavior of f(t). The work in computing
f(t) actually reveals information on how f behaves over a neighborhood. Many
applications bene�t from this knowledge, and guarantees on accuracy can often be
obtained only through such knowledge.

A second method to evaluate a function, called table-lookup, is to produce a table
of range values, and use this table repeatedly when function values are needed. For
example, if the domain of interest is [0; 1], then a table with one hundred evenly spaced
entries would be Fi = f((i� 1=2)=100) with i = 1; : : : ; 100. This is especially useful
when function computations are expensive and are used many times. For example,
if each entry took 100 units of work to compute, and if each were used an average of
100 times, the e�ective cost per evaluation would be one unit of work plus the cost
of looking up an entry in the table.

There are two problems with the use of tables. First, function use is rarely uniform
and so it is ine�cient to produce a uniform table. In fact, it is usually not known
what the distribution of usage will be, so any �xed nonuniform table would also be
inadequate. Second, there is only knowledge of the functions for the speci�c domain
points chosen. This leads to potential inaccuracies when the table entries are used to
represent the function. This can only be improved by increasing the size of the table
and thus diminishing the gains in e�ciency that motivated its use.

The methodology of interval queries is well suited to the task of providing an
evaluation mechanism for dyadic splines. An interval query returns range positions,
displacements, corner samples and range bounds for intervals in the domain hier-
archy. This information is computed on demand and can be cached to avoid later
recomputation. Queries generally are computed by evaluating recurrence relations
that involve further interval queries.

The interval-query strategy is implemented by means of a tree of records, one
per bintree interval. Each record contains the usual bookkeeping information needed
to build, traverse and destroy binary trees, namely a parent and two child pointers.
In addition, a record contains the position and displacement values P`;i and D`;i

associated with it. These values are needed to evaluate the recurrence relations of the
dyadic-spline formulation. Corner-sample and range-bound values are also stored.

The application interface to this data structure is simple and
exible. Initially, a
root interval is created and returned. Subsequently, children of any interval may be
queried (increasing the pool of currently-queried intervals), thus allowing any interval
in the hierarchy to be reached. Edits may be performed on any queried interval, and
any intervals in the query pool that are a�ected will receive an event. Any edit may
be removed later. Finally, intervals may be released from the current-query pool.

This method has three groups of bene�ts:

38

1.
exibility of access

� queries at diverse scales

An application can obtain information about a dyadic-spline function for
any bintree interval.

� queries in a natural order for application

Queries to bintree intervals can be made in almost arbitrary order. The
only limitation is that a parent interval must be queried before its child.

2. robustness

� guaranteed bounds given on range image

Applications have the option for each interval queried to ask for guaranteed
bounds on the set of range values taken on by the function over that domain
interval.

� query resolution adapts to achieve global accuracy

An application has �ne-grained control of the set of intervals queried. Us-
ing the guaranteed bounds on range over the queried intervals, computa-
tions can be made arbitrarily accurate by performing queries wherever the
bounds indicate a need.

3. e�ciency

� computes only what is used

The information required to answer interval queries is computed on de-
mand. Information that is not needed is not computed.

� sparse requests compute sparsely

As a consequence of the on-demand strategy, when queries are widely
spaced apart only sparse bintrees are constructed. This is similar to the
kind of behavior that online computation strategies like B-spline recursive
subdivision exhibit.

� dense requests maximize reuse of computations

Because the results of queries are cached, multiple requests to the same
intervals will reuse these results. This is similar to the kind of behavior
that preprocessed computation strategies like table-lookup exhibit.

� minimum queries achieve accuracy

In performing a computation adaptively through interval queries, an ap-
plication automatically takes advantage of the on-demand computation
mechanism. Thus the application has the opportunity to minimize compu-
tational work by performing queries only where the range bounds indicate
a need.

39

Before addressing the question of e�ective implemenation of interval queries, one
must be familiar with the notion of interval neighborhoods. A general interval neigh-
borhood is de�ned as a union of leaf nodes for any �nite tree of intervals. A simple
interval neighborhood is a union of adjacent intervals at one level of the bintree. A
sequence of interval neighborhoods is called a family if each neighborhood is a sub-
set of its predecessor. Dependencies in the dyadic-spline recurrence formulation and
other evaluations can be expressed in terms of interval neighborhoods.

Five issues must be addressed in order to make an e�ective implementation of
interval-query evaluation:

1. evaluation of position queries

To compute the recurrences for positions P`;i quickly, caching is essential: a
naive algorithm that simply recurses without caching will experience an expo-
nential blowup in computation cost. If a family of simple interval neighborhoods
are computed in a top-down fashion, then adding caching is straightforward. A
su�ciently large interval neighborhood at any level is made up of those inter-
vals containing displacements that in
uence the interval containing the query
interval. This is an application of Figure 3.2.2a. An example family of neigh-
borhoods is shown in Figure 3.3.1 for a single interval query for degree n = 2.
These neighborhoods are larger than needed near the query level, but are sim-
ple to evaluate. The unnecessary neighborhood intervals are shown as hollow
dots. This minor ine�ciency occurs rarely, and the excess computations are
often used shortly for subsequent queries.

Figure 3.3.1: family of neighborhoods for P`;i query

2. evaluation of corner-sample queries

Sample and bound computations also require that families of interval neigh-
borhoods be maintained. These neighborhoods are used to determine the local
B-spline pieces or approximations as described in section 3.2. Neighborhoods
of positions and displacements are computed to levels in the tree below the
one queried, and this information is recursively combined to form the requested
value. For corner samples, the sample position is always kept at the center of

40

the neighborhood, and when no subtree in the neighborhood contains an edit,
the sample is computed. A degree n = 2 example is shown in Figure 3.3.2.
The corner sample for interval I`;i is computed, requiring neighborhoods to be
generated down to the lowest in
uential edit (shown as a star). The positions
P`0;i0 are computed top-down for the intervals in each neighborhood.

I`;i

Figure 3.3.2: neighborhoods for corner query

3. evaluation of range-bound queries

For bounds, the left and right children are both recursively traversed until
no subtree in the neighborhood contains an edit, then a bound is obtained.
These leaf bounds are recursively merged through unions to obtain the requested
bound. Figure 3.3.3 shows the intervals whose positions P`;i are computed for
two edits of a degree n = 2 dyadic spline. The leaves of the traversal are
highlighted, and the edited intervals are marked with a star. For each leaf,
the dyadic spline is locally a B-spline for which a bound was obtained and
recursively merged into the total bound.

I`;i

Figure 3.3.3: intervals for bound query

4. limiting memory use

Memory use can be limited by maintaining a queue of leaf intervals that are not
part of the current-query pool. These unused leaves are kept in order of latest
use. Before any new interval is created, the least-recently-used intervals on the
queue are destroyed until su�cient memory is available.

41

5. minimal updates after edits

The �nal issue is to determine minimal tree updates after displacement edits.
A displacement edit a�ects a family of neighborhoods from the root down to
the level of the edit, plus the subtrees of the neighborhood at the level of the
edit. For the levels at or above the edit level, only samples and bounds are
a�ected. For levels below, position vectors P`;i are also a�ected. Only members
of the current-query pool need be updated (along with the intervals they depend
on). An example is depicted in Figure 3.3.4. The edit is marked with a star,
position changes with a solid dot, and sample- or bound-only changes with a
hollow dot, Note that within a few levels above the edit, the neighborhood of
change typically becomes a single interval.

Figure 3.3.4: minimal updates after edit

42

Chapter 4

Function Analysis

The previous chapter detailed the process of evaluating or synthesizing a func-
tion when given a collection of displacements and the dyadic-spline formulation. The
complementary process is the analysis of a given function to determine a set of dis-
placements that will produce it. Since more than one set of displacements can produce
the same function, the goal is to �nd a set of displacements that result in accurate
approximations of the function early in the subdivision process.

This chapter �rst explains an approach that uses least-squares �tting to �nd level
` range positions P`;i that best predict level ` + 1's range positions P`+1;i. The dis-
placements then represent the di�erences from the predicted values. This provides a
simple bottom-up �tting process for converting uniform B-splines from a �xed, high
resolution into the multiresolution displacements of a dyadic spline. After performing
this �t-and-di�erence step, it will be seen that the displacements contain twice as
much information as needed. A simple means of compacting the displacements will
be introduced. This creates a multiresolution analysis framework similar to other
wavelet schemes.

The process of �tting and compacting will be modi�ed to allow variable �nite
�lter widths that provide exact decomposition and reconstruction of the function,
and will �nd perfect predictions when they exist. This is a signi�cant improvement
over previous linear-time smooth-wavelet schemes.

The �t-and-di�erence process introduced here will be used to de�ne a canonical

form for the displacements of a dyadic spline. It will also be shown that the �t-and-
di�erence process can be applied directly to the displacements without computing the
positions. An incremental variant on the �t-and-di�erence process will also be given.
Collectively, these improvements to the �t-and-di�erence process will compliment the
interval-query evaluation strategy for dyadic splines.

4.1 Least-Squares Prediction

A fundamental step in �tting dyadic splines to a given function is �nding the
positions P` at level ` that best predict the next �ner positions P`+1 at level ` + 1.
The displacements D`+1;i can be set to correct the errors from the prediction. Let M
be the degree n subdivision operator M(n). Let the �tting operator be denoted F.
Then P` = FP`+1 is the result of �tting. The prediction is P 0

`+1 = MP` = MFP`+1.

43

After �tting, displacements are then set to the di�erence from prediction

D`+1;i = P`+1 � P 0
`+1

= P`+1 �MP`
= P`+1 �MFP`+1

= (I�MF)P`+1

This �t-and-di�erence step may be repeated in bottom-up order going from some
lowest level `max up to level 0. Any uniform B-spline f(t) de�ned by P`max may
be analyzed this way. The analysis produces a dyadic-spline representation that
exactly reproduces the function. By performing least-squares �tting of MP` to P`+1,
the displacements are minimized at each level and the displacement magnitudes are
concentrated as much as possible towards the highest levels in the bintree.

To perform the least-squares �t, it is necessary to write a formula that relates one
level of positions to the next. Recall operator equation 3.1.1:

P`+1 =MP` +D`+1

Now least-squares �tting is formulated as follows: �nd the P` vector that minimizes

kD`+1k = kP`+1 �MP`k

Note that kP`+1 �MP`k is minimized when (P`+1�MP`)�(P`+1�MP`) is minimized.
Expanding this yields

(P`+1 �MP`) � (P`+1 �MP`) = P T
` M

TMP` � 2P T
` M

TP`+1 + P T
`+1P`+1

The minimum occurs when the derivative of this expression with respect to P` is zero,
namely

2MTMP` � 2MTP`+1 = 0

This gives the optimality condition

MTMP` =MTP`+1

and so the least-squares �t operator is F = (MTM)�1MT giving

P` = FP`+1 = (MTM)�1MTP`+1

Fortunately, the inverse (MTM)�1 is readily computed using Fourier transforms.
The operator MTM performs a discrete convolution with a �nite, symmetric kernel
Ki = (MTM)i;0. The kernels for various degrees n are shown in Figure 4.1.1.

44

n = 0 n = 1

n = 2 n = 3

n = 4 n = 5

n = 6 n = 7

n = 8 n = 9

Figure 4.1.1: rows of MTM for various degrees

The discrete Fourier transform of K, �(x), is a real-valued periodic function since
K is symmetric and has �nite nonzero entries. Thus the transform may be written

�(x) =
X
i

Kicos(2�ix)

The identity convolution kernel is

�i =

(
1 if i = 0
0 otherwise

and has Fourier transform �(x) = cos(0) = 1. Let B be the kernel of (MTM)�1

with Fourier transform �(x). By the convolution theorem, B �K = � if and only if
�� = 1, and hence B can be found by applying the inverse Fourier transform to 1=�:

Bi =
Z
x2[0;1]

cos(2�ix)

�(x)

This integral can be computed using simple quadrature for degrees up to about n =
15, where the numerical errors in B � K = � have magnitudes less than 10�12. A
solution for the case n = 9 is depicted in Figure 4.1.2. Note that � is very close to
zero throughout the middle region, and that 1=� forms a spike in the center. This
becomes more pronounced as n increases and causes noticeable numerical degradation
for n > 15 and complete failure at about n = 45. Fortunately the degrees of interest
are well under n = 15. Note also that the magnitudes of Bi die o� exponentially as
i goes away from 0. Thus only a �nite portion of Bi is numerically distinguishable
from zero, and this is all that needs to be computed and stored.

45

K �

0

1:50

1

�

0

512

B

=)

+

(=

Figure 4.1.2: Fourier transform to obtain (MTM)�1

After computing Bi, it is a simple matter to obtain F. Adjacent rows of F di�er
only by a two-column translation (similar to MT), and so only a single row needs to
be computed and stored. Figure 4.1.3 depicts one row of F for degrees n = 0; : : : ; 9.

n = 0 n = 1

n = 2 n = 3

n = 4 n = 5

n = 6 n = 7

n = 8 n = 9

Figure 4.1.3: �t operators F

46

An example of �tting and di�erencing is shown in Figure 4.1.4, using the cubic
�t and subdivision operators. The lowest-level positions are samples of the function
f(t) = cos(2�t2)=(1+t2). The �t positions are shown on the left and the displacements
on the right. Note that the displacements are very small at �ne resolutions, indicating
that the predictions are quite good in this case.

` = 1

` = 2

` = 3

` = 4

` = 5

` = 6

` = 7

` = 8

Figure 4.1.4: �tting and di�erencing

47

4.2 Compacting the Displacements

After performing a �t-and-di�erence step on positions P`+1, the total number of
values stored has increased by half. The same number of displacements D`+1 exist
as positions P`+1, and half as many new positions P` were produced. Intuitively it
appears that the displacements contain twice as many values as one might expect.
This is in fact the case, as will be seen in this section.

If the di�erences from the �t predictions, D`+1 = (I�MF)P`+1, are to be com-
pacted to half as many values, then a compaction operator C and its complimentary
expansion operator E are needed. These operators should satisfy the following"

F

C(I�MF)

#
[MjE] =

"
I 0
0 I

#

In other words, the operation of �tting and compacting the di�erences from prediction
should be the inverse of the operation of subdividing and expanding the compacted
di�erences. The shorthand formula above expands into four requirements:

FM = I

FE = 0
C(I�MF)M = 0
C(I�MF)E = I

We already know that
FM = (MTM)�1MTM

= I

The �rst requirement on C is automatically satis�ed:

C(I�MF)M = C(M�MFM)
= C(M�MI)
= 0

If E has been chosen so that FE = 0, then the second requirement on C simpli�es:

C(I�MF)E = I

C(E�MFE) = I

C(E�M0) = I

CE = I

So the requirements that remain are

FE = 0
CE = I

48

A simple method su�ces to ensure FE = 0 and CE = I. The idea is to make E
equal to the transpose of F and then negate every even row, and to make C equal
to the transpose of M and then negate every even column. This works as stated for
even degree n operatorsM and F. For odd degrees the columns of E and the rows of
C must be shifted forward one row and column, respectively. Formally, the method
is

Ci;j =

(
�Mj;i if j even
Mj;i if j odd

Ei;j =

(
�Fj;i if i even
Fj;i if i odd

for n even and

Ci;j =

(
�Mj;i�1 if j even
Mj;i�1 if j odd

Ei;j =

(
�Fj�1;i if i even
Fj�1;i if i odd

for n odd.

The veri�cation that this works is straightforward. Recall that F really has just
a single row, and that the operator is made up of copies of that row that are shifted
by multiples of two places. Now, notice that by multiplying F against its transpose
FT , the one replicated row of F is multiplied against copies of itself that are shifted
by multiples of two places. Because the row is symmetric, when every other entry
of the shifted copies is negated the product is zero. In the case of odd n, the copies
must be shifted one place in order for this to work. Thus E has been constructed so
that FE = 0. A picture of this cancellation is shown in Figure 4.2.1.

f6

�f6

f5

f5

f4

�f4

f3

f3

f2

�f2

f1

f1

f0

�f0

f0

f0

f1

�f1

f2

f2

f3

�f3

f4

f4

f5

�f5

f6

f6

f6

f6

f5

�f5

f4

f4

f3

�f3

f2

f2

f1

�f1

f0

f0

f1

�f1

f2

f2

f3

�f3

f4

f4

f5

�f5

f6

f6

Figure 4.2.1: cancellation of FE: (a) n even (b) n odd

49

Veri�cation of CE = I is also straightforward. The columns of C are negated
in exact correspondence with the rows of E, and thus the negations cancel and give
CE = MTFT = (FM)T = I. For odd n the extra shift results in a shift in I, which
is still I.

Note also that CM = 0. This follows using the same argument that demonstrated
FE = 0. This means that the operation of compacting the di�erences from prediction
is the same as compacting the positions:

C(I�MF) = CI�CMF

= C� 0F
= C

The operators F, M, C and E now form a multiresolution analysis �lter bank as
described in section 2.4. The scaling functions �`;i(t) are just the uniform B-spline
basis functions. The wavelet functions `;i(t) can be constructed using the �lter bank.
Scaling and wavelet functions are shown in Figure 4.2.2 for degrees n = 0; : : : ; 9.

n = 0 n = 1

n = 2 n = 3

n = 4 n = 5

n = 6 n = 7

n = 8 n = 9

� �

Figure 4.2.2: � and for n = 0; : : : ; 9

4.3 Finite-Width Filters

Although the magnitudes of the �t operator entries Fi;j die o� exponentially
away from j = 2i, a large number of these entries must come into play in order

50

to get a numerically accurate reconstruction. A better approach is to construct a
small, �nite number of nonzero row entries in F that provide exact reconstruction,
�nd perfect predictions when possible, and are close to the least-squares �t operator
(MTM)�1MT .

Any operator F that satis�es FM = I will �nd perfect predictions whenever
possible. If P` perfectly predicts P`+1, then P`+1 =MP`. The �t of P`+1 is then

FP`+1 = FMP`
= IP`
= P`

For the construction of the E operator in the multiresolution analysis �lter bank,
any �t operator F will work as long as it is made up of a single, symmetric row that
is copied by shifting a multiple of two places, and if in addition FM = I holds. Recall
from section 4.2 that �lters F, M, C and E must satisfy

FM = I

FE = 0
CE = I

The �rst requirement is met by assumption. The second is met because F is made
up of a single, symmetric row that is copied by shifting a multiple of two places. The
third assumption is met automatically by the construction of C and E when FM = I.

Hence we would like to �nd a �nite, symmetric set of row entries to F that satis�es
FM = I and is close to (MTM)�1MT . The approach taken here is to start with a
�nite portion of row zero of (MTM)�1MT , append a small number of additional
entries to this �nite row, and form a square matrix of constraints on these additional
entries.

Before giving the general case, consider the situation when n = 2 and four entries
of (MTM)�1MT are used. Row zero of (MTM)�1MT ish

: : : ; 0; 2
3
; 2
3
; 0; : : :

i
Appending two additional entries, a and b, to both sides of the four central entries
gives the eight-entry row h

a; b; 0; 2
3
; 2
3
; 0; b; a

i
Now a square system of constraints can be extracted from FM = I:

51

h
a; b; 0; 2=3; 2=3; 0; b; a

i

2
666666666666666666664

...
1 0 0
3 0 0
3 1 0
1 3 0

� � � 0 3 1 � � �
0 1 3
0 0 3
0 0 1

...

3
777777777777777777775

= 4I

So "
1 3
3 1

"
a
b

#
=

"
�2

3

0

#

The solution has a = 1=12 and b = �1=4:h
1
12
;�1

4
; 0; 2

3
; 2
3
; 0;�1

4
; 1
12

i

In general, a square system will be formed when the total number of nonzero
entries in the row of F is

m = n+ 2� 2(n mod 2)

for some k � 0, and when the number of extra entries is minfn;mg. Any remaining
central entries are copied from row zero of (MTM)�1MT . A square system is de-
termined by FM = I. Some of the resulting �t operator rows are shown in Figure
4.3.1.

n = 1 n = 2 n = 3 n = 4

k = 0

k = 1

k = 2

k = 3

Figure 4.3.1: �nite �t operators

52

The only loss in going to �nite versions of the �t operators is that they no longer
produce the least-squares �t. As the width of the �t operator increases, the �t comes
closer to the least-squares �t. The residual displacements and energy are shown in
Figure 4.3.2 for various quadratic �lter widths applied to a random signal. Note that
the energy is nearly minimized for small �lter widths.

k = 0 e = 3:3703

k = 1 e = 2:7636

k = 2 e = 2:6815

k = 3 e = 2:6750

k =1 e = 2:6741

Figure 4.3.2: residual displacement energy versus �lter width

4.4 Improving the Displacements

Several improvements can be made to the storage and processing of displacements
based on the �t-and-di�erence process:

� displacements can be converted to a canonical form

� �t-and-di�erence processing can be applied directly to displacements instead of
to positions

� �tting can be done incrementally

53

These improvements have signi�cant bene�ts for interval-query evaluation. The
canonical form ensures that multiresolution queries return good local approxima-
tions at all scales and localities. Direct application of �t-and-di�erence processing to
displacements improves the e�ciency of conversion to the canonical form. Finally,
incremental �tting allows the work of conversions to be performed precisely for those
displacements that change during interactive use or during the top-down approxima-
tion processing described in section 5.2.

4.4.1 Canonical Displacements

One complication with dyadic splines is that more than one con�guration of dis-
placements can represent the same function. Consider the displacements shown as
arrows in Figure 4.4.1 under quadratic subdivision. On the left, the single nonzero dis-
placement is D0;0 = 1. On the right, the only nonzero displacements are D̂1;�1 = 1=4,

D̂1;0 = 3=4, D̂1;1 = 3=4, and D̂1;2 = 1=4. These two displacement arrangements

produce the same positions P1;i = P̂1;i and the same limit function.

Figure 4.4.1: di�erent displacements for the same function

In this example, it is clear that the level ` = 0 displacements on the left give more
accurate information about the function. In fact, they perfectly predict the positions
at subsequent levels, since all lower displacements are zero. In general, displacements
should give perfect predictions when possible, and should otherwise minimize the
errors from the predicted positions. Furthermore, it is best to have a unique, optimal
set of displacements for any limit function.

54

The bottom-up conversion process is suitable for producing unique, optimal dis-
placements. One algorithm to put a set of displacements into a canonical, optimized
form is simply to produce a �ne set of positions P`max by applying the dyadic-spline
formulation to the original displacements, and then apply the bottom-up �t-and-
di�erence processing to get the canonical displacements.

This kind of conversion facilitates interactive design because overall trends that
accumulate at the detail level will propagate to coarser levels automatically. This
allows powerful control mechanisms such as sculpting to be used e�ciently. Com-
pression is a natural byproduct of this since energy tends to concentrate at high
levels in the bintree, and signi�cant local energy tends to be sparse in lower parts of
the tree.

4.4.2 Displacement Fitting

Recall the �t-and-di�erence step from section 4.1:

P` = FP`+1

D`+1 = (I�MF)P`+1

This de�nes the optimized positions and displacements in bottom-up order. The
unoptimized positions P ` and unoptimized displacements D`+1 can be written as

P`+1 =MP ` +D`+1

Now the optimized displacements may be rewritten as

D`+1 = (I�MF)P`+1

= (I�MF)(MP ` +D`+1)
= (M�MFM)P ` + (I�MF)D`+1

= (M�MI)P ` + (I�MF)D`+1

= (I�MF)D`+1

The �t of the unoptimized displacements must be added to the unoptimized displace-
ments one level up in order to maintain the same �nal positions:

D̂` = D` + FD`+1

The new positions at level ` that correspond to D̂` are

P̂` = P ` + FD`+1

To verify that these new positions are in fact optimal, note that

P̂` = P ` + FD`+1

= FMP ` + FD`+1

= F(MP ` +D`+1)
= FP`+1

= P`

55

Thus the �t-and-di�erence processing can be applied directly to the displacements
without computing positions P`+1. In e�ect, this moves as much displacement energy
as possible from level `+ 1 to level `.

4.4.3 Incremental Fitting

So far, the �t-and-di�erence processing has been described as a global operation
on the dyadic-spline displacements. This is not an adequate solution for interactive
applications such as editing, painting and scupting, nor is it suitable for sparse top-
down approximation. Two further properties of the dyadic-spline formulation must
be exploited. These properties are the locality of changes during editing, and the
typical sparseness of nonzero displacements.

To exploit locality, it is necessary to use a �nite-width �t operator F. In the previ-
ous section the global �t-and-di�erence step was applied directly to the displacements:

D`+1 = (I�MF)D`+1

D̂` = D` + FD`+1

This produces a whole level of optimized displacements D`+1, and adds the �t energy
to the next higher level of displacements. Now suppose exactly one of these optimized
displacements is modi�ed:

D
0
`+1;i = D`+1;i +

(
d if i = i0
0 otherwise

Optimizing again gives

D0
`+1 = (I�MF)D

0
`+1

= D`+1 + d(I�MF)�;i0

and
D̂0

` = D̂` + FD
0
`+1

= D̂` + dF�;i0

(where the notation A�;i refers to extracting the ith column of operator A).

The e�ect of a single displacement edit is shown in Figure 4.4.2 for width 8
quadratic �tting. The gray displacements depict the state right after a single edit has
been made. These are the unoptimized displacements denoted D

0
`+1 and D̂` above.

After reoptimizing at level `+ 1, D0
`+1 and D̂

0
` are produced, as shown in black. The

level ` displacement changes must also be reoptimized, causing changes to level `� 1,
` � 2, etc. Thus a bottom-up �t-and-di�erence process is needed, but only a neigh-
borhood of changes need be considered at each level. Fortunately, as these changes
propagate upward, the a�ected neighborhoods do not grow inde�nitely in size. This

56

reasoning is similar to that used to determine the neighborhoods that in
uence a
given output position during synthesis.

For the sake of e�ciency, the reoptimization of a given level can be delayed until
it is needed. For example, if the unoptimized displacements on a given level ` are up-
dated only after 2`max�` edits, the total update time will be a small constant times the
number of edits. This requires that a list be kept of the displacement neighborhoods
that need to be reoptimized.

Figure 4.4.2: �t update for one edit
(gray) edit (black) reoptimized

57

Chapter 5

Function Approximation

The last chapter presented a technique for performing multiresolution analysis.
The transform uses decomposition and reconstruction �lter banks to convert uniform
B-splines of high resolution into the multiresolution displacements of dyadic splines
and back again, while optimizing level-to-level predictions and removing the dis-
placement redundancy. This whole process is exact, and no information is lost. This
chapter generalizes that �tting process to allow approximate conversion of an input
function into the dyadic-spline representation. This will provide a tool to trade o� the
level of complexity in the dyadic spline against the accuracy of the approximation.

There are many ways to measure complexity and accuracy of an approximation,
each driven by the applications that make use of the tradeo� between the two. Com-
plexity can be measured by the number of nonzero compacted displacements, the
amount of work or memory use during computations, or the number of bits required
for transmission or storage between computations. Accuracy is generally measured
by a norm on the di�erence between the actual and approximate function. The three
norms most commonly used are the L1 (mean-magnitude) norm, the L2 (root-mean-
square) norm and the L1 (supremum) norm. For sampled data (such as scanned
images), the discrete versions of these norms are used.

Ideally, the complexity should be minimized for a given accuracy. Conversely, the
accuracy should be maximized for a given complexity. A more global view is that
the graph of accuracy versus complexity should be optimized over a range of interest.
For example, a plot of signal-to-noise ratio versus number of bits is commonly used
to compare lossy image compression methods.

This chapter presents two generic methods of trading o� the number of nonzero
compacted displacements against a norm on the approximation error. The �rst
method works bottom-up, starting with a high-resolution set of positions. The po-
sitions are converted to dyadic-spline compacted displacements using the �t-and-
compact �lter steps. The complexity is then reduced by zeroing the compacted
displacements that have the least impact on the error. The second method works
top-down, using estimates on the target function over intervals. Compacted displace-
ments are added to neighborhoods where errors are the greatest.

The approximation techniques have numerous applications. For shape design,
interactive editing such as sculpting bene�ts since the complexity normally grows to
intractable levels during a design session. Approximation can be applied as editing

58

takes place to maintain an upper limit on this complexity. For interactive display,
complexity must also be strictly limited in order to maintain high frame rates. A
simplistic lossy bit compression method can also be derived from these approximation
techniques.

5.1 Bottom-Up Approximation

For bottom-up approximation, it is assumed that positions P`max have been ob-
tained as samples or by �tting to a continuous target function g(t) over domain
t 2 [0; 1] as described earlier in section 2.2.5. Let the dyadic-spline displacements D`;i

be in canonical form for some degree n and �lter width parameter k, and let Q`;i be
the compacted form of these displacements. For simplicity, assume that the dyadic
spline f(t) obtained from these displacements is periodic over [0; 1], and therefore for
each level ` only a �nite number of indices, i = 0; : : : ; 2`�1, need be considered. The
approximation algorithm will set some of the compacted displacements to zero until
a desired complexity or error threshold is crossed.

Clearly it is impractical to search through all subsets of compacted displacements
to �nd an optimum subset. A less expensive approach is to use a greedy algorithm
that zeros out the compacted displacement that leaves the error the smallest. Even
this is expensive, since all nonzero displacements might need to be examined at each
step to determine their impact on the error|and these impacts can change at every
step. Increasing the e�ciency of this type of greedy algorithm is highly dependent on
the type of norm used. An expected-error greedy algorithm performs the greedy step
based on error measured with respect to the current approximation. This improves
e�ciency since the expected error from zeroing a compacted displacement remains
constant throughout the approximation processing. The expected-error approach
works e�ciently with any norm.

The expected-error greedy algorithm is described as follows. For each bintree
level ` = 0; : : : ; `max, compute the expected error �` caused by changing a compacted
displacement from one to zero

�` = k `;0k

where `;0(t) is the wavelet corresponding to compacted displacement Q`;0. The norm
of `;0(t) is identical to all the other wavelets `;i(t) at level ` (the de�nition and
computation of these wavelets was described in sections 4.2 and 4.3). The expected
error E`;i from zeroing a compacted displacement Q`;i is then

E`;i = jQ`;ij�`

Now a sequence of compacted displacements Q`1;i1; Q`2;i2; : : : are zeroed until N
nonzero compacted displacements remain or until the total expected error

P
E`j ;ij

reaches a threshold Emax. The values N and Emax are parameters to the algorithm.

59

The ideal order of the sequence (`j; ij) is obtained by sorting the set of expected

errors,
n
E`;i j ` = 0; : : : ; `max; i = 0; : : : ; 2` � 1

o
, from smallest to largest. It is reason-

able to approximate this order by bucket sorting, so that the total running time is
proportional to the number of initial compacted displacements.

Some results of the expected-error greedy algorithm are depicted on the next page,
in Figure 5.1.3. The original function f , shown at top, is the central row of pixels of
the well-known mandrill image, shown in Figure 5.1.2. The functions below that are
approximations f̂ produced by the algorithm using the L2 norm with degree n = 2
and �lter width k = 1. To the right of each approximation there is a plot of the the
error f̂ � f , the norm of this error e =

f̂ � f

2
, and number of nonzero compacted

displacements N .

A plot of accuracy versus number of compacted displacements is shown below
in Figure 5.1.1. Accuracy is measured as the mean-square signal-to-noise ratio in
decibels

10 log10(kf � fak
2
2=

f̂ � f

2
2
)

where fa is the average value f takes on. The black curve is for the expected-error
greedy algorithm. For comparison, a plot for the true greedy algorithm is shown in
gray.

0

5

10

15

20

25

30

35

40

45

signal
noise

(dB)

1 2 4 8 16 32 64 128 256 512

N

Figure 5.1.1: signal/noise ratio (dB) versus N

60

Figure 5.1.2: scanline function from mandrill image

e = 0:000

N = 511

e = 0:225

N = 256

e = 0:589

N = 128

e = 1:053

N = 64

e = 1:633

N = 32

e = 2:053

N = 16

e = 2:515

N = 8

e = 2:657

N = 4

Figure 5.1.3: approximations and errors

61

The bottom-up approximation process just described works well when a uniform
set of positions P`max are given as input, and when only a small fraction of the com-
pacted displacements are set to zero. If a large fraction of the compacted displace-
ments are set to zero, then the process is ine�cient in the sense that too much input
data is provided. Furthermore, for continuous input functions the process may be in-
tractable for high accuracies because the required number of uniformly-spaced input
positions grows large. This may hold even when the number of resulting compacted
displacements is small: consider as an example a tall, narrow spike approximated
with respect to the supremum norm.

5.2 Top-Down Approximation

The alternative to bottom-up approximation is a top-down approximation algo-
rithm. The top-down approach adds new nonzero compacted displacements instead
of removing them. Thus the computational work and data space is linear with respect
to the number of nonzero compacted displacements in the output. Another way to
view these di�erent approaches is in terms of the accuracy/complexity tradeo� curve.
The bottom-up process attempts to follow the optimal tradeo� curve while decreasing
the complexity. The top-down process attempts to follow the optimal tradeo� curve
while increasing the complexity.

The top-down approximation algorithm is more complicated than the bottom-up
algorithm. The additional di�culty arises because the approximation process must
be based on inexact or \fuzzy" knowledge of the target function g(t). This requires
that (a) local estimates of g(t) are readily available, and that (b) the positions P`;i can
be quickly �t to the estimated version of g. The advantage to the top-down approxi-
mation process is that a wide variety of target functions can be approximated directly
without the intermediate conversion to high-resolution B-splines that is assumed for
bottom-up �tting.

The next section describes how g(t) can be estimated locally, and how bounds on
these estimates can be obtained. The section following that gives a fast method for
computing the ideal �t for positions P`;i with respect to the estimated g(t). In section
5.2.3, these estimation and �tting tools are used to generate compacted displacements
in a way that attempts to track the optimal accuracy/complexity tradeo� curve.
Section 5.2.4 gives a demonstration of this top-down approximation algorithm at
work.

5.2.1 Local Estimates

The top-down approximation process requires that the target function g(t) be
estimated over domain partitions made up of bintree intervals I`;i. It is assumed that

62

the estimate ~g(t) is of the form

~g(t) =
X
j

GjBj(t)

where Bj(t) are basis functions and Gj 2 < are constants that give a reasonable
estimate of g(t). Each basis function Bj(t) should have a corresponding domain
interval I`j ;ij , and should be smooth inside this interval and zero outside.

For e�ciency of the preprocessing in the next section, the basis functions should
be translated and dilated copies of a small set of canonical basis functions. A good
choice for the canonical basis functions are the Bernstein/B�ezier basis functions for
small degrees [15]. There is no concern about maintaining continuity between domain
intervals, since the estimate will be used over each domain interval independently and
the output approximation will be smooth regardless of the estimate continuity.

For degree n, the Bernstein/B�ezier basis functions on I = [0; 1] are

�s(t) =

n
s

!
(1� t)n�sts

for s = 0; 1; : : : ; n. For a bintree interval I`;i, the translated and dilated basis functions
are

�s`;i(t) = �s(2`t� i)

The �nal piece of information needed for top-down approximation is a bound on
the error of the local estimate ~g(t) over a domain interval I`;i:

jg(t)� ~g(t)j < E`;i

for all t 2 I`;i.

The method of determining these local estimates and bounds will vary from one
application to the next. Some target functions g(t) can provide this information
easily: examples are B-splines with general knot sequences (see section 2.2.1 or [15]),
and functions that are computed using interval arithmetic [31]. If a function can
be sampled for both positions and derivatives, and its derivative bounds are known
(either locally or globally), a local estimate and bound can be formed. In the worst
case, if only samples can be taken, then a statistical estimate and bound can be
obtained.

An example target function is shown in Figure 5.2.1. Three piecewise estimates
are shown for Bernstein/B�ezier degrees n = 0; 1; 2. In each case, the estimate pieces
are split until each error bound is within a speci�ed tolerance. The estimates and
bounds were produced using interval arithmetic in these examples.

63

Figure 5.2.1: piecewise estimates and bounds
(a) degree n = 0 (b) degree n = 1 (c) degree n = 2

5.2.2 Ideal Fit of the Estimate

In the bottom-up �t-and-compact process, it was assumed that high-resolution
positions P`max were available at level `max. Each level above `max was �t as

P` = F`max�`P`max

Ideally, the �t positions P` should be determined based on exact knowledge of the
target function g(t). This is equivalent to saying that the ideal �t positions should
be determined by letting `max go to in�nity

P`;i = lim
`max!1

h
F`max�`P̂`max

i
i

where
P̂`max;j = g(2�`maxj)

Let the limit-�tting operation for level ` be denoted

P` = F`;1g

Attempting to compute these limit �t positions directly for g(t) is impractical, but
the situation is simpler when piecewise estimates of g(t) are used.

Suppose that Bernstein/B�ezier estimates are available for g(t) over all bintree
domain intervals I`;i:

~g`;i(t) =
X
s

Gs
`;i�

s
`;i(t)

De�ne the initial estimate of level ` positions based on the level ` estimate pieces

P 0
`;i = F

`;1
i ~g`

= F
`;1
i

P
j;sG

s
`;j�

s
`;j

=
P

j;sG
s
`;j(F

`;1
i �s`;j)

64

As discussed in the next section, the values F`;1
i �s`;j may be precomputed e�ciently.

The initial estimate �t process may be summarized by introducing an operator B so
that

P 0
` = BG`

The level ` positions may be estimated based on successively �ner estimates of g as

Pm
` = FmBG`+m

In the top-down approximation algorithm described in section 5.2.3, the estimate �t
operator B will be used locally so that incremental updates to the approximation are
computed quickly.

Precomputing the Estimate-Fit Kernel

Since the local estimate bases are translated and dilated copies of the basis for
domain I = [0; 1], the constants F`;1

i �s`;j do not vary based on level or position, but
rather on the estimate basis index s and on the relative neighborhood index j � i.
Let the constants be called �sj�i where

�sj�i = F
`;1
i �s`;j

for any `, i and j. The estimate-�t operator B is made up of these constants that
form its kernel.

These � values may be precomputed for a given nth-degree estimate basis � and
limit-�t operator F`;1. For �nite-width �t operators F, only a small neighborhood
of �'s are nonzero (the neighborhood is no larger than the �t operator kernel width).

For many applications it is not critical that this computation be performed quickly,
since the estimate-�t kernel �sj�i can be precomputed. However, a naive algorithm
to compute � would cause storage and computation time to double each time `max

increases by one in the limit process de�ning �. This becomes intractable if � is to be
computed to high numerical precision. Fortunately, a simple feedback algorithm can
be developed based on the subdivision properties of the Bernstein/B�ezier estimate
bases. This feedback algorithm will require a small, constant amount of time and
space to increase `max by one in the limit process.

For the degree-n Bernstein/B�ezier estimate basis �, the left and right halves of each
basis function are weighted sums of the same basis functions dilated and translated
as

�s(t) =

 X
s0
as;s0�

s0(2t)

!
+

 X
s0
bs;s0�

s0(2t� 1)

!

where as;s0 and bs;s0 can be computed using the de Casteljau algorithm [15]. The
splitting of the degree n = 2 Bernstein/B�ezier estimate basis is depicted in Figure
5.2.2.

65

Figure 5.2.2: estimate basis splitting

The feedback algorithm for computing � starts with single samples from the esti-
mate basis functions

�s;0i =

(
�s(0) if i = 0
0 otherwise

Now the limit computation of � may be iterated as

�s;m+1 = RFAs;m

where
As;m
i =

X
s0

�
as;s0�

s0;m
0�i + bs;s0�

s0;m
1�i

�
and R is the sequence-reversal operator

Ri;j =

(
1 if j � i = 0
0 otherwise

The estimate-�t kernels are shown in Figure 5.2.3. The �t operators F, shown
along the vertical axis of the �gure, are for degrees n = 1; 2; 3 and respective width
parameters k = 1; 1; 2. Various Bernstein/B�ezier basis functions are shown on the
horizontal axis.

66

n=1 k=1

n=2 k=1

n=3 k=2

Figure 5.2.3: estimate-�t kernels

It should be noted that the limit process is not well de�ned for small �lter
widths. Numerical tests give convergence of the � computation as follows for all
Bernstein/B�ezier bases up to degree nine. Figure 5.2.4 lists the minimum �lter width
parameter k required for convergence for �t �lter degrees n = 0; : : : ; 9.

Filter Minimum Filter Minimum
Degree Width Degree Width
n = 0 k = 0 n = 5 k = 5
n = 1 k = 0 n = 6 k = 7
n = 2 k = 1 n = 7 k = 11
n = 3 k = 1 n = 8 k = 15
n = 4 k = 2 n = 9 k = 19

Figure 5.2.4: minimum �lter widths for � convergence
for various �lter degrees

5.2.3 Top-Down Algorithm

The previous sections have introduced the tools needed to perform top-down ap-
proximation on a target function g(t). Local estimates of g must be available for each
bintree domain interval I`;i in Bernstein/B�ezier form:

~g`;i(t) =
X
s

Gs
`;i�

s
`;i(t)

67

These estimates have error bounds E`;i such that

jg(t)� ~g(t)j < E`;i

for all t 2 I`;i. The limit-�t positions ~P`;i are computed using using the precomputed
B operator

~P` = BG`

For a single entry in ~P` this becomes

~P`;i =
X
j;s

Gs
`;j�

s
j�i

The top-down algorithm maintains a list of bintree domain intervals whose com-
pacted displacements in
uence a neighborhood that is out of tolerance. The algorithm
proceeds by splitting each of these interval list entries, adding a new compacted dis-
placement at each new interval, and deleting any interval list entries whose neighbor-
hood of in
uence has come into tolerance. This processing on the list is performed in
phases for e�ciency (these phases are described later in this section). The phases are
repeated until the dyadic-spline approximation f(t) has come within tolerance (i.e. the
interval list has become empty), or until the number of compacted displacements has
exceeded a threshold.

The top-down approximation algorithm is depicted in Figure 5.2.5. The target
function g(t) is shown in part (a). It is the sum of two \bumps," one wide and one
narrow, which are each transcendental functions of the form hb((t� tc)=w) where

b(t) =

(
e� tan2(�

2
t) if t 2 (�1; 1)

0 otherwise

These bump functions have closed forms for their derivatives of various orders. It is
straightforward to evaluate local estimates and bounds using interval arithmetic [31].

The initial interval list has one entry, as shown in part (b) of the �gure. The
dyadic-spline representation at this point has one displacement D0;0 at level zero, and
one compacted displacement Q0;0. The �rst list-processing cycle splits this interval
in two, and adds displacements for each of the two new child intervals, Q1;0 and Q1;1.
The old compacted displacement has been updated based on the improved knowledge
of the target function. The result after this �rst cycle is shown in part (c). Parts (d),
(e) and (f) show the results of subsequent list-processing cycles. Notice that domain
intervals that are away from the narrow bump come into tolerance in the early cycles
and no longer require consideration.

68

(a)

(b)

(c)

(d)

(e)

(f)

Figure 5.2.5: top-down approximation cycles

The list-processing cycle is divided into phases as follows:

interval split: split each interval-list entry into its two children

The interval-split phase replaces each interval-list entry I`;i with entries for its
two children, I`+1;2i and I`+1;2i+1. The compacted displacements associated with
these new intervals, Q`+1;2i and Q`+1;2i+1, are added to the active compacted
displacements. The remaining phases will initialize these newly-active com-
pacted displacements, update the dyadic-spline output approximation f(t) and
toss out any interval-list entries that have come into tolerance.

69

�t estimate: compute local estimates and limit-�t positions

After deciding on the locations of the new compacted displacements, compute
the limit-�t positions ~P`;i that they depend on. Some additional local estimates
Gs

`;i and E`;i may need to be computed as well. These computations are stored
and then reused when needed again. The old limit-�t positions are updated
if the lower-level positions that they may be �t from are available and have
changed. This completes the �t-estimate phase of the top-down approximation
cycle.

compacted displacements: update or initialize compacted displacements

Next comes the compacted-displacements phase, wherein the limit-�t positions
just computed are used. A current compacted displacement is updated if any
of the limit-�t positions it depends on have changed or if the compacted dis-
placement is newly active. Note that old compacted displacements tend to be
improved as better knowledge of the target function becomes available. This
new knowledge is acquired through the lower-level updates and subsequent �t-
ting.

approximation: update output approximation's displacements and positions

Given the updated active compacted displacements, the approximation phase
updates the dyadic-spline output function f(t). The displacements and posi-
tions of f(t), D`;i and P`;i, are updated based on the changes to the compacted
displacements Q`;i. The output positions are then used to determine an error
bound for each domain interval near an entry in the interval list. \Nearness"
here means that the domain interval is within the neighborhood of in
uence of
the compacted displacements rooted at some entry in the interval list. Deter-
mining these neighborhoods of in
uence is similar to determining the in
uence
of a single displacement, as discussed in section 3.2. Note that the only output
displacements and positions that need to be computed are those that in
uence
the error bounds of interest.

interval toss: remove interval-list entries that are in tolerance

The last part of the top-down approximation cycle is the interval-toss phase. For
each interval-list entry, a neighborhood of intervals is tested to see if it is in toler-
ance. Any interval-list entry whose neighborhood is in tolerance is deleted. The
neighborhood consists of those intervals that are in
uenced by the compacted
displacements rooted at the interval-list entry. The tolerance test determines
whether the output approximation is guaranteed to di�er by less than a certain
bound from the local estimate for an interval. Since the local estimates are in
Bernstein/B�ezier form, it is appropriate to convert the local approximation to
this form as well and raise the degree of either local representation so that they
are easily compared. The local approximation may be obtained as a B-spline

70

approximation as described earlier in section 3.2. These B-spline approxima-
tions may be converted to Bernstein/B�ezier form by blossom evaluations on the
Bernstein/B�ezier knots. Degree-raising is also straightforward using blossoming
[32].

5.2.4 Top-Down Approximation Results

For an illustrative example, the top-down �t is applied to a target function that
is again a sum of transcendental bumps. The target function is shown in Figure
5.2.6, along with several approximations of increasing accuracy. Magni�ed views are
shown of the function in a neighborhood that contains some �ne detail. The domain
decomposition is shown for each approximation. Notice that the computational e�ort
focuses on the neighborhood containing the �ne details. This is signi�cantly more
e�cient that the bottom-up approximation process. The gains in e�ciency increase as
the output quality increases. Of course these e�ciencies depend on the fact that the
output compacted displacements are sparse, and on the fact that the target function
is available top-down as local estimates and not just as uniformly-sampled data.

The next �gure depicts the accuracy/complexity tradeo� curve produced by the
top-down approximation process. The target function is the one used above. The
dyadic spline has degree n = 2 and �lter-width parameter k = 1. The local estimates
are in quadratic Bernstein/B�ezier form. The graph shows the logarithm of the re-
ciprocal of the maximum absolute error (in decibels) as a function of the number of
nonzero compacted displacements. The black curve is for the top-down algorithm.
For comparison, the gray curve depicts the tradeo� for the bottom-up algorithm. The
bottom-up algorithm has the advantage that it is working from detailed knowledge
of the target function instead of the local estimates used by the top-down algorithm.
An area of future research is to improve the top-down tradeo� curve and bring it
closer to the bottom-up one.

Throughout this discussion on top-down approximation, it has been assumed that
the approximation error is measured with respect to the supremum norm. In other
words, the top-down algorithm was described in terms of bounds on the maximum
pointwise deviation from the target function. A tolerance in this sense was an upper
bound on acceptable maximum deviations. Other norms are guaranteed to have global
tolerances met by setting the supremum-norm tolerance appropriately. However, the
decisions on where to subdivide should be tuned to the norm desired. E�ective means
of doing this are an area of future research.

71

Figure 5.2.6: top-down approximations

72

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

1
max je(t)j

(dB)

1 2 4 8 16 32 64 128 256 512 1024 2048 4096

N

Figure 5.2.7: accuracy/complexity tradeo� curves
(black) top-down (gray) bottom-up

73

Chapter 6

Curve Design

The discussions of synthesis, analysis and approximation using dyadic splines have
tacitly assumed that the displacements are known in advance, or that they have
been obtained through an approximation process on a known target function. This
chapter uses the low-level synthesis, analysis and approximation tools as building
blocks so that new functions may be designed in an interactive setting. The goal is
to provide the user with several di�erent mechanisms for manipulating functions that
take advantage of the multiresolution displacement representation.

Six design mechanisms will be discussed, some of which are variants on methods
introduced by other researchers, now applied in the dyadic-spline framework. These
are depicted in Figure 6.0.1. The simplest curve modi�cation is achieved by directly
editing the displacements, as shown in part (a). Two complimentary types of modi-
�cations are shown in parts (b) and (c). Part (b) shows the e�ect of smoothing the
displacements in a neighborhood, while (c) shows the e�ect of roughening. Global
smoothing for curves was introduced by Finkelstein and Salesin in [16]. Roughen-
ing is an application of fractals [27]. Part (d) shows o�set-frame displacements of
the type introduced by Forsey and Bartels [18]. This gives displacements a local
coordinate frame derived from the underlying curve, so that the displacement tracks
local and global changes in shape. The next mechanism is template control, shown
in part (e). This generalizes the notion of a displacement edit to allow templates to
be superimposed at arbitrary positions and scales on the underlying curve. One form
of template is related to the pasting method introduced by Barghiel in her Master's
thesis [1]. The �nal mechanism shown in part (f) is sculpting, wherein a tool modi�es
a curve continuously as it moves along a user-speci�ed path. Interactive sculpting
(of surfaces) was introduced by Stoneking in his Master's thesis [36]. Each of these
editing mechanisms �ts nicely into the framework of dyadic splines. The remainder
of this chapter discusses each in turn.

So far, the functions under discussion have had a single real parameter t 2 <,
and have evaluated to a single real value f(t) 2 <. This chapter will continue to rely
on a single real parameter t, but now the evaluation of f(t) will give a point on the
Cartesian plane:

f(t) =

"
fx(t)
fy(t)

#

where fx(t) and fy(t) are real-valued functions. In general, only a �nite interval of
parameters are of interest. To simplify the discussion, assume this interval is t 2 [0; 1].

74

(a) (b) (c)

(d) (e) (f)

Figure 6.0.1: curve design mechanisms

6.1 Displacement Edits

Since dyadic splines are de�ned in terms of the displacements D`;i, the most
direct means of manipulating a dyadic-spline curve is to interactively \drag" one
displacement at a time. The choice of level ` determines the width of the \bump"
produced, while the choice of i determines the location of the bump. Two di�erent
bump manipulations are shown in Figure 6.1.1, at two di�erent scales and positions.

A dramatic di�erence between dyadic-spline displacement edits and conventional
B-spline control-point edits is that the displacement control handles exist at multiple
resolutions simultaneously. This is shown in Figure 6.1.2. When a coarse-resolution
displacement is moved, the spike position tracks the coarse-resolution e�ect. This
occurs because the �ner displacement that de�nes the spike shape is superimposed
on the coarse underlying shape. Unfortunately the spike displacement doesn't track
the orientation of the coarse underlying shape. This is solved in section 6.3 through
the use of o�set coordinate frames.

75

Figure 6.1.1: displacement edits

Figure 6.1.2: superposition of detail

A disadvantage of direct displacement edits is that the user is forced to be aware
of the structure of the representation making up the curve. It is more intuitive to
have the curve behave the same for continuous variations in edit position and width.
Also, the shape of the edit e�ect should not be determined by the underlying basis
functions, but should be allowed to vary to suit a particular application. These
enhancements are provided by template edits, as discussed in section 6.5.

6.2 Neighborhood Smoothing

There are several \underlying" shapes that may be readily extracted from the
dyadic-spline curve. One family of shapes may be obtained by changing a smoothing

76

parameter `s continuously from 0 to `max, where `max is the level of maximum detail.
The smoothed function �f with displacements �D`;i is obtained from function f with
displacements D`;i as follows:

�D`;i =

8><
>:
D`;i if ` < `s
(`s � (`� 1))D`;i if `� 1 < `s � `
0 otherwise (`s � `� 1)

This smoothing operation works best when the displacements are in canonical form,
as discussed in section 4.4.1. An example of the resulting family of curves is shown
in Figure 6.2.1.

Figure 6.2.1: curve smoothing

For purposes of editing, smoothing should be allowed to apply to an arbitrary
segment of the curve, and the e�ect of smoothing should taper o� near the ends
of this segment. A simple mechanism for achieving this is to blend between the
original and smooth displacements based on the overlap of the smoothing segment
with the displacement's neighborhood of in
uence. Let Is = [ts0; ts1] be the domain
interval being smoothed. For a degree n displacement D`;i, the domain interval that
it in
uences is

ID = [tD0; tD1] =
h
2�`(i� b(n + 1)=2c); 2�`(i + b(n+ 2)=2c)

i
Let t0 = maxfts0; tD0g and t1 = minfts1; tD1g. The fraction of ID that overlaps Is is

q =

(
t1�t0

tD1�tD0

if t1 > t0
0 otherwise

This fraction will be used as a blend factor between the smoothed and original dis-
placements. Figure 6.2.2 depicts the fraction of overlap q for example intervals Is and
ID in the domain.

77

Is

ID| {z }
q = :4

Figure 6.2.2: domain overlap as blend factor

Now the locally-smoothed version of D`;i is de�ned by

�D`;i = (1� q)D`;i + q �D`;i

An example of local smoothing is shown in Figure 6.2.3.

Figure 6.2.3: local smoothing

6.3 O�set Displacements

As mentioned earlier, one problem with directly editing displacements is that the
orientation of the detail does not track changes to the coarse shape. This is solved
by specifying o�sets relative to a local coordinate frame obtained from the tangent
and normal vectors of a coarser (i.e. smoothed) version of the curve. More formally,
the user speci�es o�set displacement D̂`;i, and the displacement D`;i is obtained as

D`;i = A`;iD̂`;i

where

A`;i =

ux vx
uy vy

!

78

and u is a unit tangent, and v is the normal obtained by rotating u counterclockwise
by 90 degrees. The tangent u is taken with respect to the smoothed curve �f(tm) for
a chosen `s � ` � 1 and tm = 2�`(i + ((n + 1) mod 2)=2). The domain position tm
gives the maxima of the basis function associated with D`;i.

The e�ect of this formulation is shown in Figure 6.3.1. Notice how the spike now
tracks the position and orientation of the underlying curve, in contrast to to the direct
displacement edits of Figure 6.1.2.

Figure 6.3.1: o�set-frame edits

Typically `s = `� 1 is used in simple o�set-frame formulations for displacements
at level `, and tm is determined automatically. A generalized o�set-frame formulation
is obtained by letting `s and tm be speci�ed arbitrarily for each level ` and index i
(but with the constraint `s � `� 1).

6.4 Neighborhood Roughening

A complimentary operation to smoothing is roughening. Although many types of
detail might be added to a smooth curve, such as ripples and loops, this section will
focus on generic \rough" detail generated automatically by a fractal construction.

Let the resolutions of roughness be determined by two limits `r0 and `r1 that
vary continuously. Fractal detail is generated by �rst producing random compacted
displacements for levels ` = b`r0c; : : : ; d`r1e as

~Q`;i = b`h2
�lR`;i

79

where R`;i is chosen uniformly from [�1; 1] and h is a scaling factor. The factor b`
puts into e�ect the continuous variation of the resolution limits, and is de�ned as

b` =

8>>><
>>>:

1 if `r0 � ` � `r1
`+ 1� `r0 if ` < `r0 < `+ 1
`r1 � (`� 1) if `� 1 < `r1 < `
0 otherwise

The expanded versions of these compacted displacements are added to the smoothed
displacments of the original curve, relative to the local normals of the smoothed curve
as described in the last section. This e�ectively replaces any detail on the curve with
the fractal detail. An appropriate smoothing parameter is `s = `r0.

Roughening is depicted in Figure 6.4.1 for various combinations of `r0 and `r1.

Figure 6.4.1: curve roughening

Local roughening is put into e�ect in the same manner as local smoothing. Let
Ir = [tr0; tr1] be the domain interval being roughened, and let D`;i be an original
displacement. Let q be de�ned as in section 6.2, giving the fraction of D`;i's interval
of in
uence ID that overlaps Ir. Then the locally-roughened displacement is de�ned
as

�D`;i = (1� q)D`;i + q ~D`;i

where ~D` = E ~Q`�1 are the expanded versions of the random compacted displacements
(E is the expansion operator of the dyadic-spline �lter bank; see section 4.2).

An example of local roughening is shown in Figure 6.4.2.

80

Figure 6.4.2: local roughening

6.5 Template Edits

As pointed out in Barghiel's thesis [1], the use of o�set frames for displacements
is just an approximation of the more general notion of continuously varying o�sets
with general positions, scales and shapes. Generalizing further, the fundamental
capability is to allow arbitrary template shapes to be superimposed on an original
curve. Additional examination of the method reveals options which can be used to
vary the template e�ect.

The base template operation simulates the e�ect of adding generalized basis func-
tions to the curve f(t). Such functions are de�ned in terms of a real-valued template
function g(s) that is positioned using a one-to-one mapping h(s) from s to t:

G(t) = g(h�1(t))

As with traditional basis functions, it is applied to an initial curve function f(t) by
scaling and addition:

f̂(t) = f(t) + cG(t)

Here c is a control vector speci�ed by the user as a design handle (since G(t) is scalar
valued like conventional basis functions, c must be a vector). The user can also select
or modify the template g(s) and the template positioning function h(s). The vector
c may be optionally derived from a local o�set-frame coordinate vector ĉ as c = Aĉ.
In this case, the o�set frame A is obtained in the same manner as for o�set-frame
displacements, as discussed in section 6.3.

One of the bene�ts of this type of template edit is that arbitrary sections of a
curve may be manipulated without regard to the structure of the curve representa-
tion. The curve will e�ectively behave as though it had an in�nite variety of basis

81

functions, where the user can pick the basis function interactively to get a desired ef-
fect. Three examples are depicted in Figure 6.5.1. The �rst template allows a speci�c
point on the curve to be dragged so that the point exactly tracks (i.e. interpolates)
the drag point. The curve remains smooth around the point, and no extraneous os-
cillations are introduced. This is similar to typical dyadic-spline basis functions, but
with continuous variations in domain position and width. The second template gives
interpolation of the drag point, but also introduces a corner. The third template
exhibits the generality of the template shapes.

(a) (b) (c)

Figure 6.5.1: template drag e�ects

6.5.1 Template Approximation

To keep the computations tractable for arbitrary numbers of template operations,
and to facilitate further design operations after a template is applied, each template's
e�ects should be accumulated in a dyadic-spline approximation. The top-down ap-
proximation algorithm of the last chapter is applied to solve this problem. In order to
apply the top-down approximation algorithm, local estimates are needed. Examining
the basic template formulation

f̂(t) = f(t) + cG(t)

the approximation process can be reduced to applying the top-down approximation
algorithm for the generalized basis function G(t) = g(h�1(t)) to obtain the approx-
imation ~G(t). The output approximation to the basic template formulation then
becomes f(t) + c ~G(t).

If h were in the simple form h(s) = h1s+h0 with h1 6= 0, then h�1(t) = (t�h0)=s.
If h is approximately in this form over [s0; s1], then it could be expressed as h(s) =
h1s+ h0 + � for some interval � = [��max; �max]. Then then approximate form of h�1

could be expressed in interval form as

h�1(t) = (t� h0 � �)=h1 = (t� h0)=h1 + �

82

where � is the interval
� = [��max=jh1j; �max=jh1j]

This �rst-order approximation of h�1(t) holds for

t 2 [t0; t1] =

(
[h1s0 + h0 + �max; h1s1 + h0 � �max] if h1 > 0
[h1s1 + h0 + �max; h1s0 + h0 � �max] if h1 < 0

Now assuming g(s) = g1s + g0 +
 holds over s 2 [s0; s1] for some interval
 =
[�
max;
max], then g(h

�1(�)) has the �rst-order approximation

g(h�1(t)) = g1((t� h0)=h1 + �) + g0 +

= g1t + (g0 � g1h0=h1) + (g1�+
)

over the interval t 2 [t0; t1]. This local estimate for g(h�1(�)) is readily used for the
top-down approximation algorithm.

6.5.2 O�set-Frame Templates

One option to the basic template edit is to allow the template to be applied in
a continuously-varying o�set frame in place of the constant coordinate frame. This
is analogous to o�set-frame displacements, but in a continuous rather than discrete
formulation. The formula becomes

f̂(t) = f(t) + A�1(tm)A(t)cG(t)

where A(t) is a coordinate transform frame that is derived from a smoothed version
of the curve f(t), and tm is the drag point's domain position (e.g. the domain point
where G(t) takes on its maximum value). The transform A�1(tm) is optional, but has
the desirable e�ect that pulling the control vector in the (x; y) plane causes the point
f̂(t) to move in the same direction, as would happen when pulling the control vectors
of conventional basis functions.

Instead of directly de�ning A(t) from the normalized tangent of the curve, it is
more
exible to allow two stages of smoothing in the de�nition. The �rst stage of
smoothing allows rough surfaces to be o�set in a sensible way, while the second stage
�xes the loss of one order of continuity that arises in the usual o�setting process. In
the �rst smoothing stage, the curve is smoothed before obtaining a normalized tangent
function. In the second stage, this normalized tangent function is approximated as a
dyadic spline in order to allow a second stage of smoothing. The smoothed version
of the normalized tangent is then normalized again to obtain the �nal frame function
A(t). These notions are formalized in this section.

Let f(t) represent a parametric curve, and let �f(t) be the smoothed version of the
curve for some smoothing parameter `s1. The normalized tangent to the smoothed

83

curve is

�(t) =
�f 0(t)

 �f 0(t)

Now the top-down approximation algorithm may be used to obtain T (t) from �(t)
using interval techniques to compute local estimates. Let �T (t) be the smoothed
version of T (t) for a second smoothing parameter `s2. The continuous, orthonormal
o�set frame is then de�ned as

A(t) = [u(t) v(t)]

where u(t) is the unit tangent for the frame:

u(t) =
�T (t)

 �T (t)

The vector v(t) is the unit normal to the smoothed curve at t that is obtained by
rotating u(t) counterclockwise by 90 degrees.

The o�set template de�nition adds the template shape to the original curve at an
arbitrary segment, and orients this added shape according to the smooth underlying
curve. Again, interval techniques allow the result of template o�setting to be approx-
imated using the top-down algorithm. An example is illustrated in Figure 6.5.2. Part
(a) shows the template curve g(s) (the domain position map h(s) is a simple linear
function). Part (b) shows the smooth underlying curve �f(t) and o�set frames A(t).
Part (c) shows the e�ect of the template o�set edit on the original curve.

(a) (b) (c)

Figure 6.5.2: template o�set

84

6.5.3 Orienting the Details

A second option allows detail orientation to track changes in the smooth under-
lying curve as the template edit is applied. The idea is to keep details of f(t) that
would be removed by smoothing in the simple o�set-frame displacement formulation
from section 6.3. The template is applied to the smoothed curve (with or without
the �rst template-edit option), where the displacements have been transformed from
the simple o�set-frame form to standard form. The result is transformed back into
the simple o�set-frame form, and the detail displacements are restored by simple
addition.

The speci�c approach described in this section preserves details below a smoothing
level `s by separating them out in the simple o�set-frame displacement form before
applying the template edit operation. After the template edits are performed, the
resulting function is placed back into the simple o�set-frame displacement format
and the details are added back. Figure 6.5.3 illustrates the e�ect of separating and
restoring details in the simple o�set-frame displacement format. Part (a) shows the
original curve. Part (b) shows the curve with the detail removed. Part (c) shows the
e�ect of a template edit. Finally, part (d) shows the restored detail.

(a) (b) (c) (d)

Figure 6.5.3: steps in orienting the details

6.5.4 Combinations of the Optional Template E�ects

There are four combinations of the two options described in the previous sections:

1. The base template operation with no options simulates a generalized basis func-
tion. The template is applied with a constant orientation, and detail orientation
does not track the underlying shape.

2. The �rst option alone is most closely related to the pasting method described
in Barghiel's thesis. The template is applied as a kind of generalized o�set, and
detail orientation does not track the underlying shape.

85

3. The second option by itself is most similar to the e�ect of moving a single
displacement in the simple o�set-frame formulation, but with a general position,
scale and shape of the e�ect. In this case, detail tracks the orientation of the
underlying curve.

4. The �rst and second options, when combined, give the continuous o�set-frame
e�ect and result in details that track the orientation of the underlying curve.

Any one of these combinations might be most desirable in a given application. For
comparison, Figure 6.5.4 shows results of the same template edit for the combinations
1{4.

(1) (2)

(3) (4)

Figure 6.5.4: the four template-edit option combinations

6.6 Sculpting

The last section introduced the general notion of applying a template at arbitrary
positions and scales. The approximation method allowed unlimited numbers of these

86

operations to be applied iteratively without performance penalty and with good ac-
curacy. This suggests that various types of sculpting would be feasible, whereby a
tool shape modi�es a curve repeatedly to emulate various physical e�ects. Three
applications or variants of the template process will be used in this way.

The simplest type of sculpting is to repeatedly push and pull the curve using
template o�sets, as depicted in the last section in Figure 6.5.1. This is analogous
to physical pushing and pulling with a �nger (in the case of a smooth interpolating
template), or with a sharp object (in the case of the \corner" template). A user can
choose the size and shape of the object to apply, and then push and pull one segment
at a time.

The simple push-pull approach leaves the detail in a neighborhood intact. Another
useful manipulation would smooth out the �ne detail as the object is applied. This is
analogous to a hammer striking a rough sheet of metal and leaving a smooth impres-
sion of the hammer head. This can be accomplished by performing local smoothing
on the segment before the \hammer head" template is applied. This e�ect is shown
in Figure 6.6.1.

Figure 6.6.1: \hammered" curve

The �nal type of sculpting operation is analogous to scraping or routing to remove
material. A single \scrape" is de�ned by specifying tool depth in an o�set-frame
normal direction for each t, where depth zero occurs at a smoothed version of the
curve. The o�set frame tangent and normal directions u(t) and v(t) are obtained from
A(t) in the previous section. The result of scraping is de�ned by the maximum of the
tool depth and the depth of the original curve with respect to the smooth curve.

Let curve f(t) be given and �f(t) be the smoothed version of f for some smoothing
parameter `s. Let DT (t) be the given tool depth function, and de�ne the curve depth

87

as
DC(t) = �v(t) � (f(t)� �f(t))

The result depth will be

D(t) = maxfDT (t); DC(t)g

Since the curve position f(t) does not generally reside on the line through �f(t) in the
normal direction v(t), some means of blending from the curve to the scrape ends is
needed. A scrape end occurs when DT (t) = DC(t). A simple blending method is to
linearly move the curve towards the normal line as DC(t)�DT (t) goes from positive
to zero. The blend factor is de�ned as

q =

8><
>:

0 if DC(t)�DT (t) < 0
DC(t)�DT (t)

H
if 0 � DC(t)�DT (t) < H

1 if H � DC(t)�DT (t)

where H is a user-supplied blend distance. The blend factor is applied to de�ne the
scrape result as

f̂(t) = �f(t) +D(t)v(t) + q((f(t)� �f(t)) � u(t))u(t)

Interval estimates are used so that the top-down approximation algorithm may cap-
ture the scrape result as a dyadic spline. An example of a single scrape is shown in
Figure 6.6.2.

Figure 6.6.2: single \scrape" of tool

88

To superimpose multiple scrapes as a simultaneous operation (i.e. without altering
the smooth underlying surface after each scrape), the tool depth function is taken to
be the maximum of the individual scrape tool depth functions

DT (t) = max
i
Di(t)

Otherwise the formulation above remains intact. The result of two simultaneous
scrapes is shown in Figure 6.6.3.

Figure 6.6.3: two simultaneous scrapes

6.7 Summary of Curve Design Results

The editing mechanisms described in this chapter give a great variety of possibili-
ties for curve design. The dyadic-spline formulation combines features of hierarchical
B-splines, wavelets and fractals to provide a combination of design e�ects that would
be di�cult to achieve with any one of these schemes. Of particular value is the top-
down approximation algorithm, which enables several advanced editing e�ects, and
does so with unprecedented e�ciency. The dyadic-spline framework provides a unify-
ing methodology for describing this variety of design possibilities. This is important
because the uni�ed view provides a language in which new design possibilities, beyond
those mentioned in this chapter, can be expressed in simple and e�ective terms.

89

Chapter 7

Multivariate Functions

This chapter describes the extension of dyadic splines to multiple variables. A
tensor-product construction [15] is used to provide dyadic splines with m-dimensional
domains <m. The synthesis, analysis and approximation techniques developed for the
univariate dyadic splines are straightforward to extend to the tensor-product case.
The bintree domain decomposition is ideal for separating the multivariate construc-
tions into a sequence of univariate constructions of the type discussed earlier. The
extension of the curve design mechanisms to surfaces is based on the extensions for
synthesis, analysis and approximation. Applications are described for fractal con-
struction of natural phenomena.

Tensor-product multivariate functions are formed as piecewise products of uni-
variate functions, with one univariate factor per parameter axis. Section 2.2.6 gave
general background information on tensor-product B-splines. For tensor-product B-
splines, it is simple and e�cient to compute samples, bounds, re�nements and the like
by treating one axis at a time. For example, for two variables each row of the matrix
of control points can be treated as a univariate B-spline for purposes of computa-
tion. The columns that result can then be treated as univariate B-splines to compute
the �nal result for two variables. In the case of uniform B-splines, this simple pro-
cess of separation into univariate computations is organized ideally by m-dimensional
bintrees. The separation process is simple to apply to the synthesis, analysis and
approximation computations.

7.1 Synthesis

Whereas a univariate bintree decomposition I`;i was indexed by level ` and index
i, the multivariate bintree requires an additional axis counter a 2 f1; : : : ; mg and
multiple indices i1; : : : ; im. Recall from section 2.1.1 that the multivariate bintree
intervals are

I`;a;i1;:::;in = I`+1;i1 � � � � � I`+1;ia�1 � I`;ia � � � � � I`;in

To simplify the appearance of this, a shorthand of

IL;i = I`;a;i1;:::;in

will be used, where L = (`; a) and i = (i1; : : : ; im). The composition L = (`; a) will
be refered to as a layer, and is analogous to the level in the univariate case. Note
that the intervals IL;i still form a binary tree.

90

The displacements are now denoted DL;i, and the positions PL;i. Let degrees
n1; : : : ; nm be speci�ed for each domain axis. The multivariate recurrence is now
written as

PL�1 =M
haiPL +DL�1

The operator Mhai is made up of copies of the univariate re�nement operator for
degree na uniform B-splines,M(na), as given in section 3.1. One copy of the univariate
operator is made for each univariate slice of PL along axis a. The notation L � 1
refers to the next layer of the bintree

L � 1 =

(
(`; a+ 1) if a < m
(`+ 1; 1) if a = m

Similar notation is used for the previous layer of the bintree:

L 	 1 =

(
(`; a� 1) if a > 1
(`� 1; m) if a = 1

Evaluation of samples and bounds remains the same using interval queries on the
bintree intervals, as discussed in sections 3.2 and 3.3. The same notion applies for
sampling and bounding: when an interval is not in
uenced by displacements at lower
layers, it can be treated as a local B-spline. Here the neighborhoods of in
uence of a
displacement are formed from cross products of univariate neighborhoods of in
uence.
The interval-query application interface remains the same. Interval-query evaluation
also remains the same, based on maintaining families of neighborhoods of in
uence.

An example bivariate surface is depicted in Figure 7.1.1. The base surface is
de�ned to be planar using the displacements at layer L = (0; 1). Three additional
displacements are nonzero. The local B-spline pieces resulting from the procedure
are outlined.

Figure 7.1.1: bivariate dyadic spline and local B-splines

91

7.2 Analysis

A similar change in notation to that given in the last section provides the de�ni-
tions for multiresolution analysis for tensor-product dyadic splines. Let the univariate
�t operators F(na;ka) be determined by the axial degrees and �lter-width parameters
na and ka for a = 1; : : : ; m. The multivariate �t operator for axis a, Fhai, consists
of F(na;ka) replicated for each univariate slice along axis a. Similar de�nitions are
given for the compaction and expansion operators Chai and E

hai. The compacted
displacements will be denoted QL;i.

The multivariate decomposition step can now be written as"
PL
QL

#
=

"
F
hai

C
hai

#
PL�1

The reconstruction step is

PL�1 =
h
M

haijEhai
i " PL

QL

#

Note that these de�nitions immediately satisfy the \reversibility" requirement of a
multiresolution analysis �lter bank:"

F
hai

C
hai

h
M

haijEhai
i
=

"
I 0
0 I

#

The notions of canonical displacements, displacement �tting and incremental �tting
of section 4.4 all carry over as well.

An example bicubic wavelet is depicted in Figure 7.2.1.

Figure 7.2.1: tensor-product bicubic wavelet

92

7.3 Approximation

The expected-error bottom-up approximation algorithm of section 5.1 works with-
out modi�cation for tensor-product dyadic splines. In Figure 7.3.1 the full mandrill
image f(u; v) is approximated for biquadratic dyadic splines with �lter-width param-

eter k = 2 on each axis. The least-squares error norm e =

f � f̂

2
and number

of nonzero compacted displacements N is indicated for the progression of approxi-
mations. A plot of accuracy versus number of compacted displacements is shown in
Figure 7.3.2. As in the univariate case, accuracy is measured as the mean-square
signal-to-noise ratio in decibels

10 log10(kf � fak
2
2=

f̂ � f

2
2
)

where fa is the average value f takes on.

original
N = 262143

N = 52461
e = 20:79

N = 10468
e = 40:68

N = 2058
e = 51:50

N = 374
e = 57:40

N = 41
e = 68:19

Figure 7.3.1: mandrill image approximation sequence

93

0

5

10

15

20

25

30

35

40

45

signal
noise

(dB)

1 2 4 8 16 32 64 128
256

512
1K 2K 4K 8K 16K

32K
64K

128K
256K

N

Figure 7.3.2: signal/noise ratio (dB) versus N

The tensor-product extension of the top-down approximation algorithm of section
5.2 is based on tensor-product extensions to the local estimates and limit-�t operators.
The top-down algorithm requires that local estimates be available for the target func-
tion as before, but now in tensor-product Bernstein/B�ezier form [15]. The process of
limit �tting on these estimates is extended to the tensor-product setting by obtaining
� �t weights for each axial direction and applying these along each set of axis slices in
turn. This is exactly analogous to the application of the tensor-product �t operator,
but requires that the estimates also be dealt with by separating their basis functions
into axial factors. The estimate-�t kernel computation can then be separated into the
univariate computations of section 5.2.2. The phases of the top-down approximation
algorithm remain the same.

An example of top-down �tting is shown in Figure 7.3.3. The target function
is made up of two superimposed cones. Top-down approximation is used to de�ne
several surface design operations, as discussed in the next section.

94

Figure 7.3.3: top-down surface approximation

95

7.4 Surface Design

Each of the design mechanisms discussed in Chapter 6 has a natural extension
to tensor-product dyadic-spline surfaces. Figure 7.4.1 illustrates the six mechanisms:
displacement edits, local smoothing, local roughening, o�set-frame displacement ed-
its, template edits and sculpting.

(a) (b)

(c) (d)

(e) (f)

Figure 7.4.1: surface design mechanisms

For this section let the surface be parameterized over u and v, and take on values
in three space with coordinates x; y; z:

f(u; v) =

2
64 fx(u; v)
fy(u; v)
fz(u; v)

3
75

Let the partial derivatives with respect to u and v be denoted fu and fv respectively.
Let u correspond to a = 1 and v correspond to a = 2.

96

7.4.1 Displacement Edits

Direct edits of surface displacements follow the same development as the displace-
ments for curves in section 6.1. An example of a displacement edit is shown in Figure
7.4.2.

Figure 7.4.2: displacement edit

7.4.2 Smoothing

Global smoothing of surface displacements is similar to the curve case described
in section 6.2. The primary di�erence is the treatment of layer L = (`; a) compared to
curve level `. Note that there are two axes (a = 1 and a = 2). In order to avoid axis
order-dependent artifacts, layers (`; 1) and (`; 2) will be treated the same for purposes
of smoothing. Thus global smoothing is de�ned for smoothing parameter `s as

�DL;i =

8><
>:
DL;i if ` < `s
(`s � (`� 1))DL;i if `� 1 < `s � `
0 otherwise (`s � `� 1)

For local smoothing, a generalization of the smoothing segment is needed. For
this, a smoothing area is de�ned using the concept of a trim curve [4], previously
used in the methods for trimmed surface patches. A trim curve c(t) is a continuous,
periodic mapping from t 2 [0; 1] to the surface domain (u; v) 2 <2. This curve
encloses a domain area that will serve as the locality to be smoothed.

97

The smoothing operation blends between the original displacements DL;i and the
smoothed ones �DL;i. The blend factor q is de�ned as the fraction of DL;i's interval of
in
uence ID that overlaps the area enclosed by c(t). The computation of this overlap
is discussed at the end of this section. The blend factor q is then applied as in the
curve case:

�DL;i = (1� q)DL;i + q �DL;i

Some results of local smoothing are shown in Figure 7.4.3.

Figure 7.4.3: local surface smoothing

Computing the Blend Factor

It is nontrivial to compute the area of overlap of an interval I and the area en-
closed by a trim curve c(t). However, the well-known Warnock algorithm for polygon
visibility [37] can be adapted to this problem. Although the concern here is only
for determining the area of a single \polygon" c(t) within a \view window" I, the
Warnock algorithm has a useful property of dividing I into smaller intervals until each
interval either misses c(t), c(t) crosses the interval in a simple way, or the interval is
small. Winding number computations are used in this algorithm to determine which
intervals (or which parts of crossed intervals) are inside the trim curve. To apply the
polygon techniques to a curve, the curve must be approximated by a polygon. For
the purposes of interactive editing, it is su�cient to ensure that the approximation
error is within a small fraction of the width of the interval I. If c(t) is a dyadic spline,
or is in B-spline form, standard subdivision techniques can be applied to accomplish
this [15]. In the implementation used here, \simple" crossings consist of two or fewer
polygon edges, and a bintree decomposition of I is used. An example Warnock-style
decomposition of a trim area is shown in Figure 7.4.4.

98

Figure 7.4.4: Warnock decomposition of trim area

7.4.3 O�set-Frame Displacements

Recall from section 6.3 that o�set frames for curve displacements were de�ned as
the unit tangent and normal at the point of maximum in
uence for the displacement,
taken with respect to a smoothed version of the curve with smoothing parameter `s.
Similarly, the o�set frame for a surface displacement DL;i is de�ned as the two unit
tangents and unit normal at the point of maximum in
uence, taken with respect to
a smoothed version of the surface.

Let f(u; v) be the surface and �f(u; v) be a smoothed version of the surface for
smoothing parameter `s. Then the o�set coordinate frame applied to o�set displace-
ment D̂L;i is then de�ned as

AL;i = [p q r]

where

p =
�fu(um; vm)

 �fu(um; vm)

q =
�fv(um; vm)

 �fv(um; vm)

r = p� q
kp� qk

99

and (um; vm) is the domain point of maximum in
uence. Now the application of AL;i

to D̂L;i gives the standard displacement as

DL;i = AL;iD̂L;i

This gives the e�ect that details track the position and orientation of the smooth
underlying surface. An edit in the o�set-frame representation is shown in Figure
7.4.5.

Figure 7.4.5: o�set-frame detail tracking

7.4.4 Roughening

The extension of the roughening operation to surfaces is similar to the extension
for smoothing. Global roughening is produced in the surface case by replacing detail
compacted displacements with fractal compacted displacements that point in the
o�set normal direction, just as in the curve case. The localization of the roughening
e�ect is accomplished in the same manner as local surface smoothing. An example of
local roughening is shown in Figure 7.4.6.

100

Figure 7.4.6: local surface roughening

7.4.5 Template Edits

Template editing extends naturally to a surface f(u; v). Let g(s; t) be a scalar-
valued template function and let h(s; t) be an invertible domain-positioning function.
The basic template edit e�ect is de�ned as

f̂(u; v) = f(u; v) + cG(u; v)

where c is a control vector for the generalized basis function

G(u; v) = g(h�1(u; v))

Note that h�1(u; v) is only de�ned for (u; v) 2 h(J) where J is the interval domain
of h(s; t). When appropriate, assume that G(u; v) is zero when (u; v) 62 h(J). Also
note that the control vector c may be derived from another control vector ĉ that is
de�ned in a local o�set frame A, similar to the o�set-frame displacement edits of
section 7.4.3.

The result of a template edit, f̂(u; v), is approximated using the top-down algo-
rithm. As with curve templates in section 6.5.1, local estimates are formed using
interval-analytic techniques. This approximation process is described in the next
section. An example result of template editing is depicted in Figure 7.4.7.

101

Figure 7.4.7: surface template edit

Template Edit Approximation

The template edit result f̂(u; v) is approximated by using the top-down algo-
rithm to approximate the generalized basis function G(u; v) = g(h�1(u; v)). This
approximation, denoted ~G(u; v), scales a control vector c before added it to f(u; v).
The approximate template-edit result is f̂(u; v) = f(u; v) + c ~G(u; v). Applying the
top-down algorithm to approximate G(u; v) reduces to �nding local estimates. The
remainder of this section will discuss the computation of suitable local estimates.

This discussion will use �rst-order interval estimates throughout. To develop an
estimate for g(h�1(u; v)), an estimate will �rst be constructed for h�1(u; v) based on
an estimate of h(s; t). This will be composed with an estimate of g(s; t) to give the
desired estimate of g(h�1(u; v)).

Let h(s; t) have the �rst-order interval estimate

~h(s; t) = H

"
s
t

#
+

"
u0
v0

#
+ �

where H is an invertible 2 � 2 matrix, and � is an interval in (u; v) space. Assume
that this estimate holds for h�1(I), where I is an interval in (u; v) space. An interval
estimate for h�1(u; v) is

~h�1(u; v) = H�1

"
u
v

#
+

"
s0
t0

#
+ �

where "
s0
t0

#
= �H�1

"
u0
v0

#

102

and where the error interval � is chosen so that

� � �H�1�

This estimate holds for (u; v) 2 I. The error � may be computed as the bounding
box of the image of the four corners of � under the transform �H�1.

Now suppose g(s; t) has the estimate

~g(s; t) = [gs gt]

"
s
t

#
+ g0 +

for error interval
, and suppose this holds for (s; t) 2 h�1(I). Then an estimate for
g(h�1(u; v)) over I is

[gs gt]

H�1

"
u
v

#
+

"
s0
t0

#
+ �

!
+ g0 +

O�set-Frame Templates

The two options for curve templates also apply to surface templates. Allowing
detail orientation to track the coarse underlying surface works exactly as in the curve
case. The continuous o�set-frame option is also straightforward, as follows.

Smooth, continuous o�set frames are de�ned using two stages of smoothing in
forming a normalized tangent, just as in the curve case. The �rst stage gives rea-
sonable o�sets for a rough surface, while the second stage �xes the loss of one order
of continuity that results from the usual o�setting process. For a surface f(u; v),
let �f(u; v) be the smoothed version of the surface for smoothing parameter `s1. The
tangents of this smoothed surface are normalized to give

p̂(u; v) =
�fu(u; v)

 �fu(u; v)

q̂(u; v) =
�fv(u; v)

 �fv(u; v)

These normalized tangents are approximated as dyadic splines (using the top-down
algorithm) to allow the second stage of smoothing. Let ~p(u; v) and ~q(u; v) be the
approximations to the normalized tangents, and �p(u; v) and �q(u; v) be the smoothed
versions of these for smoothing parameter `s2. A �nal normalization and cross product
gives the axis vectors of the desired o�set frame

A(u; v) = [p(u; v) q(u; v) r(u; v)]

103

where

p(u; v) =
�p(u; v)
k�p(u; v)k

q(u; v) =
�q(u; v)
k�q(u; v)k

r(u; v) =
p(u; v)� q(u; v)
kp(u; v)� q(u; v)k

The continuous o�set-frame template edit becomes

f̂(u; v) = f(u; v) + A�1(um; vm)A(u; v)cG(u; v)

where (um; vm) is the domain point of maximum in
uence for G(u; v). As in the curve
case, the transform A�1(um; vm) is optional, but has the desirable e�ect that pulling
the control vector c in (x; y; z) space causes the point f̂(u; v) to move in the same
direction, as would happen when pulling the control vectors of conventional basis
functions.

7.4.6 Sculpting

The three types of sculpting described for curves extend easily to surfaces. The
�rst two, push-pull template edits and \hammering" are exactly the same as for
curves. The remainder of this section will discuss the third and more complex sculpt-
ing operation that simulates \scraping."

A single surface \scrape" is de�ned by specifying tool depth in an o�set-frame
normal direction for each (u; v), where depth zero occurs at a smoothed version of
the surface. The o�set frame tangent and normal directions p(u; v), q(u; v) and
r(u; v) are obtained from A(u; v) in the previous section. The result of scraping is
de�ned by the maximum of the tool depth and the depth of the original surface with
respect to the smooth surface.

Let f(u; v) be a given surface and �f(u; v) be the smoothed surface for some smooth-
ing parameter `s. LetDT (u; v) be the given tool depth function, and de�ne the surface
depth as

DS(u; v) = �r(u; v) � (f(u; v)� �f(u; v))

The result depth will be

D(u; v) = maxfDT (u; v); DS(u; v)g

Since the surface position f(u; v) does not generally reside on the line through �f(u; v)
in the normal direction r(u; v), some means of blending from the surface to the scrape

104

boundary is needed. A scrape boundary occurs when DT (u; v) = DS(u; v). A simple
blending method is to linearly move the surface towards the normal line as DS(u; v)�
DT (u; v) goes from positive to zero. The blend factor is de�ned as

q =

8><
>:

0 if DS(u; v)�DT (u; v) < 0
DS(u;v)�DT (u;v)

H
if 0 � DS(u; v)�DT (u; v) < H

1 if H � DS(u; v)�DT (u; v)

where H is a user-supplied blend distance. The blend factor is applied to de�ne the
scrape result as

f̂(u; v) = �f(u; v) +D(u; v)r(u; v)+
q((f(u; v)� �f(u; v)) � p(u; v))p(u; v)+
q((f(u; v)� �f(u; v)) � q(u; v))q(u; v)

Interval estimates are used so that the top-down approximation algorithm may cap-
ture the scrape result as a dyadic spline. An example of a single scrape is shown in
Figure 7.4.8.

Figure 7.4.8: single surface \scrape"

As with curve scrapes, superimposing multiple scrapes as a simultaneous operation
is performed by letting the tool depth function be de�ned as the maximum of the
individual scrape tool depth functions

DT (u; v) = max
i
Di(u; v)

Otherwise the formulation above remains intact. The result of two simultaneous
scrapes is shown in Figure 7.4.9.

105

Figure 7.4.9: simultaneous surface scrapes

7.5 Applications of Dyadic-Spline Fractals

Dyadic splines may be used to produce fractals by incorporating automatically-
generated random displacements (see [13]). The idea is to choose each random dis-
placement D`;i from a uniform distribution over an interval [�U`; U`] that shrinks by
half for each successive level of resolution (U` = �2�` for a chosen � > 0). Evaluation
for this in�nite collection of nonzero displacements is discussed in section 3.2.

The �gures in this section demonstrate three distinct uses of the dyadic-spline
fractal formulation. Each is distinct in terms of both the phenomena modeled by the
fractal and the rendering system that the dyadic-spline implementation is integrated
into.

Figure 7.5.1 shows a landscape and cloudy sky synthesized with bivariate fractals.
The terrain interprets the function as altitude, while the clouds are based on opacity.
The rendering scheme is a form of the painter's algorithm encorporating transparency.

Figure 7.5.2 exhibits two marble textures synthesized by trivariate fractals. Both
map the function value into a material color. Rendering is provided by a ray tracer
encorporating Monte Carlo integration for antialiasing and soft shadows.

Figure 7.5.3 shows a trivariate fractal interpreted as an implicitly de�ned solid.
The fractal has been hierarchically edited to create the cavernous void. Rendering is
accomplished by intersecting rays using interval analysis on neighborhoods of space
surrounding ray segments.

106

Figure 7.5.1: Skyland

Figure 7.5.2: Marball

107

Figure 7.5.3: Cavern

7.6 Summary of Tensor-Product Extensions

This chapter extends the univariate dyadic-spline methods to the tensor-product
setting. The discussions of synthesis, analysis and approximation extend naturally to
m-variate domains. The bintree domain composition is ideal for organizing these ex-
tensions. The curve design mechanisms extend to tensor-product bivariate surfaces.
These extensions are straightforward in many cases, such as global smoothing and
roughening. In the case of local smoothing and roughening, the powerful Warnock al-
gorithm is adapted to compute local smoothing and roughening e�ects. This solution
performs computations quickly, but is more complex to implement than the simple
interval-overlap computation for curves. An increase in implementation complexity
also occurs for template edit approximations, particularly in the evaluation of local
estimates. Multivariate dyadic splines are useful for modeling natural phenomena as
fractals. Because of the interval-query evaluation interface, the dyadic-spline fractals
intergrate smoothly into diverse image synthesis systems.

108

Chapter 8

Conclusions and Future Work

This dissertation has presented the dyadic-spline function representation and a
body of algorithms to support its application. Dyadic splines are de�ned and con-
trolled by displacements that may be speci�ed at any level of resolution. Using
uniform B-spline re�nement, these displacements are converted into a hierarchy of
range positions through a doubling and perturbing process. An e�cient and
ex-
ible evaluation mechanism, interval queries, provides applications with a wealth of
information about the how the function behaves over neighborhoods (corner-point
samples, range bounds, etc.).

The question of how to convert known target functions into dyadic splines has
been answered in both exact and approximate senses. Exact analysis of a target
function is provided by least-squares level-to-level �tting, so that positions at one
level of resolution best predict those at the next �ner level. A compaction method is
introduced that eliminates a factor-of-two redundancy in the displacement represen-
tation. The resulting compacted displacements form a type of wavelet representation.
An enhancement to the analysis and complimentary synthesis processes allows ap-
plications to trade o� computation speed versus closeness to an ideal least-squares
�tting process. Even with non-ideal �tting, perfect level-to-level predictions are found
whenever they exist, and the target function is exactly reproduced.

Two approximation algorithms allow tradeo� of complexity versus accuracy of
reproduction of the target function. A simple bottom-up algorithm starts from highly
detailed knowledge of the target function, performs the wavelet-style analysis, and sets
to zero the smallest-magnitude compacted displacements until the desired accuracy or
complexity threshold is reached. A much faster top-down algorithmworks by carefully
adding compacted displacements until the desired accuracy or complexity threshold
is reached. This processing is based on \fuzzy" knowledge of the target functions in
the form of bounded local estimates. Compacted displacements are \split" into new
ones to add more detail in neighborhoods that are out of tolerance. Old compacted
displacements are improved as new local estimates become less \fuzzy." The top-down
algorithm runs in time that is linear in the complexity of the output approximation.
This can be hundreds or thousands of times faster than the bottom-up approximation,
which runs in time that is linear in the complexity of highly detailed knowledge of the
target function (typically, most of this detail is thrown away). The approximations'
tradeo� of accuracy versus complexity is the basis for lossy compression.

109

The synthesis, analysis and approximation tools have natural extensions to multi-
ple variable using a tensor-product formulation. The theory and algorithms generalize
with little or no change.

The synthesis, analysis and approximation tools are applied to the tasks of curve
and surface design. A wide variety of editing mechanisms are introduced that com-
bine and extend features of several earlier function representations. The top-down
approximation algorithm is of great importance in providing many of the most pow-
erful design mechanisms, including sculpting and the application of general template
shapes to an object.

8.1 Outline of Future Research

Dyadic splines and the associated algorithms have many potential applications
beyond those touched on in this dissertation. Compression of many types of data
is possible, including medical images, elevation data, physical simulation results and
video. Dyadic splines could play a key role in the e�cient computation of solutions
to di�cult physical equations, such as global illumination or
uid dynamics.

In addition to applications research, numerous improvements and extensions are
needed for the method itself. The primary improvements needed regard evaluation,
generalization and the top-down approximation algorithm.

The interval-query evaluation method is applicable to a diverse collection of appli-
cations. It automatically provides information at multiple scales and caches results,
as required in many advanced computations. A number of issues have not been ad-
dressed in the research to date. The challenges that remain, along with indications
of future work, are:

� there is considerable overhead in maintaining the dynamic cache

The reduction in overhead is an important area for future research. One pos-
sibility is to move to coarser-grained data structures, such as blocks of bintree
intervals, to gain economy-of-scale e�ciencies in both computation time and in
storage space.

� there is no way to predict in general if or when reuse will occur

Improving the prediction of reuse is possible for many applications, as they
have considerable regularity in usage. However, automatic estimation of such
regularity is di�cult. Instead, applications can be given the option to specify
which cache entries are likely to be needed in the near future, and this can be
used to order the de-allocation queue.

� the memory limit is rarely needed for simple problems

110

The overhead of the memory-limitmechanism can be reduced by coarser-grained
allocation and de-allocation, similar to the e�ciencies envisioned to reduce
general cache overhead. Also, the memory-limit mechanism overhead can be
avoided entirely and automatically for simple problems (only maintain the reuse
queue when total memory use exceeds a threshold).

� for local B-spline pieces, direct computation of sparse non-corner samples is
more e�cient that subdividing until accurate

The e�ciency of sparse random sampling can be improved by performing direct
sample computations when appropriate.

The primary generalization envisioned is to extend the dyadic-spline formulation
and algorithms to subdivision surfaces, such as those introduced by Catmull and
Clark [5]. If an additional generalization were included, allowing sharp features such
as the vertex of a cone or the edge of a cylinder, then a single generalized dyadic
spline could elegantly capture most of the geometric shapes found in solid modeling
and computer graphics. Some initial work along these lines has been performed by
researchers at the University of Washington [25, 23, 14].

Four areas of research are clear for the top-down approximation algorithm:

� usefulness for other wavelets

The top-down approximation algorithm should be applicable to wavelet rep-
resentations other than the dyadic splines. Only two parts of the top-down
algorithm have some sensitivity to the wavelets chosen: the comparison of the
wavelet approximation versus the local estimate, and the incremental, sparse
updates to the wavelet coe�cients as move active wavelets are added during
processing. It seems likely that these issues can be solved for many wavelet
schemes.

� tuning for various norms

The choices of which domain intervals to split and which intervals are \done"
should be made with the desired norm in mind. This seems to be fairly straight-
forward, but has not been investigated so far.

� optimization of accuracy/complexity tradeo�

A major di�culty is trying to approach the optimal accuracy/complexity trade-
o� curve, especially early in the top-down approximation process. This is hard
because the local estimates only give fuzzy knowledge of the target function.
Perhaps an adaptive, recursive estimation strategy could be devised that would
improve this knowledge.

111

� general techniques for providing local estimates

In the discussions in this dissertation, the applications of the top-down algo-
rithm used ad hoc techniques to provide local estimates to target functions.
Current investigations are under way to �nd general, automatic methods for
obtaining local estimates for a wide variety of target functions.

112

References

[1] Barghiel, Cristin, \Feature Oriented Composition of B-Spline Surfaces," Master's
Thesis, U. of Waterloo, March, 1994.

[2] Bartels, Richard H., John C. Beatty and Brian A. Barsky, An Introduction to

Splines for use in Computer Graphics and Geometric Modeling, Morgan Kauf-
mann, Los Altos, CA, 1987.

[3] Berman, Deborah F., Jason T. Bartell and David H. Salesin, \Multiresolution
Painting and Compositing," Computer Graphics (SIGGRAPH '94 Proceedings),
July, 1994, pp 85-90.

[4] Casale, Malcolm S., \Free-Form Solid Modeling with Trimmed Surface Patches,"
IEEE Computer Graphics & Applications, Vol. 7, No. 1, January, 1987, pp 33-43.

[5] Catmull, Edwin E. and James H. Clark, \Recursively Generated B-spline Sur-
faces on Arbitrary Topological Meshes," Computer Aided Design, Vol. 10, No. 6,
November, 1978, pp 350-355.

[6] Chui, Charles K., An Introduction to Wavelets, Academic Press, San Diego, 1992.

[7] Cohen, Elain, Tom Lyche and Richard Riesenfeld, \Discrete B-Splines and Sub-
division Techniques in Computer-Aided Geometric Design and Computer Graph-
ics," Computer Graphics and Image Processing, Vol. 14, No. 2, October, 1980,
pp 87-111.

[8] Daubechies, Ingrid, Ten Lectures on Wavelets, Society for Industrial and Applied
Mathematics, Philadelphia, 1992.

[9] de Boor, Carl, \On Calculating with B-splines," Journal of Approximation The-

ory, Vol. 6, No. 1, July, 1972, pp 50-62.

[10] de Casteljau, Paul de Faget, Shape Mathematics and CAD, Kogan Page, London,
1986.

[11] DeRose, Tony D., Ronald N. Goldman and J. Michael Lounsbery, \A Tutorial
Introduction to Blossoming," in: H. Hagen and D. Roller, eds., Geometric Mod-

eling, Methods and Applications, Springer-Verlag, 1991, 267{286.

[12] Duchaineau, Mark A., \World," Independent Study Project, C.L. Morgan Su-
pervising, California State University, Hayward, 1986.

[13] Duchaineau, Mark A., \Construction of Crease-Free Fractals Using Dyadic
Splines," Proceedings of COMPUGRAPHICS92, December, 1992, pp 222-229.

113

[14] Eck, Matthias, Tony DeRose, Tom Duchamp, Hugues Hoppe, Michael Lounsbery
and Werner Stuetzle, \Multiresolution Analysis of Arbitrary Meshes," Computer
Graphics (SIGGRAPH '95 Proceedings), August, 1995, pp 173-182.

[15] Farin, Gerald, Curves and Surfaces for Computer Aided Geometric Design: A

Practical Guide, Second Edition, Academic Press, Boston, 1990.

[16] Finkelstein, Adam and David H. Salesin, \Multiresolution Curves," Computer

Graphics (SIGGRAPH '94 Proceedings), July, 1994, pp 261-268.

[17] Forsey, David R., \Motion Control and Surface Modeling of Articulated Figures
in Computer Animation," PhD Thesis, U. of Waterloo, September, 1990.

[18] Forsey, David R. and Richard H. Bartels, \Hierarchical B-Spline Re�nement,"
Computer Graphics (SIGGRAPH '88 Proceedings), Vol. 22, No. 4, August, 1988,
pp 205-212.

[19] Forsey, David R. and Richard H. Bartels, \Surface Fitting with Hierarchical
Splines," ACM Transactions on Graphics, Vol. 14, No. 2, April, 1995, pp 134-
161.

[20] Fournier, Alain, D. Fussell and Loren C. Carpenter, \Computer Rendering of
Stochastic Models," Communications of the A.C.M., Vol. 25, 1982, 371-384.

[21] Golub, Gene H. and Charles F. Van Loan, Matrix Computations (second ed.),
The Johns Hopkins University Press, Baltimore, 1989.

[22] Gortler, Steven J., Peter Schr�oder, Michael F. Cohen and Pat Hanrahan,
\Wavelet Radiosity," Computer Graphics (SIGGRAPH '93 Proceedings), Au-
gust, 1993, pp 221-230.

[23] Hoppe, Hugues, Tony DeRose, Tom Duchamp, Mark Halstead, Hubert Jin, John
McDonald, Jean Schweitzer and Werner Stuetzle, \Piecewise Smooth Surface
Reconstruction," Computer Graphics (SIGGRAPH '94 Proceedings), July, 1994,
pp 295-302.

[24] Jawerth, B., M.L. Hilton and T.L. Hunstberger, \Local Enhancement of Com-
pressed Images," J. of Math. Imag. Vision, Vol. 3, 1993, pp 39-49.

[25] Lounsbery, John Michael, \Multiresolution Analysis for Surfaces of Arbitrary
Topological Type," PhD Thesis, U. of Washington, 1994.

[26] Mallat, Stephane G., \A Theory for Multiresolution Signal Decomposition: The
Wavelet Representation," IEEE Transactions on Pattern Analysis and Machine

Intelligence, Vol. 11, No. 7, July, 1989, pp 674-693.

114

[27] Mandelbrot, Benoit B., The Fractal Geometry of Nature, W. H. Freeman and
Company, New York, NY, 1983.

[28] Mandelbrot, Benoit B., \Fractal Landscapes Without Creases and With Rivers,"
in The Science of Fractal Images, H.-O. Peitgen and D. Saupe Eds., Springer
Verlag, New York, 1988, pp 243-260.

[29] Miller, Gavin S. P., \The De�nition and Rendering of Terrain Maps," Computer
Graphics (SIGGRAPH '86 Proceedings), Vol. 20, No. 4, August, 1986, pp 39-48.

[30] Miller, Mark C., \Terrain Representation and Compression," Pax River Quar-

terly Report (3Q92), Advanced Graphics and Parallel Systems, Los Alamos Na-
tional Laboratory, New Mexico, 1992.

[31] Moore, Ramon E., Methods and Applications of Interval Analysis, SIAM,
Philadelphia, 1979.

[32] Ramshaw, Lyle, \Blossoming: A Connect-the-Dots Approach to Splines," Re-
search Report 19, Digital Equipment Corp. Systems Research Center, Palo Alto,
CA, June, 1987.

[33] Samet, Hanan, Applications of Spatial Data Structures, Addison-Wesley, Read-
ing, MA, 1990.

[34] Saupe, D., Algorithms for Random Fractals, in The Science of Fractal Images,
H.-O. Peitgen and D. Saupe Eds., Springer Verlag, New York, 1988, pp 71-112.

[35] Stollnitz, Eric J., Tony D. DeRose and David H. Salesin, \Wavelets for Computer
Graphics: A Primer, Part 2," IEEE Computer Graphics & Applications, Vol. 15,
No. 4, July, 1995, pp 75-85.

[36] Stoneking, Stan, \Screen-Oriented Surface Sculpting Tools," Master's Thesis,
Advisor: Kenneth I. Joy, University of California, Davis, June, 1993.

[37] Warnock, John E., \A Hidden-Surface Algorithm for Computer Generated Half-
Tone Pictures," TR 4{15, NTIS AS-733 671, Computer Science Department,
University of Utah, 1969.

