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Evolutionary dynamics in microbial colonies

Abstract

Traditionally, evolutionary biology has mostly taken a retrospective view, looking backwards in time to
infer past evolutionary dynamics. Over the past 30 years, evolution experiments in the laboratory have be-
come a valuable complementary technique to study evolution in real time. Microbial populations in shaken
flasks are an ideal model system to do this, because their short generation times and easy reproducibility al-
low for the study of dozens to hundreds of replicates. Our understanding of microbial evolution in these
simple laboratory environments has dramatically improved in recent years.

Microbial populations in the wild face vastly more complex conditions: they grow as spatially structured
communities called microbial biofilms, often consisting of interacting mixtures of different species fulfill-
ing different purposes, subject to various, potentially self-generated, biophysicochemical gradients of, e.g.,
oxygen or nutrients, which are in turn altered by the physical structure of the community. In short, natural
population are subject to a vast variety of ecological interactions, and it has remained unclear howmuch can
be learned fromwell-mixed liquid culture experiments about how ecology affects evolution inmore complex
scenarios.

In this dissertation, I approach this question using one of the simplest possible ecological aspects: the fact
that most populations grow in spatially structured communities. Usingmicrobial colonies as an experimen-
talmodel system, I examine the effect of spatial structure on evolutionary dynamics in a variety ofways. First,
Chapters 2-4 investigate the fates of neutralmutations and the dynamics of beneficialmutations inmicrobial
colonies to find that both the neutral diversity resulting from spontaneous mutations and the strength of
adaptation is increased in colonies compared to microbial populations grown in shaken flasks. The second
half of the thesis is concerned with the effects of environmental heterogeneity on evolutionary dynamics.
In Chapter 5, randomly disordered environments are used to examine the competition of selection and ex-
trinsic noise in a model system for spontaneous beneficial and deleterious mutations. In these experiments,
extrinsic noise can almost entirely overpower selection such that beneficial variants cannot leverage their ad-
vantage to further their evolutionary success. Chapter 6 discusses the effects of gradients on the emergence
of antibiotic resistance and how convective flow can shape the trade-off between selection for resistance and
the efficacy of treatment.

Overall, the results presented in this thesis suggest that spatial structure can have a momentous influence
on the evolutionary dynamics of many dense cellular populations like biofilms and tumors: not only do the
dynamics of adaptation change quantitatively in spatially structured populations, but qualitatively different
patterns of evolutionary dynamics emerge that cannot arise in well-mixed population. Environmental het-
erogeneity can also have a strong influence on the speed and the direction of adaptation: whereas random
heterogeneity in the environment prevents the spread of beneficial variants, the presence of antibiotic gradi-
ents can facilitate the rapid emergence of resistance. This work thus offers a glimpse into the profound and
complex ways in which ecology can impact evolution even in simple model systems.
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1
Introduction

From some unknown initial life form, evolution has created all of the biological diversity we see today in one
colossal, billion years-long process. The study of evolution has traditionally been a retrospective undertak-
ing, inferring past evolutionary dynamicswith itsmultitude of speciation and extinction events overmillions
of years, often based on morphological similarities and differences. With the advent of modern sequencing
technology, the evolutionary relationships between all species can be unveiled in ever-increasing detail 1. It is
in this sense that ”nothing in biology makes sense except in the light of evolution”2, because the conceptual
framework of evolution helps us make sense of the biological diversity we see.

It is tempting to view Darwin’s realization that ”one species does change into another” 3 through the lens
of a biologically inexperienced physicist as a real-life simulation with a simple set of instructions: taking the
current biological diversity and environmental variables as input, evolution adds in a few mutations, some
stochasticity, and natural selection, and outputs a new state of biological diversity with species that are better
adapted (in some sense) to their environment. The environment itself may also change over time, partly due
to the biological species that inhabit it, and so the black box evolution feeds back on itself as it churns. When
framed this way, the allure of evolution from a physics perspectivemay be that in principle, it appears to have
a ”solution”, i.e., if onlywe understood all the underlying processes well enough, wewould be able to predict
how evolution should proceed. But what exactly do we mean by ”predicting evolution”?

At its core, evolution is about the change of heritable traits over time, from one generation to the next.
These traits, or phenotypॽ, can be as varied as the eye color of a person, the height of a tree, or the growth
rate of a bacterium. Traits are determined by genes which can come in several versions or allelॽ. Each gene
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corresponds to a small piece of the genome,which is storedon longmolecules ofDNA, consisting ofmillions
or billions of basic structural units called nucleotides, in every cell. During every cell division, whether of
a single-celled bacterium or in the human body, the genetic material on the DNA is replicated. However,
this process is not perfect: mutations can occur from errors during eachDNA replication, such as switching
one nucleotide for another, or removing or inserting stretches of DNA. These errors are fundamentally the
result of thermal fluctuations, and thus individual errors cannot be predicted. The resulting genetic changes
are heritable: a cell receiving a mutated copy of a gene will replicate this version of the gene when it divides.
Somemutations can be outright lethal, others are detrimental to varying degrees, and very few are beneficial;
most, however, are neutral, i.e., have no obvious effect4. To complicate matters further, the effect of a given
mutation is specific to the environment and individual it arises in. For instance, the effect of a mutation in
a bacterium may depend on the detailed genetic make-up of the individual, but also environmental factors
like ambient temperature, nutrient availability, or the presence of other bacteria. Thus, there is generally
little hope to be able to predict evolution at the single nucleotide level 5.

However, a detailed insight into sequence evolution may not always be necessary or even desired. After
all, when trying to predict evolution, one often thinks of the practical implications such as how long one
has to wait for a bacterial population or a tumor to develop drug resistance6,7, or how to select a vaccine
against next year’s prevalent influenza virus 8. In other words, what one would typically like to predict is
the phenotypic evolution of a relatively small number of traits on the scale of hundreds to thousands of
generations, and perhaps some coarse-grained genetic signature of it. This is akin to the theory of statistical
mechanics, where the collective behavior is the result of the random dynamics of individual particles, whose
positions and momenta we know only in terms of their probability distribution.

Similarly, a theory of phenotypic evolution will not predict a specific evolutionary outcome, but instead
it can only assign probabilities to different evolutionary trajectories. This is because despite the mainstream
description of evolution through natural selection implying that the best-adapted, or ”fittest”, individual
will invariably win out in the end, this is by no means the case. Instead, in a population of constant size,
allele frequencies can change stochastically from generation to the next due to the inherent randomness in
each individual’s reproductive success. These fluctuations, called genetic drift, are the reason the ultimate
fate of a mutant allele in the population is stochastic: its lineage can either go extinct when it leaves no off-
spring in the following generation, or it can be successful and sweep to fixation, i.e„ take over the population.
Genetic drift is more impactful in smaller population where a small difference in the number of offspring
corresponds to a relatively large frequency change. Thus, a neutral mutation can fix in small populations
by pure chance through genetic drift, whereas its fixation is much less likely in a large population, where a
mutation can essentially only fix if it confers a selective, or ”fitness”, advantage, which increases the average
reproductive success of an allele relative to the rest of the population. Evenwith a fitness advantage, however,
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the probability for a singlemutation to fix in a large population is still only approximately equal to its fitness
advantage, typically on the order of a few percent4. Thus, fixation is a rare occurrence for all but the most
overwhelmingly beneficial mutations.

Beyond an individual’s fitness, evolutionary trajectories are often confounded by ecological interactions
between individuals of the same or different species and their environment. Classical examples in the wild
range from the continual evasion of their host’s immune system by viruses9 to the adaptation of Darwin’s
finches to different islands 10. To study in more controlled environments how ecology shapes evolution,
experimental evolution of a wide range of species, from microbes 11 to rotifers 12, flies 13 and fish 14, in the
laboratory has been an invaluable tool, complementary to studies of evolution in the wild. Microbial model
systems have been especially prolific in this regard; we introduce some commonly used experimental systems
and classical results of experimental evolution in microbes in the next section.

Many evolution experiments in microbes have been performed in shaken culture flasks to minimize the
effects of ecological interactions and, especially, spatial structure. In the present work, we instead focus ex-
plicitly on the effects of spatial growth on the evolution in microbial populations. That spatial population
structure can influence evolution is of course not a new idea. After all, Darwin’s ideas about evolution were
originally inspired by differences between finches from neighboring islands 3; today, speciation is thought
to require at least a modicum of geographical separation 15. As we will show in this work, spatial structure
can fundamentally impact the evolutionary dynamics in many regards, such as the fate of spontaneous mu-
tations arising during the growth process. In addition, evolution can be shaped by the emergence of niches
or external factors such as flow or spatial heterogeneity that are unique to populations growing in space. De-
veloping a quantitative understanding of how evolutionary dynamics is shaped by spatial growth, flow, and
spatial heterogeneity is a major theme of this thesis.

1.1 Experimental evolution and microbial model systems

If we are to make predictions about evolutionary trajectories or probabilities of specific evolutionary out-
comes, we need repeatable, well-controlled experiments to test them. What requirements should we have of
an ideal model system? Since evolutionary change occurs over the course of many generations, a model or-
ganism should have a short generation time if we are to ever to complete meaningful evolution experiments
in the laboratory in a reasonable time frame. To askquantitative questions about evolution themodel system
should be easy to handle for many generations and populations in parallel. Finally, to explore the space of
possible evolutionary trajectories and measure their relative probabilities, we would like to be able to store
a copy and ”replay the tape” of evolution 16, restarting the evolution experiment at will from earlier time
points. Microbial populations have generation times on the order of 1h, are easily grown in liquid or on
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no mutation
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late mutation
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Figure 1.1: Principle of the Luria-Delbrück experiments: many replicate populaধons are inoculated with single cells,
grown up to some final populaধon size and plated onto agar plates containing phage, where only resistant cells can
grow colonies. The number of colonies follows a very broad probability distribuধon because early mutaধons have
exponenধally more offspring than late ones.

solid media, and survive freezing and storage indefinitely, and have therefore been employed for evolution
experiments in the laboratory for more than 30 years 17,18.

Long before becoming amodel system for studying evolution, microbes have played an important role in
science, medicine, and industry. Their existence and role in disease had been hypothesized in different cul-
tures as early as the 6th century BC, and the use of microbes in primitive forms of biotechnology, such as in
beer and wine brewing 19, bread baking 20, and cheese making 21, predates their discovery by several millenia.
That microbes are also the causative agents of disease was finally shown in the 1880s, and starting with the
discovery of antibiotics in 1929, bacterial infection were beginning to lose much of their scare. Today, that
scare is returning due to the rising incidence of antibiotic-resistant bacterial infections, which present a mas-
sive public health concern 22. In addition, bacteria involved in infections, but also healthy body functions,
evolve within the human host 23–28. Thus, in addition to being a model system for more basic questions
about evolutionary dynamics in general, microbial evolution is an important field of study in its own right.

One of the earliest and simplest quantitative evolution experiments in microbes was conducted by Luria
andDelbrück who in 1943 set out to settle the question whether bacteria develop resistance to phage, a virus
infecting bacteria, when faced with it (acquired immunity), or whether resistance to phage was conferred
through mutations arising spontaneously during each cell division 29. Growing liquid cultures from single
cells and then spreading the resulting culture on plates covered with a phage, they found a huge variance in
the number of colonies on the plates, indicating that resistance was indeed the consequence of spontaneous
mutation (see Fig. 1.1). This large variance can be understood intuitively by considering a growth process
from a single cell without death. For a mutation to be present in more than 1/2 of the final population, it
has to occur during the first cell division (after which there are two cells). To be present in more than 1/4 of
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Figure 1.2: Sketch of a prototypical evoluধon experiment in microbes. Several replicate populaধons are inoculated
from an ancestral clone and passaged over many generaধons. Periodically, the populaধons are assayed for pheno-
types (such as by plaধng on agar, where mutants are shown schemaধcally here as colored colonies) or sequenced.
Thus, different evoluধonary trajectories can be uncovered, such as fixaধon, exধncধon, clonal interference, and
stable coexistence.

the population, the mutationmust occur when there are 4 cells, and so on. Thus, to be at frequency greater
x, a mutation has to occur when there are fewer than 1/x cells, which agrees with the analytical result 30. In
other words, early mutations give rise to many mutants, or large clones, whereas late mutations give rise to
only a few. This heuristic argument suggests that the 1/x distribution should be observed for mutant clone
sizes in any population growing without death. Indeed, it has recently been used to interpret signatures of
(neutral) genetic diversity in cancers 31, although its exact applicability and interpretation is under debate 32–34.
In particular, since tumors grow as compact spatially structured populations, the distribution of clone sizes
may look very different; we return to this question in Chapter 2.

The Luria-Delbrück experiment forms the basis for microbial evolution experiments. Lenski’s Long-
Term Evolution Experiment (LTEE) in E. coli, the longest-running such experiment with more than 60000
generations so far, is essentially a series of Luria-Delbrück experiments 35. The LTEE was designed to limit
ecological interactions, such as through spatial structure or cross-feeding, as best as possible: 12 replicate
population started from a single clone are grown in 10ml of media containing only a low concentration of
glucose in constantly shaken 50ml flasks (see Fig. 1.2 for a schematic). Every day, a small sample of the each
population is transferred into fresh media. Every 500 generations, samples are frozen down, providing a
fossil record of the whole experiment.
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The LTEE has provided a lot of insight into the vast space of possible outcomes during long-term evolu-
tion (see Fig. 1.2). Over time, cell size increased 36, as did mutation rate in some, but not all, populations 37.
Population fitness, defined as the population averaged growth rate relative to the ancestor, increased at first
rapidly due to individual beneficialmutations sweeping to fixation in the population. During the later stages
of the experiment, fitness increase slowed down as the strongest available beneficial mutations already fixed
and novel beneficial mutations arose on different genetic backgrounds simultaneously and competed for
fixation (”clonal interference”) 35,38. More complex evolutionary outcomes emerged in a few of the replicate
populations in the LTEE, such as the stable coexistence of two or more subpopulations 39,40 (Fig. 1.2), or the
ability tometabolize citrate, a carbon source that could not be utilized by the ancestor41. Overall, however, it
remained difficult to track particular mutant lineages unless they were accompanied by an easily observable
phenotypic marker such distinct colony morphologies40. In addition, the LTEE consists of only a dozen
parallel populations, and while it has answered many exploratory questions about what is possible during
long-term evolution, its statistical power is limited.

To quantify evolutionary dynamics and test theoretical predictions with higher throughput and greater
statistical power, many more replicate populations and an easier readout of the experiment are desirable.
Two concurrent technological innovations in the past 10 years have afforded great progress in this regard.

Firstly, the emergence of affordable genome sequencing has allowed for the large scale assessment of ge-
netic diversity and dynamics of mutant clones in vivo and in vitro in populations as diverse as tumors 31,42,43,
influenza44,45, antibiotic-resistant bacteria46,47, andhuman immuneBcells48. In theLTEE,high-throughput
sequencing has allowed for the tracking of individual mutant lineages in the population49, opening a win-
dow into the black box of genotypic evolution. Through genetic barcoding, whereby a clonal lineage can be
”tagged”with a short identifying sequence, it has become possible to track hundreds of thousands of lineages
at frequencies far belowwhat is accessible through whole genome sequencing, allowing an even deeper look
into evolutionary dynamics 50,51.

Secondly, advances in liquid handling through (semi-)automatic pipetting robots have enabled the par-
allel handling and real-time observation of hundreds of replicate populations in a 96-well plate format in
microbes as diverse as Salmonella enterica 52, Caulobacter crescentॿ 53, and Saccharomycॽ cerevisiae (budding
yeast) 54–57. This way, the probabilities of different evolutionary trajectories in the face of a challenge chosen
by the experimenter, such as increasing antibiotic or salt concentration 58–60, can be quantified and used to
inform and test mathematical models of evolutionary dynamics61. Massive parallelization also allows for the
comparison of evolutionary dynamics in different scenarios, such as with or without sex62,63 and population
subdivision64, or at different population sizes 55 or ploidy (copy number of chromosomes)65,66. Budding
yeast has emerged as a particularly useful model system for this, since it exists as both haploid and diploid,
and it can reproduce both sexually or asexually.
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Evolution experiments in microbial liquid culture have dramatically furthered our understanding of the
evolutionary dynamics at the genomic level and how it depends on the spectrum of available mutations
and the genotypes they arise on. The statistical power that comes from high-throughput experiments has
allowed for the detailed testing of evolutionary theory. However, in order to understand genome evolution,
evolutionary studies are often performed in deliberately simplified model environments where ecological
interactions are reduced as much as possible. In the next section, we discuss how a simple ecological feature,
the spatial structure of the population, can be studied in microbial populations.

1.2 Space – the final frontier (in evolution)

Evolution experiments in microbial populations are often performed in liquid culture without any spatial
structure. By contrast, microbial populations in the wild often live attached to surfaces or liquid-air inter-
faces in so-called biofilms67,68. Biofilms are densely populated microbial communities, often encased in a
matrix of extracellular polymeric substances (EPS), that can colonize almost any surface. As a result of their
spatial structure, life in biofilms is characterized by spatial and temporal variations and strong gradients of,
e.g., nutrients and oxygen69. Biofilms fulfill important roles in many ecosystems such as intertidal marine
systems70 or soil71, but they are also involved in a number ofmedical and technological contexts, such as den-
tal plaque72, antibiotic-resistant infections73, and the clogging of medical equipment and industrial pipes74.
Given the ubiquity inNature and the practical relevance ofmicrobial biofilms, it is perhaps counter-intuitive
thatmicrobial evolution experiments are typically performed in populations of bacteria and yeast growing in
liquid culture, shaken or not, and that there are surprisingly few experimental evolution studies in biofilms75.
While it is convenient to focus on planktonic populations from an experimenter’s point of view because they
are arguably simpler and easier to handle than biofilms, it also means there remain many open questions re-
garding the interplay of ecology and evolution in biofilms: How do gradients of nutrients, oxygen, light,
and other factors that are direct consequences to their spatial organization influence their evolutionary dy-
namics? What is the effect of spatial structure on the evolution andmaintenance of cooperation and the fate
of spontaneous mutations? How do multiple species assemble and interact within a biofilm76? And since
cells are relatively closely packed in biofilms, what role do mechanical interactions play during all this77? In
addition to the practical importance of biofilms, answers to these questions have broader relevance because
biofilms can also serve as model systems for studying the interplay between evolution and ecology in other
spatially organized populations, such as tumors78,79 and invasive species undergoing range expansions 80,81.

Some of the earliest studies of biofilm evolution were performed with P. fluorescens growing in unshaken
flasks 82. An initially clonal population reproducibly diversifies into three stably coexisting variants, named
smooth (S),wrinkly spreader (WS) and fuzzy spreader (FS) for their colonymorphologywhengrownon agar
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Figure 1.3: Common experimental setup for studying evoluধon in biofilms. a) stable microcosm without mixing,
nutrients well-mixed; b) growth on agar plates, potenধally allowing for swimming moধlity (sođ agar), nutrient from
below; c) submerged biofilm, nutrient from above; d) growth inmicrofluidic tubeswith flow, constant nutrient inflow;
e) bead transfer: beads contain nutrient, daily transfer of exhausted beads into fresh media. Each experimental
setup allows the experimenter to probe different ecological aspects in biofilms, such as flow, moধlity, and nutrient
or oxygen gradients.

plates. Importantly, each variant occupies a unique niche afforded by spatial structure: S inhabits the liquid
phase, while WS occupies the liquid air interface and FS grows colonies at the bottom of the microcosm.
If instead the flasks are shaken, the population does not diversify. Rapid diversification has been shown to
be a general consequence of the niches created by the inherent heterogeneity of nutrients, oxygen, etc. in
biofilms 83–87. Thus, evolutionary dynamics can strongly depend on the degree of spatial structure of the
population.

Other model systems, such as biofilms grown on beads, on agar plates, or in microfluidic devices (see
Fig. 1.3) have illuminated how environmental factors that are especially prominent in biofilms mediate eco-
logical interactions and impact evolutionary dynamics. For instance, cell adhesion, to other cells and to the
substrate, andmotility can create selection pressures that are unique to spatially structured populations and
play important roles in cross-feeding, public goods exchange and the exclusion of ”cheater” genotypes 87–92,
especially in the presence of flow90,93. Similarly, the emergence of high levels of antibiotic resistance is dra-
matically sped up in antibiotic gradients through the presence of spatial regions of intermediate concentra-
tion94,95.

In this work, we focus on microbial biofilms, or ”colonies”, grown on hard agar plates, where even cells
possessing the molecular machinery needed for motility in liquid, such as flagella, cannot swim. Since cell
motion and thus colony expansion on hard agar is only possible through cell growth and division and me-
chanically pushing one’s neighbors across the agar surface, the effects of spatial structure on evolutionary
dynamics are particularly strong in microbial colonies. This allows us to unravel the underlying physical
principles of evolution in populations with strong spatial structure that can then be applied to understand
evolutionary dynamics in more complex scenarios.

One such principle is that, since diffusion is the only driving force of chemical exchange on hard agar
plates, there is a strong nutrient gradient across the edge of the colony. Consequently, growth is localized to
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Figure 1.4: Examples ofmicrobial colonies growth from a droplet containing amixture of yellow and blue fluorescent
cells. (a) Under white light illuminaধon, the colony has liħle discernible structure. (b) Viewing the same colony under
fluorescent light reveals that the populaধon has visibly demixed from amixed inoculum into clonal sectors composed
enধrely of one of the two strains. The shape and number of sectors depends on the microbial species (a&b, E. coli
K-12, fluorescently labeled using plasmids; c, S. cerevisiae W303, labeled by chromosomal integraধon of YFP and
RFP (false-colored blue)). The scale bar is 2mm.

a thin band of cells, called the growth layer, around the perimeter of the colony where the nutrient concen-
tration is high enough to sustain growth. Cells inside the growth layer divide and thus drive the expansion of
the colony, whereas cells in the bulk of the population, outside the growth layer, lack nutrients to grow and
enter a quiescent state. Because the expansion of the population in a colony is driven by a small number of
cells at the front of the population,microbial colonies have also been used as amodel system formacroscopic
range expansions, such as the human migration out of Africa96–99 or the range expansions of plants 100,101,
beetles 102,103, voles 104, butterflies 105, and toads 106,107, in which a small subpopulation of ”founders” at the
edge of the species range first colonize new territory.

The small population size of founders implies that random fluctuations in offspring numbers can have a
large effect, i.e., genetic drift is strong at the front of these populations. This enables neutral and even slightly
deleterious alleles to establish at the front and ”surf” on the expansion wave 108. In microbial colonies, allele
surfing has been demonstrated experimentally, as follows80. Two microbial strains, isogenic except for the
expression of different fluorescent proteins, are mixed in a test tube and inoculated as a small droplet on an
agar plate. The microbes first concentrate at the rim of the droplet like a coffee stain 109. Initially, all cells
grow, until cells far from the front deplete their locally available nutrients and the growth layer establishes.
After a few days of growth, the droplet has grown into a roughly circular colony, featureless when viewed
under white light. When illuminated under a fluorescence microscope, however, one observes that the ini-
tially mixed droplet has demixed into a small number of clearly delineated sectors of either color (Fig. 1.4).
Mixing the strains at a skewed ratio reveals that each sector is clonal, i.e., it emanates from a single cell in the
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inoculation droplet. Fig. 1.4 also highlights an important experimental advantage of microbial colonies over
liquid cultures: the fact that we can employ fluorescence microscopy to resolve the whole spatio-temporal
dynamics of individual clones in colonies. Thus, by working with fluorescently marked variants, we can ex-
tract the same information about their lineage dynamics from a single fluorescence micrograph that would
require whole-genome or barcode sequencing and subsequent lineage reconstruction atmany different time
points in well-mixed experiments.

The number of sectors in the colonies in Fig. 1.4 is much smaller than the number of cells in the ancestral
population, which means that most cells do not form a sector. Success and failure to form a sector in a
microbial colony thus serve as operational equivalents of extinction and fixation in well-mixed populations.
However, managing to establish a clonal sector is not equivalent to fixation, and failure to establish a sector
is not equivalent to extinction. This is because, while a clone failing to form a sector may have lost contact
to the growing front, it can start expanding again if it were randomly sampled from the population and
transferred to an empty plate. Thus, evolutionary success in colonies is perhaps best defined as the ”chance
to be sampled”, which we can plausibly assume is proportional to a clone’s frequency in the population.
Since sectoring clones are much larger than clones that do not form sectors, the establishment of sectors is
integral to a lineage’s evolutionary success defined in this way.

As seen in Fig. 1.4, the number of sectors can depend on the microbial species: colonies of the rod-like
bacterium E. coli and the round yeast S. cerevisiae exhibit quite different sectoring patterns, despite iden-
tical experimental procedure. This suggests that evolutionary dynamics in microbial colonies is influenced
by microscopic details of the growth process. In particular, the morphology of the colony front dictates
where cells proliferate and how they move during colony growth. Thus, whereas the dynamics of a clonal
lineage in a well-mixed population depends only on its fitness advantage and the strength of genetic drift
(via the population size), the future of a lineage in a colony depends also on its location within the colony
and how the colony grows around it 110, A quantitative understanding of lineage dynamics in colonies and
their dependence on microscopic details is lacking: How do the shape and roughness of the front influence
the appearance and number of sectors, and how do both cell-scale properties such as cell shape, adhesion
properties, or growth rate influence colony morphology and thus evolutionary dynamics? What are the ef-
fects on colony growth patterns of environmental parameters like temperature, chemical composition, and
physical properties of the growth medium? How does the probability of an individual mutant cell to form
a sector depend on its fitness relative to its neighbors?

In order to make progress towards of a predictive understanding of evolutionary dynamics in microbial
colonies, we will investigate some of these questions in the following chapters. Our experiments are sup-
ported by simulations and theory that guide the interpretation of experimental results. We employ two
different classes of mathematical models that we introduce in the following two sections: firstly, we describe
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simple models for the growth and emergent shape of microbial colonies, and secondly, we review models
of evolutionary dynamics, first in well-mixed populations as a null model, and then in spatially expanding
populations.

1.3 Growth and shape of microbial colonies

Themorphology of microbial colonies has been an important identifying feature since the early beginnings
of microbiology 113,114, and how colony patterns form has intrigued generations of scientists 115. As seen in
Fig. 1.5, depending on the species and environmental conditions, colonies can be smooth (S. cerevisiae, panel
a), rough (E. coli, b), or have amore complexmorphology with wrinkles, branches, vortices, or rings (panels
c-e). Even small changes in genotype, nutrient or agar concentration can have a dramatic impact on colony
morphology (panels d&e). Mathematical models of growing colonies abound; in the following, we concen-
trate on phenomenological models for compact and roughly circular colonies such as those in Fig. 1.5a&b,
and refer to the literature for models of more complex morphologies 111,116–120.

1.3.1 Traveling wave model of colony growth

The simplest mathematical model for the spread of a population in space is the Fisher wave. The popula-
tion is described by the number n(x, t) of individuals in a series of subpopulations called demes, invading
previously unoccupied territory. Individuals proliferate at a rate depending on the local density, and mi-
grate between neighboring demes. In the continuum limit, the time evolution of n(x, t) is described by the
Fisher-Kolmogorov-Petrovsky-Piscounov (FKPP) equation 121–123

∂tn(x, t) = D∂2xn+ k0nf(n), (1.1)

where D parametrizes the strength of (short-ranged) migration and k0 is the per-capita growth rate. The
function f(n) summarized the effects of ecology such as nutrient limitation. For instance, the population
cannot grow indefinitely; growth halts when the density reaches the carrying capacityK , which corresponds
to the maximal density that is sustainable with the given resources. The most common choice for f(n) sat-
isfying this criterion is f(n) = (1− n/K) 121. The resulting wave is called a ”pulled” wave because a small
number of individuals at the tip of the wave effectively create the forwards motion of the wave. Another
prominent choice, f(n) = (1−n/K)(1+Bn/K), describes scenarios where the population needs amin-
imum size to strive, a situation dubbed the Allee effect 124,125. Such scenarios can arise for number of reasons,
such as increased mating success or cooperative hunting or protection. Since the growth rate is maximal at
intermediate population densities (see Fig. 1.6), the resulting wave is called a ”pushed” wave because individ-
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Figure 1.5: Examples of different colony morphologies. (a) Budding yeast S. cerevisiae on YPD grown at 30◦C for 4
days has a smoothmorphology. (b) E. coli colonies of strain REL606 grown on LB at 37◦C for 3 days are characterized
by a rough front. (c) Colonies ofB. subࣅlis strainNCIB 3610 grown onMsgg at 30◦ for 3 days exhibitswrinkles. Image
taken by QinQin Yu. Scale bars in panels a-c are 2mm. (d) ”Phase” diagram for the diversity of colony morphologies
of a wild-type strain of B. subࣅlis at 35◦C on media containing different amounts of agar and nutrients. Colonies
such as the one shown in panel c) correspond to type B. Reprinted with permission from Ref. 111. (e) Colonies of
Bacillus mycoideswild type (center colony) and mutants (surrounding colonies) grown on 1.5% agar medium for two
days at 25◦C show that very closely related organisms can have vastly different colony morphologies. Reprinted
from Ref. 112, originally published by BioMed Central.
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Figure 1.6: Numerical soluধons to the FKPP equaধon without (a) and with (b) the Allee effect. Traces of ρ(x, t)
are shown for constant ধme increments. The populaধon expands as a traveling wave with a transiধon region of
width λ. For B = 0 (a, no Allee effect), λ ∼

√
D/k0, while a strong Allee effect (b, B = 5) creates steeper

wave profiles. (c) Without an Allee effect (black lines), the maximal per-capita growth rate is reached at when the
populaধon density (dots) is low. By contrast, the maximal growth rate is highest intermediate populaধon density
forB > 0 (red lines).

uals at the tip of the wave are pushed by the population towards the bulk of the population. In principle,
f(n) can also incorporate the effect of heterogeneous environments, such as nutrient or antibiotic gradients,
on the expansion of the population. This is discussed in more detail in Chapter 6.

Numerical solutions to eq. (1.1) for both pulled and pushed waves, presented in Fig. 1.6, show that after a
short initial transient, the front of the population expands away from the initial habitat at a constant speed v,
with a population profile transitioning from the maximum density to zero over a relatively short transient
region of width λ ∼

√
D/k0. To find the speed of the expansion analytically, we seek traveling wave

solutions to eq. (1.1) of the form n(x, t) = n(z = x − vt). In the co-moving frame, n(z) is then the
solution to

0 = D∂2zn+ v∂zn+ k0n(1− n/K). (1.2)

At the tip of the traveling population wave, where the first pioneers migrate into virgin territory, the pop-
ulation density will be low, such that the nonlinearity in the growth term can be neglected. The density of
the tip of the wave front thus falls off exponentially over the distance λ, whence the wave speed v for pulled
waves can be found to be vF = 2

√
k0D for biologically relevant initial conditions. The wave speed of

pushed waves is larger than vF and depends on the strength of cooperationB 126.
The spread of the FKPPwave is driven by pioneers at the tip of the wave entering previously uninhabited

territory. Eq. (1.1) is completely deterministic, even for very small ρ, but when and where those pioneers
first arrive is a stochastic process, and thus at low density, the discreteness of individuals becomes important.
The arguably simplest way to incorporate this discreteness into the Fisher wave framework is to introduce
a phenomenological cut-off in the growth rate when the population density falls below a cut-off density
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ϵ 127. A more formal way to model the fluctuations at the tip of the wave consists in adding to eq. 1.1 a noise
term proportional to

√
n(x, t)ξ(t) with Brownian noise ξ(t), resulting in the stochastic sFKPP equation.

The square-root dependence of the strength of fluctuations on the local density n is a result of the Binomial
sampling of the current population for the next generation, withmean and variance proportional ton(x, t)
when the density is low 128. Both the phenomenological theory and the stochastic FKPP equation predict a
reduction in the front speed of pulled waves that remains sizable even for relatively large carrying capacity,
in excellent agreement with simulations 127,128. A strong Allee effect reduces the importance of small number
fluctuations at lowpopulation density because the expansion is driven by growth at intermediate population
density 129.

1.3.2 Beyond one-dimensional Fisher waves

The FKPP equation 1.1 can easily be extended to higher dimensions, making it an attractive null model for
the spread of microbial colonies 130. Similarly to the one-dimensional case, the radially symmetric FKPP
equation in two dimensions predicts the wave-like spread of the population with an asymptotic wave speed
vF and an active zone of width λ 123. In reality, microbial colonies cannot be accurately described as Fisher
waves. Firstly, as we show in Appendix A, the colony expansion speed is not generally proportional to the
square root of the growth rate. In addition, there is no reason to assume that individual cells at the front are
free tomigrate; instead, theirmotion is generated in large part by the forces created by their neighbors which
push them forward. Thus, the diffusion ”constant” should depend on the local density, especially in organ-
isms producing a lubricating film 116. Finally, and most importantly, the population predicted by the FKPP
equation is essentially a smooth circular disk, whereas microbial colonies are never perfectly round, as seen
in Fig. 1.5. Even colonies of budding yeast (Fig. 1.5a), which seem smooth to the naked eye, are characterized
by microscopic bulges spanning dozens of cells, as we will show in Chapters 3 and 4.

More realistic models for colony growth can be constructed by including nonlinear diffusion and an ex-
plicit computation of the underlying nutrient concentration field ρ(x, t) into a set of partial differential
equations 116,131 of the general form

∂tn(x, t) = ∂x [Dn(n)∂xn] + k0fρ(ρ)n, (1.3)

∂tρ(x, t) = Dρ∂
2
xρ− fρ(ρ)n, (1.4)

whereDn(n) andDρ are (non-linear) diffusion coefficients for cells and nutrients, respectively, and fρ(ρ)
encapsulates the nutrient uptake efficiency of the cells. Non-linear reaction-diffusion equations of this type
produce a rich phenomenology of colony morphologies, including branches and concentric ring structures
observed in experiments, but they can typically onlybe solvednumerically 116. Thankfully, to study the effects
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of colony growth patterns on evolutionary dynamics, we do not need a full description of the whole bulk of
the population; a more realistic model for the rough front of colonies suffices.

1.3.3 Models of rough interfaces

The mathematical description of rough interfaces has a long history in statistical mechanics 132. What we
mean by ”rough” is that the interfaces we study are subject of stochastic fluctuations that shape how the
interface evolves over time. Examples of rough fronts in this sense include the interface of a fluid pushed
through porous media, the fronts of forest fires and plant invasions, the edges of magnetic domains, and,
of course, microbial colonies 132. The goal is to characterize the interface in terms of a set of characteristic
exponents that are universal, i.e., do not depend on microscopic details, for a large class of interfaces; two
interfaces with the same characteristic exponents are said to be in the same universality class, implying that
they share some fundamental properties such as certain symmetries. In the case of microbial colonies, the
hope is that we can distill the expansion of a colony into a set of growth rules that give rise to a set of ex-
ponents that can be measured in experiments. To do this, we first discuss how to describe rough interfaces
mathematically before reviewing simple evolution equations of rough interfaces.

1.3.4 Scaling concepts

It is convenient to study the front of a colony growing in a box; the characteristic exponents extend to radially
growing colonies. Through cell division and cell-cell pushing, the colony will expand with an average speed
v to an average ”height” (radius)h(t) = vt. We can characterize the roughness of the colony by quantifying
the deviations from a flat front, i.e., by the variancew2(L, t) of the interface height around its mean

w2(L, t) =
1

L

L∫
0

[
h(x, t)− h(t)

]2 dx. (1.5)

In Fig. 1.7, we simulate colony growth using a particularly simple algorithmwhere we will fill a box of width
L by dropping in particles at random positions; new particles then ”diffuse” around the neighborhood of
where they first landed to find a local minimum. This algorithm, called random deposition with surface
relaxation 133, generates a rough interface whose width increases initially as

w(L, t) ∼ tβ (1.6)

until a characteristic time tx. The exponent β is called the growth exponent; it is the first in series of several
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Figure 1.7: Rescaling procedure. (a) Average height over ধme from simulaধons of random deposiধon with surface
relaxaধon performed for different system sizesL (L = 10 . . . 500 from red to blue, see (c) for legend). (b) Rescaling
the saturaধonwidth byLα (α = 1/2 in this example, only curves that showed clear saturaধon in (a) were included).
(c) Rescaling ধme by Lz collapses all data on a master curve given by eq. (1.8).

exponents we will encounter. Running the simulation for times much longer than tx, the interface width
eventually saturates at a value that depends on the box width as

wsat(L) ∼ Lα, (1.7)

whereα is called the roughness exponent. This saturation canbeunderstood as follows: Initially, there areno
correlations between different position, but as the box begins to fill and new particles organize themselves
on an already roughened interface, the configuration of the interface itself induces correlations between
different parts of the interface. We call the distance ℓ⊥ over which one region of the interface can affect
incoming particles the correlation length. ℓ⊥ grows over time but cannot grow larger than the box width
L. Hence, we can identify the crossover time tx as the time when the correlations along the interface have
reached system sizeL. This defines the dynamic exponent z through tx ∼ Lz . Since tx is the time at which
correlations span the whole system and therefore the interface width has saturated, it follows that tβx ∼ Lα.
Hence, the exponents z, α, and β are coupled through the relation z = α

β . The dynamical exponent z
allows us to describe the effective average ”speed” at which correlations spread laterally along the interface:
Thus, in a rough microbial colony, two points along the front a distance ℓ⊥ apart can be correlated if the
colony has grown at least a distance ℓ∥ ∼ ℓ

1/z
⊥ radially.

Using the exponents α and z, we can write the interface width in its scaling form 134

w(L, t) = Lαf

(
t

Lz

)
, (1.8)
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where the scaling function f(u) obeys

f(u) ∝

uβ, u≪ 1,

1, u≫ 1.
(1.9)

Eq. (1.8) can serve as a recipe for estimating the exponents α and z, as demonstrated in Fig. 1.7. First, we
measure the roughness as function of time in systems of different size. According to eq.s (1.6) and (1.7), the
initial increase in roughness will be independent of the system size, until it saturates at different valueswsat.
Thus, we can first normalize the time-dependent roughness by Lα until the saturated widths overlap and
then rescale time withLz until all curves fall onto a master curve, given by eq.(1.8).

The exponentα has beenmeasured directly formicrobial colonies; across severalmicrobial species, values
around α ≈ 0.8 ± 0.1 have been measured 135–137 (see also Chapter 5), although α ≈ 0.5 has also been
observed 136 (see also Chapter 4). No values for β have been reported in the literature for microbial colonies.
Perhaps the closest system in which the dynamic scaling of interfaces has been investigated are confluent
monolayers of epithelial cells, where α ≈ 0.75 and either β ≈ 0.33 or β ≈ 0.7were found, depending on
the growth media 138–141. How can we explain these exponents?

1.3.5 Edwards-Wilkinson equation

The simplest model involving stochastic growth and the effect of local diffusion, e.g., through cells division
and motion of cells along the colony front, can be written as

∂th = v + ν∂2xh+ η(x, t). (1.10)

Here, ν is a parameter specifying the strength of the effective surface tension generated by random cell mo-
tion along the interface, and η encapsulates the noise associated with the growth process; we take it to be
Gaussian, uncorrelated noise. Eq. (1.10) was first proposed by Edwards and Wilkinson 142 and can be more
generally derived by a careful consideration of the symmetries of the system 132. Since it is linear, analyti-
cal solutions for the roughness 142 and the full distribution of the interface height around its mean can be
computed through Fourier transform techniques 143. To compute the values of the exponents α and z, it
is enough to leverage eq. (1.8) which implies that if we rescale space as x → bx, the width as w → bαw,
and time as t → bzt, we should obtain the same differential equation for the rescaled interface. Applied to
eq. (1.10), this gives

∂th = νbz−2∂2xh+ b−1/2+z/2−αη, (1.11)
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Figure 1.8: (a) Average height over ধme from Eden model simulaধons for different system sizesL (L = 50 . . . 750
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model is in the KPZ universality class.

Enforcing invariance under this transformation we obtain the exponents

α =
1

2
, β =

1

4
, z = 2. (1.12)

These exponent define the EW universality class. The exponent α impliesw2
sat ∼ L, i.e., we can regard the

saturated interface as a standard diffusive random walk.

1.3.6 Eden model

The EWexponents can readily be observed in simulations such as ballistic depositionwith surface relaxation
(Fig. 1.7), but they differ strongly from experimental values of α and z measured in microbial colonies and
other systems. But perhaps this difference is not unexpected; after all, colonies do not grow by deposition
and diffusion of cells, but through cell division at the front. Therefore, a more realistic model is one where
a population grows by division of any cell that is not fully surrounded by other cells. This model can most
easily be simulated on a square lattice, where each lattice site is either filled or empty. Each filled site with
empty neighbors has equal probability of being chosen to ”reproduce”, i.e., to fill one of its empty neighbors,
chosen at random *. This algorithm is called the Eden model 144, and we will use various extensions of this
model repeatedly in the following chapters.

The most important difference between the Eden model and random deposition with diffusion is that

*For simulations, it is convenient to keep a list of all sites that have empty neighbors and delete sites off this list if
they lose contactwith the front. For very large systems, even this simplification becomes time-consuming, andmemory
can become a constraint because the whole lattice is kept in memory at all time. As an alternative, one may only keep
the front in memory, including the possible neighbors for each site in the list; after every simulation step, all sites that
lost their last empty neighbor in the last step are written into a file.
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new particles in the Eden model are added locally normal to the front, whereas in the random deposition
with surface relaxationmodel new particles are always added from above. It is perhaps not so surprising that
the Eden model gives exponents that are different from those predicted by the EW equation with α ≈ 0.5,
β ≈ 0.33, and z ≈ 1.5 (see Fig. 1.8).

1.3.7 KPZ equation

To explain these exponents, we must extend our model to include growth normal to the interface. Geomet-
rically, normal growth at an angle ∂xh, projected onto the direction of propagation, yields a contribution to
the front speed proportional to

(
1 + |∂xh|2

)−1/2. Expanding to first order gives F (∂xh) ∼ (∂xh)
2, and

we arrive at the so-called Kardar-Parisi-Zhang (KPZ) equation

∂th = v +
λ

2
(∂xh)

2 + ν∂2xh+
√
Dη. (1.13)

Because of the nonlinearity, the KPZ equation is considerable more difficult to solve than eq. (1.10). Its full
solutionhas only recently been found 145, althoughmany analytical resultswere already available before, such
as for the distribution of the height around themean 146 or the distribution of the maximum height 147. The
characteristic exponents

α =
1

2
, β =

1

3
, z =

3

2
(1.14)

can be found through a number of ways, including scaling arguments and renormalization group calcula-
tions 132,148,149.

1.3.8 Experimental observations & deviations from KPZ

The KPZ exponents are found in a number of different simulation schemes, including the Eden model 144,
andhave beenobserved experimentally in the slow combustionof paper 150–152, progressing convection fronts
in liquid crystals 153,154, the forced imbibition of liquid in porous media for strong forcing 155, the rough-
ness of ”coffee-stain effect” depositions of spheres through evaporation 109, and the fronts of some bacterial
colonies 136,156. By contrast, many other experiments have obtained exponents that are inconsistent with the
KPZ universality class and typically larger than α = 1/2 and β = 1/3. Examples include epithelial cell
monolayers 138–141, coffee-stains of non-spherical objects 109, liquid imbibition into porous media 155,157,158, in-
vasionof clover into rye 159, wetting 160–162 orburning 163 ofpaper, flux fronts in superconducting thin films 164,
two-phase viscous flow in porous media 165, and, again, bacterial colonies 135–137 (see also Chapter 5).

If the membership in a universality class ought to be independent of microscopic details, then how can
we explain these deviations from KPZ dynamics? Several extensions of the KPZ equation have been sug-
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Figure 1.9: (a) Average height over ধme from Eden model simulaধons with obstacles for different system sizes L
(L = 50 . . . 750 from red to blue, see (c) for legend), close to the criধcal obstacle density ρc(L) for eachL. Ađer
an iniধal transient displaying KPZ scaling, another exponent β ≈ 0.78 is found. (b) Rescaling the saturaধon width
byLα withα = 0.83. (c) Rescaling ধme byLz with z = 1.05 collapses all data on a master curve. The exponents
α = 0.83, β = 0.78, z = 1.05 are consistent with the quenched Edwards-Wilkinson (qEW) universality class.

gested to explain these differences. For instance, substituting the Gaussian noise η(x, t) in eq. (1.13) by a
spatio-temporally correlated noise gives exponents that exceed the KPZ predicted values 132,166. Alternatively,
instead of time-dependent (annealed) noise η(x, t), we can consider quenched noise η(x, h(x, t)) which
depends only on the interface position h(x, t) and not explicitly on time. The quenched noise represents
disorder in the environment that the interface grows in. This quenched disorder can be included in the KPZ
equation as

∂th = F +
λ

2
(∂xh)

2 + ν∂2xh+
√
Dη(x, h(x, t)), (1.15)

where F can be understood as a pushing force driving the interface motion. We will study quenched noise
and its effects on evolutionary dynamics in microbial colonies in great detail in Chapter 5. Here, we describe
only the basic phenomenology of interfaces in disordered environments.

An important consequence of quenched noise is the emergence of a phase transition depending onF . If
F is smaller than a characteristic force Fc, the interface becomes stationary (”pinned”). On the other hand,
if F ≫ Fc the interface moves essentially unhindered through the environment with velocity v. In the
latter case, we can simply write η(x, h(x, t)) → η(x, h(x, t)− vt) ∼ η(x, t) to recover KPZ dynamics for
F ≫ Fc.

Two new universality classes emerge for interfaces with quenched noise, with characteristic exponents
summarized in Table 1.1, depending on whether the nonlinearity dominates (λ→ ∞, quenched KPZ class)
or vanishes (λ → 0, quenched EW class) 167 as F approaches Fc. The corresponding exponents are sum-
marized in Table 1.1; importantly, the predicted exponents are higher than in the KPZ universality class. As
an example, anticipating a result from Chapter 5, Fig. 1.9 shows the result of colonies grown with the Eden
model in a disordered environment created by making some lattice sites unavailable for growth. The result-
ing colony interfaces fall in the quenched EW universality class.
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Exponent α β z Reference

EW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1/2 1/4 2 142
KPZ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1/2 1/3 3/2 148
quenched EW

pinned (F < Fc) . . . . . . . . . . . . . . . . . 0.92 0.88 1.07 167, 168
critical (F → F+

c ) . . . . . . . . . . . . . . . . 0.92 0.87 1.07 167, 168
moving (F ≫ Fc or l ≫ ξ) . . . . . . . . 1/2 1/4 2 167, 168

quenched KPZ
pinned (F < Fc) . . . . . . . . . . . . . . . . . 0.63 0.63 1 161, 168
critical (F → F+

c ) . . . . . . . . . . . . . . . . 0.75 0.75 1 168
moving (F ≫ Fc or l ≫ ξ) . . . . . . . . 1/2 1/3 3/2 168

Table 1.1: A selecধon of characterisধc exponents for some universality classes. In the universality classes with
quenched noise, ξ ∼ f−ν is the correlaধon length, with νqEW ≈ 1.75 and νqKPZ ≈ 1.33, and f = |F −Fc|
is the reduced force.

Overall, not all microbial colonies fall into the same universality class, and their front roughness statistics
may depends on several different factors. Temporal correlation created by a minimum duration of the cell
cycle may lead to higher exponents than expected fromKPZ. In addition, if cells do not separate completely
after cell division, this can lead to a phenomenon called chaining where cells grow in the same direction
for several generations; this could plausibly introduce long-range spatial correlations. Indeed, colony fronts
of B. subtilॾ were consistent with KPZ statistics if cells were septating (separating after division) properly,
but exhibited a larger roughness exponent α ≈ 0.8 for chaining mutants 136. Alternatively, some microbial
colonies may fall into a quenched universality class, because the motion of individual bacteria in the colony
may be hindered by other cells adherent to the agar surface or each other, or because the surface itself exhibits
microscopic roughness which can function as quenched noise; this may explain why some colonies exhibit
KPZ statistics on some length scales but not others (see Chapters 4 and 6).

A quantitative understanding of colony growth is the first step to modeling evolutionary dynamics in
microbial colonies. Before introducing existing models of evolution in expanding colonies, it is instructive
to briefly discuss a basic model of population genetics in well-mixed populations.
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1.4 Modeling evolutionary dynamics

1.4.1 Evolutionary dynamics in well-mixed populations

A first step to understanding evolutionary dynamics in microbial evolution experiments like the LTEE is to
track the dynamics of mutations in the population. In the LTEE, on averageN ≈ 106 cells are transferred
daily into fresh media where they grow exponentially for∆t ≈ 7 generations before exhausting their nutri-
ents. Consider the case where the population is composed of two alleles, the wild type and a mutant type
with selective advantage s, defined by its growth that is (1+s) times the wild type’s, at relative frequency f in
the population. The mutant’s higher growth rate translates to an average increase in frequency during the
growth process by a factor

f2(1+s)∆t

f2(1+s)∆t + (1− f)2∆t
. (1.16)

The composition of the population after each transfer can be modeled as a Binomial sample of the popula-
tion of the previous growth cycle. If f changes only little from one transfer to the next, we can then describe
the evolution of the frequency f by

∂tf = sf(1− f) +

√
f(1− f)

N
η(t), (1.17)

where η(t) is standard Brownian noise. Since eq. (1.17) is an ordinary stochastic differential equation, it can
be cast into a partial differential (Fokker-Planck) equation for the probability P (f, t|f0, t0)

∂P

∂t
=

∂2

∂f2

(
f(1− f)

2N
P

)
+

∂

∂f
(sf(1− f)P ) . (1.18)

This equation is well-known in population genetics as the continuum limit (with slight variations in the def-
inition ofN ) of various classical discrete processes like the Wright-Fisher model or the Moran model 169,170.

Eq. (1.18) can be used to find of the lineage dynamics of a spontaneous mutation, conferring a fitness
effect s to a single mutant individual, entering the population at frequency f0 = 1/N . Its frequency f will
fluctuate in the population until one of two things happens: either the mutant lineage goes extinct (f = 0),
or it fixes (f = 1). The probability u = P (1, t → ∞|1/N, t0) that the mutant lineage ultimately fixes in
the population determines the rate at which mutations accumulate in the population and is therefore a key
quantity in population genetics. To compute u, we can make use of the Kolmogoroff backward equation
for P (f, t|f0, t0) corresponding to eq. (1.18), which conditions on the initial condition f0(t0) instead of
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the final condition f(t), given by

∂P

∂t0
=
f0(1− f0)

2N

∂2P

∂f20
+ sf0(1− f0)

∂P

∂f0
. (1.19)

Since the population size is constant and the population homogeneous until a mutation occurs, the time
when a single mutation entered the population should not impact its probability of fixation. Hence, we
seek a solutionP (1, t→ ∞|f0) independent of t0 (and t). Setting ∂t0P = 0 in eq. (1.19) and solving with
the boundary conditions p(1, t → ∞|0) = 0 (no fixation without mutants) and p(1, t → ∞|1) = 1

(guaranteed fixation of mutant is already fixed) gives

u =
1− e−2Nsf0

1− e−2Ns
. (1.20)

Without a fitness difference, the fixation probability u = f0, as one would expect by symmetry. For small s,
we recover the result quoted in the introduction 171

u = 2s. (1.21)

Our simple model describes only the dynamics of a single mutation with a simple fitness effect, and the
generalization to many mutations is not straightforward. The naive hope that multiple mutation will have
the same fitness effect and will fluctuate independently in the population is not generally valid 17. Instead,
microbial evolution experiments over the past 30 years have uncovered highly complex dynamics ofmultiple
coexisting lineages that have inspired a large body of theoretical studies. Firstly, each mutation generally has
an effect sampled from a distribution of fitness effects (DFE), the shape of which has been studied theoreti-
cally 172,173 and inferred experimentally 51,55,174. Secondly, the effect of a given mutation may depend not only
on external parameters such as the available nutrients or the ambient temperature, but also on the genetic
background it arises on (epistasॾ), its frequency in the population (frequency-dependent selection), or the
presence of other genotypes in the population 17. Mutations also need not have a direct fitness effect, but
can instead increase or decrease the mutation rate 37,49,175 or facilitate future evolutionary trajectories41,176.
Finally, manymutant lineages exist contemporaneously in large microbial populations, andmutations have
to arise on lineages already characterized by a high fitness in order to be successful, an effect called clonal
interference (Fig. 1.2) 177. This effect also allows neutral mutations to fix not through direct selection, but by
”hitchhiking” on a background that is on the way to fixation 178. Here, we ignore these complications and
instead aim to understand the evolutionary dynamics of single mutations with a fitness effect in spatially
structured populations.
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1.4.2 Evolutionary dynamics in spatially structured populations

Stochastic FKPP equation

In section 1.3.1, we used the Fisher wave as amodel for the spatial expansion of amicrobial colony. Originally,
however, Fisher had a different scenario inmind: hewasmodeling the spread of a beneficial allelewith fitness
advantage s through an initially homogeneous one-dimensional population 121. The time evolution of local
frequency f(x, t) of the beneficial allele in the population is given by

∂tf = D∂2xf + sf(1− f) + b
√
f(1− f)ξ(t), (1.22)

wherewehave added anoise termwith strength b encapsulating genetic drift 179. Alternatively, eq. (1.22) arises
as a generalization of eq. (1.17), which describes the dynamics of a beneficial allele in awell-mixed population,
to a spatial model through the addition of a diffusion term. This interpretation identifies eq. (1.22) as the
continuum limit of a series of connected well-mixed subpopulation (demes) with migration between them
and has inspired the use of 96 well plates to emulate spatial expansions to study the effects of cooperation
in microbes 180,181. Since eq. (1.22) has the same mathematical structure as eq. (1.1), all previous results on the
Fisher wave carry over. In particular, if selection is strong relative to genetic drift (s > 1/b2D) the beneficial
allele spreads through the population with the familiar Fisher wave speed vF = 2

√
Ds.

As noted in Section 1.3.2, the FKPP equation can in principle be extended to model the dynamics of
mutations in two dimensions, but it becomes very difficult to make analytical progress 130. However, since
most of the dynamics occurs very close to the front, we can coarse-grain the front of a two-dimensional
population into a one-dimensional subpopulation in the co-moving frame of the expanding population.
This one-dimensional population is then described by eq. (1.22), and the full two-dimensional dynamics is
obtained by ”stitching together” the one-dimensional subpopulations. This approach indeed reproduces
aspects of evolutionary dynamics observed in microbial colonies (Fig. 1.4) 179,182,183.

In contrast to the Langevin equation (1.17) governing the dynamics of a mutant allele in a well-mixed
population, eq. (1.22) cannot be easily written as a Fokker-Planck equation and it is therefore much more
difficult to work with. However, it can be used to explain formation of neutral sectors in microbial ex-
periments. Considering the spatial heterozygosity, defined as H(t, x) = ⟨f(x, t)(1 − f(x, t))⟩, which
measures the probability of sampling two individuals of different types a distance x apart. From eq. (1.22), it
can be shown thatH(t, 0), quantifying the degree of mixing within a deme, goes to zero as t−1/2 179, i.e., all
demes are eventually filled with only a single type. This is in agreement with the experimental observation
that sectors are homogeneous and separated by sharp boundaries.

Unfortunately, eq. (1.22) cannot be solved directly for s ̸= 0 because the hierarchy of moment equations
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Figure 1.10: Geometrical derivaধon of the selecধon driđ v⊥. The wild type interface expands at speed v, whereas
the mutant interface expands at speed (1 + s)v. In order to keep a stable boundary between mutants and wild
type, the sector expands into wild-type territory with speed v⊥ =

√
s(2 + s)v.

does not close as a consequence of presence of both the diffusion term and the nonlinearity sf(1 − f).
However, since sectors are separated by sharp boundaries after some time, it is tempting to model only the
sector boundaries explicitly. To do this, we can average over the noise term to obtain a simple diffusion
equation for the mean frequency F (x, t) of the mutant allele. This implies that as long as the sector width
w(t) ≫ 0, it undergoes Brownian motion. In other words, the two sector boundaries can be modeled as
two annihilating one-dimensional standard random walks.

Random-walk model for sector boundaries

Keeping track only of the sector boundaries simplifies the analysis significantly, as a selective difference be-
tween the two types can simply be modeled by a drift v⊥ that drives the boundaries together (for s < 0) or
apart (s > 0). The sector widthw at time t is then described by the Langevin equation 184

∂tw = v⊥ +
√
4Dη(t), (1.23)

where the diffusion coefficientD quantifies the strength of the sector boundary fluctuations. The boundary
fluctuations play the role of genetic drift inmicrobial colonies, since they encapsulate the randomness of cell
division and motion at the boundary and thus stochastically shape the frequency of neutral mutants. The
deterministic velocity v⊥ captures the selective (dis-)advantage of the sector and is given by

v⊥ =
√

(2 + s)sv, (1.24)
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The square-root dependence of v⊥ on s follows immediately from geometric consideration 130 (see Fig. 1.10).
The mean sector shape for a mutant of initial widthw0 is thus

⟨w⟩ = w0 +
√
(2 + s)s× vt (1.25)

Thus, we can extract the selective advantage of a beneficial sector directly from its shape.
Note that by modeling only the sector boundaries, we have reduced the non-linear partial differential

equation with multiplicative noise, eq. (1.22), into a linear ordinary differential equation with additive
noise. This means that the Langevin dynamics of the sector boundaries, eq. (1.23), can again be cast into a
Fokker-Planck equation forP (w, t). Exactly like in the well-mixed scenario, this allows us the Kolmogoroff
backwards equation corresponding to eq. (1.23) to find to compute the establishment probability u as

u =
1− e−v⊥w0/D

1− e−v⊥L/D
. (1.26)

The mathematical structure of eq. (1.26) is identical to eq. (1.20) for well-mixed populations. Hence, it pre-
dicts u ∼

√
2s/D for a small sector, i.e, u scales with the square root of s rather than linearly in s as in the

well-mixed case. This represents a qualitative departure of the evolutionary dynamics in range expansions
from those in well-mixed populations.

The random-walk model can also be applied to radial colonies by describing the sector boundaries in
terms of their angular width. By switching to angular coordinates, the diffusion coefficient and the selec-
tion drift become dependent on the radius, asD(r) = D/r2 and v⊥ =

√
s(2 + s)v/r. This means that

the sector boundary fluctuations becomeweaker as the colony grows, explainingwhy colonies grown from a
mixture of two neutral strains demix into a finite number of sectors. By contrast, only one neutral sector sur-
vives when the colony is grown in the linear geometry 184. Computing the establishment probability is more
involved for radial populations becauseu(s) depends on the initial radius. Hence, for radial expansions, one
has to first solve for the full probability density P (w, r) and then use first-passage time techniques to find
u(s) 182. However, we find u(s) ∼

√
s in the radial geometry, as well.

Scaling approach to random walks

Computing the establishment probability using the full arsenal of diffusion theory is a rather cumbersome
endeavor that will yield analytical results in only a handful of special cases. For instance, we cannot easily
generalize the approach of section 1.4.2 to colonies with rough fronts because the model explicitly assumes
that the population can be decomposed, depending on growth geometry, into a series of flat/concentric one-
dimensional populations. In addition, the sector boundaries in rough colonies of E. coli have been observed
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Figure 1.11: Using scaling arguments of fluctuaধng sector boundaries to compute the establishment probability
of beneficial mutaধons: in sectors wider than ℓ∗⊥, selecধon is stronger than geneধc driđ and ensures conধnued
survival of the sector. To reach this size, the sector boundaries fluctuate roughly neutrally for a ধme ℓ∗∥.

to be not diffusive, but super-diffusive random walks, with fluctuations ℓ⊥ around the radial direction that
scale with the time-like coordinate ℓ∥ as ℓ⊥ ∼ ℓζ∥ with ζ = 0.65 ± 0.05 80. Not only does this invalidate
our description of the sector boundaries as standard (diffusive) random walks, for which ζ = 1/2, it also
places these colonies in the KPZ universality class, for which ζ = 1/z = 2/3 185,186.

If we want to describe evolutionary dynamics in rough colonies but do not have access to familiar dif-
fusion techniques, how can we proceed? As an example, let us anticipate a result from Chapter 3 and use
scaling arguments to compute the establishment probability of a beneficial mutation in microbial colonies.
In order to establish, a clone has to reach a characteristic width l∗⊥ that is large enough to be ”safe” from
extinction through random genetic drift, such that selection will deterministically drive the clone to fixation.
At this sector width, genetic drift and selection are equally strong: for wider sectors, selection dominates,
while for narrower sector, drift is the dominant contribution. Comparing with eq. (1.23), this corresponds
to ℓ∗⊥ ∼ v⊥ℓ∗∥ ∼

√
D⟨η2⟩ℓ∗∥, where ℓ∗∥ is the associated ”time” at which the width ℓ∗⊥ is first reached. Thus,

we have
D(l∗∥)

ζ ∼ v⊥(s)l
∗
∥, (1.27)

and we find the characteristic width l∗⊥ ∼ v
ζ/(ζ−1)
⊥ .

Since the sector starts small before it establishes upon reaching size l∗⊥, it has to fluctuate neutrally to this
size before selection can take over. But any individual clone in a subpopulation of width l∗⊥ has equal chance
to neutrally drift to size l∗⊥. Hence, the fixation probability is simply u ∼ 1/l∗⊥, and we arrive at the result

u(s) ∼ s−ζ/2(ζ−1), (1.28)
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which reproduces the scaling of u ∼ s1/2 for ζ = 1/2 found through the backwards equation (1.26). For
ζ = 2/3 associatedwithKPZ-like frontsweobtain insteadu(s) ∼ s. This agreeswellwith the experimental
measurements presented in Chapter 3. Note that although this scaling is identical to the classical result in
well-mixed culture, eq. (1.21), its origin is very different.

In summary, scaling arguments are an extremely valuable tool for describing evolutionary dynamics. Even
when analytical solutions are available, scaling arguments often encapsulate all the necessary information and
can be more useful than exact, but opaque analytical results. In addition to the establishment probability
in Chapter 3, we will find the size distribution of mutant clones in microbial colonies using similar scaling
arguments as the ones presented here in Chapters 2 and 5.

1.5 Organization of this thesis

In this thesis, we will approach some of the questions raised in this introductory chapter about evolutionary
dynamics in microbial colonies, and more generally, in spatially structured populations. To do so, we focus
on creating a solid basis of quantitative experimental results on lineage dynamics inmicrobial colonies, such
as the clone sizes of spontaneous mutations (Chapter 2) and the establishment probability of beneficial mu-
tants (Chapters 3 & 4). In these chapters, the theory of rough interfaces will enable us to make important
scaling predictions that we verify with Edenmodel simulations. Chapter 5 explores the effect of environmen-
tal heterogeneity on the efficacy of selection as an example of a uniquely spatial ecological effect; here, we
will extend the Eden model to include quenched environmental disorder and use the results on quenched
universality classes summarized in this chapter to characterize the resulting colonies. Finally, using simula-
tions and analytical theory based on the FKPP equation introduced above, we discuss the role of flow and
environmental gradients on the emergence of drug resistance in Chapter 6.
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2
Excess of mutational jackpot events in

expanding populations revealed by spatial
Luria-Delbrück experiments

The genetic diversity of growing cellular populations, such as biofilms, solid tumors or devel-
oping embryos, is thought to be dominatedby rare, exceptionally largemutant clones. Yet, the
emergence of these mutational jackpot events is only understood in well-mixed populations,
where they stem frommutations that arise during the first few cell divisions. To study jackpot
events in spatially structured populations, we track mutant clones in microbial populations
using fluorescence microscopy and population sequencing. High-frequency mutations are
found to bemassively enriched inmicrobial colonies compared towell-shaken liquid cultures,
as a result of late-occurring mutations surfing at the edge of range expansions. Thus, jackpot
events can be generated not onlywhenmutations arise early but alsowhen they occur at favor-
able locations, which exacerbates their role in adaptation and disease. In particular, because
spatial competition with the wild type keeps most mutant clones in a quiescent state, strong
selection pressures that kill the wild type promote drug resistance.
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2.1 Introduction

One of the hallmarks of spontaneousmutations in growing populations is the emergence ofmutational jack-
pot events - large mutant clones arising from mutations that by chance occur early in the development of a
cellular population so that their progenitors benefit from prolonged growth. Due to their sheer size, these
jackpot events, first discovered by Luria andDelbrück 1, are thought to have momentous roles in short-term
evolutionary processes, including the adaptation from standing variation2–4, evolutionary rescue 5, drug re-
sistance evolution6–10, and the somatic evolution of genetic diseases 11,12. However, because the emergence of
jackpot events has been understood only in uniformly growing populations 1,10,13, it is currently impossible
to predict their impact on the evolution of many naturally structured populations.

The original Luria-Delbrück experiment studied mutant clones arising in well-mixed microbial popu-
lations, and detected the sizes of resistant clones by counting single colonies on selective plates. Here, we
generalize the assay in two ways, (i) by studying mutant clones arising in spatially structured populations
and (ii) by using a combination of next-generation sequencing and fluorescence microscopy techniques to
accurately detect size and structure of high-frequency clones.

We find that high-frequency mutations are massively enriched in microbial colonies compared to well-
shaken liquid cultures, as a result of late-occurring mutations surfing at the edge of range expansions 14–16.
We provide a mathematical theory that explains the observed excess of jackpot events and predicts their role
in promoting rare evolutionary outcomes. In particular, we show that resistant clones generated by surfing
can become unleashed under high selection pressures, and thus represent a drug resistance hazard for high-
dose drug treatments. In this context, our theory offers an innovative explanation for the phenomenon of
”competitive release”, initially observed in ecology 17–19, and more recently in tumors 20, where the craved
resource is space rather than nutrients.

2.2 Results

2.2.1 Generalized Luria-Delbrück experiments

To measure the size of mutational jackpot events, we employed population sequencing with low error rates
(see Methods), which returned frequencies of new mutations at many genomic sites simultaneously and
independently of their phenotypic effect. Specifically, we sequenced populations of a mutator strain of E.
coli cultured in well-mixed liquid medium, where growth is uniform, and as colonies on solid agar medium,
where most growth occurs at the colony edge (seeMethods)21,22. By growing from a small number of initial
cells to a similar final size, all populations went through a comparable number of cell divisions (between
1 × 109 and 7 × 109, Supplementary Table 1). Counting the observed frequencies of Single Nucleotide
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Figure 2.1: Populaধon sequencing reveals an excess of jackpot events in spaধally-growing populaধons. (a) Starধng
from few cells of a mutator strain of the bacterium E. coli (mutT deleধon, Methods), we grew 6 colonies and 6 liquid
cultures up to an average populaধon size of 3 × 109 cells and sequenced each populaধon at a coverage of at
least 1000× (Supplementary Table 1). The number of SNPs that occur at a frequency higher than x is displayed
in panel (b) (solid lines: colonies in warm colors, well-mixed in cold colors; dashed lines: well-mixed on plates). We
found about 10 ধmes more mutants above a frequency of 1% in colonies than in well-mixed populaধon, even when
the laħer were grown on plates (Methods). The doħed black line is the fit to the well-mixed data with a mutaধon
rate of µ = 0.4 per genome per replicaধon.

Polymorphisms (SNPs) in the populations, we obtained the number of sites in the genomeswhere the clonal
sub-population carrying the derivedmutation had a frequency larger than a given frequency valuex, shown
in Fig. 2.1b. Our deep sequencing procedure allowed us to detect all clones that have frequencies larger than
about 10−3 (Methods), yielding about 600 such high-frequency events in each colony, which characterize
the statistics of jackpot events.

Populations of the same size and mutation rate are expected to experience the same total number of mu-
tational events, on average, independently of the mode of growth (liquid versus solid medium). Yet, Fig. 2.1
shows that colonies had approximately ten timesmoremutant clones above frequencies of 1%– correspond-
ing to clones of at least 107 cells – than well-mixed populations. This difference cannot be explained by vari-
ation in final population size, since some well-mixed populations had a larger final size than some colonies
(Supplementary Table 1, Supplementary Fig. 1).

To test whether the discrepancy was caused by different mutation rates in liquid culture and on agar
plates, we also sequenced ”plated well-mixed” populations whose growth was kept uniform by regularly
spreading the cells across the plate (see Methods). The resulting distribution of SNPs is consistent with the
well-mixed populations in liquid culture (green dashed and blue solid lines in Fig. 2.1b), confirming that
the mutation rate is not significantly affected by the mode of growth (see also Supplementary Methods and
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Figure 2.2: Gene surfing promotes the occurrence of mutaধonal jackpot events in colonies. (a) An engineered
strain of S. cerevisiae that stochasধcally switches from RFP (purple) to GFP (yellow) at a rate of 1.6 × 10−3 per
cell division, enables us to visualize high frequency jackpot events as they arise during colony growth (panel c, scale
bar corresponds to 1mm). (b) Image analysis (see Methods) of mutant clones in 343 colonies reveals a shoulder-
like distribuধon of clone sizes, roughly consistent with our predicধons for idealized two-dimensional populaধons
(dashed line, see also Methods). The inset shows the median mutant frequency as a funcধon of radius. Error bars
are smaller than symbols. (d, scale bar corresponds to 0.5mm) Monitoring the spaধal distribuধon of mutants using
fluorescence ধme-lapse microscopy (see also Supplementary Movie 1) reveals that mutant clones come either as
sectors21 with acধvely growing front regions (e, leđ, scale bar equal to 0.2mm; c, white arrow) or as ”bubbles” (e,
right; c, black arrows), which are non-growing mutant clones that have lost contact with the expanding edge.

Supplementary Table 2). Thus, we conclude that the observed difference in the clone size distributionmust
be a consequence of the non-uniform growth in colonies, which results in a surprising number ofmutations
at high frequency.

2.2.2 Fluorescence microscopy reveals spatial structure of clones

To reveal the nature of the high-frequency clones in colonies, we monitored the spatial distribution of mu-
tant clones using separate fluorescent marker experiments. We employed a genetically engineered budding
yeast strain capable of switching from a red-fluorescing state to a green-fluorescing state at a rate of about
1.6× 10−3 per replication 23. This heritable, non-reversible switch is mediated by the stochastic expression
of Cre recombinase (see Fig. 2.2a and Methods for details). As shown in Fig. 2.2c, the resulting colonies ex-
hibited both elongated speckles (dark arrows), which we termed ”bubbles”, as well as previously described
spoke-like sectors (white arrow) 21. Importantly, image analysis of the clone area obtained from 343 colonies
yielded a histogram consistent with the shoulder-like distribution obtained from our sequencing approach
(Fig. 2.2b andMethods). Thus, both the fluorescent data from just one ”engineered” site and the sequencing
data covering many genomic sites seem to reflect the same mechanism shaping the clone size distribution.

The fluorescence data, moreover, revealed where clones emerge and how they grow. Time-lapse movies
showed that most high-frequency clones first arise near the front of the growing colony (Fig. 2.2e, Supple-
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Figure 2.3: Simulaধons of range expansions reproduce the measured distribuধon of clone sizes. The clone size
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tails that characterize bubbles (doħed line) and sectors, respecধvely (Methods). The experimental mutant spectra
(colored lines) collapse onto this theory line upon scaling the two axes by the frequency of the largest bubble xc
and the probabilityΠc of observing a clone larger than xc, respecধvely (shaded area represent the 95% confidence
interval, see Methods for details).

mentary Movie 1). The resulting clonal patches grow with the advancing frontier until they lose contact to
the front, whereupon they become trapped as bubbles in the non-growing bulk of the population. Rarely,
clones are able to ”surf” at the front until the end of the experiment and give rise to sectors. Such allele
surfing is a characteristic feature of range expansions 14,16,24 and has been demonstrated to be pervasive in
microbial communities 21,25–27.

2.2.3 Gene surfing theory explains mutational jackpot events

To understand how gene surfing generates clones of different sizes, we studied their emergence in range ex-
pansion simulations. Specifically, colony growth was implemented by the random addition of new demes
to the advancing frontier. The newly added deems inherited their ancestral genotype unless they mutated,
whichoccurred at a fixed rate (Methods; SupplementaryMovie 2). Interestingly, this simplemeta-population
model generated a clone size distribution that accurately reproduced the measured one, as can be seen in
Fig. 2.3. Our simulation results, covering over four orders of magnitude, also reveal that the distribution
crosses over between two power law distributions with distinct exponents. Analysis of the clone shapes pro-
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Scenario z Low frequency High frequency

Well-mixed 0 x−1

2D flat front 2 x−1/3 x−3

3D flat front 2 x−1/2 x−2

2D rough front∗ 3/2 x−2/5 x−4

3D rough front 1.61 x−0.55 x−2.3

Table 2.1: Predicধons for the asymptoধc behavior of the clone size distribuধon. The dynamical exponent z sum-
marizes the staধsধcal properধes of the sector and bubble boundaries. The low-frequency regime corresponds to
bubbles, the high-frequency regime to sectors. The well-mixed scenario, where bubbles and sectors are not disধnct,
corresponds toD = ∞ and is characterized by a single power-law regime. The experimental scenario presented
here is well-described by the case of two-dimensional rough fronts (*), where z = 3/2 is given by KPZ interface
growth dynamics30.

duced in our simulations shows that the power law regimes of low and high frequencies characterize bubbles
and sectors, respectively.

The effect of gene surfing is not limited to two-dimensional growth: Simulations of spherically growing
meta-populations (Fig. 2.4b), such as those used to model solid tumors 28,29, still result in mutant spectra
with two distinct power law regimes corresponding to bubble and sectors, respectively.

The power law exponents can be derived analytically by treating the boundaries of the mutant clones
as annihilating random walks. The statistical properties of these random walks determine the relationship
between the lengthL∥ of clones parallel to the growth direction and the corresponding perpendicular length
L⊥ (see Fig. 2.4a). For instance, purely diffusive clone boundaries, which occur when the population front
is completely flat, result in L∥ ∼ L2

⊥; more generally, L∥ ∼ Lz
⊥, where the dynamical exponent z depends

on the details of how the population grows (dimensionality, roughness of the growing front). The Kardar-
Parisi-Zhang interface growth model 30, which has been found consistent with bacterial growth patterns 21,
predicts z2D = 3/2 (exact) and z3D = 1.63 (numerical) 31. By computing the area enclosed between
two annihilating random walks, which are unbiased in the neutral case, one can determine the power law
exponent for bubbles (Methods). The power law exponent for sectors follows from the one for bubbles via
an exact scaling relationship (Methods). The results for different scenarios are summarized in Table 2.1.

Importantly, our scaling arguments predict that the clone size distributions obtained for different pop-
ulation sizes and mutation rates should collapse onto one master curve when the clones frequencies are
measured in terms of the characteristic frequency of the largest occurring bubble xc, and the clone number
in terms of the average probability for a new mutation to establish a sector,Πc. Indeed, after rescaling, our
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sequencing data show remarkable agreement with the master curve obtained from our simulations (Fig. 2.3,
Supplementary Methods, Supplementary Table 3, and Supplementary Fig. 2).

2.2.4 Role of jackpot events in the evolution of drug resistance

One of the striking features of the clone size distribution under range expansion is the excess of high fre-
quency mutations over the well-mixed expectation. The primary consequence of more jackpot events is
that, typically, the total number of mutants will be much larger in a spatially growing population compared
to an equally large well-mixed population. This can be understood from the following simplemathematical
argument.

Ifmutations arise at a low rateµper cell division as the population is growing to a final sizeN , one expects
µN mutational events to occur. In each generation, the frequency of mutants in the population increases
by µ, on average. In a well-mixed, uniformly grown population, the number of generation is log2N , and
hence the expected total number ofmutants in this case is proportional toµN log2N . In a range expansion,
only cells near the edge of the colony have access to sufficient nutrients, leading to the formation of a layer
of growing cells of width λ (in units of cell diameters). Since a length λ is added per generation to the
radius of the colony, we can estimate that R/λ ∝ N1/2/λ generations elapse at the frontier during the
growth process. Hence, the final total number of mutants created during a range expansion is proportional
toµN3/2/λ, which for largeN is much larger than in a uniformly grown population of the same size. Note
that, as in the classic Luria-Delbrück case, the mean is usually not a useful quantity because it is dominated
by very rare, large events. Nevertheless, both the typical and themean number of mutations exceed the well-
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Figure 2.5: Gene surfing theory predicts an excess of jackpot events and its consequences. (a) Sampling the exper-
imental clone size distribuধon Π, we found that the typical (mode, solid line) and the mean (dashed line) number
of mutants as a funcধon of the rescaled number of mutaধons µNΠc, which corresponds to the number of muta-
ধons establishing into sectors, is higher in range expansions (red) than in equally large uniformly grown populaধons
(blue). (b) The excess of large-frequency clones promotes mulধ-step evoluধonary processes, such as the emergence
of double mutants. The relaধve probability (compared to the well-mixed expectaধon) of producing a double mutant
is always higher in a colony, especially when the secondary mutaধon rate is low. Here,Nmin = xminN (Methods),
which in our E. coli colonies corresponds toNmin ≈ 105.

mixed expectations, as our stochastic analysis shows (Fig. 2.5, Supplementary Note 1 and Supplementary
Fig. 3).

Jackpot events can be key in acquiring complex phenotypes, such as drug resistance or the onset of can-
cer, which often require the accumulation of multiple mutations 11,32. Range expansions may promote the
acquisition of secondary mutations because the pool of individuals carrying the first (driver) mutation is,
both on average and typically, larger than in uniformly grown populations (Fig. 2.5a). As shown in Fig. 2.5b,
the probability of secondary mutations can be almost an order of magnitude larger in spatial populations
compared to well-mixed ones, especially when mutation rates are low (Supplementary Note 2).

2.2.5 Drugs can trigger competitive release of mutant clones

Evolutionary dynamics is influenced by mutational jackpot events not only because of their size but also be-
cause of their particular spatial structure. The emergence of sectors, which sporadically arise from neutral
mutations, is strongly suppressed when mutants carry a cost (Fig. 2.6a, Supplementary Note 3 and Supple-
mentary Fig. 4), commonly observed for drug resistance in the absence of antibiotics 33: Deleteriousmutants
can surf only briefly before they are overtaken by faster-growing wild-type cells and fall behind the growing
frontier.

In the absence of antibiotics, then, costly resistant clones are expected to reside in bubbles, encased by
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Figure 2.6: High drug concentraধon treatments can promote the spreading of resistance by unleashing mutants
that are otherwise trapped within the colony bulk by compeধধve release. (a) When the mutants carry a cost s in
the absence of anধbioধcs, the fracধon of mutants trapped in bubbles is increased and sectors become increasingly
rare. (b) Starধng with (i) colonies pre-grown with s = 0.4 (black triangles, solid lines) or (ii) resistance-free control
colonies (black circles, dashed lines) as iniধal condiধon, we simulated the effects of treatment with anধbioধcs at
varying concentraধons by tuning the death rate δ of the wild type (Methods). Ađer 140 generaধons, resistance-
free colonies showed decreasing populaধon size up to complete eradicaধon for δ > 0.7, as expected. In contrast,
colonies with resistant bubbles exhibited an iniধal decrease in populaধon size followed by a steady increase for
δ > 0.4 (error bars represent standard deviaধons over 100 simulaধons). Visualizaধon of the simulated colonies
showed that in this range of death rates, the previously encapsulated mutants escape the surrounding wild type
(red squares) and can then grow indefinitely (Supplementary Movie 3). A high dose of anধbioধcs may thus not
only fail to eradicate the populaধon, but even promote the spreading of resistance. This effect can be reproduced
in conceptual experiments with E. coli, shown in (c), which demonstrate that high anধbioধc concentraধons can
release trapped mutant clones. A droplet of resistant cells (yellow) embedded in a larger droplet of suscepধble
cells (purple) was inoculated at different anধbioধc concentraধons (Methods). Ađer 8 days of growth intermediate
anধbioধc concentraধons exhibited the least amount of total populaধon growth. The highest drug concentraধons
eradicated the wild type and thus allowed the resistant mutants to spread freely. Error bars represent standard
deviaধons over 16 replicates and scale bars correspond to 2 mm.

an expanding wild-type population. Upon a sudden environmental change, however, e.g., by a strong an-
tibiotic attack killing the susceptible wild-type, the trappedmutants may become unleashed, regrowing and
thus rescuing the population from extinction. This evolutionary rescue is brought about by a particular
kind of competitive release, in which the indispensable resource is space. Competition in this case is extreme:
trapped clones are not only at a disadvantage, but they have no chance of escaping unless the surrounding
wild type vanishes. Consistently with this idea, we expect minimal net population growth and successful
containment of resistant cells at intermediate drug concentrations, sufficiently strong to slow down prolif-
eration of the wild-type without eradicating it. Indeed, when we implemented drug treatment as a tunable
death rate for wild-type cells (Fig. 2.6b, Supplementary Movie 3, Methods), our simulations showed the
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smallest net population growth for intermediate death rates. In contrast, high death rates not only failed to
eradicate the population, but promoted the spread of resistance by generating an entirely resistant popula-
tion.

Our simulations provide a uniquely spatial mechanism of how excessively high drug concentrations can
promote the spreading of drug resistance. This effect can be reproduced in conceptual experiments inwhich
we embedded resistant cells within a colony of susceptible cells. We found that the resistant cells stayed
trapped even at intermediate drug concentrations that severely limit the wild-type growth. For higher drug
concentrations, themutantswere released and grew rapidly (Fig. 2.6c). Hence, to optimally curtailmicrobial
growth in our particular setup, the drug concentration should indeed be set at an intermediate sweet spot.

2.3 Discussion

In combination with a generalization of the Luria-Delbrück theory, our experiments show that the process
of allele surfing generates an excess of high-frequency clones: Mutations have amuch higher chance of being
carried by a high proportion of the population. These high-frequency clones come as growing sectors and
non-growing bubbles, which are spatially encased by wild-type cells. Our theory suggests that the excess
of jackpot events is not limited to microbial colonies but arises generally in populations that exhibit non-
uniform growth rates in two or three dimensions.

In addition to antibiotic resistance evolution in pathogenic biofilms, an excess of jackpot events could
thus be relevant also during the somatic evolution of some types of cancer 12,34,35, as growing solid tumors of-
ten exhibit less growth in necrotic core regions 36 and sectoring has been recently documented 29. Moreover,
it has been argued that jackpot events play a crucial role in the predisposition to cancer and other genetic
diseases 11. Based on the classic Luria-Delbrück theory, it was predicted that a large fraction of cancers may
arise from predisposed stem-cell lineages 32. Our results suggest that if growth is non-uniform during the de-
velopment of the stem cell pool, predisposed stem-cell linesmay occur evenmore frequently than previously
hypothesized.

Our sequencing study design can be applied to test this prediction by measuring the site frequency spec-
trum in tumors as well as in multi-cellular organisms at different stages of their development. Some clues
about large frequency clones could also be collected from visible phenotypes resulting from somatic mo-
saicism, such as Blaschko’s lines 11. Plants or animals with pigmentations caused by mobile elements are par-
ticularly amenable to such pattern analyses.

Our experiments, simulations, and theory not only found an excess of jackpot events but also elucidated
their spatial patterns. Since drug resistance often comes at a selective cost in the absence of the drug, most
resistance mutant clones are expected to be small and hidden in the bulk of the susceptible wild-type pop-
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ulation. A high-dose treatment removes the wild type as the natural competitor of the resistant mutants
and, consequently, triggers a competitive release of the dormant mutants. This form of competitive release
is extreme in the sense that mutants stop growing entirely prior to the release, due to lack of space and nu-
trients. Because a broad spectrum of dormant clones is also generated in three-dimensional growth, this
spatial form of competitive release can be particularly relevant in solid tumors. Indeed, the hypothesis that
growth control may under certain conditions be more effective than attempts of complete eradication has
been recently proposed in the context of cancer 37,38, based onmathematicalmodeling of exponentially grow-
ing tumors treated with a varying dose of chemotherapeutic drugs over time. A recent study 20 tested this
hypothesis experimentally in a mouse model and found that prolonged chemotherapy with low doses was
themost effective at keeping the tumor in check. In contrast, tumors that had regrown after an initial shrink-
age following high-dose treatment did not respond to a second round of treatment, possibly indicating the
emergence of resistance. Our results provide a novel mechanism, based on competition for space, that can
explain these observations.

As sequencing costs continue to decrease, a growing number of studies utilizes population sequencing to
draw conclusions on how cellular populations evolve. In this context, our results urge for caution when em-
ploying the classic Luria-Delbrück theory as a general theory for neutral evolution, as has been proposed in
a recent meta-study of intra-tumor heterogeneity 12. For one thing, spatial effects complicate the estimation
of mutation rates and the amount of resistant tumor cells. More importantly, deviations from the classic
Luria-Delbrück theory may simply indicate non-uniform growth rather than non-neutral evolution.

2.4 Methods

2.4.1 Scaling of clone size distribution in expanding populations.

We consider a population expanding from one toN individuals without death. Our goal is to characterize
the probabilityΠ(x) that amutation randomly introduced at the birth of one of theN cells generates a clone
of frequency equal or larger than x (Fig. 2.1a). In other words, Π(x) is the reverse cumulative distribution
of the size of clone introduced by a random mutation. The derivative−∂xΠ(x) represents the population
site frequency spectrum that can be obtained directly from population sequencing. Two extreme values of
Π(x) are known a priori: Π(1/N) = 1 because any mutation will certainly reach at least frequency 1/N if
we ignore death. On the other hand,Π(1) = 1/N because this requires the mutation to be introduced in
the very first birth, i.e., at the root of the genealogical tree.

Thebehavior ofΠ(x) inbetween theseboundarypoints is known in thewell-mixedor infinite-dimensional
case, studied by Luria and Delbrück; it is a single power law (Nx)−1 13. Our experiments and simulations
suggest that the finite-dimensional case is characterized by two asymptotic regimes: a low-frequency regime
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(Nx)−α with exponent α < 1, corresponding to bubbles, and a high-frequency regime N−1x−β with
exponent β > 1, corresponding to sectors. TheN -dependent pre-factors of both regimes are fixed by the
boundary conditions, and the cross-over point xc follows from continuity (Supplementary Fig. 5). The
described cross-over behavior can be captured mathematically by the scaling form

Π(x) = Πc χ

(
x

xc

)
, (2.1)

in terms of the cross-over frequency xc = N
− 1−α

β−α and a cross-over probability scaleΠc = N
−α(β−1)

β−α . The
scaling function χ(ξ) exhibits two power law regimes

χ(ξ) ∼

ξ−α, ξ ≪ 1,

ξ−β, ξ ≫ 1.
(2.2)

Simulated clone size distributions, displayed in Fig. 2.4b, confirm the predicted scaling form. In real systems,
the scaling form has a range of validity, say between some minimal and maximal frequency xmin and xmax

that are set by details of the growth processes which are beyond the scope of our model. For instance, the
maximal frequencyxmax = O(1) accounts for thediscrete nature of growthduring the first fewcell divisions.
Similarly, xmin = O(1/N)may reflect mutations that are born behind the front such that our gene surfing
theory does not apply.

The two power law exponents α and β are constrained by the scaling behavior of the mean frequency
of mutants, as follows. For a given mutation rate µ per cell division, the expected frequency ⟨Xtot(t)⟩ of
mutants at the surface of a growingD-dimensional sphere satisfies

∂t⟨Xtot(t)⟩ = µ (1− ⟨Xtot⟩) , (2.3)

where time is measured in units of generations at the front. Hence, as long as ⟨Xtot(t)⟩ ≪ 1, we have
⟨Xtot(t)⟩ = µt. Every generation, the radius grows by λ, such that it takes the population t = R/λ

generations to grow to size N ∝ RD. The length λ can be interpreted as a measure for the thickness of
the growth layer at the edge of the colony in units of the linear dimension of the cells. The mean frequency
at radius r then is ⟨Xtot(r)⟩ = µr/λ, and the population mean follows as ⟨Xtot⟩ ∝ (µ/λ)N1/D. This
implies an expected total number of mutants of

⟨Xtot⟩N ∝ µ

λ
N1+1/D. (2.4)
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As we ignore cell death, there are on average µN mutations occurring during the growth of the popula-
tion. Hence, the frequency of a single clone is, on average, ⟨X⟩ ∝ N

1
D
−1/λ, which constrains the integral

over Π(x) since ⟨X⟩ =
∫ 1
0 Π(x). Inserting the scaling relation, eq. (2.1), we obtain for large population

N ≫ 1

⟨X⟩ =
∫ 1

0
Π(x) ≈ Πcxc

∫ x−1
c

0
χ(ξ) = N

− 1+(β−2)α
β−α . (2.5)

Here,weused thatα < 1 andβ > 1 such that integral over the scaling functionχ(ξ) is finite anddominated
by ξ-values in the cross-over region, ξ = O(1). Equation (2.5) can only hold for allN if we have the scaling
relation

(α− 1)(β − 1)

α− β
=

1

D
(2.6)

Thus, computing the exponent for either the bubble or the sector regime uniquely determines the exponent
of the other regime. Note that in thewell-mixed case,D → ∞, Eq. (2.6) correctly reproduces a single power
law with α = β = 1. Here, we derive the exponent for the bubble regime in two dimensions; the sector
regime and higher dimensions are described in Supplementary Notes 4 and 5.

2.4.2 Bubble distribution in two dimensions.

The areaA, lengthL∥ andwidthL⊥ of a bubble are determinedby the statistical properties of its boundaries,
which result in the general relationship L∥ ∼ Lz

⊥, see Fig. 2.4a. We can relate the distribution of the area
A ∼ L⊥L∥ ∼ L1+z

⊥ of a bubble to the distribution of the lateral bubble sizeL⊥ through

Pr(A > a) = Pr
(
L⊥ > ℓ⊥(a) ∼ a

1
1+z

)
. (2.7)

For neutral mutations, we must also have the conditional probability Pr(L⊥ > w⊥|ℓ⊥) ∼ ℓ⊥/w⊥ of
reaching transverse size w⊥ given an initial size ℓ⊥ (each front segment of size ℓ⊥ has the same chance of
expanding up to size w⊥). This implies Pr(L⊥ > w⊥)w⊥ = Pr(L⊥ > ℓ⊥)ℓ⊥. Since the choice of w⊥ is
arbitrary, it must hold that Pr (L⊥ > ℓ⊥) ∼ ℓ−1

⊥ for large enough ℓ⊥. Combining this with Eq. (2.7) yields
the distribution of clone frequencies

Pr(A > a) ∼ a−
1

1+z (2.8)

for asymptotically large bubbles, i.e., α2D = 1/(1 + z). In D dimensions, αD = [1 + z/(D − 1)]−1

(Supplementary Note 5). The scaling relation in eq. (2.1) can be used to find the exponent in the sector
regime β. Numerical values for the exponents in a variety of scenarios are given in Table 2.1.
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2.4.3 Meta-population model simulations.

We simulated range expansions using ameta-populationmodel based on the Edenmodel 39: Space is divided
into a two or three-dimensional square grid, whose voxels can be empty, wild type, or mutant type. In
general, each voxel represents a sub-population, also called deme, consisting ofmultiple individuals, and the
lattice size a is a model parameter that characterizes the spatial extend of a deme.

The grid is initialized by filling the central voxel with wild-type. In each step, we choose a voxel i that has
at least one empty neighbor and one of its empty neighboring voxels j at random and copy the state of i
into j. If i is wild type, we switch (”mutate”) voxel j to the mutant type with probability µ. A generation
corresponds to a number of steps equal to the number of voxels that have at least one empty neighbor at the
beginning of the generation. Note that since mutation rate and substitution rate are the same for neutral
mutations, µ represents the actual mutation rate.

To accommodate the limited number of observable SNPs in the experimental data when comparing with
simulations, we sample M mutations with frequency above the minimum experimentally detectable fre-
quency from the simulated distribution. HereM is the number of observed mutations in one experiment
(Supplementary Table 1). The sampling is repeated 10,000 times, and the resulting distributions binned
across frequencies. The result is shown as the gray area in Fig. 2.3, containing 95% of the sampled distribu-
tions.

To simulate the effect of intermediate antibiotic concentrations on colony growth and spreading of re-
sistant individuals observed in experiments (Fig. 2.6c), we extended the meta-population model simulation
to accommodate sudden changes in the environment and death of the wild type. Environmental changes
are modeled by changing the relative growth rate of mutants, gmut, and wild type, gwt, at time T during
the simulations, which corresponds to when the antibiotic is administered. We define the selective advan-
tage/disadvantage s of the mutant as s = gmut/gwt − 1. Without death of the wild type, the environ-
mental change would only be felt by the individuals at the front, in contradiction to experiment, where we
frequently observe the escape of mutants from the bulk of the population. Therefore, we introduce the
possibility of death: After time T , any of the nwt wild type cells has a chance δ of dying each generation. In
addition to the standard algorithm above, each generation then incurs δnwt additional iterations, in which
one wild-type voxel is deleted. More details on the algorithm are reported in the Supplementary Methods.
To simulate the experimental scenario in Fig. 6, we first grow a population with deleterious mutations until
time T (µ = 2 · 10−4, s = −0.4), whereafter new mutations are not allowed, mutants switch to having
a selective advantage (s = 0.4), and wild type death is switched on. Supplementary Movie 3 shows the
qualitative agreement with the experimental results in identifying an intermediate death rate thatminimizes
colony growth.
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2.4.4 E. coli experiments.

For the sequencing experiments, we used a K12 E. coli strain MG1655 where the mutT gene was replaced by
CmR, conferring resistance to chloramphenicol. This strain has an elevated mutation rate for A/T→C/G
transversions over wild typeMG1655 by a factor of about 150 on average40. For the trapping experiments in
Fig. 2.6, we used a pair ofMG1655 strains, one expressing CFP from a plasmid, the other expressing YFP and
a resistance gene to chloramphenicol.

In liquid culture, E. coli were grown continuously shaken at 37◦C in LB (10g/L tryptone, 5g/L yeast
extract, 10g/L NaCl). For plates, 2% w/v bacto agar was added to the media before autoclaving. Antibiotics
were added after autoclaving to cooled media.

To prepare cells of mutT E. coli for sequencing, we grew them in liquid culture up to a density of 108

cells/ml and then (i) plated single cells for colonies and (ii) inoculated well-mixed cultures from single cells
following a 107 dilution. 86 parallel tubes were inoculated with 100µl of the dilution and incubated well-
shaken for about 10 hours (around 30 generations). Cells were harvested in log phase, judged by OD600
(Supplementary Table 1). To grow well-mixed populations on plates, 16 LB plates were inoculated with
100µl of the dilutions and incubated. Every 90 minutes, 100µl PBS was pipetted onto each plate and vigor-
ously spread using glass beads. After approximately 20 hours, 7 plates displayed a uniform bacterial lawn.
Two lawns were resuspended via vortexing. Colonies were grown for three to five days up to a diameter
between 1 and 1.5cm (Supplementary Fig. 2). For five colonies (colonies 1 to 5 in Supplementary Table 1
and Supplementary Fig. 6), cells were resuspended by vortexing and the genomic DNA extracted for each
population. For the last colony (colony 6), the colony was cut in four parts via a glass pipette for the center
portion (IN) and a razor blade (for the remaining outer ring). The outer ring was divided into three parts:
1/8, 1/4, and the remainder of the ring (around 1/2 ring), as shown in Supplementary Fig. 6. The DNA of
each portion was extracted separately (details are in Supplementary Table 1). Genomic DNA was extracted
from all population following the Epicentre MasterPure DNA Purification Kit Protocol.

Illumina library preparation was performed on each sample and final libraries were used at similar con-
centrations in order to achieve similar coverage across samples. The average insert size of the library was
approximately 200 bps. The sample libraries were then sequenced on the HiSeq 2500 at the QB3 Vincent
J. Coates genomic facility at UC Berkeley using 150 paired-end reads. Because the library insert size is on av-
erage smaller than 300 bps, the two paired-end reads overlap, providing two independent calls for each base
in the overlapping region41,42. Each sequencing lane accommodated 6 distinct samples providing, on aver-
age, a coverage of 1000X per sample. One colony (colony 5 in Supplementary Table 1) was also sequenced
separately in one lane, generating a 6000X coverage for this sample.
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2.4.5 Processing of sequencing data.

The reads of each sample were processed according to the following pipeline. Read quality was assessed via
FastQC to check for base sequence quality,GC content bias, length distribution, and adapter contamination.
Because some adapter contamination was determined, reads were filtered for library adapters and trimmed
when necessary.

Paired-end reads were thenmerged using BBmerge (available at http://sourceforge.net/projects/bbmap),
which identifies the optimal relative position of corresponding read pairs and generates a unique consensus
read with combined quality scores (on average, 90% of the reads were uniquely merged and used for the
subsequent analysis). The resulting sequencing error was on average lower than 10−6 for all samples.

BreSeq43 was then used tomap themerged reads to the reference genome of E. coli strainMG1655 (NCBI
id: NZ_CP009685.144). SNP-calling and frequency calculationwas also performed via BreSeq conditioning
on at least 4 independent read calls.

Genomic regions with unusually high density of SNPs were omitted. To determine whether SNPs were
to be disregarded, a sliding window of 5 kbps was passed across the genome counting the number of SNPs
with frequency lower than a varying threshold. For each frequency threshold i, the average number of SNPs
per window ni was recorded. If a window showed a number of SNPs with p-value lower than 0.001 (as-
suming a Poisson distribution with mean ni), all the SNPs in that window were removed. This procedure
takes into account that SNPs with lower frequency are more numerous and thus more densely populate the
genome, while providing a more conservative approach than simply removing regions with high SNP den-
sity regardless of their frequency. The flagged regions were often shared among samples and annotated as
repetitive regions in the reference genome.

Among the remainingputativemutations, SNPspresent inmore than40%of thepopulationweredeemed
mutations carried by the seeding cell(s) and removed. Three of the liquid cultures appeared to have been
seeded by multiple cells, since they contained SNPs at frequency equal to 50%. The remaining SNPs with
corresponding frequency were then used to generate the clone size distribution in Fig. 2.1 for all samples,
with the exception of colony 6. The details on how we combined the SNPs from the different portions of
colony 6 are reported in the Supplementary Methods.

2.4.6 S. cerevisiae experiments.

For the fluorescent marker experiments in budding yeast (Fig. 2.2) we used the W303 S. cerevisiae strain
JRY10643, derived fromJRY962823. This strain employs theCre-loxP recombination systemto switch stochas-
tistically from a red to a green fluorescent state at a rate µ = 1.6× 10−3 per cell division. S. cerevisiae were
grown at 30◦C in YPD (20g/L peptone, 10g/L yeast extract, 20g/L dextrose). For plates, 2% w/v bacto agar
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was added to the media before autoclaving. To grow colonies from single cells, saturated overnight culture
was diluted 1:10 in fresh media and grown for another 4.5 hours. The resulting culture was diluted in PBS
to give about 50 cells/ ml. 100µl of this dilution were spread on YPD plates (containing roughly 20ml of
YPD with 2% agar) that had been dried at room temperature for at least 24h. After drying, the plates were
wrapped with parafilm and incubated at 30◦C for 5 days.

2.4.7 Image analysis.

For the timelapse movie (Supplementary Movie 1), single cells of JRY10643 were inoculated on YPD plates,
incubated in a stage-top incubator fitted to a Zeiss AxioZoommicroscope and grownovernight. One colony
was selected and imaged every 30 minutes in both the red and the green fluorescent channel. For Fig. 2.2d, a
colony was imaged every 24 hours and images overlaid in Adobe Photoshop. To image sectors and bubbles
on the single-cell scale, a colonywas cut out from the agar plates and imaged on a Zeiss LSM700 confocalmi-
croscope, using 488nm and 555nm lasers. A z-stack was recorded and later combined bymaximum intensity
projection.

Colonies were imaged on a Zeiss AxioZoom v16 uprightmicroscope. The red and green fluorescent chan-
nel were recorded separately, and exposure times were set automatically by the software for each colony and
channel. To measure the mutant clone size distribution in the converting budding yeast strains, we used
an automated thresholding algorithm with a locally adaptive threshold. To detect large clones, we removed
small object by computing the geodesic opening of the green channel image before binarizing with a locally
(50 pixel radius) adaptive threshold. For the detection of small bubbles, we computed the top hat transform
of the green channel, using a 15 pixel radius disk as the structuring element, which effectively removes large
elements from the image. The resulting image was then segmented using an adaptive threshold in a 15 pixel
radius neighborhood. Finally, the two segmented images were overlaid and eroded by 1 pixel to obtain the
final segmentation. In Fig. 2.2b, we also show the result for no erosion and 2 pixel erosion (gray area).

The imaged budding yeast colonies are not strictly two-dimensional but have a roughly conical shape.
Small clones thus occupy stretched three-dimensional volumes V ∼ L∥L

2
⊥, of which only the projection

can be observed under themicroscope. To take this projection error into account, we consider the volumeV
of bubbles growing in 3D, and, assuming isotropic growth, we compute the projected areaAproj ∼ V/L⊥,
whereL⊥ is the size of the bubble section transverse to the growth direction. Using z3D = 1.61, this leads
to

Pr(Aproj > A) ∼ A−0.77, (2.9)

which serves as an upper bound for the case where bubbles are equally extended horizontally as they are ver-
tically. Experimentally, the best fit to the low-frequency regime of the clone size distribution in Fig. 2.2b gives
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an exponentof roughly0.61, which is consistentwithbubbles that have a small degree of three-dimensionality
but grow mostly in the x-y plane.

Data availability

The alignment files obtained from sequencing the E. coli populations are available in the Sequence Read
Archive (SRA) with access code SRP078606. The rest of the data that support the findings of this study are
available from the corresponding author upon request.

62



References

[1] S. E. Luria and M. Delbrück. Mutations of Bacteria from Virus Sensitivity to Virus Resistance. Ge-
netics, 28:491–511, 1943. doi: 10.1038/nature10260.

[2] J. Hermisson and P. S. Pennings. Soft sweeps molecular population genetics of adaptation from
standing genetic variation. Genetics, 169(4):2335–2352, 2005.

[3] R. D. Barrett and D. Schluter. Adaptation from standing genetic variation. Trends in Ecoloং &
Evolution, 23(1):38 – 44, 2008.

[4] P. W. Messer and D. A. Petrov. Population genomics of rapid adaptation by soft selective sweeps.
Trends in ecoloং & evolution, 28(11):659–669, 2013.

[5] G.Bell andA.Gonzalez. Evolutionary rescue canprevent extinction following environmental change.
Ecoloং Letters, 12(9):942–948, 2009.

[6] A. Coldman and J. Goldie. A stochastic model for the origin and treatment of tumors containing
drug-resistant cells. Bulletin of mathematical bioloং, 48(3-4):279–292, 1986.

[7] F. Michor, Y. Iwasa, and M. A. Nowak. Dynamics of cancer progression. Nature reviews cancer, 4
(3):197–205, 2004.

[8] H. Haeno, Y. Iwasa, and F. Michor. The evolution of two mutations during clonal expansion. Ge-
netics, 177(4):2209–2221, 2007.

[9] R.Durrett and S.Moseley. Evolution of resistance andprogression to disease during clonal expansion
of cancer. Theoretical population bioloং, 77(1):42–48, 2010.

[10] D. A. Kessler, R. H. Austin, and H. Levine. Resistance to chemotherapy: patient variability and
cellular heterogeneity. Cancer research, 74(17):4663–4670, 2014.

[11] S. A. Frank. Somatic mosaicism and disease. Current Bioloং, 24(12):R577–R581, 2014.

[12] M. J. Williams, B. Werner, C. P. Barnes, T. A. Graham, and A. Sottoriva. Identification of neutral
tumor evolution across cancer types. Nature genetics, 2016.

63



[13] D. Lea and C. A. Coulson. The distribution of the numbers of mutants in bacterial populations.
Journal of genetics, 49(3):264–285, 1949.

[14] C. A. Edmonds, A. S. Lillie, and L. L. Cavalli-Sforza. Mutations arising in the wave front of an
expanding population. Proceedings of the National Academy of Sciencॽ of the United Statॽ of
America, 101(4):975–979, 2004.

[15] S. Klopfstein, M. Currat, and L. Excoffier. The fate of mutations surfing on the wave of a range
expansion. Molecular bioloং and evolution, 23(3):482–490, 2006.

[16] O. Hallatschek and D. R. Nelson. Gene surfing in expanding populations. Theoretical Population
Bioloং, 73:158–170, 2008.

[17] J. H. Connell. The influence of interspecific competition and other factors on the distribution of the
barnacle chthamalus stellatus. Ecoloং, 42(4):710–723, 1961.

[18] R. M. Keane and M. J. Crawley. Exotic plant invasions and the enemy release hypothesis. Trends in
Ecoloং & Evolution, 17(4):164–170, 2002.

[19] J. C. De Roode, R. Culleton, A. S. Bell, and A. F. Read. Competitive release of drug resistance
following drug treatment of mixed plasmodium chabaudi infections. Malaria journal, 3(1):1, 2004.

[20] P. M. Enriquez-Navas, Y. Kam, T. Das, S. Hassan, A. Silva, P. Foroutan, E. Ruiz, G. Martinez,
S. Minton, R. J. Gillies, et al. Exploiting evolutionary principles to prolong tumor control in pre-
clinical models of breast cancer. Science translational medicine, 8(327):327ra24–327ra24, 2016.

[21] O. Hallatschek, P. Hersen, S. Ramanathan, and D. R. Nelson. Genetic drift at expanding frontiers
promotes gene segregation. Proceedings of the National Academy of Sciencॽ, 104(50):19926–19930,
2007.

[22] S. Mitri, E. Clarke, and K. R. Foster. Resource limitation drives spatial organization in microbial
groups. The ISME journal, 2015.

[23] A. E. Dodson and J. Rine. Heritable capture of heterochromatin dynamics in saccharomyces cere-
visiae. Elife, 4:e05007, 2015.

[24] L. Excoffier and N. Ray. Surfing during population expansions promotes genetic revolutions and
structuration. Trends in ecoloং & evolution, 23(7):347–351, 2008.

64



[25] N. J. Buttery, C. N. Jack, B. Adu-Oppong, K. T. Snyder, C. R. Thompson, D. C. Queller, and J. E.
Strassmann. Structured growth and genetic drift raise relatedness in the social amoeba dictyostelium
discoideum. Bioloং letters, 8(5):794–797, 2012.

[26] C. D. Nadell, V. Bucci, K. Drescher, S. A. Levin, B. L. Bassler, and J. B. Xavier. Cutting through the
complexity of cell collectives. Proceedings of the Royal Society of London B: Biological Sciencॽ, 280
(1755):20122770, 2013.

[27] J. van Gestel, F. J. Weissing, O. P. Kuipers, and A. T. Kovács. Density of founder cells affects spatial
pattern formation and cooperation in bacillus subtilis biofilms. The ISME journal, 8(10):2069–2079,
2014.

[28] B.Waclaw, I. Bozic, M. E. Pittman, R.H.Hruban, B. Vogelstein, andM. A.Nowak. A spatial model
predicts that dispersal and cell turnover limit intratumour heterogeneity. Nature, 525(7568):261–264,
2015.

[29] S. Ling, Z. Hu, Z. Yang, F. Yang, Y. Li, P. Lin, K. Chen, L. Dong, L. Cao, Y. Tao, et al. Extremely high
genetic diversity in a single tumor points to prevalence of non-darwinian cell evolution. Proceedings
of the National Academy of Sciencॽ, 112(47):E6496–E6505, 2015.

[30] M.Kardar,G. Parisi, andY.-C.Zhang. Dynamic scaling of growing interfaces. Physical Review Letters,
56(9):889, 1986.

[31] T.Halpin-Healy and Y.-C. Zhang. Kinetic roughening phenomena, stochastic growth, directed poly-
mers and all that. aspects of multidisciplinary statistical mechanics. Physics reports, 254(4):215–414,
1995.

[32] S. A. Frank and M. A. Nowak. Cell biology: Developmental predisposition to cancer. Nature, 422
(6931):494–494, 2003.

[33] B. R. Levin, V. Perrot, and N. Walker. Compensatory Mutations, Antibiotic Resistance and the
Population Genetics of Adaptive Evolution in Bacteria. Genetics, 154(3):985–997, March 2000.

[34] A. Sottoriva, H. Kang, Z. Ma, T. A. Graham, M. P. Salomon, J. Zhao, P. Marjoram, K. Siegmund,
M. F. Press, D. Shibata, et al. A big bang model of human colorectal tumor growth. Nature genetics,
47(3):209–216, 2015.

[35] M. O. Lavrentovich and D. R. Nelson. Survival probabilities at spherical frontiers. Theoretical pop-
ulation bioloং, 102:26–39, 2015.

65



[36] P. Vaupel, F. Kallinowski, and P. Okunieff. Blood flow, oxygen and nutrient supply, and metabolic
microenvironment of human tumors: a review. Cancer research, 49(23):6449–6465, 1989.

[37] R. A. Gatenby. A change of strategy in the war on cancer. Nature, 459(7246):508–509, 2009.

[38] R. A. Gatenby, A. S. Silva, R. J. Gillies, and B. R. Frieden. Adaptive therapy. Cancer research, 69(11):
4894–903, June 2009.

[39] M. Eden. A two-dimensional growth process. Dynamics of fractal surfacॽ, 4:223–239, 1961.

[40] R. Fowler and R. Schaaper. The role of the mutt gene of escherichia coli in maintaining replication
fidelity. FEMS Microbioloং Reviews, 21(1):43–54, 1997.

[41] H. Chen-Harris,M. K. Borucki, C. Torres, T. R. Slezak, and J. E. Allen. Ultra-deepmutant spectrum
profiling: improving sequencing accuracy using overlapping read pairs. BMC genomics, 14(1):1, 2013.

[42] J. L. Preston, A. E. Royall, M. A. Randel, K. L. Sikkink, P. C. Phillips, and E. A. Johnson. High-
specificity detection of rare alleles with paired-end low error sequencing (pele-seq). BMC genomics,
17(1):1, 2016.

[43] D. E. Deatherage and J. E. Barrick. Engineering and Analyzing Multicellular Systems: Meth-
ods and Protocols, chapter Identification of Mutations in Laboratory-Evolved Microbes from Next-
Generation Sequencing Data Using breseq, pages 165–188. Springer New York, New York, NY, 2014.

[44] K. Berlin, S. Koren, C.-S. Chin, J. P. Drake, J. M. Landolin, and A. M. Phillippy. Assembling large
genomes with single-molecule sequencing and locality-sensitive hashing. Nature biotechnoloং, 33(6):
623–630, May 2015.

66



2.5 Appendix

2.5.1 Strains and growth conditions

E. coli

For the sequencing experiments, we used theK12E. coli strainMG1655where themutT genewas replaced by
CmR, conferring resistance to chloramphenicol. This strain has an elevated mutation rate for A/T→C/G
transversions over wild type MG1655 by a factor of about 150 on average 1. We also performed sequencing
experiments (data not shown) with wild type MG1655 (with a functional mutT gene). E. coli were grown
continuously shaken at 37◦C in LB (10g/L tryptone, 5g/L yeast extract, 10g/L NaCl). For plates, 2% w/v
bacto agar was added to the media before autoclaving. Antibiotics were added after autoclaving to cooled
media.

S. cerevisiae

For the fluorescent marker experiments (Fig. 1, SI Fig. B3) we used the S. cerevisiae strain JRY10643, kindly
provided by Anne Dodson and Jasper Rine. This strain was derived from JRY9628 and follows the same
Cre/loxP strategy employed in Ref. 2. In short, the gene encoding the Cre recombinase was placed under
control of theα2promoter at the transientlyunsilencedHMLα locus. This leads to a rare, stochastic excision
of a loxP cassette containing an RFP-encoding gene. Consequently, RFP is switched off while expression of
a GFP-encoding gene downstream of the cassette is switched on (see Fig. 1c). To facilitate optional selection
for or against the cassette in JRY10643, the TEF promoter and kanr ORF present in the cassette of the
ancestral JRY9628 strain was replaced by URA3 amplified from pUG72.

In the experiments investigating the release of internally trapped bubbles upon drug application we used
strains yJHK111 3 and yMM9 (unpublished, courtesy ofMelanie J. I.Müller). Both strains have aW303 back-
ground (common genotype MATa bud4∆::BUD4(S288C) can1-100). yJHK111 expresses the yellow fluo-
rescent protein ymCitrine. yMM9 expresses ymCherry and is also resistant to cycloheximide via mutation
Q37E in the gene CYH2 (while yJHK111 is sensitive).

S. cerevisiae were grown at 30◦C in YPD (20g/L peptone, 10g/L yeast extract, 20g/L dextrose). For plates,
2% w/v bacto agar was added to the media before autoclaving.
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Liquid Culture Colonies

Average Population Size± s.d. (109) 1.5± 0.2 2.7± 0.5
Empty Plates/Total Plates 66/86 19/42
µ [95% C.I.] (10−10) 1.8 [1.1, 2.7] 2.9 [1.8, 4.5]

Table 2.S1: Spontaneous mutaধon rate to specধnomycin in mutT obtained by performing Luria-Delbrück experi-
ments on liquid cultures harvested in staধonary phase grown in a 96 well plate and colonies grown for 3 days. The
average populaধon size and its standard deviaধon are computed by counধng CFUs of appropriate diluধons, and
the confidence interval on the mutaধon rate is calculated using the binomial test implemented in R.

2.5.2 Whole-genome sequencing in E. coli

Estimates of mutation rate in liquid culture and colonies

To verify that themutation rate is independent of themode of growth, we performed Luria-Delbrück exper-
iments using mutT populations grown as colonies from single cell harvested after three days, and overnight
liquid cultures. The liquid cultures were inoculated with 2 to 10 cells. All populations were grown up to
similar size and the precise size wasmeasured by plating dilutions on non-selective plates. Themutation rate
was estimated from the fraction of populations that exhibited no growth two days after being moved onto
plates with 60ug/ml of spectinomycin. The reported spontaneousmutation rate to spectinomycin inK12 E.
coli is about 2× 10−10, generated by an aminoacid substitution in a ribosome unit4. Because the required
mutation consists in a C/G to T/A transversion 5, whose rate is not affected by the mutT deletion of the
strain, we expect similar mutation rates as in the wild-type. Table 2.S1 shows that both growth modes gen-
erate similar mutation rates. This supports our assertion that the increased number of mutants in colonies
reported in Fig. 1 cannot be explained by a different mutation rate.

Colony and culture growth for sequencing

Cells of mutT E. coli were cultured up to a density of 108 cells/ml. Part of this culture was plated on LB
plates to grow single cells colonies and incubated at 37◦C, while the other part was diluted 109 folds and
resuspended in 70 parallel tubes containing 5ml of LB and incubated at 37◦C in a shaker for about 10 hours
(around 30 generations). The density of liquid cultures that showed growth was measured via OD600 in
order to collect the cells in log-phase (Table 2.S2). Cells from four independent cultures were pelleted and
the genomic DNA extracted according to the Epicentre MasterPure DNA Purification Kit Protocol.

Colonies were grown for five days up to a diameter of about 1.5cm (Fig. 2.S1). For three colonies (colonies
1, 2, and 3 in Table 2.S2 and Fig. 2.S1), the cells were separated from the agar by vortexing and the genomic

68



OD 600 Population Size (×109) Mean Coverage Min. Frequency (×10−3)

Well-mixed 1 0.6 3.0 722 4.29
Well-mixed 2 0.35 1.8 736 4.30
Well-mixed 3 0.25 1.3 836 4.75
Well-mixed 4 0.23 1.3 495 6.13

Colony 1 0.36 3.6 884 4.74
Colony 2 0.28 2.8 893 4.81
Colony 3 0.71 7.1 1214 3.79

Colony 3 HC 0.71 7.1 6025 0.96
Colony 4: in 0.37 3.7 1348 1.39
Colony 4: 1/8 0.08 0.8 964 0.40
Colony 4: 1/4 0.15 1.5 574 1.30
Colony 4: 1/2 0.32 3.2 1271 1.28

Table 2.S2: Summary of the sequenced populaধons. Well-mixed populaধonwere grown in 5ml of LB, while colonies
were grown for 5 days and the OD600 measured with a 10-fold diluধon. The number of cells used to extract DNA
for each sample, the mean sample coverage, and the minimum observed frequency are also reported. For colony 4,
the minimum observed frequency is rescaled proporধonally to the porধon size.

DNA extracted for each population. For the last colony (colony 4 in Table 2.S2 and Fig. 2.S1), the colony
was cut in four parts via a glass pipette for the center portion (IN) and a razor blade (for the remaining outer
ring). The outer ring was divided into three parts: 1/8, 1/4, and the remainder of the ring (around 1/2 ring),
as shown in Fig. 2.S1. The DNA of each portion was extracted separately. Details are reported in Table 2.S2.

Library preparation and sequencing

Illumina library preparation was performed on each sample and final libraries were used at similar concen-
trations in order to achieve similar coverage across samples. The average insert size of the library was approx-
imately 200 bps.

The sample librarieswere then sequencedon theHiSeq 2500 at theQB3Vincent J.Coates genomic facility
at UC Berkeley using 150 paired-end reads. Because the library insert size is on average smaller than 300
bps, the two paired-end reads overlap, providing two independent calls for each base in the overlapping
region, which decreases the sequencing error to below 10−6. Each sequencing lane accommodated 6 distinct
samples providing, on average, a coverage of 1000X per sample. One colony (colony 3 in Table 2.S2) was also
sequenced separately in one lane, generating a 6000X coverage for this sample.

69



Figure 2.S1: Colonies of mutator E. coli used for sequencing. The scale bar corresponds to 1cm. Colony 4 was
parধধoned in four parts that were sequenced separately: the center (IN), and approximately one eighth (1/8), one
fourth (1/4), and one half (1/2) of the outer ring.

Processing of sequencing data

The reads of each sample were processed according to the following pipeline. Read quality was assessed via
FastQC to check for base sequence quality,GC content bias, length distribution, and adapter contamination.
Because some adapter contamination was determined, reads were filtered for library adapters and trimmed
when necessary.

Paired-end reads were then merged using Pear6, which identifies the optimal relative position of corre-
sponding read pairs and generates a unique consensus read with combined quality scores (on average, 90%
of the reads were uniquely merged and used for the subsequent analysis). The resulting sequencing error
was on average lower than 10−6 for all samples. Hence, the minimum observable SNP frequency in our
experiments is set by the sequencing coverage and not by the sequencing error.

BreSeq7 was then used to map the merged reads to the reference genome of E. coli strainMG1655 (NCBI
id: NZ_CP009685.1 8). SNP-calling and frequency calculation was also performed via BreSeq conditioning
on at least 4 independent read calls.

Genomic regions with unusually high density of SNPs were omitted. To determine whether SNPs were
to be disregarded, a sliding window of 5 kbps was passed across the genome counting the number of SNPs
with frequency lower than a varying threshold. For each frequency threshold i, the average number of SNPs
per window ni was recorded. If a window showed a number of SNPs with p-value lower than 0.001 (as-
suming a Poisson distribution with mean ni), all the SNPs in that window were removed. This procedure
accounts for the fact that SNPs with lower frequency are more numerous and thus more densely populate
the genome, while providing a more conservative approach than simply removing regions with high SNP
density regardless of their frequency.

If a genomic region shows an average number of SNPs with frequency below i, but an unusually high
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number of SNPs with frequency below j with j > i, this suggests that the SNPs with frequency between
i and j are over-represented, which can be caused by misaligned reads or mapping issues (often leading to
many false SNPs with very similar frequency. Although some SNPs in such region may represent genuine
mutations, we chose to flag the whole region as problematic and remove all the corresponding SNPs. Such
regions are often shared among samples and annotated as repetitive regions in the reference genome. This
procedure was repeated for all samples.

Among the surviving putativemutations, SNPs present inmore than 50%of the populationwere deemed
mutations carried by the seeding cell(s) and removed. Two of the liquid cultures appear to have been seeded
by multiple cells, since they contained SNPs at frequency equal to 50%. The remaining SNPs with corre-
sponding frequency were then used to generate the clone size distribution in Figure 1 for all samples, with
the exception of colony 4.

For colony 4, the clone size distributionwas determined by combining the filtered SNPs from the distinct
colony portions (all the fixed SNPs were fixed in all portions and thus removed). First, SNPs that were
identified in two or more portions had their total frequency xt calculated as

xt =

∑
i ρixi∑
i ρi

, (2.S1)

where the sum runs over the different colony portions, ρi is the OD 600 density of portion i and xi is the
frequency of the shared SNP in portion i. SNPS that were uniquely identified in one portion of the colony
and not in the others were treated in the following way. First, in each sample, the frequency of the SNP was
rescaled proportionally to the size of the portion by multiplying the observed frequency by ρi∑

i ρi
.

Secondly, we accounted for the higher resolution of portion 1/8. For each colony sample i, we defined the
minimum observable frequency ξi = ρimin(xi)∑

i ρi
, where min(xi) is the minimum SNP frequency observed

in sample i. Because of the partitioning of the colony, these frequencies satisfy the relation ξin ∼ ξ1/2 >

ξ1/4 > ξ1/8 (see Table 2.S2). We then identified all the SNPs in portion 1/8 that had rescaled frequencies
lower than ξi, where i corresponds to each of the larger three portions. If we assume that the frequency dis-
tribution of these SNPs is homogenous across the colony, we can extend their presence to the other samples
in the following way. For each of the identified SNPs, a number equal to ρi/ρ1/8 of inferred mutations is
added to the list of mutations in portion i with frequency equal to the rescaled frequency in portion 1/8.
This is repeated for all the three largest portion and, finally, the list of mutations for each portion is merged
together and used to calculate the clone size distribution of colony 4 in Fig.s 1 and 2.S2.
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Figure 2.S2: Site frequency spectrum of each sequenced populaধon reported in Fig. 1 where the data is labeled as
in Table 2.S2 and Fig. 2.S1

Control using the wild type

Todeterminewhether the number of SNPs detectedwas consistentwith previously reportedmutation rates,
we grew and sequenced a well-mixed population and a colony of the wild type strain E. coli MG1655 with a
functional mutT gene following the same protocol we used for the mutator strain. In particular, the colony
was sequenced in partitions similarly to colony 4 in Fig. 2.S1. After analysis of the results, we detect only
a single SNP in the well-mixed population, whose minimum detectable frequency was around 3 × 10−3.
By comparing the number of SNPs above this frequency observed in the mutator strain, we infer that the
mutator strain is characterized by an approximately 100 fold increase in themutation rate. For the colony, we
detect a total of 23 SNPs combined across the different regions above frequency 3× 10−3 compared to the
1000 SNPs found in colony 4, which suggests a 50 fold increase inmutation rate. The reportedmutation rate
in wild type E. coli is around 0.001 per genome per generation9. The expected mutation rate in our mutT
deletion strain is thus roughly 0.1 per genome per generation. This number is consistent with the mutation
rate inferred from fitting the well-mixed clone size distribution in Fig. 1 to the standard Luria-Delbrück
expectation, which gives ≈ 0.4. Moreover, although the number of detected SNPs in the wild type is not
sufficiently large to accurately compute the clone size distribution, it supports the observation that colonies
produce approximately 10 timesmoremutationswith clones above frequency 3×10−3 compared to equally
large well-mixed populations.
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Correction at low-frequencies

Even if sequencing errors can be neglected, the true and the observed frequency of a SNP can still differ
because only a subsample of reads are sequenced at the SNP position. Although this is an issue across all
frequencies, the relative error ismuch larger a low frequencies, where one extra read can have a strong impact
on the reported frequency. Assuming that sampling is the only source of noise, the variance associated with
a SNP with frequency x is v(x) = x(1 − x)/n where n is the coverage at that position 10. The relative
error on the frequency scales as x−1/2 and is especially relevant at low frequencies. The (integrated) clone
size distribution F (x) can then be better approximated by

F (x) =
∑
i

∫ 1

x
B[nx′, nxi]dx′, (2.S2)

where the sum runs through all SNPs and B(y′, y) is a binomial distribution function with mean y. The
clone size distributions plotted in Fig. 1 and rescaled in Fig. 2 were obtained in this way.

2.5.3 Spontaneous mutants in S. cerevisiae

Main experiment

The S. cerevisiae strain JRY10643 was used to study visually the size of mutant clones. This strain converts
at a rate of µ ≈ 1.6 × 10−3 per generation from a red fluorescent state to a green fluorescent state. Red
cells are prototrophic for uracil, while green cells are not because they have lost the URA3 gene. To start
the experiments, glycerol stock was streaked on a CSM-URA plates to select for single clones. An overnight
culture was inoculated in liquid CSM-URA to prevent growth of converted cells. The saturated overnight
culture was diluted 1:10 in fresh media and grown for another 4.5 hours. The resulting culture was diluted
in PBS to give about 50 cells per ml. 100µl of this dilution were spread on YPD plates (containing roughly
20ml of YPDwith 2% agar) that had been dried at room temperature for at least 24h. After drying, the plates
were wrapped with parafilm and incubated at 30◦C for 5 days. Final colonies were roughly 1cm in diameter,
on average.

Imaging

Main experiment. Colonieswere imaged after 5 days of growth on aZeissAxioZoomv16 uprightmicroscope.
The red and green fluorescent channel were recorded separately, and exposure times were set automatically
by the software for each colony and channel. Note that, throughout this work, signal in the channel for the
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Figure 2.S3: Distribuধon of frequencies of mutant clones in S. cerevisiae colonies, measured by image analysis from
343 colonies. The red curve was obtained by manually adjusধng the thresholding parameters for each image indi-
vidually, while the black curve employed the automated thresholding algorithm described in Sec. 2.5.3. The gray
area represents variaধons of the algorithm, without final erosion (top) and enhanced final erosion (boħom). The
dashed line represent the expected scaling of the frequency distribuধon for a two-dimensional populaধon, x−0.4,
and when accounধng for 2D projecধon errors of three-dimensional bubbles, x−0.77 (Methods).

fluorescent color of the ”mutant” (converted JRY10643, yMM9) is pseudo-colored as yellow/orange, while
the fluorescent signal of the ”wild type” (unconverted JRY10643, yJHK111) is pseudo-colored as purple.

Time lapse moviॽ. For time lapse movies, single cells were inoculated on YPD as described above. After
drying, a plate was transferred to a stage-top incubator fitted to the Zeiss AxioZoommicroscope and grown
overnight. For SImovie 1, one colonywas selected and imaged every 30minutes in both the red and the green
fluorescent channel. For Fig. 1e, several colonies were imaged at 32x magnification every two hours, keeping
the front of the colony in focus. Single-cell imagॽ. To obtain images of bubbles and sectors on the single-
cell scale, a colony from the time lapse was selected, cut out from the agar plates, and fixed on a glass slide.
Confocal images were obtained using a Zeiss LSM700 microscope, using 488nm and 555nm lasers. Since
the colony was strongly curved near the front, we recorded a z-stack that was later combined by maximum
intensity projection.

Image analysis

Tomeasure themutant clone size distribution in our converting budding yeast strains, we proceeded in two
ways, by manually setting the thresholding parameters for each colony individually, and using a automated
thresholding algorithm.

Simple binarization schemes did not yield satisfactory results for several reasons: (i) Each colony has a
different intensity profile, even after adjusting for differences in exposure time. In addition to biological
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variation in gene expression of the fluorescent proteins, this is because the clone sizes varied strongly between
colonies, and large clones were much brighter than smaller ones. Hence, a simple binarization with a global
threshold would typically only be able to detect the largest class of clones present in a given colony. (ii) Due
to the curvature of the colonies, the fluorescence signal was typically weaker near the edge of the colony than
in the center. (iii) Intensity varied even within clones, making it difficult to accurately detect the edge of a
clone.

Therefore, we employed a binarization scheme with a locally adaptive threshold (15 pixel radius). Both
the red channel (the wild type) and the green channel (the mutants) were segmented individually, where we
took into consideration not only the local mean intensity, but also the local variance. The segmented red
channel was inverted and multiplied onto the segmented green channel to obtain the complete segmented
image. Thus, we only counted clones if a bright spot in the green channel coincided with a dark spot in
the red channel. The radius of the colony was measured independently and the final binarized image was
masked with a disk of that radius. Computing the size of each segmented object, in 343 colonies, we obtain
the mutant frequency distribution shown in Fig. 2.S3 (red line).

Due to the variation between colonies, it was necessary to set the thresholding parameters manually for
each colony, thus making the segmentation to some degree subjective. In order to validate that our results
were not skewed by the subjective choice of parameters, we devised an automated thresholding scheme, as
follows. To detect large clones, we removed small object by computing the geodesic opening of the green
channel image before binarizingwith a locally (50 pixel radius) adaptive threshold. For the detection of small
bubbles, we computed the top hat transform of the green channel, using a 15 pixel radius disk as the structur-
ing element. This transformation effectively removes large elements from the image, leaving small objects
untouched. The resulting image was then segmented using an adaptive threshold in a 15 pixel radius neigh-
borhood. Finally, the two segmented images (for large and small objects) were overlaid to obtain the final
segmentation. However, this procedure overestimated the size of mutant clones slightly, when compared to
the manually thresholded result. Therefore, we eroded the segmented images by 1 and 2 pixels. The result
of analyzing 343 colonies in this way is shown in Fig. 2.S3, where the black line was obtained by eroding the
final segmentation by 1 pixel, and the gray background shows the variation caused by no erosion and strong
erosion (2 pixels).

2.5.4 Simulations

Eden model

We simulated range expansions using a meta-populationmodel based on the Edenmodel 11. We divide space
in a two-dimensional square grid, whose voxels can be empty, wild type, or mutant type. In general, each
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voxel may correpond to multiple individuals and the lattice size a is a model parameter.
The grid is initialized by filling the central voxel with wild-type. At each time step,

1. a voxel i that has at least one empty neighbor is picked at random,

2. an empty neighboring voxel j is picked at random,

3. if i contains wild-type: a uniformly distributed random number u is sampled: if u < µ, voxel j
is filled with mutants, otherwise with wild-type; if i contains mutants, then j is always filled with
mutants.

Because mutation rate and substitution rate are the same for neutral mutations, here, µ represents the
actual mutation rate.

Ageneration is completewhen the steps above are repeated for anumberof iterations equal to thenumber
of voxels that have at least one empty neighbor at the beginning of the iterations. Each generation, a number
of voxels proportional to the colony circumference is added. Because the circumference grows linearly with
the number of generations, the number of iterations to complete one generation also increases.

Confidence interval on clone size distribution

To compare the clone size distributions generated by the simulations with those generated by sequencing,
we need to take into account that the experimental data is limited by the number of observable SNPs. The ex-
perimental clone size distribution is therefore subject to variation due to its limited sample size. To quantify
this effect, we perform bootstrapping on the simulated distribution: sets ofM mutations with frequency
above the minimum observable experimental frequency (Table 2.S2) are sampled from the simulations and
the corresponding clone size distribution is computed. HereM corresponds to the number of mutations
observed in one experimental replicate. This is repeated 10,000 times in order to generate an ensemble of
clone size distribution, which is then binned across frequencies. We then define the 95% confidence interval
on the clone size distribution as the region containing 95% of the sampled distributions (gray area in Figure
2).

Tree-conditioned clone size distribution and Infinite Site Model

Since the clone size distribution in simulations, sequenced populations, and imaged colonies is derived from
mutations that occur on one or few genealogical trees (one for sequencing, few hundreds for imaging, and
few thousands for simulations), the size of the different clones are not independent, but are constrained to
lie on a given tree. The individual characteristics of one specific tree can affect multiple clones and may thus
give rise to a clone size distribution that is significantly different from one generated via another tree.
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Figure 2.S4: Variaধon on the clone size distribuধon generated by tree idiosyncrasies. (a) Clone size distribuধon for
three different trees generated using the Eden model and a populaধon size of 2× 105. (b) Clone size distribuধon
generated by the standard Eden model and the Infinite Site Model on the same tree with mutaধon rate µ =
3× 10−4.

To test to what extent tree conditioning generates variation in the clone size distribution, we used the
Eden model to generate three colonies of identical size and analyzed the complete clone size distribution.
Figure 2.S4a shows that the inferred clone size distributions for the simulated trees show some variation in
the sector regime, but overlap well in the bubble regime. This is in agreement with the intuition that small
clones are less affected by the specific shape of the tree compared to large clones. Although tree idiosyncrasies
generate some variation in the clone size distribution, the resulting noise is by far lower than that generated
by subsampling (see Sect. 2.5.4), which is accounted for via bootstrapping in Fig. 2.

Conditioning on the tree, we also show that the results from the standard Eden model simulations pre-
sented in Section 2.5.4, in which mutants cannot mutate further, are consistent with an Infinite Site Model
implemented on top of the Eden model, in which they can. Fig. 2.S4b shows the clone size distribution
on the same tree using the standard Eden model and an infinite site model. Also in this case, the resulting
variation at high frequencies is less than what is generated by subsampling.

Dynamical simulations for the effect of antibiotics on colony growth

To simulate the effect of intermediate antibiotic concentrations on colony growth and spreading of resistant
individuals observed in experiments (see Fig. 4 in the main text), we adapted the Eden model simulation to
accommodate sudden changes in the environment and death of the wild type.

Environmental changes are modeled by changing the relative growth rate of mutants and wild type be-
fore and after a certain time T during the simulations. The time T defines the time in which the antibiotic
is administered. The relative growth rate of mutants, gmut, and wild type, gwt, define the selective advan-
tage/disadvantage s of the mutant as gmut/gwt − 1 = s. Note that, if there is no death of the wild type,
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the environmental changes would affect only mutant clones that have empty neighboring voxels, or new
mutants that arise at the front. If the mutants initially carry a disadvantage, it is unlikely that any of them
has contact with the front, meaning that escape of mutants can only occur via new mutants.

Therefore, since we experimentally observe the escape of pre-existing mutants, we introduce the possi-
bility of death: after time T , any wild type cell (regardless of its neighbors) has a chance δ of dying each
generation. The algorithm thus follows the following steps for each generations:

1. Count the number of cells nwith at least one empty neighbor.

2. Count the total number of wild type cells nwt.

3. DefineR = n reproductive steps andD = d · nwt death steps.

4. During any of theR+D steps,

(a) Pick a random integer u in the [0, R+D) interval.

(b) If u < R perform a reproductive step as described in section 2.5.4,

(c) Otherwise, pick a random wild type cell and delete it.

In each generation, the algorithm ensures an average number ofR births andD deaths, as desired.
To simulate the experimental scenario in Fig. 4, we first grow a population with neutral mutations until

time T . After time T , new mutations are not allowed, and the wild type is ascribed a death rate δ as a proxy
for the antibiotic concentrations. The Supplementary Movie 3 shows the qualitative agreement with the
experimental results in identifying an intermediate death rate that corresponds to minimal colony growth.

2.5.5 Fitting of the clone size distribution from sequencing data

To estimate actual values from the empirical clone size distribution, we first determine the fitting parameters
µNΠc andxc that allow to collapse all the data onemaster curveχ(x/xc) (seeAppendixA).Here, (xc,Πc)

represent the crossover between bubble and sector regime for the reverse cumulative distribution Π(x) of
clone sizes, and µN is the total number of mutations that entered the population. Because the fitting pa-
rameters depend on the population sizeN , which varied slightly between the colonies (see Table 2.S2), we
allow the fitting parameters to vary from one colony to another.

The optimal fitting parameters are determined by minimizing the sum of least squares between the re-
verse cumulative clone size distribution obtained via sequencing and the master curve χ(x/xc) derived by
rescaling the results from the Eden model simulations with xEden

c = 0.068 andΠEden
c = 0.019 (Fig. A2

and Fig. 2.S5). Table 2.S3 summarizes the fitting parameters for each colony used to generate Fig. 2.
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Colony xc µNΠc xmin(10
−4) Nmin(10

5)

1 0.055 303 1.2 4.3
2 0.059 238 1.8 5.0
3 0.054 333 1.1 7.8
4 0.051 435 0.71 6.4

Table 2.S3: Fiষng parameters used to rescale the site frequency spectra of different colonies. When wriħen as
F (x) = µNΠ(x) = µNΠcχ(x/xc), the site frequency spectra collapse on a single master curve in Figure 2.
The minimum frequency xmin below which the bubble regime is expected to fail and its corresponding populaধon
sizeNmin are also reported.
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Figure 2.S5: Visualizaধon of the fiষng parameters of the site frequency spectrum obtained by sequencing colony
1. The crossover posiধon (xc, µNΠc) is opধmized in order to have the least square deviaধon between the data
(red) and the Eden model simulaধon results (gray). We find that the bubble regime intersects the well-mixed expec-
taধon (dashed black line) at frequency xmin below which we assume a well-mixed behavior. The same procedure
is repeated for all colonies generaধng the parameters in Table 2.S3.

At very low frequencies, which we cannot observe via sequencing because of the limited coverage, we
expect a transition from the bubble regime to a different behavior that captures finer scale dynamics (Ap-
pendix A). Although we do not attempt to characterize this regime here, we determine the minimum fre-
quencyxmin belowwhichwe expect the bubble scaling to fail. We define this frequency as the value at which
the extrapolated bubble power-law from the sequencing site frequency spectrum of colonies intercepts the
prolonged well-mixed expectation (Fig. 2.S5). Its value and the corresponding minimum population size
Nmin = Nxmin is also reported in Table 2.S3. When sampling from the empirical site frequency spectrum
obtained via sequencing in Figure 3, we assume that below xmin the clone size distribution follows a well-
mixed distribution (Fig. 2.S5).

By rescaling frequency x and the number of SNPs µNΠ(x) above frequency x using the parameters in
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Table 2.S3, we can extend the experimental clone size distribution with the Edenmodel simulations and our
theory (Fig. 2.S5 for different population sizes andmutations rates. We can then compute the mean and the
typical number of mutants, and the colony double mutant probability reported in Fig. 3 in the main text.
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3
Allele surfing promotes microbial adaptation

from standing variation

The coupling of ecology and evolution during range expansions enables mutations to estab-
lish at expanding range margins and reach high frequencies. This phenomenon, called allele
surfing, is thought to have caused revolutions in the gene pool ofmany species, most evidently
in microbial communities. It has remained unclear, however, under which conditions allele
surfing promotes or hinders adaptation. Here, using microbial experiments and simulations,
we show that, starting with standing adaptive variation, range expansions generate a larger
increase in mean fitness than spatially uniform population expansions. The adaptation gain
results from ‘soft’ selective sweeps emerging from surfing beneficial mutations. The rate of
these surfing events is shown to sensitively depend on the strength of genetic drift, which
varies among strains and environmental conditions. More generally, allele surfing promotes
the rate of adaptation per biomass produced, which could help developing biofilms and other
resource-limited populations to cope with environmental challenges.

3.1 Introduction

The dynamics of adaptation has been intensely studied both theoretically and experimentally in situations
where the time scales for demographic and adaptive change are vastly separated. Populations can then be
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treated as either stable or as having an effective population size summarizing the effect of demographic vari-
ations on time scales much faster than the adaptive dynamics considered 1–3.

However, demographic equilibrium is frequently disrupted by, for instance, environmental changes, pop-
ulation growth, competition among species and local adaptation4. The fate of a genetic variant then both
depends on and influences the demography of a dynamically changing population. Consequently, demo-
graphic and evolutionary changes can become tightly coupled 5.

Such coupling between ecology and evolution is a particularly salient feature of range expansions6. Many
mutations occur in the bulk of a populationwhere theyhave to compete for resourceswith their neighboring
conspecifics. Mutations that, by chance, arise in a region of growing population densities have a two-fold
advantage: They enjoy a growth rate advantage compared to their conspecifics in the slow-growing bulk
regions, and their offspring will have a good chance to benefit from future net-growth if parent-offspring
locations are correlated. These correlated founder effects, summarized by the term “allele surfing”, lead to
complex spatio-temporal patterns of neutral mutations and can rapidly drive mutations to high frequency
by chance alone7–10.

The importance of allele surfing has been increasingly recognized over the last 10 years4,6,11. Allele surfing
is believed to be a ubiquitous process in populations that constantly turn over, for instance, by range expan-
sions and contractions, local extinction or expulsion and re-colonization 12–16. While these features are shared
by many populations, they are most evident in microbial communities that frequently expand to colonize
new surface regions in the environment or during infections 17,18.

Microbial experiments have shown that in the absence of selection allele surfing creates large mutant
clones that are extremely unlikely to arise via neutral evolution of well-mixed populations. Characteristi-
cally, these clones take the shape of sectors with boundaries that exhibit characteristic fractal properties 19.
The randomwandering of sector boundaries is a manifestation of genetic drift, as has been demonstrated ex-
perimentally in various micro-organisms, including bacteria, single-celled fungi and social slime molds, and
under various demographic scenarios 19–23.

While allele surfing is well understood in the neutral case, we do not have a comprehensive picture of its
adaptive potential. In particular, it is unclear how efficiently pre-existing adaptive variation24 is selected for
during range-expansions: Since allele surfing relies on enhanced genetic drift, it reduces the efficacy of selec-
tion per generation 25–27. On the other hand, for populations of the same final size, selection has more time
to act at the front of a range expansion than in a comparable well-mixed expansion, which could promote
adaptation 25,28–30.

Here, we test whether allele surfing helps or hinders adaptation usingmicrobial competition experiments
to measure the efficiency of selection during growth processes. To get a sense of the range of possible evolu-
tionary outcomes, we focus on two extreme cases: spatial range expansions and pure demographic growth
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of panmictic populations. We find increased adaptation during range expansions and rationalize our quan-
titative results using theory and simulations.

3.2 Materials and Methods

3.2.1 Strains and Conditions

Each experiment was performed using a pair of microbial strains that are distinguished by fluorescence and
a selectable marker. The fluorescent color difference allows measuring the relative abundance of each strain
in competition experiments by fluorescence microscopy as well as flow cytometry. The selectable marker
was used to tune the selective difference between the strains in the following way: One strain of the pair,
the sensitive strain (called ’wild type’), grows slower in the presence of a drug, while the other strain, the
resistant strain (called ’mutant’), is largely unaffected. Tuning the concentration of the drug in the medium
thus allowed us to adjust the selective difference between both strains. Selective advantages on plates and
in liquid culture were measured separately for a range of drug concentrations using the colliding colony
assay 31 and flow cytometry (for S. cerevisiae), respectively (see Appendix C), which give consistent results
(see supplementary Fig. 3.B1a). Selective differences reported throughout were obtained from linear fits.

Strains

We used S. cerevisiae strains with W303 backgrounds, where selective advantages were adjusted using cyclo-
heximide. For experiments with E. coli, we used both DH5α and MG1655 strains, tuning fitness differences
using tetracycline and chloramphenicol, respectively. Additionally, pairs of strains differing only in the flu-
orescent marker allowed us to perform truly neutral competition experiments (S. cerevisiae, S. pombe, E.
coli). S. cerevisiae and E. coli strains with constitutively expressed fluorescent proteins were used to study
the dynamics of cells at the front.

A detailed description of all strains and growth conditions is found in the Appendix C.

3.2.2 Main experiment

Adaptation fromstandingvariationduringtwotypesof population expansions

For each pair of mutant and wild type, a mixed starting population of sizeNi was prepared that contained
an initial frequency Pi of mutants having a selective advantage s, defined as the relative difference between
mutant and wild-type growth rate 31. The population was then grown to final sizeNf in two ways, through
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a range expansion and, for comparison, through uniform growth, and the final mutant frequency Pf was
determined. The associated increase in mean fitness∆W follows as∆W = (Pf − Pi)s.

Uniform Growth

Mixtures of cells were grown in well-shaken liquidmedium to the desired final population size and the final
fraction of mutant cells was determined using flow cytometry.

Range Expansion

Colony growth was initiated by placing 2µl of the mixtures onto plates (2% w/v agar) and incubated until
the desired final population size was reached. The numberNsec of sectors was determined by eye; the final
fraction Pf was measured using image analysis (see Appendix C for details).

3.2.3 Cell-Tracking Experiments

To investigate the dynamics of cells at advancing colony fronts, we continually imaged the first few layers
of most advanced cells in growing S. cerevisiae and E. coli colonies between a cover slip and an agar pad for
about four hours using a Zeiss LSM700 confocal microscope. The resulting stack of images were segmented
and cells were tracked as described in the Appendix C.

3.2.4 Meta-Population Model

To simulate evolutionary change during the differentmodes of growth,we adapted a classicmeta-population
model for growing microbial colonies, the Eden model 32 (Fig. 2a, Appendix A).

Range Expansion

Thepopulation spreads on a lattice and each lattice point is in one of three states: empty,wild type ormutant.
Growth of the populations occurs by randomly selecting an occupied ”source” site with empty neighbors
and copying it into a randomly chosen empty neighbor site. A mutant is more likely to be picked than a
wild-type site by a factor of 1 + s. This process is repeated until the colony has reached the final average
radiusRf and the final mutant fraction Pf is determined.
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Uniform Growth

The range expansion simulationwasmodified such that a target sitewas an empty site randomly drawn from
the entire lattice, rather than from the sites neighboring a given source site.

Individual-Based Simulations

To study the relevance of microscopic details on the adaptation process, we simulated a growing colony as
a two-dimensional collection of sphero-cylinders (rods with hemispherical caps) of various lengths interact-
ing mechanically (see Ref. 33 and Appendix A for details). The cells continuously grew (and divided) by
consuming nutrients, whose concentration was explicitly computed.

3.3 Results

3.3.1 Adaptive Potential of Range Expansions

Our competition experiments in yeast show that when a population grows from amixture of wild-type cells
and faster growing mutant cells by a range expansion (Fig. 1a), it exhibits on average a larger final mutant
frequencyPf than a well-mixed population grown to the same final population sizeNf ≈ 2× 108 (Fig. 1h).
The difference in final mutant frequency between range expansion and uniform growth increases strongly
with increasing selective advantage s of the mutants. For instance, for s = 0.15, mutants make up nearly
50% of the final population (Fig. 1d), in contrast to less than 10% mutant frequency in the well-mixed pop-
ulation. The discrepancy between both growth modes is even more pronounced when we plot the change
∆W = (Pf − Pi)s in mean fitness (Fig. 3.B2). Hence, adaptation from pre-existing mutations leads to a
much stronger increase in mean fitness in our experiments when a given population increase occurs via the
expansion of range margins rather than by a homogeneous density increase.

The spatial distribution of the mutant alleles visible in Fig. 1b-d indicates that the observed adaptation
gain of range expansions hinges on the formation and growth of ”sectors”. These clonal regions are the
footprints of surfing mutants that have locally established at the edge of the range expansion 19,25,31. Sectors
contain the vast majority of mutants in the population: If one removes the mutants that reside in sectors
from the analysis, or chooses initial frequencies so low that sectors do not occur, the adaptation gain is es-
sentially absent.

Selection has a strong impact on the shape and size of sectors: While a single mutant sector in yeast is
stripe-like in the neutral case, it has a trumpet-like shape and can represent a substantial fraction of the total
population when the mutants have a selective advantage (compare Figs. 1b-d). The rapid increase of sector
size with selective advantage of the mutant strain is quantified in Fig. 1j. For instance, a single mutant sector
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Figure 3.1: Adaptaধon from standing variaধon during a populaধon size increase. Adaptaধon during the growth of a
budding yeast populaধon from an iniধal sizeNi toNf is studied for two demographic scenarios, Range Expansion
and Uniform Growth. (a) Schemaধc of the experimental assay: Cultures of a wild-type and a faster-growing mutant
strain are mixed at an iniধal mutant frequency Pi = 0.02. Subsequently, a mixed populaধon of iniধally Ni =
5 × 104 cells is grown to a final populaধon size of Nf = 2 × 108. The growth process occurred either on
agar plates (“Range Expansion”) over the course of 5 days, or overnight under uniform growth condiধons (“Uniform
Growth”). The selecধve advantage s of the mutants is controlled by the concentraধon of cycloheximide, which
inhibits the growth of the wild-type cells. The fluorescent microscopy images (b-d) show the distribuধon of both
mutant (yellow) and wild-type (blue) cells at the end of range expansion experiments with selecধve advantage
of s = −0.01, 0.08, and 0.15, respecধvely. Scale bars are 2mm. (e-g) Ađer plaধng the final populaধons of
the uniform growth experiments, one obtains a distribuধon of single colonies with a color raধo represenধng the
raধo of mutants to wild type. (h) Final mutant frequency and corresponding coefficient of variaধon (inset) as a
funcধon of selecধve advantage determined in range expansions (blue, 35 replicates) and under uniform growth
(gray, 2 replicates). Noধce that the final mutant frequency is larger for range expansions and increasingly so for
larger selecধve differences. (i) Number of sectors Nsec at the end of range expansions as a funcধon of selecধve
advantage. The inset illustrates the spread of data points as a box plot. (j) Final frequencyP ∗

f per sector, defined as
the area of a single sector normalized by the area of the enধre colony, as a funcধon of selecধve advantage s. The
inset displays the same data using a logarithmic axis for the frequency per sector. Only sectors without contact to
other sectors were selected for analysis. Error bars are standard error of the mean throughout. The measurements
for (h, i, j) were all done on the same 35 replicates per data point.
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with selective advantage s = 0.15 contains roughly 5% of the total population in our experiments. Under
these conditions, a single clonal sector is like an adaptive ”jackpot” event that can cause a substantial increase
in the mean fitness of the population.

However, the early stages of surfing are a highly stochastic process, and therefore these jackpot events are
rare. This is reflected in the rather small number of sectors (proportional to the initial frequency ofmutants,
see Fig. 3.B3) detected in our experiments. The colonies shown in Fig. 1b-d, for instance, were started with
about 103 founder mutants in the inoculum, but only exhibit a handful of sectors (Fig. 3.1i). The number
of sectors varies strongly between replicates (Fig. 3.1i, inset) and, if the mutants are very infrequent initially,
there is a substantial chance that no sectors form (Fig. 3.B4). Importantly, while the number of sectors is
generally small, it increases with selective advantage, further contributing to the adaptation gain in range
expansions.

3.3.2 Towards a Minimal Model for Adaptation by Gene Surfing

The population dynamics of our colonies differs from uniform growth in numerous aspects: Cells are deliv-
ered to the plate in a droplet, which forms a ring of cells after evaporation 34. The cells start to grow and push
each other across the surface of the agar. The population grows at first exponentially, until the growth of
the core of the colony slows down due to nutrient depletion behind the front. The further advancement of
the front is driven by a layer of proliferating cells (the ”growth layer” 19,35 at the edge of the colony (Fig. 3.B5).

While some of these complexities are specific to microbial colonies and biofilms 36, elevated growth rates
at range margins combined with local dispersal are the characteristic features of range expansions. To see
whether these features alone could reproduce the observed pattern of adaptation, we created a simple meta-
population model (Methods), in which the frontier advances by random draws from the demes within the
range margins. This simple model has been shown to exhibit universal fractal properties of advancing inter-
faces 37, which have also been measured in bacterial range expansions 19.

As can be seen in Fig. 3.2, a simulation analog of Fig. 3.1, the model mirrors our experimental findings:
Beneficial mutations have a higher frequency in populations that have undergone a range expansion than
uniform expansion. The simulations also reproduce the stochastic formation of sectors and the qualitative
dependence of sector number and size on the selective advantage. Thus, the patterns of adaptation seen in
our colony experiments seem to originate from the few general features of range expansions that are incor-
porated in our minimal simulations.

Indeed, we now provide mathematical arguments and individual-based simulations to show how the
key features of range expansions conspire to generate the observed adaptation gain; detailed mathematical
derivations are provided in Appendix A.
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Figure 3.2: Adaptaধon from standing variaধon emerging in a meta-populaধon model of populaধon growth. (a)
Illustraধon of the algorithm underlying our coarse-grained simulaধons (Methods). A laষce site at the populaধon
fronধer is chosen and copied into an empty neighboring laষce site. The newly occupied site inherits the state of
the parent site. (b-d) State of the laষce at the end of three simulaধons. To mimic our experiments in Fig. 1, we
iniধated the expanding populaধon as an occupied disk (dashed line) of radiusRi = 550 such that a random fracধon
Pi = 0.02 of laষce sites is of the mutant type, and simulated unধl the final radius Rf ≈ 3Ri was reached. (e)
Final mutant frequencyPf and corresponding coefficient of variaধonCv (inset) as a funcধon of selecধve advantage
s determined in range expansions (blue, 500 simulaধons per condiধon) and corresponding simulaধons of uniform
growth (gray, 3 simulaধons per condiধon, seeMethods for algorithm) for the same parameters. Both final frequency
and variaধon are larger for range expansions. (f) Number and standard error of mean of sectors at the end of range
expansions as a funcধon of selecধve advantage for the same simulaধons. Inset illustrates the spread of data points
as a box plot. (g) Frequency per sectorP ∗

f , calculated from colonies with only a single sector, which were simulated
using a low iniধal mutant fracধon Pi = 0.005.
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3.3.3 Qualitative Explanation for Adaptation Gain

We shall beginwith a simple, qualitative argument that demonstrates an important difference between range
expansions and uniform growth. In a well-mixed population, the mutant frequency grows exponentially
with time, Pf ∝ esT . The number T of generations, however, increases only logarithmically with the final
population size, T ∝ lnNf, such that the mutant frequency changes by Pf/Pi = (Nf/Ni)

s. In our exper-
iments, this leads to a modest relative change in mutant frequency, e.g., by a factor of 2 for a 6% beneficial
mutation over the course of the growth process, which corresponds to about 12 generations. Importantly,
the absolute frequency remains well below 1 when the initial frequency is small. Moreover, the final mu-
tant frequency varies relatively little among different replicates, as quantified by the coefficient of variation
(Fig. 1h inset). This is because nearly all initially present cells give rise to clones, with similar clone sizes, each
corresponding to only a minute fraction of the total population.

In contrast to uniform growth, more generations need to pass to reach the same final population sizeNf

in a radially expanding population (T ∝
√
Nf in a radially expanding population, in contrast to T ∝ lnNf

in the well-mixed case). This implies that selection has more time to act during a range expansion, so that
one might expect an increased final mutant frequency.

3.3.4 Adaptation Gain Depends on Sector Shape and Number

The above run-time argument captures themain reason for the adaptation gain, but it ignores two important
counter-forces: (i) The efficacy of selection is reduced during a range expansion, because the frequency of
a selected mutation increases only algebraically with time, in contrast to exponential sweeps in uniformly
growing populations. (ii) Only few of the initially present cells give rise to expanding clones. Therefore,
to fully understand the adaptive potential of range expansion we must examine the mechanism of sector
expansion and formation, the latter being an inherently stochastic process caused by enhanced genetic drift
at the front 19. Ignoring any interaction between sectors and the small fraction of mutants in non-surfing
clones, we can estimate the final frequency Pf of mutants by multiplying the numberNsec of sectors with
their relative frequency P ∗

f in the population,

Pf = P ∗
f ×Nsec

While simple deterministic arguments exist topredict the frequencyP ∗
f of individual clones, newpopulation

genetic theory is required to predict the numberNsec of sectors. Remarkably, we shall see that the number
of sectors is sensitive to microscopic details of the population growth process.
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Final frequency P ∗
f of expanding clones

The two boundaries of sectors in radial range expansions are logarithmic spirals 31. These spirals emerge from
the origin of the sector at a characteristic opening angleϕ(s) ≈ 2

√
2s that is set by the selective advantage s

of themutant 25. Up to logarithmic corrections, one therefore expects a final frequency of mutant cells from
a single sector to be P ∗

f ≈ ϕ(s)/2π ∼
√
s in large colonies (see eq. (3.A11) for the full result). This means

that a single initial mutant can give rise to a macroscopically large clone of order
√
s. The fractional size of

mutant sectors grows even faster in range expansions with straight rather than curved fronts.

Sector numberNsec

The establishment of beneficial mutations is generally a result of the competition between random genetic
drift and the deterministic force of selection. At the coarse-grained description of clones in terms of sectors,
genetic drift manifests itself in the random wandering of sector boundaries, ultimately a result of random-
ness in the reproduction process 19. Balancing the random sector boundary motion with the deterministic
sector expansion due to selection, we show in Appendix A (see Eq. (3.A15)) that the number of sectors is
proportional to s in two dimensions. Note that although the s-dependence of the number of sectors in
two-dimensions is identical to Haldane’s classical result 2s for the establishment probability of beneficial
mutations 38,39, the proportionality changes in the three-dimensional case to a predicted s1.87 (Appendix A),
which may be relevant to the evolution of solid tumors.

3.3.5 Modeling the Onset of Surfing

While ourminimal model reproduces aspects of the experimental data reasonably well (see Fig. 3.A2), it can-
not predict howmicroscopic details influence the adaptation dynamics. Microscopic details are summarized
by a fit parameter, the effective deme size, which enters our expression for the number of sectorsNsec (Eq.
(3.A19)).

To studydirectly howthesemicroscopic factors influence thenumberof sectors, wedeveloped an individual-
based off-lattice simulation framework for microbial range expansions, where each cell is modeled explicitly
as a growing elastic body of variable aspect ratio (see Methods and Appendix A). These computer simula-
tions reveal that surfing events result from a complex competition between selection and genetic drift: The
probability for an individual cell to form a sector (the surfing probability) increases with selective advantage
s but the increase is much faster for colonies with a smooth front line than for colonies with strongly un-
dulating fronts (Fig. 3.3i). The observed difference between the rough and smooth fronts can be explained
intuitively as follows: If a mutant resides in a front region that is lagging behind neighboring wild-type re-
gions, it will likely be overtaken and enclosed by the neighboringwild-type regions, despite its higher growth
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Figure 3.3: Surfing depends sensiধvely on locaধon and the strength of geneধc driđ. Time-lapse microscopy (top
row) and individual-based simulaধons (boħom row) reveal cell-scale dynamics at the front of expanding colonies.
(a, c) Segmented micrographs of the iniধal front (boħom cells) and the front ađer three hours of growth (top cells)
in S. cerevisiae (a) and E. coli (c) colonies, respecধvely. Colored lines track lineages backward in ধme (see also Figs.
3.B8-3.B10). The histograms in (b, d, h) quanধfy how surfing success depends on posiধon: The probability density
p(∆) that the lineages tracked for 3 hours back in ধme lead to an ancestor that had a distance∆ (in unit of cell
diameters) to the front. Note the pronounced peak in both experiments (b, c) and simulaধons (h). (e) Illustraধon and
measurement of the random meandering of tracked lineages. We measure the lateral displacement δy (in units of
cell diameters) a lineage has undergone while moving a distance δx along the direcধon of the front propagaধon,
and average ⟨δy2⟩ over all lineages. (f) Average (root mean square) lateral displacement of lineages in expanding
colonies, showing that E. coli lineages are fluctuaধng substanধally more strongly than S. cerevisiae lineages (absolute
value at a given δx). The lateral displacement in both cases follows a characterisধc scaling (slope), as expected
for a spaধally unbiased growth process with a rough front (Appendix A). These experimental observaধons can be
reproduced in simulaধons (j) of expanding rough and smooth fronts, respecধvely. (g) In simulaধons with rough
fronts, surfing beneficial mutaধons (light green) are frequently occluded by neighboring wild-type domains (dark
green). (i) As a consequence, the number of sectors are much lower for rough than smooth fronts, for idenধcal
iniধal mutant frequency Pi and front length L.
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rate (Fig. 3.3g). Such “occlusion” events are more likely for rougher fronts, thus increasing the probability
that beneficialmutations are lost by chance. In linewith this explanation, we find that colonies with rougher
fronts also exhibit higher levels of genetic drift, as quantified 19 by the lateral (perpendicular to the expansion
direction) displacement of lineages from their origin (Fig. 3.3j). Importantly, we find that front roughness
can be strongly influenced by several parameters that can vary among strains and conditions (Fig. 3.A11,
Tables 3.A1, 3.A2).

Moreover, we find that only mutations that occur very close to the front line have any chance of long-
term surfing (Fig. 3.3h). For our experiments, this implies that only those ancestral mutants have a chance
to surf that, by chance, are in the first few cell layers of the dried inoculated droplet. The narrowness of
the layer from which surfers are recruited, moreover, makes an important prediction about surfing of de
novo mutations: Since the width λ of the growth layer where mutations occur can be much wider than
the average width d of the cells in the front line, the effective mutation rate µeff of mutations occurring
in the growth layer is the bare mutation rate µ reduced by a factor of d/, which is on the order of a few
percent in most microbial colonies. Hence, the vast majority of beneficial mutations are effectively wasted
in expandingpopulations because they occur behind the front line. Therefore, during range expansionswith
de novo mutations, a lot fewer surfing events should be observed than expected for a given mutation rate (as
measured by, e.g., fluctuation analysis) and surfing probability (as measured by, e.g., the number of sectors),
especially for a thick growth layer. Thismay contribute to the accumulation of deleteriousmutations during
range expansions 26.

3.3.6 Experimentally Probing the Onset of Surfing

Our individual-based model made two crucial predictions about the early stages of surfing, which we tested
in a series of experiments described below.

(i) Surfing occurs only directly at the front. Control measurements show that the number of surfing
events is proportional to the initial frequency (Fig. 3.B3) and not significantly sensitive to the total
number of cells, as long as they form a contiguous perimeter around the initial droplet (Fig. 3.B6).
These observations are consistentwith the hypothesis that surfing events originate in the front region
of the colony. To test whether surfers arise in the very first cell layer only, we took time-lapse movies
(SI movies 1 and 2) of an advancing front at a resolution that allows us to track lineages backward in
time. The resulting genealogies show that only cells at the very front remain as ancestor of future
populations. We can extract histograms of ancestor distances from the front (Fig. 3.3b, d; see also Fig.
3.B10), showing that cells have to be within about one cell diameter to have any chance of giving rise
to a successful lineage.

(ii) The strength of genetic drift influences surfing rates, and is highly variable. We repeated our compe-
tition experiments using pairs of E. coli (Methods) strains and found up to an order of magnitude
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Figure 3.4: Adaptaধon during range expansions for different strains and condiধons. (a-f) Top row: Images of colonies
ađer neutral range expansions (Methods) with an iniধal mutaধon frequency of Pi = 0.5. The number of sectors
formed (panel g) and their shape (see Fig. B7) varies between S. cerevisiae and E. coli and temperature at which
colonies are grown. The boħom row shows corresponding range expansions when mutants have a selecধve ad-
vantage of s ≈ 0.15, at low iniধal mutaধon fracধon of Pi = 0.005. Scale bars are 2mm in each image. (g) The
number Nsec of sectors normalized by the number Nmut of mutant cells in the outside rim of the inoculum as a
funcধon of the selecধve advantage of the mutants for different species, strains, and growth condiধons (about 35
replicates per data point). The asterisk (*) denotes the use of the neutral strain pairing as opposed to the mutant-
wild-type pair. (h) The number of sectorsNsec normalized by the iniধal fracধon Pi against the normalized number
of sectors in the neutral case shows a clear correlaধon between neutral dynamics and the surfing probability of
advantageous mutant clones: weaker geneধc driđ (more sectors in neutral compeধধons) is indicaধve of a higher
surfing probability. Panel (h) is obtained by interpolaধng data from panel (g) for the selected values of s.
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differences in surfing probability, i.e., proportion of surfing mutants Nsec/Nmut, for a given selec-
tive advantage (Fig. 3.4). This underscores that the selective advantage of a mutation alone has little
predictive power over the probability of surfing. The reason is that allele surfing also depends on
the strength of genetic drift, which can be estimated from the number of sectors emerging in neutral
competition experiments (Fig. 3.4a, c, e). Fig. 3.4g shows a clear correlation between the number of
surfing beneficial mutations and the number of surfing neutral mutations, for four conditions and
different fitness effects. This suggests thatmeasuring the strength of random genetic drift is necessary
to predict the efficacy of adaptation.

The difference between strains can partly be understood from time-lapse movies of the colony growth at
single-cell resolution (SImovies 1 and 2). While cell motion perpendicular to the front direction is limited in
yeast colonies, there is strong dynamics within the E. coli front. Tracking the cells through 3 hours of growth
elucidates the difference in cellular dynamics, as shown in Fig. 3.3a and c. We quantify this observation by
measuring the cells’ lateral displacement (Fig. 3.3e-f, Appendix C), which is about an order of magnitude
stronger in E. coli compared to budding yeast, explaining (at least part) of the difference in genetic drift.
The same effect can be observed in computer simulations of the individual-based model (Fig. 3.3i, j).

While it may not seem surprising that genetic drift varies somewhat (though not an order of magnitude)
between taxa due to differences in the reproductive process, we also found that the level of genetic drift varies
among different growth conditions for the same species. Fig. 4c-f show the results of competition experi-
ments between two differently labeled but otherwise identical E. coli strains (DH5α background) at two
different incubation temperatures. Notice that the neutral sectoring pattern undergoes a striking change:
While only few sectors can be observed at 37◦C, many spoke-like sectors arise at 21◦C. Importantly, surfing
probabilities varied, as predicted,with observed variations in the strengthof genetic drift: repeating the estab-
lishment experiments at lower temperatures shows that the number of established clones indeed increased
for smaller amounts of genetic drift (Fig. 3.4g, h).

3.4 Discussion

Laboratory evolution experiments usually investigate the rate of adaptation per unit time. This is the rele-
vant quantity when resources are abundant or replenish faster than they are consumed, as for example in a
chemostat40.

By contrast, in our experiments we have compared the adaptive outcome of two types of population
expansions, range expansion and uniform growth, under the condition that both types lead to the same final
population size, no matter how long it may take. Thus, we have effectively measured the rate of adaptation
per cell division or, equivalently, per biomass produced. We believe this is the crucial comparison when
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population growth is resource-limited, which may arguably apply not only to microbial biofilms 35,41, but
also to various other types of natural populations, including tumors, and spreading pathogens42,43.

Our experiments show that, starting from standing adaptive variation, range expansions generate a larger,
often much larger, mean fitness increase in microbial communities than equivalent uniform population
expansions. In essence, this results from the effective serial dilution of the pioneer population, generated
by the fact that the offspring of pioneers tend to be the pioneers of the next generation. As a consequence of
these spatio-temporal correlations, selection can act over more generations at the front of a range expansion
than in a uniform expansion.

However, because the relevant pioneer population is small, sampling effects (genetic drift) are important:
The gain in adaptation comes in partial sweeps, visible in our experiments as large ”sectors”, which repre-
sent successfully surfing alleles. The total adaptation gain during a range expansion depends on both the
number of sectors and the size of sectors. While the shape of sectors simply reflects the selective advantage of
the mutants, the stochastic number of sectors is a result of the competition between selection and (strong)
genetic drift in the pioneer population.

Thus, predicting the number of sectors, and ultimately the rate of adaptation in population expansions,
requires a measurement of both the strength of selection and genetic drift. In microbial experiments, the
strength of genetic drift, which is related to the front roughness, can be measured by neutral mixing exper-
iments with fluorescently labeled strains. Such measurements show that the strength of genetic drift varies
by orders of magnitude among strains and conditions like growth medium or temperature, affecting sur-
face roughness, growth layer width, or cell shape, as illustrated in Fig. 3.5. Thus, changes in the microbial
growth processes can strongly influence the adaptive potential of range expansions via their impact on the
strength of genetic drift. This may be important, for instance, for adaptation in developing biofilms with
their complex surface properties 36,44, and could be tested in flow chamber experiments.

Our results underscore the adaptive potential of allele surfing: Although, as was found previously in the
neutral case, allele surfing is a rare event that depends on enhanced genetic drift at the frontier 19, it becomes
more likely as the selective advantage of themutation increases. Nevertheless, out of the pre-existingmutant
population only fewmutants manage to establish and surf at the frontier. The ones that do, however, leave
a strongmark on the population as a whole; driven by selection, their descendants sweep to high frequencies
in the population.

In other words, allele surfing turns a population expansion into a high-paying evolutionary slot ma-
chine45: The expected gain in fitness is high on average but it relies on rare surfing events controlled by
the competition of genetic drift and selection. Range expansions can thus lead to large evolutionary change
if these jackpots events do occur. By contrast, well-mixed populations lead to a homogeneous growth of all
cells, resulting in less overall change in frequencies.
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As our experiments have focused on standing genetic variation, they have ignored the impact of sponta-
neous mutations occurring during the population expansion. Enhanced genetic drift at expanding frontiers
is expected to promote the genetic load due to newdeleteriousmutations9,25,26,46, whichmay lead in extreme
cases to a slowdown of the population expansion, for instance when ”mutator” strains are involved. Thus,
enjoying an adaptation increase from a range expansion may require a sufficiently low rate of deleterious
mutations.

Strikingly, our expanding colonies shifted from a predominantly wild-type to a largely resistant popu-
lation under quite weak selective pressures. We hypothesize that adaptation by allele surfing could be a
general mechanism for efficiently shifting the balance between pre-existing types after an environmental
change. Moreover, a proposed connection47 between drug resistance in bacterial communities and malig-
nant tissues suggests that similar effects could be at play in solid tumors that harbor standing variation prior
to drug treatment.

Allele surfing may also help explain the efficient adaptation seen in some cases of species invasions, such
as in cane toads, which developed longer legs in the course of the invasion of Australia48. Although we do
expect our results to carry over to more complex scenarios, sex, death, recombination, dominance, and het-
erogeneities in resources and selection pressures may significantly complicate the dynamics. Key differences
could arise, for instance, if mutants do not have an expansion velocity advantage, but are insteadmerely out-
competing the wild-type individuals within already occupied regions. In this case, we expect sectors to reach
substantially lower frequencies than in our experiments.

Adaptation by gene surfing matches the pattern of a “soft” selective sweep 24,49, in which multiple adap-
tive alleles sweep through the population at the same time, however with a unique spatial structure. Al-
though these sweeps can be strong, as seen in our experiments, they may be hard to identify in population
genomic studies when they carry along different genomic backgrounds. However, as sequencing costs drop
further and spatial sampling resolution increases, the genomic signal of these localized soft sweeps may be-
come directly discernable.
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3.5 Appendix A – Theory and Simulations

3.5.1 Coarse-grained simulations and analytical results

Simulation algorithm

We simulate range expansions using ametapopulationmodel on a lattice, similar to the Edenmodel. Initially,
the central site of an empty lattice is filled with a single cell. In each time step, a cell with at least one empty
neighboring lattice site is randomly chosen to divide into one of the empty sites in its 4-site neighborhood.
If there aremutants in the colonywith a selective advantage s, the algorithm first randomly chooses whether
to forward the wildtype or mutant population, where the mutants are chosen with probability

p(MT) =
(1 + s)NMT

(1 + s)NMT +NWT
= 1− p(WT), (3.A1)

whereNMT andNWT are the number of mutant and wild type site having empty neighbors.
Standing variation. The colony is first grown to a radiusRi (by running the simulation T = πR2

i steps;
for Fig. 2, T = 106) of only wild types. Then, filled lattice sites are randomly populated with wild types
and mutants at a specified ratio Pi. The colony is grown a total of 8πR2

i time steps, i.e., to a final radius of
about 2.8×Ri. This corresponds roughly to the radial increase in our experiments.

For the scaling function below, Pi was varied between 0.02 and 0.005 to minimize interaction between
sectors. Sectors were counted by identifying all mutant clones that have at least one member with at least
one empty neighboring lattice site at the end of the simulation.

De novo mutations. Instead of starting from a mixture of wild type and mutant sites, we can allow for
spontaneous mutations. Populations are grown from a single individual, and every new individual has a
chanceµ of converting to themutant type, having an advantage s. Here, we do not consider backmutations.

Long range jumps. To interpolate between the well-mixed and the colony case, we simulate long range
jumps by followingRef. 1. A randomnumberY between 0 and 1 is drawn and transformed to a jump length
r by computing

r = (Y [Lµ − Cµ]− Cµ)−1/µ . (3.A2)

Here, L and C specify the maximum and minimum jump length. The new variable r is distributed as a
truncated power-law with a power-law tail, i.e., p(r) ∼ r−µ. To allow for long range jumps, we employ
periodic boundary conditions. In addition, an angle φ is drawn between 0 and 2π. In every step, a random
lattice site (xi, yi) is chosen and the jump attempted to the lattice site located closest to (xi + r cosφ, yi +
r sinφ); if the site is empty, it is filled, otherwise a new site is chosen. Only successful jumps forward the
time variable, such that exactly one jump happens in each time step. After Ti steps, mutants are introduced

105



L

w0

v┴t

v t
v

Linear expansion Radial expansion

Ri

Rf

(1+s)v

v┴

Figure 3.A1: Sketch of the expansion of a sector in a linear (leđ) and a radial range expansion (right). While sec-
tors have a constant opening angle φ in a linear expansion, their boundaries form logarithmic spirals in the radial
expansion case, enclosing an angle φ that increases logarithmically with the radiusRf (cf. Eq. (3.A9)).

by randomly mutating each filled lattice with a probability equal to the desired ratio of wild type to mutant
cells. Thus, the initial frequency of mutants is stochastic, mimicking the situation in real experiments.

Final mutant frequency

In the following, we refine the scaling arguments given in the main text to explain the increased adaptation
gain in range expansions. To reach the same final population size, a larger number of generations at the front
of a range expansion is necessary, allowing selection to act for longer, compared to exponentially growing
populations. Yet, selection is weaker at the advancing front in the sense that a selective advantage s does not
lead to an exponential increase in frequency like it does in well-mixed populations. Nevertheless, we argue
below that the former effect is in general stronger than the latter, leading to a net increase in adaptation gain.

Well-mixed population

Starting fromNi initial cells, of which a fraction Pi are mutants, the number of mutant cellsM(t) at time
t (in generations) is M(t) = PiNi2

(1+s)t. To reach final population size Nf, it takes t = log2(Nf/Ni)

generations, hence,M(t) = PiNi(Nf/Ni)
1+s. The final mutant frequency thus becomes

Pf =
M(t)

Nf
= Pi

(
Nf

Ni

)s

= Pi(1 + η)s, (3.A3)

106



where we have defined the fold change η = Nf/Ni − 1 of the total population size. The adaptation gain in
a well-mixed population can be quantified through the fold changeRWM of the mutant frequency

RWM =
Pf

Pi
− 1 = (1 + η)s − 1 ≈ s log(1 + η) (3.A4)

for s≪ 1. For small η, this reduces toRWM ≈ ηs.

Flat front range expansion

Start from a region of (constant) height L and width w0, containingNi = Lw0 individuals (see sketch in
Fig. 3.A1, left). We assume that the width grows at speed v, and sector size increases with perpendicular ve-
locity v⊥ =

√
s(s+ 2)v 2. The finalmutant population size is composed of the size of (roughly triangular)

beneficial sectors times their number, plus the neutral contribution, i.e.,

M(t) = vv⊥t
2Nsec + PiNf, (3.A5)

wherewe have ignored fluctuations of the sector boundaries as well as the typically small number ofmutants
in non-surfing clones. The number of generations to reach final sizeNf is t = (Nf −Ni)/vL = ηNi/vL.
Plugging this intoM(t) and dividing byNf to find the final mutant frequency, we get

Pf =
v⊥η

2Ni

(1 + η)vL2
Nsec + Pi. (3.A6)

The number of sectors can be estimated asNsec = LPiu(s), where u(s) is the (unknown) probability to
form a sector per individual at the front, i.e., the surfing probability. Hence, we obtain the fold change
RFF = Pf/Pi − 1 in the flat front case as

RFF =
v⊥η

2Niu(s)

(1 + η)vL
=

√
s(2 + s)η2Nfu(s)

(1 + η)2L
≈
√
s(2 + s)Nfu(s)

L
(3.A7)

for η ≫ 1. Thus, for a final population size much larger than the initial population size (as is the case in our
experiments), the size of the adaptation gain RFF depends critically on the surfing probability u(s). This
indicates that a purely deterministic treatment is not appropriate to understand adaptation during range ex-
pansions. Adaptation crucially hinges on sector formation. Nevertheless, for some fixed s, Eq. (3.A7) shows
that in the long run, range expansions will always produce a larger adaptive outcome than exponentially
growing populations as the linear scaling ofRFF withNf will eventually overtake the logarithmic scaling of
RWM.
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Radial expansions

The situation is less straightforward in a radial expansion, as the shape of sectors is influenced by both infla-
tion and selection. Their shape and size can be understood from simple geometrical arguments 2,3, which we
replicate and extend here.

Mutants grow faster into the expanding territory by a factor of 1+ s (see sketch in Fig. 3.A1, right). This
speed difference together with the requirement of continuity of the colonial edge enforces a fixed speed at
which mutants expand (wild-types retract) along the colony edge. The transverse expansion speed v⊥ =√
s(s+ 2) (in units of the wild-type front speed) follows from equating the speed of radial growth in both

compartments (1 vs. 1+ s). As a consequence of the transverse expansion of the two sector boundaries, the
opening angle φ of the sector increases with radial distance according to

dφ = 2v⊥ dr/r = 2
√
s(2 + s) dr/r. (3.A8)

Integration yields a logarithmic increase with radius,

φ(Rf|Ri) =

Rf∫
Ri

dφ = 2
√
s(2 + s) log(Rf/Ri), (3.A9)

as was already shown in Ref. 3. Assuming large sectors such that the initial period of sector formation is
negligible, the final frequency of the sector is obtained by integration,

P ∗
f ≈ (πR2

f )
−1

Rf∫
Ri

drrφ(r) =
√
s(2 + s)

2πR2
f

(
R2

i −R2
f + 2R2

f log
(
Rf

Ri

))
. (3.A10)

Defining the fold change in the population size η throughNf = πR2
f = (1+ η)πR2

i = (1+ η)Ni, we get

P ∗
f ≈

√
s(2 + s)

2π

(
log(1 + η)− η

1 + η

)
≈
√
s(2 + s)

2π
log(1 + η), (3.A11)

where we have assumed η ≫ 1 in the final step. We again defineNsec ≡ LPiu(s), where here L = 2πRi,
and obtain the fold change in mutant frequency for radial expansions as

RRE = (P ∗
f /Pi)Nsec = P ∗

f 2πRiu(s) ≈
√
s(2 + s) log(1 + η)Riu(s). (3.A12)
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Comparing this to the well-mixed result we obtain

RRE

RWM
≈
√

2

s
Riu(s) (3.A13)

for 0 < s ≪ 1. As in the flat front case, the surfing probability enters in determining the adaptation gain
increase of the range expansion compared to well-mixed population. The crucial difference to the flat front
case lies in the fact that RRE/RWM is independent of Nf. It is thus ultimately the number of sectors that
elevates the adaptation gain in the radial range expansion over the well-mixed one. Therefore, a detailed
understanding of the establishment of sectors is necessary. Previous calculations of the surfing probability
in boundary-limited radial range expansions have predicted u(s) ∼

√
s 2, which would remove the depen-

dence ofRRE/RWM on s. As we have seen in Fig. 1I, this is not the case in our experiments, where we find
instead u(s) ∼ s. This linear dependence is reminiscent of the classical Haldane result, but we show below
that this similarity is fortuitous and can in reality be traced back to surface growth properties of colonies.

Validating the minimal model

Our result thus far neglects the fact that the mutant sectors have a larger area than a wild-type sector of the
same opening angle because it bulges outward at the colony rim. Numerical estimates of the correction show
that this contribution is not always negligible, especially for large s. To improve the calculation, one could
account for the fractional area of the circular cap associated with amutant sector of given opening angle and
selective effect. In addition, the sector shape computed above is only valid far from the inoculum, where
initial stochastic effects of sector formation no longer impact the shape of the sector. Lastly, in some of our
experiments, sectors collide and hence cover a slightly smaller area than if they had grown undisturbed.

Nevertheless, we can compare our experimental data to the theoretical prediction. Fig. 3.A2 (left) shows
the final mutant frequency P ∗

f as a function of the number of sectors, for each colony, multiplied by the√
s(2 + s). The averaged data (black dots), fall on a line, as predicted by Eq. (3.A12).
In addition, our results predict that the ratioRRE/RWM of the adaptation gain from a range expansion

and uniform growth should scale as u(s)/
√
s. Normalizing by the experimentally measured surfing proba-

bility u(s) ≈ Nsec/2πRi, we recover the predicted scaling
√
s, see Eq. (3.A13) and Fig. 3.A2 (right).

3.5.2 Number of surfing clones

The deterministic calculations for the adaptation gain in range expansions hinge on the likelihood of the
formation of sectors. Computing the number of sectors, or ”surfing clones”, is a stochastic problem that
involves the fluctuation statistics of growingmicrobial colonies. While these fluctuations are complicated to
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Figure 3.A2: Validaধng the minimal model with experimental results. (a) Final mutant frequency Pf in S. cerevisiae
colonies, as a funcধon ofNsec

√
s(2 + s), which exhibits the predicted linear scaling (see eq. (3.A12), dashed line).

Each dot corresponds to a colony with mutant selecধve advantage given by the color legend. Black dots are average
values over mutant frequency bins of width 0.04. (b) The raধo betweenRRE andRWM, normalized by the surfing
probability of a single clone, as a funcধon of s is consistent with the predicted

√
s scaling (Eq. (3.A13), dashed line).

(c) Final mutant frequency Pf in E. coli DH5α colonies, as a funcধon ofNsec
√
s(2 + s). Black dots are average

values over mutant frequency bins of width 0.1.

derivemicroscopically, their overall scaling behavior iswell understood, allowingus to derive the relationship
between the number of sectors, the selective advantage and the initial conditions of the population.

Linear fronts, standing variation

Consider first the case of a linear frontwith a small initial fractionPi ≪ 1 ofmutant sites. As the population
edge advances, the extinction and growth of a mutant sector will be dominated by genetic drift as long as
the lateral size l⊥ of the sector is smaller than some characteristic size lsel.⊥ . Once a sector has reached this size
lsel.⊥ , selection takes over and it is unlikely that the sector goes extinct (at the front). Thus, we may call lsel.⊥
the establishment size for surfing. If we knew lsel.⊥ we could estimate the surfing probability by a martingale
argument, as follows. Since the dynamics of a sector below size lsel.⊥ is neutral, all of the lsel.⊥ front ancestors
have the same chance to generate a clone that drifts up to size lsel.⊥ or larger. Thus, we can estimate the
probability u(s) of a mutant clone to surf as

u(s) ∼ 1

lsel.⊥
. (3.A14)

Since we begin with a fraction of Pi initially mutated sites, we expect a numberNmutu(s) ∼ PiL/l
sel.
⊥ of

successful surfing events, where L is the length of the front. Note that one has a simple linear dependence
on Pi only for small Pil

sel.
⊥ ≪ 1. For larger Pi, sectors may overlap when they are still smaller then their

establishment length, leading to (predictable) deviations from the observed scaling: The actual number of
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Figure 3.A3: Number of sectors in Eden simulaধons with standing variaধon follows a scaling form. Leđ: Scaling
funcধon starধng from a droplet of radius r0. Here, we chose the iniধal mutant frequency as Pi = 0.02 like
in the experiments. Lines are guide to the eye, showing the predicted constant and linear regimes. At large s,
deviaধons from a linear scaling become visible, because sectors inevitably begin to interact. Right: Scaling funcধon
for Pi = 0.005, this ধme grown from a single cell to a populaধon of (average) radius r0, then inserধng mutants at
raধoPi, for a wide range of r0. The scaling funcধon is virtually indisধnguishable from that for flat iniধal condiধons.
The plot legend explains the color code for the selecধve differences.

surfing events will be smaller than estimated.
The establishment length lsel.⊥ , and consequently the number of surfers, is controlled by a competition

between selection and genetic drift. The smaller s, the larger the sector needs to become, by chance, for
selection to take over genetic drift. Genetic drift in our colonies depends on the roughness properties of
the colony edge: The rougher the front, the larger the stochastic evolutionary outcomes are. To estimate
the establishment length lsel.⊥ , we need to invoke the universal fractal properties of Eden fronts which are
in the Kardar-Parisi-Zhang (KPZ) universality class4. Conditional on survival, a neutral sector reaches size
l⊥, roughly, after a time of order l3/2⊥ , a KPZ prediction that was confirmed in Ref. 5. Thus, the magnitude
of the speed of growth of the width of a sector due to random genetic drift scales as vdrift⊥ ∼ l⊥/l

3/2
⊥ =

l
−1/2
⊥ (again in units of the wild-type front speed). Selection on the other hand increases a sector width
linearly in time according to a constant speed vsel.⊥ =

√
s(s+ 2) 3. Both speeds balance at a length scale of

lsel.⊥ ∼ (s(s + 2))−1. Genetic drift dominates (vdrift⊥ ≫ vsel.⊥ ) when l⊥ ≪ lsel.⊥ and selection dominates
(vdrift⊥ ≪ vsel.⊥ ) for l⊥ ≫ lsel.⊥ . Knowing the establishment length now allows us to predict the scaling of the
number of sectorsNsec ∼ PiL/l

sel.
⊥ ∼ PiLs(s+ 2).
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Radial expansion

To model a circular colony, one has to take into account the effect of ”inflation” 2: As the colony expands,
the circumference increases in size. As a consequence, domain boundaries tend to move away from one
another at a speed proportional to their current (front) distance, keeping the opening angle of the sector
constant. Inflation enables mutations to fix even if they are neutral because, on long times, inflation is a
stronger driving force than genetic drift. The speed vinfl.⊥ of inflation of a sector of front size l⊥ is such that it
keeps the sector angle l⊥/R constant. Thus, we have vinfl.⊥ ∼ l⊥/R. Balancing this speed of inflation with
the speed vdrift⊥ of genetic drift yields another characteristic length linfl.⊥ ∼ R2/3. This is the establishment
length for a neutral sector: If a neutral sector reaches size larger than linfl.⊥ , it will be protected by inflation
from going extinct through genetic drift.

For the case with selection, we expect that if linfl.⊥ ≪ lsel.⊥ , establishment will be effectively neutral as a
result of the competition of drift and inflation. If on the other hand we have linfl.⊥ ≫ lsel.⊥ then surfing is
controlled by the competition of drift and selection. This expectation can be summarized by the scaling
form

Nsec = PiR/l
infl.
⊥ FSV

(
linfl.⊥ /lsel.⊥

)
= PiR

1/3FSV

(
sR2/3

)
, (3.A15)

which depends on the initial radius R of the colony and the selective advantage s of the mutations. The
scaling functionFSV(ξ) satisfies

FSV(ξ) ∼

const. for ξ → 0,

ξ for ξ → ∞.
(3.A16)

Our analysis thus predicts that when the selection coefficient is small, the number of sectors will be roughly
equal to the neutral number of sectors, scaling as the third root of the initial radius. For larger selection
coefficients, on the other hand, the number of sectors will scale like the radius times the selection coefficient
s. This analysis is supported by simulations, see Fig. 3.A3.

3D range expansions

The preceding discussion can be extended to the important case of three-dimensional radial range expan-
sions, pertaining to, e.g., growing solid tumors. In 3D, a neutral surviving sector has lateral size l⊥ after a
time of order l1.56⊥ (anotherKPZprediction4). We can estimate the surfing probability of a clone of size lc by
the probabilityu(s) ∼ (R/lc)

−2 that a clone from a neutral mutation reaches a solid angle l−2
c . The length

scale lc again arises from the competition between drift, vdrift⊥ ∼ l⊥/l
1.56
⊥ , and selection, vsel.⊥ ∼

√
s(2 + s)

and is given by lc ∼ (s(2 + s))−0.89. The surfing probability of a mutant with selective advantage s thus
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Figure 3.A4: Number of sectors for colonies with de novo mutaধons obeys a scaling relaধon, for a wide range of
selecধve advantages s and final radius Rf (see color legend). The number of sectorsNsec was computed by only
counধng mutant clones that were both sধll present at the front at the end of the simulaধon and that were born
before Rf/2. Because sectors inevitably have large areas for large s, we record the actual number of mutaধons
Nmut inRf/2 for simulaধons, which was set to an average of 5 to limit interacধons between clones. The scaling
funcধon saturates for ξ → 0 and scales as ξ for ξ → ∞ (dashed lines are guides to the eye). The inset shows the
same data on linear scale.

scales u(s) ∼ s1.79. Thus, weakly beneficial mutations have a particularly small changes of surfing in three-
dimensional populations.

De novo mutations

So far, we have focused on the number of sectors emerging from a standing variation experiment. One may
alternatively consider the situation of a colony growing from a single cell. Mutations occur at a constant rate
µ per lattice site. Then, we can follow very similar scaling arguments as for standing variation to arrive at the
same scaling form,

Nsec = µRf
Rf

linfl.⊥
FDN

(
linfl.⊥ /lsel.⊥

)
= µR

4/3
f FDN

(
sR

2/3
f

)
, (3.A17)

however, with a different scaling functionFDN(ξ) satisfying the same asymptotic limits,

FDN(ξ) ∼

const. for ξ → 0,

ξ for ξ → ∞.
(3.A18)

Note that the length scaleRf appearing in these equations defines the final radius of the colony.

113



10-2 10-1 100 101

N
se

c(r
0/a

)-1
/3
/P

i

Eden simulations
S. cerevisiae colonies
E. coli colonies

5
10

50
100

s(r0/a)2/3

Figure 3.A5: By fiষng the experimental data to the scaling relaধon from Fig. 3.A3, we obtain esধmates for the
appropriate value of a in our experiments. We find a = 0.8µm for budding yeast and a = 12µm for E. coli. Note
that since the number of sectors in E. coli experiments depends roughly exponenধally on s, we only fit the constant
as s→ 0. For the E. coli data points, we interpolated from the experimental results to obtain values for small s.

Nf/Ni=103

Nf/Ni=104

Nf/Ni=105

Nf/Ni=103

Nf/Ni=104

Nf/Ni=105

0.05 0.10 0.50 1

101

10-1

103

105

s

RRE

RWM

0.0 0.2 0.4 0.6 0.8 1.0 1.2
0.5

1

5
10

50

s

R
R

E
, R

W
M

R
R

E
 /R

W
M

a b

Figure 3.A6: Adaptaধon gain in range expansions (RRE, Eq. (3.A12)) and uniformly grown (RWM, Eq. (3.A4)) popula-
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3.5.3 Mapping the Eden model to colonies

The Edenmodel is, ultimately, a simplified lattice model that aims to capture the coarse behavior of a colony.
To map Eden model predictions to an actual colony, one needs to fit the relevant phenomenological param-
eters. As we will see, the values of these parameters will also tell us to what extent the Eden model may be
applicable.

A lattice site has a width and a length. By the rotational symmetry of a colony, we expect that we have
to choose, in general different length a∥ and a⊥ for the radial and transverse width of a lattice site, respec-
tively. The choice of these lengths leaves selection and inflation unaffected but it influences the strength
of genetic drift: Conditional on survival, a neutral sector reaches size l⊥, roughly, after a radial distance of
order a∥(l⊥/a⊥)3/2, as was measured in Ref. 5. Thus, the magnitude of the speed of growth of the width
of a sector due to random genetic drift scales as vdrift⊥ ∼ l⊥/[a∥(l⊥/a⊥)

3/2] = (a
3/2
⊥ /a∥)l

−1/2
⊥ . The

competition between genetic drift, selection and inflation then leads to the establishment lengths lsel.⊥ ∼
(a3⊥/a

2
∥)(s(s + 2))−1 and linfl.⊥ ∼ (a⊥/a

2/3
∥ )R2/3, respectively. Applied to an actual colony, the Eden

model prediction thus takes the form

Nsec = PiR/l
infl.
⊥ FSV

(
linfl.⊥ /lsel.⊥

)
= Pi(R/a)

1/3FSV

[
s(R/a)2/3

]
. (3.A19)

This result shows that we have effectively one parameter a = a3⊥/a
2
∥, a ”microscopic” length scale, to fit the

predictions of the Edenmodel in the case of standing variation. Nevertheless, it is useful to think of this one
length scale as the ratio a3⊥/a

2
∥ of two length scales, because there are natural candidates for the radial and

transverse length scales a∥ and a⊥. For instance, in the case of yeast, it is natural to choose the radial length
to be the thickness of the growth layer and the transverse length simply as a cell diameter – there is no other
transverse length scale in this problem. Then one expects a3⊥/a

2
∥ < 5µm. This explains then why the fitted

microscopic length scale a = 0.8µm (see Fig. 3.A5) is smaller than a single yeast cell diameter.
In the case of E. coli on the other hand, we do have another transverse length scale. Time lapse movies

reveal that E. coli colonies buckle on length scales of order a⊥ ≈ 20µm. Indeed, the fitted microscopic
length scale a = 12µm is much larger than a single E. coli cell.

Once the value of a is known, we can compare the adaptation gain in uniformly grown population and
range expansions and find the parameter range for which range expansions are more efficient. Our model
predicts for the case of S. cerevisiae (Fig. 3.A6) and our experimental parameter range (a = 0.8µm,Nf/Ni ≈
104) that range expansions are more efficient up to values of s < 0.7, although we do not expect our model
to be accurate at such high values of s. Hence, for most experimentally accessible parameters, we expect
range expansions to exhibit a higher adaptation gain than well-mixed growth.

In the case of de novo mutations, we obtain the growth layer width λ as an additional parameter, since
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only mutations arising at the front are able to surf. Hence,

Nsec =
µRf

λ
(Rf/a)

1/3FDN

[
s(Rf/a)

2/3
]
. (3.A20)

Note that, in the de novomutation case, one has tomeasure both themutation rate, growth layer width and
roughness length scale to obtain predictions from the Eden model.

Limits of the coarse-grained Eden model

Our coarse-grained lattice model is a meta-population model, meaning that each lattice site represents a
subpopulation of cells. The size Ne of those subpopulations can be estimated once we have determined
the linear dimensions a∥ and a⊥ of a lattice site (see previous paragraph). Thus, we may estimate Ne ≈
a∥a⊥/Acell, which amounts to 2.5 and 200 in the cases of budding yeast and E. coli, respectively.

The parameter Ne allows scrutinizing a precondition for the applicability of our coarse-grained model.
If, for a given selective advantage, Ne is too large, we cannot assume that mutants will fix in a subpopula-
tion with probability equal to their current ratio. This is assumed when we set the mutation rate in the
Eden model equal to the mutation rate of single cells. The same assumption is made in the case of standing
variation, when we assume that the initial fraction of mutant lattice sites is equal to the initial frequency of
mutant cells. If subpopulations behaved like well-mixed sub-populations, for instance, we would have to
requireNes≪ 1. Note that this condition is strongly violated in our E. coli experiments. ForNes≫ 1, the
effectivemutation rates as well as the initial frequencies would have to bemultiplied byNes. Since, however,
our populations are manifestly spatial, it is not clear how a more microscopic model would behave. There-
fore, we also implemented more explicit simulations that take into account the shape and steric interaction
between cells (described in detail below).

3.5.4 Analysis of long-range jumps

We extend our meta-population by allowing for long-range jumps in each step. The rationale behind intro-
ducing long-range dispersal is that well-mixed growth and colonies are natural opposites in that they feature
no and strong spatial correlations andmixing. Long-range jumps allow for a breaking of spatial correlations
and thus lie in between these two cases. We then also expect the adaptation efficacy to interpolate between
the colony and the well-mixed case as the likelihood of long-range jumps increases.

As described in the Methods section above, we can vary the likelihood of large jumps by tuning the pa-
rameter µ. Hallatschek and Fisher 1 showed that the expansion speed of a growing population, in terms of
its range, depends on the parameter δ = µ − d, where d is the spatial dimension. If δ > 0, the range of
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the population grows as a power-law, while for δ < 0, long-range jumps are frequent and the range of the
population grows as a stretched exponential.

Introducing mutants with selective advantage s at initial frequency Pi = 0.02, we studied the influence
of dispersion range on the efficiency of adaptation. The naive expectationwould be that in the limit of short-
ranged jumps, adaptation should be as efficient as in the classical Eden model, whereas long-range jumps
increase the mixing of the population such that adaptation becomes less efficient, asymptotically becoming
well-mixed.

Fig. 3.A7 shows examples of populations grown fromNi = 103 toNf = 106 for different values ofµ and
s. We observe that the final frequency of the mutants increases with s, as expected, but does so much more
stronglywhenµ is large. Asµ increases, the populations become increasingly patchy, withmutants primarily
residing in confined spatial regions. For µ = 5, we even observe sectors very much like in Eden simulations.
Fig. 3.A8 shows the results of 750 simulations for each set of parameters (µ, s). We see indeed that the average
final frequency of mutants increases as long-range jumps become increasingly rare. Thus, long-range jumps
can hinder adaptation from standing variation even in spatially structured growing population because they
effectively induce mixing which allows previously trapped clones to continue to grow, allowing for fewer
generation to happen at the very front (for fixed final population size).
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Figure 3.A7: Examples of populaধons undergoing range expansions with long-range dispersal. Different selecধve
advantages s of the mutants (shown in red) over the wild type (gray) are shown as the columns. Varying the ”spread”
coefficient µ (rows), we obtain almost well-mixed populaধons for small µ (when large jumps are common), while
sectors emerge for very large µ (when pracধcally no large jumps occur). For intermediate µ, mutants accumulate
in patches that resemble sectors more and more as µ increases. The larger µ, the higher the mean final mutant
frequency, as shown in Fig. 3.A8.
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Figure 3.A8: Final mutant frequency in populaধons grown with varying degrees of dispersal. All populaধons grown
from Ni = 103 to Nf = 106 with a starধng fracধon of Pi = 0.02. Populaধons with long-range jumps show
adaptaধon efficiency intermediate between well-mixed and strictly short-ranged range expansions (Eden model).
For µ ≪ δ, the final mutant frequency becomes indisধnguishable from the well-mixed case. Results obtained by
averaging over 750 simulaধons.
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Parameter E. coli-like (long) cells Yeast-like(short) cells

Diffusion constantD
[
µm2/h

]
500 500

Initial nutrient concentration [a.u.] 1 1

Nutrient uptake rate κ [a.u./h] 1.5 or 1.8 4

Young modulusE [kPa] 100 500

Minimal division time T [min] 40 120

Cell diameter [µm] 1 4

Minimal length [µm] 2.5 0

Damping coefficient ζ [1016 h−1] 65 65

Friction coefficients k⊥ = 4, k∥ = 0.25 k⊥ = k∥ = 1

Width of simulation boxL [µm] 340, 640 320, 640, 1280

Table 3.A1: Parameters of the off-laষce model.

3.5.5 Individual-based simulations: method and results

Model description

In order to develop a microscopic understanding of the surfing process, we used a model based on that used
inRef.6, with a fewmodifications. Ourmodel strikes a balance between computational cost, limited knowl-
edge of the nature of mechanical interactions between cells in microbial colonies, and the reproduction of
experimental observations made in this work.

All cells are modeled as sphero-cylinders of variable length l and identical radius r0. Cells interact me-
chanically through Hertzian repulsion: F = 4

3Er
1/2
0 h3/2 where F is the repulsive force,E is the effective

Young modulus of the cell, r0 is the radius and h is the overlap between interacting cells. The dynamics of
the cells is described by the overdamped Newton equations of motion:

d
dt
r⃗ =

K−1F⃗

m
, (3.A21)

d
dt
φ =

τ

ζJ
. (3.A22)

Here, r⃗ is the position of the cell’s center of mass, φ is the angle the cell with the x-axis, F⃗ is the total force,
τ is the total torque acting on the cell,m is the mass, J is the momentum of inertia of the sphero-cylinder,

120



Quantity E. coli-like (long) cells Yeast-like(short) cells
κ = 1.5 κ = 1.8 κ = 4

Thickness of the growing layer λ [µm] 31 25 95
Roughness of the growing layer σ [µm] 12 15 3.6
Speed of the growing layer [µm/h] 26 23 31
Average area ⟨A⟩ per cell [µm2] 1.7 2.0 15.6
Average linear size a of cell [µm] 1.3 1.4 4.5
Thickness of the growing layer λ/a [cells] 24 18 24

Table 3.A2: Steady-state properধes of the growing layer.

and ζ is the damping (friction) coefficient. The matrixK

K = ζ

[
k∥n

2
x + k⊥n

2
y (k∥ − k⊥)nxny

(k∥ − k⊥)nxny k⊥n
2
x + k∥n

2
y

]
(3.A23)

takes into account the possible anisotropy of friction between the cell and the surface: k⊥ is the damping
coefficient in the direction perpendicular to cell’s major axis, k∥ is the damping coefficient in the parallel
direction, and n⃗ = (cosφ, sinφ). For isotropic friction, k⊥ = k∥, and thematrixK reduces to the identity
matrix times the friction coefficient. To model cells which prefer to roll rather than to slide we set k⊥ < k∥,
whereas for cells that prefer to slide along the major axis it holds that k⊥ > k∥. In particular, for ”yeast-
like” cells we assume isotropic friction, whereas for ”E. coli-like” cells we set k⊥ > k∥. This replicates
experimentally observed long ”chains” of aligned cells and high surface roughness of E. coli colonies.

Cells consume nutrients diffusing in the 2D substrate beneath the colony of cells. The concentration
c(r⃗, t) of the nutrient evolves in time as

∂c

∂t
= D

(
∂2c

∂x2
+
∂2c

∂y2

)
− κ

∑
i

δ (r⃗i − r⃗) , (3.A24)

whereD is the diffusion constant, κ is the nutrient uptake rate and {r⃗i} are the positions of the cells. We
assume that cells elongate at a constant rate as long as the local nutrient concentration is larger than 2% of the
initial concentration, and divide when they double in length. The length of individual cells thus increases
linearly in time in our model. Although this is not true for real microorganisms7,8, deviations from linear
growth are not important for the population level we are concerned with.

Wemodel faster-growing mutants by increasing both the elongation rate and the nutrient uptake rate by
1 + s, where s is the selective advantage of the mutant over the wild type.
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Figure 3.A9: Run-in period of off-laষce simulaধons. Thickness λ and roughness σ of the growing layer for ”yeast-
like” cells, for 10 simulaধon runs (different colors).

0 20 40 60 80 100 120
0.0
0.1
0.2
0.3
0.4
0.5

Distance from the front [μm]

Fr
on

t 
sp

ee
d

 [μ
m

/m
in

]

Figure 3.A10: Average speed of cells at a given distance from the colony front for simulated ”yeast-like” cells.

To reduce computation time we simulate only a narrow strip of widthL at the front of the colony, with
periodic boundary conditions in the direction perpendicular to the direction of growth, and fix cells which
lag behind the growth layer.

All parameters are listed inTable 3.A1. The assumed values have been chosen tomake simulations compu-
tationally feasible while at the same time to approximately reproduce experimental observables: the average
cell size, the velocity of the moving front, and the thickness of the growth layer. For example, the trade-off
between speed and realism required the diffusion constant to take an unrealistically small value.

Characterization of the properties of simulated colonies

We define the growth layer as the layer at the colony front in which cells were replicating. We calculated the
thickness λ of the growth layer as the average of the shortest distances between cells at the very front of the
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Figure 3.A11: The probability density that a lineage originated at distance∆ from the front (cell lengths) given that
it fixed in the growing layer, for different selecধve advantages (s = 1%, 2%, 4%, 8% and 12%). Leđ: ”yeast-
like” cells. The probability is concentrated at the very first line of cells, almost independently of selecধve advantage.
Right: ”E. coli-like” cells. The distribuধon is slightly broader but sধll concentrated around∆ = 0.

growth layer (first line of cells) and the last layer of cells towards the bulk still exhibiting growth.
The roughness σ was defined as the square root of the mean square deviation of the front height y(x),

where y(x) corresponds to the envelope of the front, with resolution 1µm. The speed of the front was
obtained by fitting a straight line to the average position of the front y(t).

Fig. 3.A9 shows that the thickness and the roughness of the growing layer stabilize after some time. The
steady-state values are given in Table 3.A2. The table also shows the average cell size determined as the area
of the growing layer divided by the number of cells. This is the actual size taken by the average cell; me-
chanical compression due to growth causes this area to be slightly lower than the average area of an isolated
spherocylinder as determined by the parameters from Table 3.A1.

We also computed the average linear cell size a as the square root of the average area, a = ⟨A⟩1/2. This
enabled us to express the thickness of the growing layer in cell lengths asλ/a. We adjusted the parameters of
the model for ”yeast-like” and ”E. coli-like” cells such that λ/a was approximately the same for both types
of cells.

The speed of the cells in the growing layer is a linear function of the distance from the front (Fig. 3.A10).
This replicates well the experimentally observed behavior (Fig. SIE 8). We note that in our experiments
cessation of growth in the center of the colony and the emergence of the growing layer may be due to the
accumulation ofwaste rather than nutrient exhaustion. However, as demonstrated inRef.6, the behavior of
the model is similar regardless of whether growth is limited by nutrients or waste products, and that in both
cases growth becomes confined to a thin layer after an initial period of exponential growth, in agreement
with what is observed experimentally.
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Figure 3.A12: Leđ: Surfing probability Psurf versus selecধve advantage s for ”yeast-like” cells (”smooth front”, or-
ange) and ”E. coli”-like cells (”rough front”, blue. Here, κ = 1.8). Smooth fronts deviate from a line only by about
1 cell diameter, while rough fronts exhibit a roughness of about 10 cell diameters. Parameters and measured char-
acterisধcs of the populaধons are given in Tables 3.A1 and 3.A2. Mutants were introduced only into the first layer
of cells. The surfing probability Psurf decreases with increasing roughness, but increases with selecধve advantage.
Right: the same plot with a logarithmic scale.

Surfing probability at the front and distribution of ancestor location

To determine the surfing probability Psurf of mutants with different selective advantages we first ran sim-
ulations in which mutant cells were randomly inserted into a steady-state growing layer. We ran between
1000 and 10000 simulations and calculated Psurf as the proportion of runs in which the mutant fixed in the
growing layer. We also determined Psurf for mutants appearing at different distances from the front.

Our results show that Psurf is very small even for quite large selective advantage s = 0.12: Psurf = 0.004

for ”E. coli-like” cells and Psurf = 0.015 for ”yeasts-like” cells for parameters as in Table 3.A1. Fig. 3.A11
shows that the surfing probability quickly decreases with the distance∆ from the front of the first (founder)
mutant cell.

We then ran simulations with mutants inserted only in the first line of cells. Fig. 3.A12 shows that ”yeast-
like” cells have a much larger Psurf than ”E. coli”-like cells. Since the two cases differ in the roughness of the
growing layer (c.f. Table 3.A2), we hypothesized that roughness is the main factor affecting the amount of
genetic drift. To test this, we simulated ”E. coli”-like populationswith reduced roughness – thiswas achieved
by decreasing the nutrient uptake rate (Table 3.A2). We indeed observed an increase in Psurf, in accordance
with our hypothesis.
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3.5.6 Supplementary discussion: Dynamics behind the front

In our experiments, change in local allele frequencies occurs only directly at the front, and our analysis above
reflects this fact. While true for non-motile microbes, our arguments arguably extend to other cases where
spatial arrangements are mostly conserved, e.g., biofilms and to some extent, solid tumors. However, our
results are valid more generally, independently of whether sectoring is neutral or beneficial, as long as the
front advances faster than the blurring of the sectors occurs. However, if there is mixing behind the front,
any spatial inhomogeneity in local allele frequencies will eventually be blurred out.

Blurring of neutral sectors

If individuals can move randomly behind the front, existing sector boundaries will undergo diffusion and
thus have a characteristic width w scaling as w(t) ∼

√
t. The front, however, advances at constant speed

and hence the front position r(t) ∼ t. Hence, on long time-scales, the advancement of the front is much
faster than the blurring of sectors, and sector boundaries will remain sharp near the advancing front.

Beneficial sectors behind the front

After the front has passed, beneficial sector will slowly blur due to diffusion, but may also widen or shrink
as the beneficial mutants compete with the wild type in the bulk. Even if the mutants exhibit a growth rate
advantage at the front, there is not a priori reason to assume that the same is true in the bulk, where other
characteristics than maximum growth rate may be more important. For example, a more efficient use of
nutrients in poor growth environments (like the bulk of a colony) may prove to bemore advantageous than
the ability to outgrow one’s competitors when nutrients are abundant.
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3.6 Appendix B – Additional experimental results
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Figure 3.B1: Selecধve advantages s between resistant and sensiধve strains as funcধon of drug concentraধon for S.
cerevisiae and E. coli for different assays and condiধons. (a) Budding yeast strainswithW303 background (yMM9and
yJHK111) used in Fig. 1. Best linear fit is shown and used throughout the paper. Liquid culture fitnessmeasurements
(3 replicates from the same iniধal culture per data point, gray dots) over 60 generaধons agree with the colliding
colony result (blue dots) for a range of cycloheximide concentraধons. (b) E. coli DH5α compeধধon (strains eOH2
and eOH3) on plates with different concentraধons of tetracycline at 37◦C (blue data points) and 21◦C (yellow
data points) using the colliding colony assay. Temperature had no significant impact on the relaধve fitness of the
two strains. Best fit is shown through combined data and used throughout the paper. (c) E. coli strain MG1655
competed against strain SJ102 at different concentraধons of chloramphenicol, measured using the colliding colony
assay, with linear best fit. All error bars are standard error of the mean (about 20 replicates per data condiধon,
except for well-mixed compeধধon).

127



a b

0.00 0.05 0.10 0.15
0.00

0.02

0.04

0.06

s

Fi
tn
es

s
in
cr
ea

se

Range expansion
Uniform growth

0.00 0.05 0.10 0.15
10-5

10-4

10-3

10-2

10-1

s

Fi
tn
es

s
in
cr
ea

seRange expansion
Uniform growth

Figure 3.B2: Increase in mean fitness, defined as∆W = (Pf − Pi)s, computed from the final mutant frequency
Pf measured in Fig. 1h, with linear (a) and logarithmic axis (b). Range expansions leads to a higher increase in mean
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Figure 3.B3: Number of sectors Nsec counted in yeast colonies at different iniধal mutant frequencies Pi and se-
lecধve advantages s. The proporধonality of sector number and iniধal mutant frequency implies that sectors arise
independently for small enough fracধons. Points are averages from 30 colonies per condiধon, error bars correspond
to the standard error of the mean.
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Figure 3.B4: Probability of exধncধon, defined as the probability of having zero sectors at the front, in yeast colonies
for a variety of iniধal mutant frequencies Pi and selecধve advantages s (35 colonies from same iniধal culture per
data point).
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Figure 3.B5: Two regimes of yeast colony radius growth. Colony radii extracted from a ধme lapse movie of a
growing yeast colony. Single yeast cells were inoculated onto an agar plate and grown for about 12 hours. Once
microcolonies were detectable, the agar plate was transferred to a stage-top incubator and the colony was imaged
in bright-field and fluorescence light every 30 minutes. Iniধally, the colony radius growth exponenধally, indicaধng
that the radius of the colony is not yet larger than the eventual growth layer thickness of the colony. For late ধmes,
the colony radius grows linearly in ধme, which can be interpreted as a growth layer of constant final thickness.
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Figure 3.B6: Number of sectors for different number of cells in inoculum. Top: Example images show the change
of populaধon paħerning with increasing cell number in the inoculum. Here, we mixed two selecধvely neutral S.
cerevisiae strains (yJHK111 and yJHK112) at an iniধal raধo of Pi = 0.5. For large cell numberN0 the populaধon
paħern does not change when increasingN0 further. (Boħom) Number of sectors measured in standing variaধon
assays for different inocula, for the same strains. We assayed 50 neutral colonies with an iniধal raধo of Pi = 0.01
per diluধon, allowing us to count individual sectors. We found no significant difference in sector numbers when
diluধng a typical culture (OD=2 in the figure, corresponding to about 30000 cells in a 2µl droplet) by a factor of
10 (p > 0.05, Mann-Whitney U-test). Diluধon by another factor of 10 showed again no significant difference to
the intermediate case (first 10-fold diluধon), but did show a significant difference (p < 0.05) to the original case .
Taken together we conclude that the number of sectors is not sensiধve to density of the iniধal culture, given that
the inoculum contains at least about 1000 cells in a 2µl droplet. This means that typical pipeষng errors or a small
change in cell densiধes of the culture mixtures, which we esধmate to be in the range of at most 10 per cent, should
have no impact on the number of sectors. The observaধons can be understood from Fig. 3: Only cells at the front
have a chance to surf, and in our experiments, the front is imposed as an iniধal condiধon by the drying inoculum.
Hence, as long as the cells in the droplet form a conধnuous ring of cells (such that at every point of the ring there
is a defined front), the number of cells in the bulk of the inoculum plays no role in the future fate of the colony.
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Figure 3.B7: Frequency per sector for E. coli DH5α grown at 37◦C (blue dots, see also Fig. 4f) together with
corresponding data for S. cerevisiae (data as in Fig. 1j). Only individual, non-interacধng sectors were selected for
analysis. Each individual sector is much larger in (relaধve) size in E. coli than in S. cerevisiae colonies. In fact, a yeast
sector at the highest assayed selecধve advantage has a relaধve size comparable to a neutral E. coli sector. Error
bars are standard errors of the mean, from about 20 sectors per selecধve advantage s.
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Figure 3.B9: Overall front speed and speed of individual cells at and behind the front for S. cerevisiae. A. Instan-
taneous front speed, defined as the difference in mean front posiধon in each frame, and ধme average (solid line).
The front speed in a S. cerevisiae colony is constant over at least three hours (from SI movie 1, see also Fig. 3.B5).
B. Speed of individual cells as a funcধon of distance from the front. Speed was measured by visually following 16
individual cells, iniধally a distance ∆ behind the front, and recording their posiধon every 30 minutes for 90 min-
utes. Instantaneous speed was computed by dividing the relaধve change in posiধon by 30 minutes. Here, ∆ is
the distance from the front at the beginning of each 30 minute interval. For the mean speed, data were binned in
25µm intervals. An approximately linear decrease in speed implies near-constant growth rate at least 200µm into
the bulk of the colony.
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Figure 3.B10: Dynamics of lineages at and behind the front, extracted from SI movies 1 and 2, for S. cerevisiae and
E. coli. Front posiধon was recorded at every ধme point, and the distance to the front computed for all cells. For (a)
& (b), cell trajectories were pooled together depending on their final distance∆f from the front at the end of the
movies (see color legends). Over ধme, all cells falls behind the front on average, except those that remain directly
at the front unধl the end (for these cells,∆f > −1).
To understand the dynamics of cells falling behind the front, we assumed that exterior parameters did not change
over the course of the experiment and that therefore, only ধme differences should maħer. This would imply that at
any given ধme, the distance from the front should determine future dynamics (except for cells directly at the front).
In (c) and (d), we show the distance∆ from the front of each cells (color scheme as in (a) and (b), respecধvely), shiđed
such that the final distances∆f from the front of each cell’s trajectory overlapped with the cell trajectory with the
largest∆f (shown in red). Binning over intervals of 20 minutes reveals the average dynamics of cells falling behind
the front (black dots): the distance∆ to the front increases exponenধally (fit, dashed line) in ধme, independently of
posiধon, except for cell that ”surf”, i.e., stay at the front for the full duraধon of the experiment, shown in magenta.
From the shiđed cell trajectories, we extracted the histograms of iniধal distance to the front of cells, condiধonal on
surfing. For the histograms in Fig. 3, we pooled cell trajectories with t + ti < 10min and t + ti < 75min for S.
cerevisiae and E. coli.
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3.7 Appendix C – Experimental methods

3.7.1 Strains

S. cerevisiae – competition experiments

To perform population growth experiments, we used strains yJHK111 (’wild type yellow strain’, 1), yJHK112
(’wild type red strain’, 1), and yMM9 (’red mutant strain’, unpublished, courtesy of Melanie J. I. Müller).
All three strains have a W303 background (common genotype MATa bud4∆::BUD4(S288C) can1-100, see
Table 3.C2 for details). yJHK111 expresses the yellow fluorescent protein ymCitrine, yJHK112 expresses the
red fluorescent protein ymCherry. yMM9 expresses ymCherry, but is also resistant to cycloheximide (CHX)
via mutation Q37E in gene CYH2 (while yJHK111 and yJHK112 are sensitive). Experiments with tunable
selection were performed using the pair yJHK111 and yMM9with a variable concentration of cycloheximide
in the medium. Experiments with neutral standing variation were performed using the pair yJHK111 and
yJHK112. Note that, throughout this work, signal in the channel for the fluorescent color of the ”mutant”
(yMM9 and yJHK112) is pseudo-colored as yellow, while the fluorescent signal of the wild type (yJHK111) is
pseudo-colored as blue.

S. cerevisiae – cell tracking at front

To track cells at the front, we used strain yMG10c, a convertant of yMG10, which in turn is based on strain
yDM117 (W303 background, HO::cre-EBD, courtesy of Jasper Rine), transformed with a cassette (pMG4)
based onpMEW90 (courtesy ofMaryWahl2). pMG4 contains a loxP cassette followed by ymCitrine, linked
with cyh2r via ubiquitin. yMG10 was incubated with estradiol to induce auto-recombination, and streaked
onto plates containing selective amounts of cycloheximide to select for the convertant yMG10c used for the
time lapse movie in Fig. 3, which has genotype W303 HO::cre-EBD SUC2::loxP-ymCitrine-ubq-cyh2r.

S. pombe

To investigate genetic demixing from neutral standing variation in S. pombe, we used two variants of strain
MJ95 (genotype leu1-, ura4-, h-) 3, which were obtained by replacing mCherry with the coding region for
YFP and CFP from plasmids pOH1 and pOH2 at the atb2 locus.

Plasmids with fluorescent markers cyan and yellow

pOH1 and pOH2 are based on the vector pTrc99A, with sequences for eCFP and Venus YFP inserted be-
tween the SacI and XbaI sites, respectively. These plasmid are inducible by IPTG but we found the base
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level of expression of the fluorescent proteins to be sufficient without inducer. For a more detailed descrip-
tion see Ref. 4.

E. coli – competition experiments

Population growth experiments were performed using three different backgrounds:

1. DH5α transformedwith pOH1 and pOH2, resulting in eOH1 and eOH2. These strains are identical
to those used in Ref. 4. For the competition experiments, we transformed eOH2 with the plasmid
pACYC184 (New England Biolabs), conferring resistance to tetracycline, resulting in eOH3. Exper-
iments with tunable selection were performed using the pair eOH1 and eOH3 (Fig. 4), adding low
concentrations of tetracycline to the growth medium (in addition to ampicillin for plasmid mainte-
nance). Experiments with neutral standing variationwere performed using the pair eOH1 and eOH2
(Figs. 4 & 5).

2. Strain MG1655 (not fluorescent) and its derivative SJ102 (genotype MG 1655 intC::λpR-YFP-Cmr,
courtesy of Ivan Matic), which constitutively expresses YFP and is resistant to chloramphenicol, al-
lowing us to perform experiments with tunable selection (Figs. 4 & 5) by adding low concentrations
of chloramphenicol to the growthmedium. SJ102 was also used to study the dynamics of E. coli cells
at the front (Fig. 3, SI movie 2).

3. A pair of JE 5713 5 (cross between B66 and KL2287,8), transformed with plasmids pOH1 and pOH2,
giving rise to eOH4 and eOH5, were used for competition experiments with neutral standing varia-
tion (Fig. 5). These strains have been reported as rodA mutants but also carry a point mutation in
the gene mrdA (Waldemar Vollmer, private communication), causing a round cell shape.

Name Composition Used for… Temperature [◦C]

YPD 20g/L peptone, 10g/L yeast extract, 20g/L dextrose S. cerevisiae 30

YES 5g/L yeast extract, 30g/L glucose, 225mg/L adenine, histi-
dine, leucine, uracil, lysine hydrochloride

S. pombe 30

LB 10g/L tryptone, 5g/L yeast extract, 10g/L NaCl E. coli 21, 37

M9 200mL/L 5×M9salts9, 5g/L dextrose, 2mMMgSO4, 0.1
mM CaCl2

E. coli (Fig. 5) 37

Table 3.C1: Media and growth condiধons used in this study. For plates, 2% w/v bacto agar was added to the media
before autoclaving. Anধbioধcs were added ađer autoclaving to cooled media.
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3.7.2 Determining fitness differences as function of drug concentration

Liquid culture (S. cerevisiae only)

Single colonies were picked and grown overnight, then diluted 1:10 in fresh media, and grown for another 3
generations to ensure growth in log phase. The resulting cultures were mixed at ratio Pi = 0.5 (measured
byOD) and about 10000 cells inoculated into thewells of a 96well plates with fresh YPD containing a range
of antibiotics concentrations (3 replicates from the same initial culture per concentration). The plates were
sealed and grown at 30◦C overnight, then shaken vigorously for at least 1 minute. 10µl of the culture were
diluted into PBS for analysis in the flow cytometer (Beckman-Coulter Fortessa X2). Every day, about 10000
cells were re-inoculated into fresh YPD to passage the cells for a total of 5 days, corresponding to about
60 generations. The cultures diluted in PBS were stored at 4◦C until they were analyzed using the flow
cytometer at a rate of at most 10000 events per second. The resulting ratio ofmutants to wild type increased
exponentially with the number of generations elapsed, whence the fitness difference could be calculated
from the slope of the curve in a semi-logarithmic plot.

On plates

Fitness differences were measured in separate experiments using the colliding colony assay, described briefly
in the following, see also Ref. 1. Two 1µl droplets, each containing one of the two strains in log phase, are
placed on agar plates about 5mm apart and incubated for at least 72 hours, until a sizable interface between
the resulting colonies is formed. A circle of radius R is manually fitted to the collision interface using the
ZeissZEN software and the distance l between the inoculation centers ismeasured. The selection coefficient
s can be calculated via

s =
1− 2z +

√
1 + 4z2

2z
, (3.C1)

where z = R/l. The resulting values of s were found to exhibit an approximately linear dependence on
drug concentration (Fig. B1a). We used the values of s given by the linear regression in the figures in the
main text (Fig. 1h, i, j, Fig. 4g, h). Following the results from Ref. 1, we assumed the same regression for
fitness differences on plates and in liquid culture.
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3.7.3 Adaptation from standing variation during two types of population ex-
pansions

Experiment and quantification

The experimental procedure for competition experiments from standing variation is described briefly in the
main text andmethods therein, see also Fig. 1a for a cartoon of the experiments. Here, we provide additional
details on the experimental procedures.

All competition experiments were performed on one batch of media/plates (per experimental series) and
using the same overnight cultures. For each competition experiment on plates we also carried out fitness
measurements (via colliding colonies) on the same batch of plates. Final population sizes of the budding
yeast colonies were measured by resuspending colonies into PBS, diluting and replating to count colony
forming units, or measuring optical density and comparing with a previously obtained calibration.

Tomeasure the frequency of yeastmutants in well-mixed liquid culture, we grew andmixed the strains as
described above and grew themixture overnight in aerated culture tubes at 30◦C (2 replicates from the same
initial culture per concentration). We separately checked that the competed strains had the same carrying
capacity to avoid error due to the cultures entering stationary phase. The next morning, we sampled 20µl
from each tube into 180µl of PBS. Themixture was thenmeasured in a Beckman-Coulter Fortessa X20 flow
cytometer at a rate of at most 10000 events per second.

To determine the number of cells in the outer rim of the inoculum, Nmut, in Fig. 4h, we measured the
radius r0 of the evaporated droplet (5 colonies from the same initial culture), which was easily visible un-
der brightfield illumination. Nmut was then calculated as Nmut = 2πr0Pi. The variable Nsec/Nmut in
Fig. 4g hence corresponds to the probability of surfing of an individual mutant cells in the very first cell
layer, assuming that the droplet rim is perfectly flat. Nsec/Nmut differs from the true surfing probability (of
an individual cell in the front) by a numerical factor of order 1 taking into account the irregularities of the
droplet perimeter.

Image analysis

Tomeasure the frequency of mutants in colonies, images of the colonies were taken with a Zeiss AxioZoom
v16 fluorescencemicroscope at 3.5x zoom and analyzed using custom routines written in Mathematica (Wol-
fram Research, Inc., Mathematica, Version 10.1, Champaign, IL (2015)). Because the colonies’ fluorescence
typically becomes weaker near the colony boundary, we employed a local adaptive binarization scheme.
Since individual images varied in intensity distribution, it was necessary to set the binarization thresholds by
hand for each image such that the binarized shape corresponded well to the observed sector shapes. We ex-
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[CHX] 0 40 80 120 160 200

Sectors 46 101 178 102 69 35

Table 3.C3: Number of sectors analyzed per cycloheximide concentraধon.

pect the error from this ”subjective” choice of thresholds to be small. During binarization, the outer radius
of the colony, its center, and the radius of the inner ring, stemming from the inoculation droplet, were also
measured. The frequency of mutants was then calculated by measuring the area of mutants and dividing
by the area of the annulus between the outer and inner radius, i.e., the fraction inside the homeland was
neglected, but the emerging bulge (for larger s) was taken into account.

For the frequency per sector in Figs. 1 and B7, we selected only colonies that either only had a single sector,
or colonies with few sectors that did not touch. Since the colonies used for Fig. 1 had many sectors at large
s, we also used colonies from experiments with smaller Pi (0.0025, 0.005, 0.01) to acquire enough ”free-
standing” sectors. The frequency was then computed as described above. Table 3.C3 gives the number of
sectors analyzed for each concentration of cycloheximide.

3.7.4 Growth of S. cerevisiae colony from single cell

Using a Zeiss AxioZoom v16 upright microscope, we tracked the growth of a colony (strain yMG10c) by tak-
ing time-lapsemovies of the fluorescence signal detected in a stage-mountedOkolabUNO-PLUS incubator
at 30◦C and at constant relative humidity. An agar plate in a Petri dish was inoculated with single cells and
grown in the stage-top incubator until colonies were visible at the desired magnification. Then, one colony
was randomly chosen and the time lapse movie was recorded for 48 hours, taking an image every 30 min.
The colony radius was determined by fitting a circle to the circumference of the colony.

3.7.5 Cell tracking at the front

Experiment

For single-cell resolution time lapsemovies (SImovies 1 and 2) of growing SJ102 and yMG10c, we used a Zeiss
LSM700 in confocalmodewith a 488nm laser. Agar plates were inoculatedwith fresh culture droplets (2µl),
that were left to dry for several minutes. The agar around the droplet was then cut into a 2cm×2cm pad and
inverted onto a clean coverslip, such that the cells touched the coverslip. The coverslip with the cells was
then incubated for a day to reach steady-state growth of the colony. After mounting the coverslip in a stage-
top incubator, we mounted the incubator on the microscope and let it equilibrate for about 2h. Humidity
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in the chamber was controlled by the addition of a water reservoir. E. coli cells were imaged with a 40x oil
objective, S. cerevisiae cells with a 20x air objective. Images were taken at 1 frame per minute with a dwelling
time of about 6µs/px (31s exposure per frame) for 274/228 minutes, respectively.

Analysis

For cell tracking, all frames were cleaned automatically using a median filter and contrast-adjusted. In SI
movie 2, some frames were manually retouched to remove brightness fluctuations. All frames were seg-
mented with a local adaptive binarization algorithm (same parameters for all frames) and objects touching
the image boundaries were removed. Because cells far behind the front could usually not be tracked ac-
curately, we only analyzed the first few cells layers by automatically finding the position of the front and
removing segmented objects far from it.

To determine the ancestry of cells at the front, we proceeded backwards in time. An individual cell was
tracked by creating a mask from its outline, dilating it, and computing the overlap with the previous frame.
The cell’s position in the previous frame was then determined by finding the cell with maximal overlap.

For Fig. 3, we tracked a total of 692 and 407 cells for 180 minutes in E. coli and S. cerevisiae, respectively,
i.e., we shortened the original time lapse movies to 180 minutes. This was done to maximize the number of
tracked cells while still maintaining information over sufficiently long time scales.

To obtain the mean square displacement in Fig. 3f, we proceeded as follows. Each tracked cell in the final
frame was traced back to its ancestor 180 minutes ago. Since the front had a defined direction of motion
(which we defined as the x-axis), we measured, in each time step, the position of the cell relative to its orig-
inal position and computed the displacement y from the x-axis, and take the square. These operations are
performed for all tracked cells, and averaging is performed over bins of x-displacements to account for cells
moving by different amounts in the x-direction per frame. After averaging, the square root was taken in
each x-bin, and the curves were fitted using Mathematica. In order to compare values for S. cerevisiae and E.
coli, we divided the displacements in x and y by the effective cell sizes d, given by d = 4.5µm for S.cerevisiae
and d =

√
3.5µm × 0.7µm for E.coli. The effective cell size for E. coli was determined by the harmonic

mean of its semi-axes, which were both measured directly from the time-lapse movie, as was the cell size of
S. cerevisiae.

Figures

Figures of the cell tracking (Figs. 3a, c and Fig. B8) were created using Adobe Photoshop by overlaying
images of the segmented cells at t = 0 and t = 3h with the computed lineages. For Figs. 3a & c, an outline
was added to the tracked lineages and the cells in the lineage to increase visibility.
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4
Mechanical interactions in bacterial colonies

and the surfing probability of beneficial
mutations

Bacterial conglomerates such as biofilms andmicrocolonies are ubiquitous in nature and play
an important role in industry andmedicine. In contrast to well-mixed cultures routinely used
in microbial research, bacteria in a microcolony interact mechanically with one another and
with the substrate to which they are attached. Here we use a computer model of a microbial
colony of rod-shaped cells to investigate how physical interactions between cells determine
their motion in the colony and how this affects biological evolution. We show that the prob-
ability that a faster-growing mutant “surfs” at the colony’s frontier and creates a macroscopic
sector depends on physical properties of cells (shape, elasticity, friction). Although all these
factors contribute to the surfing probability in seemingly different ways, their effects can be
summarized by two summary statistics that characterize the front roughness and cell align-
ment. Our predictions are confirmed by experiments in which we measure the surfing prob-
ability for colonies of different front roughness. Our results show that physical interactions
between bacterial cells play an important role in biological evolution of new traits, and sug-
gest that these interactionmay be relevant to processes such as de novo evolution of antibiotic
resistance.
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Figure 4.1: (a) Illustraধon of the computer algorithm. Bacteria are modelled as rods of varying length and constant
diameter. When a growing rod exceeds a criধcal length, it splits into two smaller rods. (b) A small simulated colony.
(c) The same colony with nutrient concentraধon shown as different shades of gray (white = maximal concentraধon,
black = minimal); the cells are represented as thin green lines.

4.1 Introduction

Bacteria are themostnumerousorganismsonEarth capable of autonomous reproduction. Theyhave colonised
virtually all ecological niches and are able to survive harsh conditions intolerable for other organisms such as
high salinity, low pH, extreme temperatures, or the presence of toxic elements and compounds 1. Many bac-
teria are important animal or human pathogens, but some bacteria find applications in the industry as waste
degraders 2 or to produce fuels and chemicals 3. In these roles, biological evolution of microbes is usually an
undesired side effect because it can disrupt industrial processes or lead to the emergence of new pathogenic4

or antibiotic-resistant strains 5.
Experimental research on bacterial evolution has been traditionally carried out in well-stirred cultures6,7.

However, in their natural environment bacteria often form aggregates such as microcolonies and biofilms.
Such aggregates can be found on food 8, teeth (plague), on catheters or surgical implants9, inside water dis-
tribution pipes 10, or in the lungs of people affected by cystic fibrosis 11. Bacteria in these aggregates adhere
to one another and the surface on which they live, form layers of reduced permeability to detergents and
drugs, and stochastically switch to a different phenotype that is more resistant to treatment 12–14; this causes
biofilms to be notoriously difficult to remove.

An important aspect of bacteria living indense conglomerates is that theydonotonly interact via chemical
signaling such as quorum sensing 15 but also throughmechanical forces such as when they push away or drag
other bacteria when sliding past them. Computer simulations 16–19 and experiments20–24 have indicated that
such mechanical interactions play an important role in determining how microbial colonies grow and what
shape they assume. However, the impact of these interactions on biological evolution only recently came
into focus 25.
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A particularly interesting scenario relevant to microbial evolution in microcolonies and biofilms is that
of a range expansion 26 in which a population of microbes invades a new territory. If a new genetic vari-
ant arises near the invasion front, it either “surfs” on the front and spreads into the new territory, or (if
unlucky) it lags behind the front and forms only a small “bubble” in the bulk of the population 27. This
stochastic process, called “gene surfing”, has been extensively studied 25,28–34 but these works have not ad-
dressed the role of mechanical interactions between cells. Many of the existing models do not consider in-
dividual cells 28, assume Eden-like growth 32, or are only appropriate for diluted populations of motile cells
described by reaction-diffusion equations similar to the Fisher-Kolmogorov equation 35. On the other hand,
agent-based models of biofilm growth, which have been applied to study biological evolution in growing
biofilms 36–38, use very simple rules to mimic cell-cell repulsion which neglect important physical aspects of
cell-cell and cell-substrate interactions such as friction.

In this work, we use a computer model of a growing microbial colony to study how gene surfing is af-
fected by the mechanical properties of cells and their environment. In our model, non-motile bacteria grow
attached to a two-dimensional permeable surface which delivers nutrients to the colony. This corresponds
to a common experimental scenario in which bacteria grow on the surface of agarose gel infused with nu-
trients. We have previously demonstrated 17 that this model predicts a non-equilibrium phase transition
between a regular (circular) and irregular (branched) shape of a radially expanding colony of microbes, and
that it can be used to study biological evolution in microbial colonies 25. Here, we use this model to show
that the surfing probability of a beneficialmutation is determined by the roughness and the cellular ordering
at the expanding front of the colony. We also investigate howmechanical properties of cells such as elasticity,
friction, and cell shape affect these two quantities. We corroborate some of our results in experiments with
microbial colonies that display varying degrees of roughness of the growing front and show that it influences
the surfing probability as expected.

4.2 Computer model

We use a computer model similar to that from Refs. 17, 23, 25, with some modifications. Here we discuss
only the generic algorithm; more details will be given in subsequent sections where we shall talk about the
role of each of the mechanical factors.

We assume that bacteria form a monolayer as if the colony was two-dimensional and bacteria always re-
mained attached to the substrate. This is a good approximation to what occurs at the edge of the colony
and, as we shall see, is entirely justifiable because the edge is the part of the colony most relevant for bio-
logical evolution of new traits. We model cells as spherocylinders of variable length and constant diameter
d = 2r0 = 1µm (Fig. 4.1a). Cells repel each other with normal force determined by the Hertzian contact

145



theory: F = (4/3)Er
1/2
0 h3/2 where h is the overlap distance between the walls of the interacting cells,

andE plays the role of the elastic modulus of the cell. The dynamics is overdamped, i.e. the linear/angular
velocity is proportional to the total force/total torque acting on the cell:

dr⃗i
dt

= F⃗ /(ζm), (4.1)

dϕi
dt

= τ/(ζJ). (4.2)

In the above equations r⃗i is the position of the centre of mass of cell i, ϕi is the angle it makes with the x
axis, F⃗ and τ are the total force and torque acting on the cell, m and J are its mass and the momentum
of inertia (perpendicular to the plane of growth), and ζ is the damping (friction) coefficient. We initially
assume that friction is isotropic, and explore anisotropic friction later in Sec. 4.4.3. Note that the massm
and the momentum of interia J are the proxy for cell size. These quantities are not constant because cells
change their size over time, and hencem,J cannot be absorbed into the friction coefficient.

Bacteria grow by consuming nutrients that diffuse in the substrate. The limiting nutrient concentration
dynamics is modelled by the diffusion equation with sinks corresponding to the bacteria consuming the
nutrient:

∂c

∂t
= D

(
∂2c

∂x2
+
∂2c

∂y2

)
− k

∑
i

δ (r⃗i − r⃗) . (4.3)

Here r⃗ = (x, y), c = c(r⃗, t) is the nutrient concentration at position r⃗ and time t, D is the diffusion
coefficient of the nutrient, and k is the nutrient uptake rate. The initial concentration c(r⃗, 0) = c0.

A cell elongates at a constant rate vl as long as the local nutrient concentration is larger than a certain
fraction (>1%) of the initial concentration. When a growing cell reaches a pre-determined length, it divides
into two daughter cells whose lengths are half the length of the mother cell. The critical inter-cap distance
lcap−cap at which this occurs is a random variable from a Gaussian distribution with mean ℓc and standard
deviation±0.15 ℓc. Varying ℓc allows us to extrapolate between quasi-spherical cells (e.g. yeasts S. cerevisae
or the bacterium S. aureॿ) and rod-shaped cells (e.g. E. coli or P. aeruginosa), whereas the randomness of
lcap−cap accounts for the loss of synchrony in replication that occurs after a few generations (the coefficient
of variation of the time to division∼ 0.1 − 0.2 39–41). The two daughter cells have the same orientation as
the parent cell, plus a small random perturbation to prevent the cells from growing in a straight line.

We use two geometries in our simulations: a radially expanding colony that starts from a single bacterium
(Fig. 4.2a), and a colony growing in a narrow (widthL) but infinitely long vertical tubewith periodic bound-
ary conditions in the direction lateral to the expanding front (Fig. 4.2d). While the radial expansion case
represents a typical experimental scenario, only relatively small colonies (106 cells as opposed to> 108 cells
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Name Value Units

Nutrient diffusion constantD 50 µm2/h
Nutrient concentration c0 1 a.u.
Nutrient uptake rate k 1 – 3 a.u./h

Young modulusE 100 kPa
Elongation length vl 4 µm/h

Cell diameter 1 µm
Average max. inter-cap distance lc 4 µm

Damping coefficient ζ 500 Pa·h

Table 4.1: Default values of the parameters of the model. This gives≈ 30min doubling ধme and the average length
of bacterium≈ 3µm. If not indicated otherwise, all results presented have been obtained using these parameters.
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Figure 4.2: (a) Snapshots of a radially-growing simulated colony taken at different ধmes (sizes), for k = 2. Growing
bacteria are bright green, quiescent (non-growing) bacteria are dark green. (b) The radius of the colony increases
approximately linearly in ধme. (c) The expansion speed tends to a constant value for long ধmes. (d) Example
configuraধon of cells from a simulaধon in a tube of width L = 80µm. The colony expands verধcally. h is the
thickness of the growing layer (Eq. (4.4)), ρ is the roughness of the front (Eq. (4.5)). (e, f) Roughness ρ and thickness
h as funcধons of the posiধon y of the front, for L = 1280µm and k = 2.5, and for 10 independent simulaধon
runs (different colours).

in a real colony25) can be simulated in this way due to the high computational cost. The second method
(growth in a tube) enables us to simulate growth for longer periods of time at the expense of confining the
colony to a narrow strip and removing the curvature of the growing front. This has however little effect on
the surfing probability of faster-growing mutants if the widthL of the tube is sufficiently large42.

Figure 4.1b, shows a snapshot of a small colony; the concentration of the limiting nutrient is also shown.
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Table 4.1 shows default values of all parameters used in the simulation. Many of these parameters have been
taken from literature data for the bacterium E. coli 25, but some parameters such as the damping coefficient
must be estimated indirectly 17. We note that the assumed value of the diffusion constantD is unrealistically
small; the actual value for small nutrient molecules such as sugars and aminoacids would be∼ 106µm2/h,
i.e., four orders of magnitude larger. Our choice ofD is a compromise between realism and computational
cost; we have also shown in Ref. 17 that the precise value of the diffusion coefficient is irrelevant in the
parameter regime we are interested here. We also note that in reality cessation of growth in the center of
the colony and the emergence of the growing layer may be due to the accumulation of waste chemicals, pH
change etc., rather than nutrient exhaustion. Here we focus on the mechanical aspects of growing colonies
and do not aim at reproducing the exact biochemistry of microbial cells, as long as the simulation leads to
the formation of a well-defined growth layer (as observed experimentally).

4.3 Experiments

Experiments were performed as described in our previous work25. Here we provide a brief description of
these methods.

Strains and growth conditions.

For the mixture experiments measuring surfing probability, we used pairs of microbial strains that differed
in fluorescence color and a selectable marker. The selective difference between the strains was adjusted as
in 25 using low doses of antibiotics. The background strains and antibiotics used were E. coli DH5α with
tetracycline, E. coli MG1655 with chloramphenicol, and S. cerevisiae W303 with cycloheximide. Selective
differences were measured using the colliding colony assay 33. E. coli strains were grown on LB agar (2%)
medium (10g/L tryptone, 5g/L yeast extract, 10g/L NaCl) at either 37◦C or 21◦C. S. cerevisiae experiments
were performed on either YPD (20g/L peptone, 10g/L yeast extract, 20g/L glucose) or CSM (0.79g/L CSM
(Sunrisemedia Inc.), 20 g/L glucose) at 30◦C. 20g/L agarwas added tomedia before autoclaving. Antibiotics
were added after autoclaving and cooling of the media to below 60◦C.

Measuring surfing probability.

For each pair ofmutant andwild type, amixed starting populationwas prepared that contained a low initial
frequency Pi of mutants having a selective advantage s. Colony growth was initiated by placing 2µl of the
mixtures onto plates and incubated until the desired final population size was reached. The initial droplet
radius was measured to compute the number of cells at the droplet perimeter. The resulting colonies were
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imaged with a Zeiss AxioZoom v16. The number of sectors was determined by eye. The surfing probability
was calculated using Eq. (4.10).

Timelapse movies.

For single cell-scale timelapse movies, we used a Zeiss LSM700 confocal microscope with a stage-top incuba-
tor to image the first few layers of most advanced cells in growing S. cerevisiae and E. coli colonies between
a coverslip and an agar pad for about four hours, taking an image every minute.

Measuring roughness.

Images of at least 10 equal-sized colonies per condition were segmented and the boundary detected. The
squared radial distance δr2 between boundary curve and the best-fit circle to the colony was measured as
a function of the angle and averaged over all possible windows of length l. The resulting mean δr2 was
averaged over different colonies.

Images of moving fronts at the single-cell level from the timelapse movies were first segmented using a
local adaptative threshold algorithm to identify cells. The front was found by the outlines of cells directly
at the front. For all possible windows of length l, a line was fitted to the front line and the mean squared
distance from the best-fit linewasmeasured, as inRef. 28. The resultingmean squared distancewas averaged
over all windows of length l and all frames.

4.4 Simulation results

4.4.1 Growth and statistical properties of the simulated colony

We now discuss the properties of our simulated colonies. When the colony is small, all bacteria grow and
replicate. As the colony expands, the nutrient becomes depleted in the centre of the colony because diffusion
of the nutrient cannot compensate its uptake by growing cells. This causes cessation of growth in the centre.
When this happens, growth becomes restricted to a narrow layer at the edge of the colony, Fig. 4.2a, and
Supplementary Video 1. The radius of the colony increases approximately linearly in time (Fig. 4.2b,c). The
presence of a “growing layer” of cells and the linear growth of the colony’s radius agree with what has been
observed experimentally 25,43.

Statistical properties of the growing layer can be conveniently studied using the “tube-like” geometry.
Figure 4.2d shows a typical configuration of cells at the colony’s frontier (see also Supplementary Video 2).
The growing layer can be characterized by its thickness h and roughness ρwhich we calculate as follows. We
first rasterize the growing front of the colony using pixels of size 1 × 1µm, and find the two edges of the
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(a)

(b)

(c)
Figure 4.3: The fronধer of the colony for three different nutrient uptake ratesk = 1.8 (a), k = 2.2 (b) andk = 2.6
(c). The thickness of the growing layer (bright green) decreases only moderately (1.64×) from h = 13.5±0.1µm
for k = 1.8 to h = 8.2± 0.1µm for k = 2.6, but this has a large impact on the front roughness which changes
from ρ = 2.1 ± 0.2µm to ρ = 9.3 ± 0.4µm, correspondingly. For k = 2.6 the growing layer begins to loose
conধnuity and splits into separate branches.

front: the upper one (the colony edge) {y+i } and the lower one (the boundary between the growing and
quiescent cells) {y−i }. We then calculate the average thickness as

h =
1

L

L∑
i=1

min
j=1,...,L

√
(i− j)2 + (y+i − y−j )

2. (4.4)

This method takes into account that the growing layer can be curved and does not have to run parallel to
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Figure 4.4: Roughness (a) and thickness (b) of the growing layer for different front lengths (tube widths) L = 160
(red), L = 320 (green), L = 640 (blue), and L = 1280 µm (purple). (a) Thickness h decreases as the nutrient
uptake rate k increases. h does not depend on the length L of the front. (b) Roughness ρ increases with both k
and L. (c) Roughness versus thickness; different points correspond to different k from panels (a,b).

the x axis*. Similarly, we calculate the average roughness as

ρ =

√√√√ 1

L

L∑
i=1

(y+i − Y +)2 , (4.5)

where Y + = (1/L)
∑

i y
+
i . Note that all quantities (L, Y +, y+i , y

−
i ) are in pixels and not µm.

After a short transient the expansion velocity, the nutrient profile, and other properties of the growing
layer stabilize and vary little with time (Fig. 4.2e,f). It is therefore convenient to choose a new reference
frame co-moving with the leading edge of the colony. Since cells that lag behind the front do not replicate,
we do not have to simulate these cells explicitly. This dramatically speeds up simulations and enables us to
study stripes of the colony of widthL > 1mm and length> 10mm.

We have shown previously 17 that the thickness of the growing layer of cells is controlled by the nutrient
concentration c0, nutrient uptake rate k, growth rate b, and elasticity E of cells. This in turn affects the
roughness of the leading edge of the colony. This relation is illustrated in Fig. 4.3, where we vary the uptake
rate k while keeping the remaining parameters constant.

Figure 4.4 shows that front thickness decreases and its roughness increases with increasing k; eventually,
when a critical value kc ≈ 2.5 is crossed, the growing front splits into separate branches. This transition has
been investigated in details in Ref. 17. Although this scenario can be realized experimentally44,45, here we
focus on the “smooth” regime in which colonies do not branch out and the frontier remains continuous.

*Alternatively, h can be defined as the area of the colony that contains replicating cells divided by the interface
lengthL. Both methods produce similar results.
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(a) (b) (c)
Figure 4.5: The fate of mutants. Panels (a) and (b) show different fates of a sector of fiħer (s = 0.1) mutant cells
(red) in a colony of “wild-type” cells (green). The sector can either expand (panel (a)) or collapse and become trapped
in the bulk when random fluctuaধons cause mutant cells to lag behind the front (panel (b)). Panel (c) shows a sector
with larger (s = 0.5) growth advantage; significantly faster growth of mutant cells leads to a “bump” at the front.
In all cases k = 1.8, L = 160µm.

4.4.2 Surfing probability of a beneficial mutation

When amutation arises at the colony’s frontier, its fate can be twofold 25,28. If cells carrying the newmutation
remain in the active layer, the mutation “surfs” on the moving edge of the colony and the progeny of the
mutant cell eventually forms a macroscopic “sector” (Fig. 4.5). On the other hand, if cells carrying the
mutation leave the active layer, the mutation becomes trapped as a “bubble” in the bulk of the colony27.
Due to the random nature of replication and mixing at the front, surfing is a stochastic process; a mutation
remains in the active layer in the limit t→ ∞with some probabilityPsurf whichwe shall call here the surfing
probability.

Surfing is a softer version of fixation - a notion from population genetics in which amutant takes over the
population. The soft-sweep surfing probability has therefore a hard-selection-sweep counterpart, the fixa-
tion probability, which is the probability that the newmutation spreads in the population so that eventually
all cells have it. Both surfing and fixation probabilities depend on the balance between selection (how well
themutant grows compared to the parent strain) and genetic drift (fluctuations in the number of organisms
due to randomness in reproduction events)46. In Ref. 25 we showed that Psurf increased approximately
linearly with selective advantage s – the relative difference between the growth rate of the mutant and the
parent strain. Here, we study how the properties of the active layer affect Psurf for a fixed s.

We first run simulations in the planar-front geometry inwhich a random cell picked up from the growing
layer of cells with probability proportional to its growth rate is replaced by amutant cell with selective advan-
tage s > 0. This can be thought of asmutations occurringwith infinitely small but non-zero probability per
division. The simulation finishes when either fixation (all cells in the growing layers becoming mutants) or
extinction (no mutant cells in the growing layer) is achieved. Before inserting the mutant cell, the colony is
simulated until the properties of the growing layer stabilize and both thickness and roughness reach steady-
state values. The simulation is then repeated many times and the probability of surfing is estimated from
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Figure 4.6: (a) P (∆|surf) for L = 160µm, selecধve advantage s = 0.02, and different k = 1.6, 2.0, 2.4.
(b) P (∆|surf) for L = 160µm, k = 2.0, and different selecধve advantages s = 0, 0.02, 0.05, 0.1, 0.2, 0.5.
Only mutants from the first layer of cells have a significant chance of surfing.

the proportion of runs leading to fixation of the mutant in the growing layer. Snapshots showing different
fates (extinction, surfing) of mutant sectors are shown in Fig 4.5.

Surfing probability depends on the position of the cell in the growing layer.

In Ref. 25 we showed that the surfing probability strongly depends on how deeply in the growing layer a
mutant was born. Here we would like to emphasize this result as it will become important later. Let ∆
be the distance from the edge of the colony to the place the mutant first occurred. Figure 4.6 shows the
probability density P (∆|surf) that a cell was born a distance∆ behind the colony front, given that it went
on to surf on the edge of the expanding colony. It is evident that only cells born extremely close to the frontier
have a chance to surf. Cells born farther from the frontier must get past the cells in front of them. This is
unlikely to happen, even if the cell has a significant growth advantage, as the cell’s growth will also tend to
push forward the cells in front of it. This also justifies why we focus on two-dimensional colonies only; even
though real colonies are three-dimensional, all interesting dynamics occurs at the edge of the colony which
is essentially a mono-layer.

Given that surfing is restricted to the first layer of cells, and the distribution P (∆|surf) is approximately
the same for all explored parameter sets (different k and s), for our purpose it would be a waste of computer
time to simulatemutants that occurreddeeply in the growing layer. To save the time, and to remove the effect
the front thickness has onPsurf (thicker layer = lower overall probability), we changed theway of introducing
mutants. Instead of inserting mutants anywhere in the growing layer, we henceforth inserted them only at
the frontier.
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Figure 4.7: (a)Psurf for different thicknessh of the growing layer, for s = 0.02 andL = 160, 320, 640, 1280µm
(different colours). (b) the same data as a funcধon of front roughness ρ. Between 103 and 104 simulaধons were
performed for each data point to esধmate Psurf.

Roughness of the front is more predictive of Psurf than its thickness.

Using the newmethod of introducingmutants (only the first layer of cells), we run simulations for s = 0.02

and for different widths L and nutrient uptake rates k as in Fig. 4.4. Figure 4.7 shows how the surfing
probability Psurf varies as a function of the thickness and the roughness of the front. Psurf increases with
increasing thickness h and decreases with increasing roughness ρ. We know from Fig. 4.4 that thickness and
roughness are inversely correlated so this reciprocal behaviour is not surprising. An interesting question is
whether any of the two quantities, roughness or thickness, directly affects the probability of surfing? From
a statistics point of view, thickness h seems to be a better predictor of Psurf because data points for the same
h but for different L correlate better. However, it could be that it is actually front roughness that directly
(in the causal sense) affects the surfing probability and that Psurf and h are anti-correlated because of the
relationship between h and ρ.

Weperformed two computer experiments to address the above question. First, we simulated a colony that
had a very low and constant roughness ρ ≈ 1µm, independently of front’s thickness. This was achieved by
introducing an external force Fy = −gy acting on the centre of mass of each cell, where g > 0 was a
“flattening factor” whose magnitude determined the strength of suppression of deviations from a flat front.
Psurf plotted in Figure 4.8a, as a function of h for two cases: “normal”, rough front (g = 0), and “flattened”
front (g > 0), demonstrates that the surfing probability does not depend on h in the case of flat front.

Second, we varied roughness while keeping thickness constant. This was done bymeasuring front rough-
ness in each simulation step, and switching on the external “flattening” force Fy = −gy if the roughness
was larger than a desired value ρmax. Figure 4.8b, shows that although thickness remains the same for all data
points, Psurf decreases with increasing roughness.
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Figure 4.8: (a) Psurf as the funcধon of front thickness h for the normal (black) and flaħened front (red, g = 500),
forL = 320µm. We vary the nutrient uptake rate k = 1.6...2.8 to simulate fronts of different thickness. The flat
front has roughness ρ between 0.84 and 1.0 for all k. (b) Psurf for the normal (black) and flaħened front (blue) as
the funcধon of roughness ρ. The flaħened front has approximaly the same thickness for all data points (h between
10.0 and 10.3µm). The points correspond to maximum roughness set to ρmax = 2, 3.5, 5, and 7, for k = 2.6;
the actual (measured) ρ differs very liħle from these values.

We can conclude from this that it is the increase in the roughness, and not decreasing thickness, that
lowers the surfing probability for thinner fronts (larger nutrient intake rate k). However, the data points in
Fig. 4.7b, from different simulations do not collapse onto a single curve as it would be expected if average,
large-scale front roughness was the only factor.

Local roughness predicts Psurf

According to the theory of Ref. 30, the dynamics of a mutant sector can be described by a random process
similar to Brownian motion in which the sector boundaries drift away from each other with constant veloc-
ity. The velocity depends on the growth advantage s whereas the amplitude of random fluctuations in the
positions of boundary walls is set by the microscopic dynamics at the front. We reasoned that these fluctua-
tions must depend on the roughness ρ of the frontier, and that a mutant sector should be affected by front
roughness when the sector is small compared to themagnitude of fluctuations. This means that local rough-
ness ρ(l), determined over the length l of the front, should be more important than the global roughness
ρ(L).

We calculated the local roughness as

ρ(l) =
1

n

n∑
i=1

√√√√1

l

i+l∑
j=i

(y+j − Y +)2. (4.6)
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Here Y + is the average height of the interface and {y+i } are the vertical coordinates (interface height) of
the points at the leading edge, obtained as in Section 4.4.1. Figure 4.9 shows that Psurf for different L now
collapse onto a single curve, for all lengths l ≈ 10 . . . 100µm over which roughness has been calculated.

Orientation of cells affects Psurf.

So far we have focused only on the macroscopic properties of the leading edge of the colony, completely
neglecting its granular nature due to the presence of individual cells. Recall that in ourmodel each cell is rod-
shaped, and the direction in which it grows is determined by the orientation of the rod. Figure 4.10a shows
that cells at the leading edge assume orientations slightly more parallel to the direction of growth (vertical)
in the flattened front than in the normal simulation. A natural question is how does cellular alignment
affects Psurf, independently of the roughness? To answer this question, we simulated a modified model, in
which external torque τ = −τmax sin[(ϕ−ϕpreferred) mod π]was applied to the cells, forcing them to align
preferentially in the directionϕpreferred. We investigated two forced alignments: ϕpreferred = 0 corresponding
to cells parallel to the x axis and hence to the growing edge of the colony, and ϕpreferred = π/2 which
corresponds to the vertical orientation of cells (perpendicular to the growing edge).

Figure 4.10b compares these two different modes with previous simulations with no external torque, for
approximately the same thickness and roughness of the growing layer. It is evident that the orientation of
cells strongly affects the surfing probability: horizontally-forced cells have ∼ 3x smaller Psurf compared to
the normal case, which in turn has Psurf ∼ 5x smaller than vertically-forced cells.

Shorter cells have higher Psurf than long cells.

To check how the aspect ratio of cells affect Psurf, we simulated cells whose maximal length was only 2µm
and the minimal separation before the spherical caps was zero, i.e., the cells became circles immediately after
division. As before we selected a set of k’s such that the thickness and roughness were approximately the
same for all simulations. In order to make a fair comparison between “short rods” and “long rods” from
previous simulations, thickness and roughness were expressed in cell lengths rather than in µm. This was
done by dividing both h and ρ by the average length of a cell measured for cells from the growing layer.
Figure 4.10c show that short rods have a much higher surfing probability than long rods.

In all previous simulations, even for short rods, cells remembered their orientation from before division
and growth always initially occurred in that direction. To see whether this has any impact on Psurf, we con-
sidered a scenario in which the new direction of growth is selected randomly and does not correlate with the
direction prior to division. Figure 4.10c shows that Psurf almost does not change regardless whether a short
cell randomly changes its orientation after division or not.
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Figure 4.9: Psurf as the funcধon of local roughness ρ(l) of the growing layer, for different sizes L =
160, 320, 640, 1280 µm (as in Fig. 4.7) and s = 0.02. (a) l = 10, (b) l = 35, (c) l = 98 µm. For each l,
data points for different L collapse onto a single curve.
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4.4.3 Surfing probability and the mechanical properties of bacteria

Our results from the previous section demonstrate that surfing is affected by (i) the roughness of the growing
layer, (ii) the orientation of cells, (iii) the thickness of the growing layer ifmutations occur inside the growing
layer and not only at its edge. To show this, we varied thickness, roughness, and orientation of cells by using
ad hoc external forces flattening out the front or forcing the cells to order in a particular way. In this section
we will investigate what parameters of the model affect surfing in the absence of such artificial force fields.

Thickness of the growing layer.

If cells are prohibited to form multiple layers, as in our 2d simulations, thickness h can be determined from
the parameters of themodel by a simple dimensional analysis. Assuming thath is proportional to the charac-
teristic scale overwhich thenutrient concentration and cell density reaches bulk values 17, we can approximate
h by

h ≈

√
E

(ζ/a)ϕ
(1/β − 1)3/4, (4.7)

where E is the elastic modulus of the bacterium (Pa), a is the average area per cell (µm2), ζ is the friction
coefficient (Pa·h), ϕ is the replication rate (h−1), and β < 1 is a dimensionless ratio of the nutrient con-
sumption rate to biomass production rate (i.e. new bacteria): β = (kρ0)/(ϕc0). Equation (4.7) shows
that thickness h increases with increasing cell stiffness (larger E) and replication rate ϕ, and decreases with
increasing nutrient uptake k and increasing friction ζ . The aspect ratio of the cells does not affect h in our
model. Equation (4.7) suggests that the thickness of the growing layer can be conveniently controlled in an
experiment by varying temperature or growthmedium (which both affect the growth rate), or by varying the
nutrient concentration c0. We shall use the first twomethods when discussing the experimental verification
of our theory.

Orientation of cells.

A useful measure of the global alignment of cells in the colony is the order parameter S =
⟨
cos2(ϕ− Φ)

⟩
.

Here ϕ is the angle a cell makes with the x-axis andΦ is the angular coordinate of the vector normal to the
front; this is to remove a trivial contribution to S due to the curvature of the front caused by roughness.
According to this definition, S = 1 if all cells are perfectly vertically aligned (in the direction of growth),
S = 0 if they are horizontal (parallel to the front), and S = 1/2 if their orientations are random. It turns
out that changing the uptake rate (and hence thickness h) from k = 1.6 to k = 2.8 changes S by a small
amount from S = 0.77 to S = 0.70. Here we are more interested in other factors that do not affect h.
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Figure 4.11: Snaphots of a growing colony with different fricধon anisotropy. The global order parameterS = 0.79
(isotropic fricধonA = 1), S = 0.53 (rolling rodsA = 4), and S = 0.63 (sliding rodsA = 1/3).
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Figure 4.12: (a) Roughness ρ as the funcধon of k, for different levels of fricধon anisotropy: no anisotropy (black
points, A = 1), “rolling rods” A = 2 (red), A = 4 (orange), and “sliding rods” A = 1/3 (blue). (b) surfing
probability versus ρ for the same parameters as in panel (a).

Friction.

One such factor is the nature of friction between cells and the substrate. So far, in all simulations the fric-
tion force was proportional to the cell’s velocity, irrespective of the direction of motion. To test whether
this assumption affected front roughness and the surfing probability, we ran simulations in which friction
coefficients were different in the directions parallel and perpendicular to the cell’s axis. We replaced Eq. (4.1)
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for the dynamics of the centre of mass with the following equation:

dr⃗i
dt

= K−1F⃗ /m, (4.8)

where the matrixK accounts for the anisotropy of friction:

K =

[
ζ∥n

2
x + ζ⊥n

2
y (ζ∥ − ζ⊥)nxny

(ζ∥ − ζ⊥)nxny ζ⊥n
2
x + ζ∥n

2
y

]
. (4.9)

We now have two friction coefficients: ζ⊥ is the coefficient in the direction perpendicular to cell’s major
axis n⃗, whereas ζ∥ is the coefficient in the parallel direction. For convenience, we shall assume that ζ∥ =

Aζ, ζ⊥ = ζ/AwhereA is the “asymmetry coefficient” and ζ is the isotropic friction coefficient, same as in
previous simulations (Table 1). For isotropic friction, A = 1, hence ζ⊥ = ζ∥ ≡ ζ andK = 1ζ , and we
recover Eq. (4.1). IfA > 1, it is easier for the rod to “roll” than to slide along the major axis. IfA < 1 it is
easier for the rod to slide.

Figure 4.11 shows images of the front for different levels of friction anisotropy. In the anisotropic “rolling
rods” case (A > 1), cells are significantly more oriented edge-on to the colony, and the roughness is notice-
ably larger. In the “sliding rods” case (A < 1) the roughness is even larger but the orientation of cells falls
between the isotropic and the “rolling rods” case. This is quantified in Fig. 4.12a, where we plotted ρ as a
function of k. The same figure, panel (b), shows that, as expected, the surfing probability goes down with
increasing roughness.

4.5 Comparison with experiments

Wenext checked whether the predicted dependence of the surfing probability on the roughness of the grow-
ing layer agree with experiments. We measured surfing probabilities of beneficial mutants with different
selective advantages s = −5 . . . 25% in colonies of E. coli and S. cerevisiae (Methods) grown at different
conditions affecting the roughness of the growing layer. A small number of fluorescently labeled mutant
cells was mixed with amuch larger number of wild-type cells, and a small droplet of themixture was used to
inoculate a colony on a Petri dish. After a few days, colonies with a characteristic sectoring pattern emerged
(Fig. 4.13). By zooming into the colony edge we confirmed that some mutants “surfed” at the front and ex-
panded into large sectors whereas somemutants did not make it and became trapped as bubbles in the bulk
of the colony (Fig. 4.13, compare with Fig. 4.5).
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Figure 4.13: (a) An example of a S. cerevisiae colony with beneficial mutants (yellow) forming sectors. The mutants
have a growth rate advantage of s ≈ 10%. (b,c) Fate of mutant cells - experimental counterpart of Fig. 4.5.
Colonies of E. coli (b) and S. cerevisiae (c) were inoculated using a mixture of a majority of wild-type cells (blue,
false colour) and a small number of mutant cells (yellow) with s = 8% (i and ii). Some mutant clones formed large
sectors (i), while others (ii) lagged behind the front, became engulfed by wild-type cells and eventually ceased to
grow (”bubbles”). A large growth advantage (s ≈ 16%, iii) caused the sector to “bulge out”. All three phenomena
are well reproduced by our simulaধons (c.f. Fig. 4.5). In all panels, scale bar = 2mm.

We counted the numberNsec of sectors and estimated the surfing probability Psurf from the formula25:

Psurf =
Nsec

2πr0Pi
, (4.10)

where Pi is the initial fraction of mutant cells in the population and r0 the initial radius of the colony (in
units of cell diameters). Note this equation makes sense only if surfing is restricted to the first layer of cells;
we have shown that this is true in computer simulations and we shall experimentally validate it later in this
section. Fig. 4.14a shows Psurf for E. coli and S. cerevisiae, and for different conditions. In the limit of low
selective advantage s < 10%we are interested here, the surfing probability is highest in colonies of roughly-
spherical S. cerevisiae, which have rather smooth boundaries, and smallest for the rod-shaped bacterium E.
coli, characterized by rough fronts. This agrees with our predictions (Fig. 4.10), however it does not yet show
whether this is due to difference in the cell shape (aspect ratio, c.f. the penultimate paragraph of Sec. 4.2) or
different thickness or roughness of the growing layer.

To study the connection between surfing and surface roughness, we computed the local roughness ρ(l)
as a function of window length l (Fig. 4.14b, cf. Eq. (4.6) and Methods) for the same colonies for which
we previously calculated Psurf (Fig. 4.14a). In all cases, ρ2(l) showed a linear dependence on window length
l after a transient at small window lengths, i.e., the colony boundary behaved like a standard random walk
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Figure 4.14: Surfing probability versus roughness in experimental colonies. In all panels squares and circles corre-
spond to E. coli and S. cerevisiae, respecধvely. (a) Surfing probabilityPsurf for different species and growth condiধons
as a funcধon of the selecধve advantage s. S. cerevisiae has a much higherPsurf at low s, whilePsurf of E. coli strain
DH5α at 21◦C increases faster than linearly for large s, surpassing S. cerevisiae for s > 15%. (b) Diagram illustrat-
ing how roughness ρ(l) was measured (Methods). (c) The local roughness squared ρ2(l) for different condiধons
(colours as in (a), error bars are standard errors of the mean over at least 10 colonies per condiধon). Solid lines
are linear fits to the data points. The doħed line corresponds to the window length l = 17mm used to calculate
roughness in panel (d). The inset shows ρ2(l) for E. coli MG1655 (dark blue), which has the highest roughness.
(d) Surfing probability versus ρ(l = 17mm), for different s. To compare E. coli and S. cerevisiae, we normalized
roughness by the linear cell size (square root of the average area), which we esধmated from microscopy images to
be 2 and 4.7µm, respecধvely.
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(e) Probability density plot of the order parameter
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for E. coli as a funcধon of the distance from the edge.

Blue = low probability, yellow = high probability. The doħed line is the average order parameter versus the distance
from the front. Cells are preferenধally aligned with the direcধon of propagaধon, except for cells directly at the front,
which are parallel to it. (f) Density plot of the order parameter for a simulated front with k = 1.4, L = 320µm.

(Fig. 4.14c).
We then tested the correlation of colony roughness with surfing probability in a similar way to what we

did in computer simulations. In Fig. 4.14d, we plot the surfing probability Psurf as a function of colony
roughness measured at one specific window length l = 17mm (dotted line in Fig. 4.14c), for different se-
lective advantages s. We observe that the surfing probability of E. coli decreases with increasing roughness
(Fig. 4.14d) for all s, in good qualitative agreement with our simulations. Similar results are obtained for
different choices of the window length l for which roughness is calculated. The situation is less clear for S.
cerevisiae; we hypothesize that this is due to roughness being too small (c.f. Fig. 4.9) to markedly affect the
surfing probability.

We next examined how microscopic properties of the front (cellular orientation) correlated with macro-
scopic roughness. We analysed microscopic images of the fronts of E. coli and S. cerevisiae fronts (Methods,
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data from Ref. 25), and measured local roughness ρ(l) over sub-mm length scales l. Example snapshots in
Fig. 4.15a,b show that roughness of the fronts indeed differ verymuch for these twomicroorganisms. Figure
4.15c confirms thatE. colihas amuchhigher roughness compared toS. cerevisiae, suggesting thatmacroscopic
roughness on the colony scale is a consequence of microscopic front roughness on the single-cell level.

To study the dynamics of surfing, we tracked E. coli cells over 200 minutes and measured their distance
from, and orientation relative to the edge of the colony, as well as the number of offspring for all cells in the
initial image. Figure 4.15d shows that cells only have an appreciable number of offspring if they are within
about one cell diameter of the front. This agreeswith our conclusion from simulations and justifies inserting
mutants only directly at the front.

Figure 4.15e shows the order parameter S =
⟨
cos2(ϕ− Φ)

⟩
, which measures the orientation of cells

and has been defined in Sec. 4.4.3, as a function of the distance from the front. Cells near the front tend to
align parallel to the front. This changes quickly behind the front, withmost cells being perpendicular to the
growth direction starting about 5µm behind the front. Figure 4.15f shows the distribution of S obtained
from simulations; the agreement with the experimental data from Fig. 4.15e is excellent, suggesting that our
model indeed captures the dynamics of the growing bacterial front reasonably well.

4.6 Conclusions

In this workwe have focused on the role ofmechanical interactions inmicrobial colonies. We first used com-
puter simulations to show that the speed of biological evolution, measured by the probability that a new
mutation “surfs” at the growing edge of a microbial colony, depends mostly on the thickness and rough-
ness of the growing layer of cells at colony’s front. Thicker fronts decrease the per-cell surfing probability
because only cells from the very first layer of cells create successful progenies, and the fraction of such cells
decreases with increasing front thickness. Rougher fronts also decrease the surfing probability for a similar
reason; only cells at the tips of front’s protrusions are successful and these tips become smaller for rougher
fronts. Moreover, roughness and thickness are related; thicker front have lower roughness and vice versa.
While the dependence between genetic segregation and the front thickness47, and between thickness and
roughness48 has been known previously, in this work we have shown that it is actually the roughness of the
growing layer that should be thought of as affecting the surfing probability in the causal sense. We have also
linked thickness and roughness to the mechanical properties of cells for the first time. Moreover, we have
discovered that the orientation of cells has also a significant effect, irrespective of front roughness, on the
surfing probability. Finally, we have confirmed some of our predictions (surfing probability versus front
roughness and the orientation of cells versus distance from the front) in experiments in which we varied the
growth rate and the type of cells.
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All three quantities, front thickness, front roughness, and cellular alignment depend in a very non-trivial
way on the properties of cells and their environment: cell-surface friction (and anisotropy of thereof), elastic-
ity of cells, their growth/nutrient uptake rate, and their shape. Many of these parameters are very difficult to
control experimentally without affecting other parameters. To properly disentangle the effect of the shape
of cells, friction, growth rate etc. on the surfing probability, further experiments are required in which these
factors are varied independently. For example, the shape of E. coli can be varied by using MreB mutants49;
while this often also affects the growth rate 50, an experiment with round E. coli MreB mutants could com-
plement our results in an interesting way.

Microbial evolution is a research area that is important both from fundamental and practical viewpoints.
Inparticular, our research shows thatmechanical forces such as friction canplay a significant role inbiological
evolution of microorganisms. To our knowledge, this article is the first that not only puts forward this idea
but also provides concrete arguments in its support.

From a more practical point of view, our results are relevant to the evolution of antimicrobial resistance.
It has been demonstrated that even a small bacterial population can develop de novo resistance to some
antimicrobial drugs in less than a day 51. This rapid evolution makes the most popular drugs - antibiotics -
increasingly ineffective 52. Since the rate of discovery of new antibiotics has steadily declined over years 53, the
evolution of drug-resistant bacteria has been highlighted as one of the major challenges we will face in the
coming decades. By demonstrating the role of mechanical interactions on biological evolution in microbial
aggregates, our research opens up a new antimicrobial paradigm inwhich the physical properties ofmicrobes
could be targeted alongside standard antimicrobial therapy to reduce the probability of evolving resistance
to drugs.

Data and code

All simulation/experimental data sets and code are available from EdinburghDataShare (http://dx.doi.
org/10.7488/ds/1702)
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5
Environmental heterogeneity reduces the

efficacy of natural selection

Genetic drift, the stochasticity associated with proliferation, can be viewed as a force limiting
the efficacy of natural selection: if it is strong, a spontaneous mutation can behave neutrally
even if it confers a growth rate advantage. Genetic drift is particularly strong at the front of
range expansions, where a small number of founding individuals at the population frontier
determines the future genetic structure of the population. Evolutionary outcomes are thus
intimately coupled to the dynamics at the population frontier, which in turn depends on the
local environment. Environmental heterogeneities, whichmay favor or depress an individual’s
reproductive success regardless of its inherent fitness and direct its motion, may therefore be
able to shape the evolutionary dynamics in such populations. To test this, we used colonies of
E. coli with stochastic phenotype switches carrying a tunable fitness effect as a simple model
system to show that strong environmental heterogeneity can dramatically impact the efficacy
of selection. Our results are supported by simple simulations of expanding populations in het-
erogeneous environments, suggesting that the depression of selection is a generic consequence
of extrinsic disorder andmay also be important in other spatially expanding populations such
as tumors or biofilms.
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5.1 Introduction

Noise, and its competition with deterministic forces, plays an integral role in biology, such as in stochastic
gene expression, cellular decision making, and cell differentiation 1. Stochasticity is also a crucial component
of evolutionary dynamics: not only do the mutations entering a population occur at random times in ran-
dom individuals and at random positions in their genome, but in addition the fate of a mutation and its
clonal lineage is largely stochastic and only partly determined by its effect on the individual’s fitness.

The random fluctuations in the frequency of a mutant allele due to reproductive noise are called genetic
drift. Genetic drift is particularly strong at the front of range expansions, a consequence of the relatively small
number of individuals at the front of the expansion who contribute to future growth. The neutral diver-
sity and adaptation in spatially expanding populations has been studied in computer simulations 2,3, in the
field4–6, and in microbial colonies7–10. In microbial colonies, nutrient gradients limit the number of prolif-
erating individuals to a small region close to the colony perimeter called the growth layer. As a consequence,
neutral mutation often have much larger clones compared to what is expected in well-mixed populations 8,
and most mutant offspring are concentrated in a relatively small number of enormously successful lineages
that ”surf” on the expanding population wave. These successful lineages appear as sectors that remain in
contact with the population front, while less successful lineages have lost contact with the front and appear
as small patches called bubbles. The effects of mutations conferring a fitness effect during range expansions
are more subtle. Deleterious mutations are predicted to remain at the population frontier for extended peri-
ods because genetic drift is strong at the front 11–14. On the other hand, beneficial mutants can sweep to high
frequency much faster in microbial colonies than in well-mixed populations9.

The fate of spontaneous mutations in expanding microbial colonies is determined through the compe-
tition of selection and genetic drift9,15. Although the direct mapping is typically unknown, the strength of
genetic drift in amicrobial colony is fully characterized bymicroscopic details, e.g., cell-cell adhesion and cell
shape 15, and as such can be regarded as an intrinsic property to the population. Most studies of evolutionary
dynamics inmicrobial colonies so far have focused onhomogeneous environments, where the intrinsic noise
is the only source of stochasticity in the system.

Here, extending the successful frameworkof intrinsic vs. extrinsic noise of systemsbiology to evolution in
microbial populations 16,17, we ask about the effects of extrinsic noise on evolutionary dynamics in microbial
colonies. A simple example of an extrinsic factor that can impact evolution is environmental heterogeneity,
which can alter the growth of the population and thus the evolutionary dynamics in fundamental ways. For
instance, temporal and spatial gradients in antibiotic concentration vastly accelerated the emergence of re-
sistance in recent experiments in shaken cultures 18, microfluidic devices 19 and on agar plates 20, as predicted
by theory 21–25.Apart from antibiotic gradients, the effects of spatial heterogeneity on evolutionary dynam-
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ics has been studied in experiments only with neutral alleles in fixed geometries, such as isolated obstacles
creating ”geometry-enhanced” genetic drift 26.

By contrast, little is understood about the quantitative effects of more complex environmental hetero-
geneities on evolutionary processes in microbial colonies. Here, we study the effects of random environ-
mental disorder on the evolutionary dynamics in microbial populations. To this end, we employ the loss of
a plasmid in E. coli as a model system for mutations with tunable growth rate effects whose clones can be
tracked under the microscope. To study the effects of environmental disorder we grew colonies of E. coli on
solid substrates that were either smooth or had a randomly patterned surface. We find that extrinsic noise
created by environmental heterogeneity can overpower selection and reduces its efficacy to such a degree that
even strongly beneficial mutations are unable to establish at rates higher than expected if they were neutral.
Our results are corroborated by simple toy model simulations, suggesting that our results may generalize to
other spatially growing populations, such as biofilms, tumors, and invasive species.

5.2 Results

5.2.1 Experiments

Weused a strain of E. coli carrying a plasmid that is costly for cells to produce, resulting in a 20% growth rate
disadvantage in plasmid-bearing cells compared to their plasmid-less (but otherwise isogenic) conspecifics.
This strain loses the plasmid stochastically at a rate of about 5× 10−3 per cell division (approximately inde-
pendent of antibiotic concentration, see SI). The plasmid carries a gene conferring resistance to the antibiotic
doxycycline (a tetracycline analog), such that the absence of the plasmid can become unfavorable when the
cells are facedwith increasing concentrations of the drug. Thus, by varying the amount of doxycycline in the
growth media, the relative growth rates of the plasmid-bearing (”wild type”) and non-bearing (”mutant”)
cells could be finely tuned, allowing us to treat plasmid loss as beneficial, neutral and deleterious mutations
in different environments. We focus first on colonies grown on standard, ”smooth”, agar plates, allowing us
to characterize the intrinsic noise. Afterwards, we contrast our findings with colonies grown on agar plates
with a randomly patterned surface.

Homogeneous environment

We grew colonies from single cells on solid LB agar plates containing varying amounts of doxycycline (n ≥
30per concentration), resulting in fitness differences s ranging from+20% to−15% (see SI Fig. 5.S2). After
3 days of growth, mutant clone appeared as dark regions in the fluorescence channel. We determined the size
and number ofmutant clones in the colonies and compute the frequency fMT ofmutants per colony as the
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Figure 5.1: Surface roughness changes bacterial colony morphology. Colonies of E. coli grown from single cells
harboring a plasmid containing a fluorescence gene and a resistance casseħe. Loss of the plasmid leads to non-
fluorescent (”mutant”) sectors in the populaধon that expand at the expense of the fluorescent (”wild-type)” popu-
laধon. Colony morphology depends on whether the colony grows on smooth (a) or rough (b, created by paħerning
the agar with filter paper) agar surfaces. (c) On rough surfaces, troughs in the surface direct growth along them,
leading to locally accelerated regions that slowly widen and connect with the bulk of the populaধon.

primary readout of our experiments, as it can serve as a proxy for the rate of adaptation of the population
and thus allowed us to quantify the evolutionary dynamics in different scenarios.

When the mutants had a fitness advantage (at low doxycycline concentrations), their frequency fMT

increased rapidly as the population grows: for the highest advantage in our experiments, mutants made up
roughly half of the total population (Fig. 5.2b). As the antibiotic concentration was increased, the mutants
became first neutral and eventually deleterious at higher concentrations. In such conditions, the mutant
frequency decreased approximately exponentially with the fitness cost (SI Fig. 5.S4) such thatmutantsmade
up only a small fraction of the final population.

Almost all mutants were found in sectors, clonal regions constituting a single lineage of mutants; we
found 4 sectors on average at the highest mutant fitness advantage. This implies that out of millions of
mutations that arose during the growth of the colony to a size of about 1010 cells (see SI Fig. 5.S5), the vast
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Figure 5.2: Surface roughness affected the efficacy of selecধon in bacterial colonies. Colonies grew more slowly
on rough surfaces (a), but relaধve growth rate differences s were maintained (b, inset). (a) The final frequency fMT
ađer 3 days of growth for mutants of a given fitness (dis)advantage s differed strongly depending on the roughness
of the surface they were grown on. On smooth plates, the mutant frequency fMT increased with the selecধve
advantage s of the mutants, whereas fMT was independent of s for s > 0 on rough surfaces, and overall much
smaller than in smooth colonies. The number of establishing sectors (c) was much smaller in rough colonies, and
the average clone size (d) did not vary as strongly with s as in smooth colonies.

majority had a negligible number of offspring and had essentially no impact on the genetic make-up of the
population. For our experiments, we estimated the average probabilityu to form a sector (the establishment
probability) of a single beneficial mutation to be of order u ∼ 10−7. Thus, the success of an individual
mutation in a microbial colony is an extremely rare event, even if it is strongly beneficial. The low success
probability is a consequence of two processes: firstly, a mutation has to arise in the very first cell layer in
order to have a large number of offspring9 – any mutation born behind the front is quickly swept out of
the growth layer by cells ahead of it. Growth layer thickness varies between different organisms and growth
media; for E. coli on nutrient-rich media, a growth layer width of ≈ 10 − 15 cells has been reported9.
Likewise, any mutation that occurs during the growth in height behind the front is doomed to having only
a small number of offspring before depleting its nutrients. Thus, for a typical colony height of≈ 150 cells
(see SI Fig. 5.S5), only about 1 in about 1000mutations has any potential for success, simply because the vast
majority of mutations necessarily arises in unfavorable locations. Secondly, even if the mutation arises in

175



0.1

1

P(
X>

x)

P(
X>

x)

10-5 10-4 10-3 10-2 10-1 10-5 10-4 10-3 10-2 10-1

0.01

0.10

1

frequency of clone x frequency of clone x

a b
smooth rough

-0.14 0.17
s

-0.14 0.17
s
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size distribuধon had a broad tail. Advantageous mutaধons (red tones) in smooth colonies were even more broadly
distributed, as large sectors establish more ođen. Beneficial clones in rough colonies had size distribuধons that
were indisধnguishable from the distribuধon for neutral mutaধons.

the very first layer of cells, it still has to survive genetic drift. Genetic drift in microbial colonies amounts
to the random fluctuations in the sector boundaries, which are a result of the stochasticity associated with
the process of cell growth and division, and subsequent cell motion due to mechanical pushing of cells on
each other7,27. In addition, when the population is characterized by a rough front like our E. coli colonies, a
mutation that arises inside a lagging region will have a lower chance of establishing than one that arises (by
chance) in a region that is ahead. In our colonies, we estimated that about 2000 mutations per colony arose
in favorable positions, each of which had an establishment probability of about 10−3.

Thus, most mutations will not manage to create sectors. Since we could detect individual mutant clones
under the microscope and compute their frequency x in the population, shown in Fig. 5.3a. The clone
size distribution P (X > x), which is related to the site frequency spectrum in population genetics, can
help predict rare evolutionary outcomes such as fitness valley crossing 28 and evolutionary rescue 8, and is
well understood for toy models of microbial colonies 8,29. For neutral mutations, the clone size distribution
is expected to be broad up to a shoulder indicating the typical size of the largest expected bubble. In our
experiments, we indeed observed a broad shoulder-like distribution for neutral mutations, consistent with
earlier experiments using population sequencing 8 (Fig. 5.3a). For beneficial mutations, the larger number of
bulging sectors created an evenbroader distributionwithmaximumclone sizes of almost half thepopulation,
while the distribution for strongly deleterious mutations was cut off at small clone sizes. The clone size
distribution is consistent with our initial observation that a larger selective advantage s gave rise to a larger
overall mutant frequency, but it also shows that even at the largest s ≈ 0.17, most mutant clones remained
small, with more than half of the visible clones reaching frequencies of at most 1%.
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Heterogeneous environment

To investigate the effect of a rough surface on colony growth and adaptation, we embedded filter paper into
melted agar and removed it after cooling and drying, creating a rough agar surface characterized by troughs
and elevations about 50µm high and 30µm wide. Colonies grown on rough substrates (hereafter called
”rough” colonies) had a rougher front line (Fig.5.1b, SI Fig. 5.S6) than those grown on smooth substrates
(”smooth” colonies). In addition, the filter paper left grooves in the agar surface that the bacteria colonized
first, leading the branch-like outgrowths that grew far ahead of the rest of the population and broadened as
they were incorporated into the bulk of the colony (Fig. 5.1c).

The final mutant frequency fMT in rough colonies was markedly different from what we found in
smooth colonies (Fig. 5.1c, blue): while the neutral frequency was roughly the same in both treatments,
rough colonies showed no increase in mutant frequency as the fitness advantage s of the mutants increased,
in contrast to smooth colonies, where themutant frequency increased by a factor of 10 at the largest selective
advantage s ≈ 0.16 compared to the neutral case. This effect did not stem from an altogether elimination of
selection: when colonies of mutant and wild type were grown separately on rough substrates, mutants had
a fitness advantage (as measured by the radial growth rate) over the wild type consistent with the advantage
they enjoyed on smooth substrates (Fig. 5.2a, inset). The insensitivity of fMT to selective advantages could
be broken down into a combination of two factors: the number of sectors was lower in rough colonies than
in smooth colonies and constant for positive s (Fig. 5.1d), and the frequency per clone changed only little
with s for s > 0 in rough colonies, whereas it increased exponentially with s in smooth colonies.

This discrepancy between smooth and rough colonies held also at the level of individual clones (Fig. 5.3):
for all s > 0, the clone size distributions obtained from rough colonies were virtually indistinguishable. By
contrast, negative selection tended to decrease the size of mutant clones about equally in both smooth and
rough colonies. Thus, beneficial clones in rough colonies behaved effectively neutrally, whereas deleterious
mutations were fully affected by their growth rate disadvantage.

Taken together, our results show that the effects of environmental disorder were two-fold: (1) it increased
the strength of genetic drift, as evidenced by the lower establishment probability of beneficial mutations,
and (2) it altered the expansion dynamics of established clones. To understand whether these two effects are
a generic result of environmental heterogeneity we turned to simple simulations with a strongly idealized
form of environmental disorder.

5.2.2 Simulations

As a simple model for spatially expanding population we employ a generalized version of the Edenmodel 30.
The population grows on a square lattice, initiated with a single filled site in the center. In each time step,
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Figure 5.4: Simulaধng environmental disorder in a simple laষce growth model. (a) The simulaধon proceeds by
allowing cells with empty neighbors to divide into empty space. Obstacles (black, density ρ) are distributed over
the laষce to simulate environment heterogeneiধes. (b) If the obstacle density was larger than a criধcal density
ρc ≈ 0.4, the populaধon was trapped and could not grow to full size. (c) Colony morphology changed depending
on obstacle density and became increasing fractured as ρ approaches ρc. Mutant clones are shown in color.

a site with empty neighbor sites is chosen with probability proportional to its growth rate to divide into
a randomly chosen empty neighbor site. With probability µ, a wild-type site acquires a single mutation,
potentially conferring a fitness advantage or disadvantage s, upon division; already mutated sites do not
acquire further mutations. This model is identical to that used in Ref.s 8 and 9, and its interfaces are well
described by the KPZ equation, a successful model for stochastically growing interfaces 31.

To simulate environmental disorder, we first initialized the lattice with a number of ”obstacles” at a den-
sity ρ. Obstacle sites were considered impassable, i.e., they were never considered eligible sites for growth;
equivalent models have also been used to simulate epidemics, where the obstacles represent immune sites 32.
If the density of obstacles was too high, the obstacles formed a closed ring around the incipient colony and
prevented further growth (Fig. 5.4b); thus, there is a phase transition at a critical density ρc ≈ 0.4 (see
also SI Fig. 5.S1). This transition is called the pinning transition of the interface in the theory of kinetic in-
terface roughening (discussed in detail in the SI), or, equivalently, the percolation transition of the whole
colony 33,34.

As the density approached the pinning transition in our simulations, the colony morphology changed,
as shown in Fig. 5.4c. Without obstacles, the colonies were compact and relatively smooth. At intermediate
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Figure 5.5: Consequences of simulated environmental disorder for the evoluধonary dynamics. (a, b) Simulated
colonies at ρ = 0 and ρ = ρc. Shown in black dots are all cells with empty neighbors. Lines connecধng the
ancestor (red dot) to the perimeter trace the lineages. (c) As ρ increases, the final mutant frequency fMT becomes
a more flat funcধon of the fitness effect s of the mutaধon (see panel (e) for legend). For neutral mutaধons fMT
diverges as fMT ∼ |ρ − ρc|−0.18 (d). (e, f) The clone size distribuধon P (X > x) measured in smooth colonies
(e, ρ = 0) shows a strong depends on the fitness effect s of the mutants, whereas P (X > x) is roughly neutral
for all s in rough colonies (f, ρ = ρc).

obstacles densities, colonies were punctured by small holes and the overall density of the colony decreased.
At the critical density ρc ≈ 0.4 the colony was a percolation cluster 33 and had a fragmented morphology
with a large number of holes and a very rough exterior (see SI Fig. 5.S1 for a quantitative analysis of the colony
interfaces). In the following, we investigate how this change in colony morphology affects the evolutionary
dynamics.

Consider first the final mutant frequency fMT in grown colonies, shown in Fig. 5.5a. For neutral muta-
tions, fMT had amaximum at ρc, divergingwith the distance to the critical point as |ρc−ρ|−0.18 (inset). For
s ̸= 0, we found that strong environmental disorder reduced the efficacy of selection: themutant frequency
became less sensitive to the selective difference s, as beneficialmutationswere less able to leverage their advan-
tage and deleterious mutations were not purged as quickly from the population. Notably, clones remained
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Figure 5.6: The properধes of mutant clones depends on environmental disorder. The clone size distribuধon
P (X > x) measured in smooth colonies (a, ρ = 0) shows a strong depends on the fitness effect s of the
mutants, whereas P (X > x) is roughly neutral for all s in rough colonies (b, ρ = ρc). (c) Sketch of the clone
angleφ and the clone length l∥ and width l⊥ ∼ lζ∥ . (d) Clones in rough colonies tend to align less and less with the
radial growth direcধon with increasing ρ and grow in random direcধons at the criধcal obstacle density ρc = 0.4.
(e) Measuring the scaling of clone width with clone length l⊥ ∼ lζ∥ shows that clones are stretched without envi-

ronmental disorder (ζ = 2/3) and become isotropic in strong environmental disorder (ζ → 1).

spatially connected and the distinction into bubbles and sectors remained valid (Fig. 5.4c), even for high ob-
stacles density. The number of beneficial sectors for a given selective difference s decreased with increasing
environmental disorder (Fig. 5.5c), indicating a lower chance for selection to overcome the stochastic loss of
themutant clone from the front. The frequency per mutant sector was overall larger in rough colonies than
in smooth ones, but less sensitive to s (Fig. 5.5d).

The effect of environmental disorder, and its impact on colony morphology, was also reflected in the
size, shape and orientation of individual clones, shown in Fig. 5.6. In the absence of environmental disor-
der, the clone size distribution P (X > x) was very broad, with a low-frequency power-law regime x−2/5

corresponding to mutant bubbles and a steeper power-law at high frequencies characterizing sector sizes 8.
A deleterious fitness effect s of the mutations created an effective cut-off because sectors no longer formed,
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whereas positive s increased the likelihood of high-frequency clones, because sectors establish more often
and grow to larger frequencies when they do. Switching on strong environmental disorder, we found that
the neutral clone size distribution was remarkably similar in both scenarios (Fig. 5.6b, inset). By contrast, se-
lective differences between mutants and wild type had a much less pronounced effect on P (X > x) as the
strength of environmental heterogeneity increases. The clone size distribution for both beneficial and dele-
terious mutations thus resembled the distribution for neutral mutations, and at the critical obstacle density
ρ = ρc, P (X > x) became roughly independent of s, such that fitness effects associated with the muta-
tions are effectively inconsequential at the level of individual clones. In addition, whereas mutant clones
had an approximately ellipsoidal shape oriented preferentially along the radial direction in the absence of
heterogeneity, they had essentially random orientations in rough colonies (Fig. 5.6c,d). Finally, the scaling
of the clone width l⊥ ∼ lζ∥ with its length l∥ changed from ζ = 2/3 for ρ = 0, consistent with previous
results 8, to ζ ≈ 0.95 for ρ = ρc (Fig. 5.6e), indicating roughly isotropic clones.

The clone size distribution is closely related to the site frequency spectrum in population genetics, an im-
portant tool for population genetic inference which is itself the basis for many summary statistics describing
evolutionary dynamics. Fig. 5.7 gives more insight into how environmental heterogeneity shaped popula-
tion genetics in our simulated colonies. Focusing on the two limiting cases, ρ = 0 and ρ = ρc, and neutral
dynamics, we traced the lineages of all cells with empty neighbors at the colony front into a lineage tree,
unveiling strongly different tree structures depending on the strength of environmental disorder (Fig. 5.7a,
b). Not only were there far fewer cells at the front in rough than smooth colonies, but the lineages were
characterized by much stronger fluctuations and different scaling properties (Fig. 5.7d), consistent with the-
oretical predictions discussed in the SI. These stronger lineage fluctuations changed the coalescence statistics
of lineages in the colony: the mean pair coalescence time T2 of two samples as a function of the distance
∆x between the samples (both normalized to their maximum value) was larger without than with environ-
mental disorder (Fig. 5.7e), indicating that two samples typically had a more recent common ancestor in
disordered than in homogeneous environments, in agreement with the lineage picture shown in Fig. 5.7a
and b: in the homogeneous environment, the lineage tree splits into separate branches at the origin, such
that two samples coalesce quickly if they are on the same branch, but coalesce in the founder of the colony
otherwise. By contrast, in the strongly disordered environment, most individual branches of the tree coa-
lesce before reaching the origin, thus joining samples from distant regions of the tree.

To rationalize the suppression of selection by strong environmental disorder, we investigated the micro-
scopic structure of the simulated colonies. Since mutations occur only within the growing population at
the front, the properties of the front dictate the evolutionary dynamics, including the strength of selection
and the size of individual clones. The standard Eden model without obstacles is characterized by growth
that is locally normal to the front. The resulting colonies are compact, with an interface in the KPZ univer-
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Figure 5.7: Lineage trees extracted from simulated colonies without (a) and with (b) environmental heterogeneity.
(c) The lineage structure is characterized by the fluctuaধons l⊥ of the lineages in forward ধme t, and the pair
coalescence ধme T2 (backwards in ধme) of two samples that are a distance∆x apart. (c) The lineage fluctuaধons
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rougher in strong disorder, scaling as t0.86. Strong lineage fluctuaধons in heterogeneous environments also impact
the mean pair coalescence ধme of two samples a distance∆x apart by allowing lineages from distant regions of
the colony to coalesce earlier than without environmental disorder (panel d).

sality class 31,35. In the KPZ scenario, both the establishment probability of mutant sectors and details of the
clone size distribution can be understood directly from the exponents characterizing the roughness of the
interface7–9.

By contrast, colonies generated by the Edenmodel at the critical obstacles density ρc are percolation clus-
ters 33, whose interfaces fall into the quenched Edwards-Wilkinson (QEW) universality class (discussed in
the SI, see SI Fig. 5.S1 and Table 5.S1). Viewing the colony as a percolation cluster implies that colony growth
is dictated entirely by the local environment, as there is typically only a single accessible path through the
network of obstacles at any given point 36,37. In other words, the effective population size of growing indi-
viduals is very small, since only a few lucky individuals will be able to find these percolating paths; most
individuals will get stuck in dead-ends. Hence, in order for a sector to form, the mutationmust arise exactly
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on such a path. However, if it does, then all newly added cells on the path will be of themutant type. In this
limit, then, sector formation is independent of the fitness of the mutants; whether a sector can form or not
depends entirely on where the mutation arises. Similarly, the size of mutant bubbles is constrained by the
network of obstacles, and whether and when the mutant bubble goes extinct depends only marginally on
the fitness of its founder. This disorder-induced increase in the stochasticity of the growth process explains
why selection is less efficacious in strongly disordered environments, and strongly suggests that the effect of
environmental disorder on evolutionary dynamics does not depend on the details of its implementation.

5.3 Discussion

Evolution can be viewed as the result of a competition between the deterministic force of selection and var-
ious sources of randomness: firstly, intrinsic noise, which encompasses genetic drift, the nature and timing
of mutations, etc., only depends on the inherent properties of the population, such as the species (includ-
ing its microscopic characteristics like adhesion strength, cell shape, or growth rate) and the population size.
The second source of randomness is extrinsic noise, bywhichwemean spatio-temporal gradients and fluctu-
ations in environmental conditions, such as temperature, nutrient availability, or antibiotic concentration.
To fully understand evolutionary dynamics, the relative strength of all three factors have to be taken into
account. In evolution experiments, extrinsic noise is typically either deliberately prevented, or added in a
very controlled fashion, such as periodic changes in conditions.

Here, we have studied the effects of strong extrinsic noise in the form of random environmental disorder
on the fates of spontaneous mutations in microbial colonies. Our experimental observations suggest that
environmental disorder can have a large impact on the evolutionary dynamics by reducing the efficacy of nat-
ural selection on spontaneous mutations. This implies that beneficial mutations are less likely to establish
in a strongly disordered environment, and the rate of adaptation will therefore be reduced. Since delete-
rious mutations are typically more numerous than beneficial ones, environmental disorder may thus also
increase the chances of an overall decrease in fitness, which is already more likely in range expansions than in
well-mixed populations 13,14. Thus, heterogeneities in the environment may not only slow down the process
of adaptation but also lead to entirely different evolutionary outcomes. Since many mutations conferring
resistance to antibiotics are often associated with a fitness cost, environmental disorder may also favor the
evolution of resistance in microbial populations in this way.

Our simulations corroborated the experimental findings, suggesting that a reduced efficacy of selection
can be a generic consequence of environmental heterogeneity if the extrinsic noise is strong enough to over-
power selection and dictate spatial growth patterns. Nevertheless, our simulations represent a very simple
toymodelwith a highly idealized formof environmental disorder; in reality, obstaclesmay not be completely
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impenetrable, and a single lattice site in the simulations need not correspond to an individual cell. Indeed,
we do not observe quantitative agreement between our simulations and experiments. A possible reason
for this is that, since the paper used to pattern the agar surface consists of long fibers, the resulting rough-
ness of the agar surface will feature spatial correlations, which are known to change the growth patterns of
the resulting colony interface 38. The patterns created by the paper is characterized by ridges and troughs
about 50µm across, much larger than an individual cells. This may explain why deleterious mutations are
efficiently purged in rough colonies, but beneficial mutations cannot translate their advantage into larger
sectors: A beneficial mutation has to overcome genetic drift, and to do so, it must grow to a lateral size large
enough for selection to take over9. However, if the characteristic length scale of the environmental disorder
is smaller than this ”establishment size”, then the evolutionary dynamics is effectively neutral. On the other
hand, a deleterious mutation born on a ridge or in a trough never grows to large enough size to ”see” the
disorder in the first place and thus its dynamics are unaffected by the environmental disorder.

While we have focused here onmicrobial populations, we expect our principal result of reduced selection
efficacy by environmental heterogeneity to generalize to other dense cellular populations, such as tumors and
biofilms, but also to macroscopic range expansions, as well. After all, when a population undergoes a range
expansion, it will arguably not experience a completely homogeneous environments: at the very least, some
areas will be more hospitable than others, but some parts of the environmentmay be entirely inaccessible to
the population because of, e.g., rivers and lakes, a strong local competitor or predator, or lack of resources.
Environmental heterogeneity is thus arguably the rule rather than the exception. Our results suggest that
since range expansions in strongly heterogeneous environments can generate approximately neutral patterns
of genetic diversity frommutations carrying significant fitness effects, attempts to interpret such patterns in
invasive species, or generally species having undergone recent range expansions, must take into account the
role the environment plays in shaping these patterns.
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5.4 Supplementary information

5.4.1 Experimental methods

Strains and growth conditions

Weused an E. coli MG1655 strain transformedwith the plasmid pB10 1. pB10 is a 65kB plasmid isolated from
sewage sludge that confers resistance to several antibiotic resistance including tetracyclines and has an in-
serted RFP gene. Hence, cells containing pB10 (”wild type”) are red fluorescent and resistant to tetracycline.
The plasmid is lost sporadically 2, and the resulting cells (”mutants”) are non-fluorescent and susceptible to
tetracycline, but display a higher growth rate in the absence of antibiotics (characterized below). We refer
to the loss of the plasmid as a ”mutation” of known fitness effect and occurrence rate, both of which we
characterize below.

All experimentswere performed inLBat 37◦C in ahumidified environment. For solidmedia, 2% agarwas
added before autoclaving. Varying concentrations of doxycycline, a tetracycline that displays higher stability
in agar plates than tetracycline itself, were added to freshly autoclaved media after cooling to about 60◦C
and poured immediately. Plates were dried in the dark for at least 24h before use.

Fitness measurements

Wemeasured the fitness difference s betweenwild type andmutant cells using the colliding colonies assay 3,4.
Briefly, a mutant clone was first isolated and then grown independently of the wild type overnight. In the
wild type, theplasmidwasmaintainedby adding 10µg/mldoxycycline to theovernight culture. After growth
overnight, cultures were diluted 1:10, grown for about 1.5h, and thenwashed twice in PBS to remove residual
doxycycline. 1µl droplet of each strain were spotted on agar plates about 2mm apart. After drying, colonies
were grown for 3 days and then imaged under the a Zeiss Axiozoom v16 microscope. The resulting images
were used to estimate fitness differences by fitting a circle onto the mutant-wild type interface. The results
are shown in Fig. 5.S2: without doxycyline, mutants have a 20-25% advantage over the wild type. Both
strains have equal growth rate around≈ 0.35ug/ml, and the mutants growmore slowly than the wild type
at higher concentration of doxycycline.

For the fitnessmeasurements in Fig. 5.2, colonies were grown from single cells on both rough and smooth
plates in a temperature-controlled growth chamber and imaged overnight on a Zeiss Axiozoom v16 micro-
scope. The resulting time lapse movies were binarized and the colony areas extracted.
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Mutation rate experiment

Tomeasure the rate of plasmid loss (”mutation rate”), we grew48well-mixed populations from a small num-
ber of wild-type cells for about 7 generation (i.e., from about 10 to about 1000 cells). The inoculum did not
contain any mutant because the culture used to inoculate the populations contained selective amounts of
tetracycline. The populations were grown either without doxycycline or at 1µg/ml doxycycline, which cor-
responded to the high end of concentrations used in our experiments. After 7 generations, each population
was plated and the number of red (WT) and gray (MT) colonies was counted via automated image analy-
sis. The resulting frequencies of mutants were used to infer the mutation rate by computing the maximum
likelihood against simulations of the process at different mutation rates and fitness differences, as follows.

Statistical inference of mutation rate

To estimate the mutation rate, we performed maximum likelihood estimation based on probability density
distributions obtained from simulations, as follows: starting from a Poisson distributed number of initial
cells, 48 populations go through about 7 generations, where every wild type has a chance µ per division to
produce amutant. Mutant cells grow at a growth rate (1+s) relative to the wild type. We performed 50000
simulations for each value of s andµ and computed the likelihood of each parameter combination θ = s, µ

as

ℓ =
48∑
i=1

ln f(xi|θ), (5.S1)

where f(xi) is the probability of observing xi under the simulation model, which we estimated from the
simulation histograms. We treat s as a free parameter that we can later compare to the experimentally mea-
sured value. The precise value of s does not affect the inferred value ofmu very strongly. This is because
the number of generations is small in our experiment and a faster-growing mutant can gain at most a factor
of four more cells than the wild type. The global maximum likelihood value µ∗ is obtained for s = 0.3 and
s = −0.05 for doxycycline concentrations of 0µg/ml and 1µg/ml, in good agreement with our measured
values of s (see Fig. 5.S3). The error is estimated from the curvature of the likelihood as δµ ≳ 1/|∂2µℓ|µ∗ .
The results are µ0µg/l = 0.003± 0.00055 and µ1µg/l = 0.009± 0.00068.

Main experiment and analysis

Our main experiment consists in the growth of colonies from single wild-type cells on agar plates (each
containing 20ml of LB + 2% agar) containing varying concentrations of doxycycline (overall, 14 different
concentrationswere tested). The agar plates were either smooth, standard agar plates, or rough. Rough plates
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Exponent KPZ This study (ρ = 0) qEW This study (ρ = ρc)

αloc 1/2 0.5± 0.05 0.92± 0.04 0.9± 0.05
αG 1/2 0.5± 0.05 1.23± 0.04 1.15± 0.05

β 1/3 0.3± 0.03 0.86± 0.03 0.78± 0.05

θ N/A N/A 0.24± 0.03 0.21± 0.03

ζ 2/3 0.66± 0.02 - 0.86± 0.04

Table 5.S1: Characterisধc exponents for the KPZ and QEW universality classes and measured in our simulaধons,
which are in good agreement with the literature values in Ref. 5.

were created by pouring the agar at a temperature of about 60◦C and lowering filter paper (VWRGrade 410
Filter Paper, Qualitative) onto the liquid agar, where it remained until the agar had solidified. The filter
paper was then removed from the hard agar surface with tweezers, resulting in a patterned agar surface.

Overnight culture of the wild type grown in LB with 10µg/l doxycycline was washed and diluted in PBS
to give between 3 and 10 colonies per plate. About n = 20 − 30 colonies per condition were analyzed
(except for smooth plates without doxycycline, where n = 8). After 72 hours of growth, the colonies were
imaged on aZeissAxiozoomv16microscope and the resulting images binarized to create amask of the colony.
Mutant clones we foundmanually with ImageJ. Themutant frequency per colonywas thenmeasured as the
total mutant area divided by the total area of the colony.

5.4.2 Theory

Interfaces created by Edenmodel simulations fall into theKPZuniversality class, governed by theKPZ equa-
tion for the height h(x, t)6,7. In one dimension, starting from a line in a simulation box, the colony surface
is described by

∂th(x, t) = v∞ +D∂2xh+ λ (∂xh)
2 + η(x, t), (5.S2)

wherev∞ is the final speedof frontpropagation andη(x, t) is zero-meanGaussian randomnoise δ-correlated
in space and time describing the noise associated with the growth process. This equation generates a set of
characteristic exponents that govern the roughness of the colony front and of sector boundaries. In partic-
ular, the surface height is described in terms of its root mean squared fluctuations around the mean by a
Family-Viscek scaling relation 8

h(t) ∝ LαF
(
t/Lα/β

)
, (5.S3)
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where

F(x) =

xβ, x≪ 1,

1, x≫ 1.
(5.S4)

The KPZ universality class is characterized by the roughness exponentα = 1/2 and the temporal exponent
β = 1/3; if λ = 0, the resulting universality class is called the Edwards-Wilkinson (EW) universality class
characterized by α = 1/2 and β = 1/4. The ratio z = α/β is sometimes called the dynamical exponents.
It relates the size of lateral fluctuations l⊥ to the time t as

l⊥ ∼ t1/z. (5.S5)

This relationship explains the fluctuations in sector boundaries in E. coli colonies and Eden model simu-
lations, and can be used to derive exponents for the site frequency spectrum and establishment probabil-
ities in Eden model colonies4,9,10. In the simulation presented here, the scenario without environmental
disorder is described the eq. (5.S2), explaining the site-frequency spectrum and the anisotropy exponents
ζ = 2/3 = 1/z in Fig. 5.6e, and the lineage fluctuations in Fig. 5.7d.

The effect of environmental quenched disorder on the kinetic roughening of interfaces has been investi-
gated in a range of experiments (see Ref. 11 for a review). Exponents obtained from experiments are in the
range of α ≈ 0.6 . . . 0.9. To model driven interface growth in disordered media, quenched environmental
disorder can be included by considering a noise term ζ(x, h(x, t)) that does not explicitly depend on time 12.

∂th(x, t) = F +D∂2xh+ λ (∂xh)
2 + ζ(x, h(x, t)). (5.S6)

Here,F is driving ”force” fulfilling the same role as v∞ in eq. (5.S2). Since the noise explicitly depends on the
interface position,F cannot be transformed away and thus emerges as a new parameter that can be thought
of as a force pushing the interface through the disordered media. An important consequence of quenched
noise is the emergence of a critical force Fc below which the interface becomes pinned 13. For F > Fc, a
depinning transition takes place that is well characterized in one dimension 5. ForF → F+

c , large regions of
the interface of size ξ ∼ |Fc − F |−ν are pinned, and the front speed increases as |F − Fc|θ (see Table 5.S1).

Simulations and numerical integrations of eq. (5.S6) have characterized the pinned and moving phases
and uncovered two universality classes asF → F+

c
5: if λ diverges near the depinning transition, one speaks

of the QKPZ universality class; its exponents α = β ≈ 0.633 in the pinned phase are understood analyti-
cally through an analogy with the directed percolation class, whereas in themoving phaseα ≈ β ≈ 0.75. If
λ→ 0 instead, one speaks of theQEWuniversality class withα ≈ 0.92 and β ≈ 0.82 in themoving phase
(see also Table 5.S1); a functional renormalization group calculation givesα = 1 and ν = 1/(2−α) in one
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Figure 5.S1: Characterizaধon of Eden clusters with obstacles. (a) Taking the front speed v as the order parameter,
there is a phase transiধon at a criধcal obstacle density ρc(L) depending on system size L. For an infinite system,
ρc ≈ 0.41 ± 0.01. For ρ > ρc, we have v ∼ |ρ − ρc|0.21. (b) RoughnessW of fully developed interfaces
at L = 400 for varying obstacle densiধes, as a funcধon of the window length l, such thatW ∼ tα. At ρ = 0,
we find α = 1/2, consistent with the KPZ universality class. At ρc, we find αloc ≈ 0.9, consistent with the qEW
universality class, which is known to be characterized by two roughness exponents, a local exponent (αloc), and a
global exponent αG ≈ 1.15 > αloc when the roughness is measured over the whole system size (see panel c).
The ধme evoluধonW (t) ∼ tβ of the interface also follows dynamics consistent with KPZ (β = 1/3) and qEW
(β ≈ 0.78) in the limiধng cases. For intermediate 0 ≪ ρ ≪ ρc, there is a crossover from qEW at short ধmes
to KPZ dynamics at longer ধmes, before the roughness saturates at a ρ-dependent value. For easier analysis, all
simulaধons were performed in a box-like geometry.

dimension 14. For F > Fc, there is a transition from the QKPZ/QEW universality class to the appropriate
universality class with annealed noise.

As mentioned in the main text, our generalized Edenmodel simulations with obstacles exhibits the same
pinning transition for an obstacle density ρ ≈ 0.4. At the transition, the resulting colonies are percolation
clusters on the square lattice, from whose interfaces we measure exponents that are in excellent agreement
with theQEWuniversality class (see Table 5.S1 and Fig. 5.S1). This is consistent with the finding ofMoglia et
al. 15, who used a slightly more complex simulation algorithm tomodel the growth of cancer cell monolayers.
Without obstacles, our simulations reproduce earlier findings6 (Table 5.S1). In particular, we find z = 3/2

without obstacles and z ≈ 1.15 at the critical obstacles density, which allows us to compute the scaling
exponent of the sector boundaries from eq. (5.S5) as ζ = 1/z. This gives ζ = 2/3 and ζ ≈ 0.86, in
excellent agreement with the lineage fluctuation exponents ζ = 0.66 and ζ ≈ 0.86 in Fig. 5.7d.
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5.4.3 Supplementary experimental results
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Figure 5.S2: Selecধve difference between mutants and wild type at different concentraধons of doxycycline and
tetracycline. For low anধbioধc concentraধon, plasmid loss is beneficial such that mutants have an advantage, while
the mutants become first neutral and then deleterious for higher concentraধons.
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maximum likelihood value for s are shown.
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6
Convection shapes the trade-off between

antibiotic efficacy and the selection for
resistance in spatial gradients

Since penicillinwas discovered about 90 years ago,wehavebecomeused tousing drugs to erad-
icate unwanted pathogenic cells. However, using drugs to kill bacteria, viruses or cancer cells
has the serious side effect of selecting formutant types that survive the drug attack. A key ques-
tion therefore is how one could eradicate asmany cells as possible for a given acceptable risk of
drug resistance evolution. We address this general question in a model of drug resistance evo-
lution in spatial drug gradients, which recent experiments and theories have suggested as key
drivers of drug resistance. Importantly, our model takes into account the influence of convec-
tion, resulting for instance from blood flow. Using stochastic simulations, we study the fates
of individual resistance mutations and quantify the trade-off between the killing of wild-type
cells and the rise of resistancemutations: shallow gradients and convection into the antibiotic
region promote wild-type death, at the cost of increasing the establishment probability of re-
sistance mutations. We can explain these observed trends bymodeling the adaptation process
as a branching random walk. Our analysis reveals that the trade-off between death and adap-
tation depends on the relative length scales of the spatial drug gradient and random dispersal,
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and the strength of convection. Our results show that convection can have a momentous ef-
fect on the rate of establishment of new mutations, and may heavily impact the efficiency of
antibiotic treatment.

6.1 Introduction

The emergence of drug resistance represents one of the major clinical challenges of the current century 1–3.
Microbial pathogens quickly acquire resistance to new antibiotics4, while solid tumors often regrow after
treatment because of resistance mutations that arise during tumor growth 5. In addition to genomic stud-
ies examining the molecular causes of resistance6,7, the dynamics of drug resistance evolution has recently
attracted wide interest 8,9, with the dual goal of understanding the emergence of resistance and developing
novel strategies to prevent or control its spread 10,11. Next-generation sequencing and high-throughput ex-
perimental techniques enable the quantitative study of resistance evolution but require the development of
new theories to appropriately interpret experimental results 12.

In many realistic systems, an evolving population interacts with its surroundings and exhibits a well-
defined spatial structure (for instance, in tumors and biofilms 5). It has recently been shown that this spatial
structure can strongly influence the subclonal structure and the adaptation of spatially expanding popula-
tions, both from de novo and pre-existingmutations 13–15. Likewise, spatial 12,16,17 or temporal 10,18 gradients in
antibiotic concentration can enable populations to reach a higher degree of resistance than in homogeneous
drug concentrations, at least in part because they enable the slow accumulation of multiple mutations, each
conferring a small amount of resistance.

The presence of spatial drug gradients is well documented both in the outside environment 19,20 as well
as within biofilms 21 and the human body 22–24, and it has been hypothesized that the presence of spatial
heterogeneities may facilitate the emergence of drug-resistant phenotypes 25. In a microfluidic experiment, a
spatial gradient indeed gave rise to a higher rate of adaptation of bacterial populations 16. Similarly, microbes
growing on soft agar plates with gradually increasing antibiotic concentrations were able to rapidly evolve
resistance to high levels of antibiotics, while sudden jumps to unsustainably high concentrations dramati-
cally slowed down adaptation 12. These findings raise the theoretical question of how to predict the rate of
emergence of drug resistance in the presence of spatial gradients.

A number of recent theoretical studies have investigated how gradients speed up the evolution of drug
resistance 26–28. Each studymade critical assumptions about the nature of the gradients: Greulich et al. 27 con-
sidered a population adapting to a smooth gradient, which gradually lowers the growth rate of susceptible
individuals. Hermsen et al. 26 studied resistance evolution in a series of sharp step-like increases in concentra-
tion, where a novel resistance mutations was necessary for survival in the next step (the ”staircase” model);
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Hermsen 28 later proposed a generalization of the staircase model to continuous gradients. These previous
studies focused on the speed of adaptation, i.e., how quickly the population evolves to tolerate high concen-
trations of antibiotics. In the context of the emergence of drug resistance, this observable alone ignores a
crucial reality of antibiotic treatment: efficient drug treatment first and foremost aims to kill as many bacte-
ria as possible, while limiting the rise of resistance mutation. How this apparent trade-off can be optimized
to prevent the evolution of drug resistance has so far been unexplored. Moreover, many realistic growth
scenarios of bacterial populations may exhibit a directed flow that drives them up or down the gradient. Ex-
amples include the gut, arteries, and urethra in the human body 29–32, but also flows in aquatic environments,
like ocean and river currents 33, or flow in pipes and catheters 34. The effect of convection on the evolution
of drug resistance remains unknown.

Here, we present simulations, rationalized by a comprehensive analytical framework, of populations
evolving resistance in a variety of spatial antibiotic concentration gradients andunder the influence of convec-
tion. Wemeasure the establishment probability of resistantmutants arising in a region occupied by suscepti-
ble wild type, and the drug-induced death rate of the wild type, and show how bacterial diffusion, antibiotic
gradient steepness, and convection interact to affect the treatment efficiency. We find that shallow gradients
and convection into the antibiotic promotewild-type death, at the cost of increasing the establishment prob-
ability of resistance mutations. Conversely, populations in steep gradients and subject to convection away
from the antibiotics are less susceptible to drug-induced wild-type death but also produce fewer resistance
mutants. The treatment efficiency, which quantifies the inherent trade-off between adaptation and death,
is strongly modulated by gradient steepness and convection. Treatment efficiency is found to strongly de-
pend on convection away from the antibiotic, which increases it in shallow gradients and decreases it in steep
gradients.

6.2 Simulation results

Wesimulate apopulationofwild-type individuals on a lattice ofLdemes, eachof sizeK , in a one-dimensional
antibiotic gradient (see the sketch in Fig. 6.1 and Methods). Each individual can migrate into a neighboring
deme, replicate, and die. The antibiotic gradient sets the death rate of thewild type, giving rise to an effective
growth rate

s(x) =
1

2
[1− tanh(mx)] . (6.1)

In the absence of antibiotics, population growth is only limited by a carrying capacityK .
Following the equilibration to the steady-state profile of the wild type, a resistant mutant is inserted into

the population at position x. The resistant mutant has the same birth rate as the wild type, but it does not
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Figure 6.1: Sketch of our modeling setup. We assume that, iniধally, a purely wild-type populaধon has reached
a steady-state density profile (blue) in the presence of a steady-state anধbioধc concentraধon gradient (orange).
Resistance mutaধons occur spontaneously in randomly drawn individuals and disperse, proliferate and die unধl
exধncধon or ulধmate fixaধon. Convecধon can either drive the populaধon towards the anধbioধc (v < 0) or away
from it (v > 0). Our goal is to analyze the fixaধon probability of resistancemutaধon for a given the rate of wild-type
killing.

suffer from an increased death rate due to the antibiotics. We follow the mutant clone until it either goes
extinct or reaches the far end of the simulation box, in which case we consider the mutant established.

In treating a bacterial infection, the optimal antibiotic strategy would eliminate as many bacteria as possi-
ble, while limiting the emergence of resistance. To quantify the treatment efficacy, we first obtain an average
wild-type population profile c(x) from independent simulation runs and thus compute the numberB of
drug-induced wild-type deaths per generation,

total death rateB =

L∑
i=0

c(xi)b(xi), (6.2)

where b(xi) is the death rate per generation due to antibiotics in deme xi. For simplicity, we callB the total
death rate.

Toquantify the emergence of resistance, wemeasure the localmutant establishment probabilityu(x), i.e.,
the probability that a mutation that arose at position x establishes. Since the probability that a mutation
occurs in the first place is proportional to the wild-type population density c(x), it follows that successful
mutants can only arise where both the wild-type population density and the establishment probability are
high (see Fig. 6.3). A measure for how readily new resistant mutants establish is thus given by the product
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Figure 6.2: Quanধfying the tradeoff between killing of wild-type cells and fixaধon of resistant mutants. (a) The
treatment efficiency Q, defined as the number B of drug-induced deaths per generaধon divided by the rate of
adaptaধonR (see eq. 6.4), for different anধbioধc concentraধon profiles (shallow gradient,m = 0.01; intermediate
gradient,m = 0.1; step-like concentraধon profile). Convecধon away from the anধbioধc (posiধve v) can increase
treatment efficiency by an order of magnitude in shallow gradients. (b) BothB andR are increased (in contrast to
their raধoQ) in shallow gradients and for convecধon into the anধbioধc.

of wild-type population density and the establishment probability, summed over all demes xi 35. We call this
measure the rate of adaptationR,

rate of adaptationR =
L∑
i=0

c(xi)u(xi). (6.3)

The rate of adaptationR is proportional to the rateµRof establishment, the rate atwhichnew resistancemu-
tations arise (at a lowmutation rate µ) and establish in the population. Alternatively, the rate of adaptation
R canbeunderstood as ameasureproportional to themean establishmentprobability

∑
c(xi)u(xi)/

∑
c(xi),

i.e., the probability that a mutation arising anywhere in the population establishes.
Finally, we define the efficiencyQ of drug treatment via the amount of drug-induced wild-type deathB

before an adaptive mutation establishes, i.e., byB/µR. We assume mutation rates to be low such that no
clonal interference occurs. Then, we can treat each mutation independently and thus define

treatment efficiencyQ =
B

R
. (6.4)

Fig. 6.2a shows how the treatment efficiency Q changes across gradient steepness and convection into
(v < 0) and away from (v > 0) the gradient. We find that without convection (v = 0), and for convection
toward the gradient (v < 0),Q is slightly higher for shallowgradients but always boundedbetweenQ = 0.5
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Figure 6.3: Populaধon density c(x) (magenta) and establishment probability u(x) (green) for three different con-
centraধon profiles (gray background; (a) shallow gradient,m = 0.01; (b) intermediate gradientm = 0.1; (c) step)
and different values of v = −0.5 to 1.5 (light to dark colors), from stepping stone simulaধons. Doħed and dashed
line are the local wild-type death rate b(x) and the net growth rate s(x). On the right in each panel is the product
c(x)u(x), which idenধfies the region where successful mutants arise.

andQ = 1. However, the trend changes dramatically for positive convection away from the gradient, which
boosts treatment efficiency by a factor of 10 for shallow gradients and decreases it for the step-like antibiotic
profile.

Considering the rate of adaptationR and the total death rateB separately (Fig. 6.2b) illustrates the reason
behind the qualitative behavior of treatment efficiency. BothR andB show similar tendencies for different
gradients and convection speeds: Shallow gradients are characterized by larger values of bothR andB than
the step-like concentration profile. Negative convection (towards the gradient) increases both R and B
by up to a factor of 5, while positive convection leads to their rapid decrease by two orders of magnitude.
Remarkably, in shallow gradients the rate of adaptation R is more sensitive than the total death rate B to
positive convection. The rapid decrease ofR explains the increase in the treatment efficiencyQ = B/R for
shallow gradients.

A detailed look at the population density c(x) and establishment probability u(x) profiles is necessary
to understand the values taken by R and B. These profiles are shown in Fig. 6.3 for three different gradi-
ents (shaded areas). The population density c(x) approximately tracks the net growth rate s(x), while the
establishment probabilityu(x) is roughly amirror image of the population density. In the regionwhere the
drug concentration is low and the wild-type population is dense, the mutants have no advantage over the
wild type, since they compete for the same resources, and are likely to go extinct due to genetic drift. Con-
versely, in high drug concentration regions, the wild type cannot survive and the mutants can grow freely
and establish with high probability.
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Convection has a rich variety of effects on both profiles. Convection into the antibiotic (co-flow, v < 0)
leads to broader profiles of both the wild type population density c(x) and the establishment probability
u(x) (Fig. 6.3), while convection away (counter-flow, v > 0) from the antibiotic reduces both the popu-
lation density and the establishment probability in the antibiotic region. For shallow gradients, we even
observe an apparent cut-off in c(x) (and correspondingly in u(x)), whose location depends on v. Conse-
quently, co-flow increases total death rate and establishment score, while counter-flow leads to their rapid
decrease.

In summary, our simulations show that both the population density profile c(x) as well as the local es-
tablishment probability u(x) of resistance mutants are strongly influenced by environmental parameters,
in particular, by the steepness of the antibiotic gradient and the strength of convection. As a general rule of
thumb, shallow gradients and convection towards increasing drug concentrations increases the rate of adap-
tationR, while steep gradients and convection away from the drug source decrease it. The total death rate
B follows the same trend. However, subtle differences between R and B give rise to a qualitative change
in behavior of the treatment efficiencyQ = B/R, which is increased by positive convection (counter-flow)
in shallow gradients and decreased in steep ones. To rationalize our results and identify the critical length
scales, we now develop a mathematical model that accommodates these processes.

6.3 Theory

6.3.1 Theoretical framework

Consider a population at some density c(x) in an antibiotic concentration field, which gives rise to a death
rate b(x) per generation, i.e., the drug-induced death rate is measured relative to the maximum growth rate
a0. We define the total (drug-induced) death rateB per generation through a continuum version of eq. 6.2
as

B =

∞∫
−∞

dx c(x)b(x). (6.5)

Resistance mutations arise at a rate µ, which we assume to be constant and sufficiently low such that adap-
tation occurs via the sequential acquisition of resistance mutations, i.e., we neglect local clonal interference.
Analogously to eq. 6.3 above, we define the rate of adaptation

R =

∞∫
−∞

dx c(x)u(x), (6.6)
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where u(x) represents the probability that a beneficial mutation born at position x eventually establishes.
Thepopulationdensity c(x) canbe computedusing standard techniques (like deterministic reaction-diffusion
equations), and we return to this question later on. The establishment probability u(x, t), i.e., the proba-
bility for a mutation to survive until time t, obeys a nonlinear reaction-diffusion equation 35,

∂tu(x, t) = D∂2xu+ v∂xu+ s(x)u− a(x)u2, (6.7)

where a(x) is the local birth rate of the mutants and s(x) = a(x) − b(x) is the net growth rate (see SI
section 1). Throughout this paper, we will make the assumption that the birth rate of wild-type andmutant
is identical and constant, a(x) = a0, and that the drug-induced death rate of the resistant mutant is zero,
while thewild-type drug-induced death rate b(x) ranges from0 toa0, i.e., we assume that the antibiotic only
affects the population by increasing the death rate of the wild type. We include diffusion and convection
terms to account for the random dispersal and the effects of external flow on the bacteria.

It is important at this point to note that in general the selective gradient s(x) will intimately depend
on various environmental factors, including competition with the wild-type population. In later sections,
especially when incorporating convection (i.e., v ̸= 0), we will take this effect into account. For now, we
will assume that this function is known for given external conditions in order to gain a better intuition for
the system.

6.3.2 Diffusion without convection

We will first analyze eq. 6.7 in the case without drift, i.e. v = 0, in order to extract the characteristic length
scales of the system. We solve the extreme cases of a step-like concentration increase and a very smooth
gradient analytically, and then interpolate between the two regimes using numerical solutions to eq. 6.7.

Step-like gradient

We begin by considering the simplest functional form for a selective gradient – a step:

s(x) = a0Θ(−x), (6.8)

whereΘ(x) is theHeaviside step function. Such a sharp gradient could emerge, for instance, at the boundary
of different tissues or organs with different affinities to store antibiotics 36. The equation for the fixation
probability in this case is given by:

0 = ∂2ξu+ σ0Θ(−ξ)u− u2 (6.9)
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where we have rescaled by the diffusion length scale:

ξ = x/LD, LD =
√
D/a0. (6.10)

In the Appendix, we solve this equation using an analogy from classical mechanics. We have that for
ξ > 0

u(ξ) =
1√
3

(
1 +

ξ√
6
√
3

)−2

, (6.11)

implying u ∼ 1/ξ2 for large x. For ξ < 0, we obtain

u(ξ) =
1

2

{
3 tanh2

[
1

2
(ξ∗ − ξ)

]
− 1

}
, (6.12)

where ξ∗ = 2 arctanh
√

1
3 + 2

3
√
3
.

Eq. 6.11 shows that the fixation probability decays over a characteristic length scaleLD =
√
D/a0. This

length scale can be roughly understood as the typical distance that a mutant individual travels through ran-
dom dispersal before replicating.

Shallow gradient

Having identified the characteristic length scale over which the establishment probability decays in a step-
like concentration profile, we now turn towards more realistic gradients. For simplicity, for the remainder
of our calculations, we will model a shallow antibiotic gradient again as the sigmoidal function σ(ξ) given
in eq. 6.1, σ(ξ) = 1

2 [1− tanh(mξ)], such that the gradient changes over a characteristic distance Lm =

LD/m. Intuitively, ifLD ≫ Lm, individuals feel sharp, step-like antibiotic transitions within their typical
migration distance, and thus, we expect the results of the previous section to remain good approximations.
If, conversely, individuals migrate only short distances compared to Lm, i.e., Lm ≫ LD, they will sample
only a small region of the gradient and will not feel the differences in antibiotics concentration. To make
this heuristic idea quantitative, we rescale ξ in eq. 6.7 by the new length scaleLm to obtain

0 = m2∂2θu+ σ(θ)u− u2. (6.13)

WhenLm ≫ LD, i.e.,m≪ 1, we can neglect the partial derivative in eq. 6.13, such that

u(ξ) = σ(ξ) (shallow gradients). (6.14)
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This so-called quasi-static approximation is a straight-forward extrapolation of thewell-mixed result and has
been used to model establishment in Ref. 27. Form ≫ 1, the step-like solution holds, whereas, form ≈ 1,
no analytical solution is available; in such cases, we solve the equations numerically (see Methods).

To determine which scenario is more relevant in microbial communities, we estimate a typical m. A
typical (non-motile) bacterial cell may have a diameter of 1µm, swimming in a medium of viscosity compa-
rable to that of water (with blood typically only a factor 3 larger than that 37). Then, its diffusion constant
is of order 0.1-1µm2/s. The length scale LD =

√
D/a0 for a typical birth rate of 0.5 − 2hr−1 is then

between 50 and a few hundred microns. In a microfluidic experiment by Zhang et al. 16, demonstrating fa-
cilitation of adaptation through antibiotic gradients, the length scale on which the drug gradient varied was
Lm ≈ 200µm so thatm ∼ 1 16.

This estimate is, however, very crude: firstly, the diffusion constant of a bacterium may not be due to
thermal fluctuations but due to directed motion that only becomes approximately diffusive on long time
scales 38,39. In that case, the diffusion constant can be much larger, up to tens or even 100µm2/s. For a bac-
terium with a division time of 60 minutes, this leads to a expected typical length LD ≈ 3mm. Indeed, for
motile bacteria such as those used in a recent experimental study by Baym et al. 12 with a reported spreading
velocity of 40mm/hr, we findLD ≈ 1− 10mm. Surely, we cannot expect homogeneous antibiotic concen-
tration over such long length scales and indeed step-like transitions in antibiotic concentrationwere assumed
in the study. Therefore, we expect that concentration gradients of significant sharpness should play a key
role in both experimental set-ups and practically relevant systems, and hence the quasi-static approximation
in eq. 6.14 should be employed with caution.

6.3.3 Wild-type population dynamics

Asmentioned above, themutants’ net growth rate s(x) generally depends on several environmental factors,
including competition with the wild-type population. In addition, both the rate of adaptation R and the
total death rateB determined in our simulations depend on the wild-type density profile c(x). To provide
analytical expressions for these quantities and the corresponding treatment efficiencyQ, we therefore need
to accommodate the coupling between wild-type and mutants. In the following, we will employ a simple
logistic growth model for the wild-type population and its interaction with the mutant dynamics.

We assume that the wild-type population density c(x, t) is described by the following reaction-diffusion
equation:

∂tc = D∂2xc+ aWT (x)c
(
1− c

K

)
− bWT (x)c, (6.15)

where aWT (x) is the local wild type birth rate, bWT (x) is the local antibiotic-induced death rate of the wild
type. In ourmodel, wild-type growth is limited by a logistic term (1− c/K), whichmodels a finite amounts
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of nutrients limiting the population size per deme to the carrying capacity K , while the local death rate
bWT (x) acts on each individual independently and is therefore unaffected by the local population density.
This distinguishes ourmodel from the Fisher equation used to describe population spreading40, where also
the death rate multiplies the logistic term. Our model instead ensures that the steady-state local population
density cSS depends explicitly on the local death rate bWT (x)when the death and birth rate profiles change
sufficiently slowly in space,

cSS(x) = K

(
1− bWT (x)

aWT (x)

)
. (6.16)

Our model, like the original Fisher equation, ignores the discrete nature of individuals, which has been
shown to significantly alter the tip of the population front (see SI section 7 for a detailed discussion). Never-
theless, we expect good agreement between our model and simulations in terms of the treatment efficiency
Q, whose value is not significantly affected by the details of the population profile at the tip of the wave.

For the remainder of this text, we will assume, as before, that the total growth rate aWT (x) is a con-
stant, a0, and that the presence of the antibiotic modulates selection by increasing the wild type death rate
bWT (x). The logistic growth term makes eq. 6.15 for the wild type density c(x)mathematically equivalent
to eq. 6.7 for the establishment probability u(x) and hence, all results carry over with minor modifications
(eqs. 6.11, 6.12, and 6.14). In particular, the predicted steady-state population density c(x) has a broad tail
in the case of a step-like antibiotic profile, and closely follows the mirror image of the antibiotic profile if
this is shallow. Note, however, that we are unable to observe the broad tail in simulations because of the
discreteness effects associated with the small population size at the front (see SI section 7).

Given an explicit wild-type population profile, it is plausible to assume that the selective pressure felt by
the mutants is purely due to competition with the wild type, i.e., sMT(x) = 1 − c(x), such that the local
establishment probability of the mutants is coupled to the wild type profile. This should indeed be the case
if the antibiotic does not directly alter the birth and death rate of the mutants.

Hence, if c(x) changes sharply, i.e., on length scales shorter than LD =
√
D/a0, we expect to see the

signatures of a step-like antibiotic profile also in the behavior of u(x). If, on the other hand, c(x) changes
slowly in space, then the quasi-static approximation may become applicable. The case of a step-like antibi-
otic concentration profile s(x) = s0Θ(−x) for illustrates both scenarios (see Fig. 6.4a): for x < 0, c(x)
approaches 1 exponentially (eq. 6.12), such thatu(x) is well-described by the broad tail in eq. 6.11. Forx > 0,
instead c(x) decays slowly and the quasi-static approximation can be used such that u(x) ≈ 1− c(x). We
compare the simulations with numerical and approximate analytical solutions for c(x) and u(x) in detail
in the SI, section 7.

The solutions for c(x) andu(x) can then be used to compute the rate of adaptationR (eq. 6.6) and total
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death rateB. Asymptotically, we find,

B ≈
√
D

a0
×

{ √√
12s0
a0

, forLD/Lm ≪ 1,
s0

2a0m
, forLD/Lm ≫ 1,

(6.17)

and

R ≈
√
D

a0
×

{
1.8
√√

12s0
a0

, forLD/Lm ≪ 1,
s0

2a0m
, forLD/Lm ≫ 1,

(6.18)

which agreeswell with the numerical result in the two limiting cases (Fig. 6.5a). The inverse scaling of the rate
of adaptationR with the gradient steepnessm is also in agreement with Greulich et al. 27 in relatively steep
gradients where the rate of adaptation (which is proportional to the rate of adaptation defined here) is dom-
inated by the time until a mutation arises and establishes. Hermsen 28 also finds that the rate of adaptation
increases for shallower (but still relatively steep) gradients in what is identified as the ”mutation-limited”
regime, where mutations are rare. However, both Hermsen and Greulich consider the establishment of
many mutation (potentially simultaneously), giving rise to a second, ”dispersion-limited”, regime 28 in very
shallow gradients, in which the mutational supply is large and the rate of adaptation is dominated by the
speed with which established mutations invade previously uninhabitable territory. Since we follow the fate
of individual mutations, our model operates in the mutation-limited regime exclusively, and we therefore
do not expect agreement between our and their models.

6.3.4 Convection

So far, we have neglected external flows and only considered random diffusion of individuals in space. In
the following, we explore the influence of convection on the population density, the establishment proba-
bility, and finally, the treatment efficiency, which, in the absence of convection, is naturally constrained to a
relatively small range, see eqs. 6.17 and 6.18. When a population is subjected to convection, it will generally
move in the direction of the flow, leading to either a depletion or enrichment of bothmutant andwild types
in the antibiotic region (unless convection is too strong, see SI section 4), depending on whether the flow
is directed away (counter-flow) or towards (co-flow) the gradient, respectively. We define the direction of
the flow such that a negative convection speed v points in the positive x-direction, towards the gradient (see
Fig. 6.1). The corresponding equations for c(ξ, τ) and u(ξ, τ) are

∂τ c = ∂2ξ c+ ν∂ξc+ c (σWT (ξ)− c) , (6.19)

∂τu = ∂2ξu− ν∂ξu+ u (1− c− u) , (6.20)
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Figure 6.4: The effect of convecধon on populaধon density c(x) (magenta) and establishment probability u(x)
(green) for a step-like anধbioধc concentraধon (a) and a very broad concentraধon profile (m = 0.01, c), for values
of the convecধon speed ν ranging from −1 to 1.5 in steps of 0.25 (dark to light colors). Curves were obtained
by numerically integraধng eqs. 6.19 and 6.20 (Methods). For high negaধve convecধon speeds (dark colors), an
analyধcal approximaধon is valid (b, SI secধon 5). (d) The cut-off ξ∗ of the populaধon density profile in shallow
gradients found numerically (dots) agrees well with the theoreধcal predicধon, eq. 6.22 (solid lines).

where ν = v/
√
Da0. Note the change in sign for the convection term in the equations for u(ξ) and c(ξ)

that stems from the reverse time direction in u(ξ, τ).
Figure 6.4 shows the effect of convection on both the population density c(ξ) and the establishment

probability u(ξ), for a step-like antibiotic profile and a shallow gradient (m = 0.01), obtained by first
evaluating c(ξ) from eq. 6.19 and then solving u(ξ) from eq. 6.20 using the steady-state density profile (see
Methods).

Consider first the step-like case. There is a strict distinction between positive and negative convection:
negative convection (darker colors in Fig. 6.4a and c) tends to broaden the profiles away from the step and
increase both population density and establishment probability near the step. In fact, it can be shown that
for our model both profiles decay asymptotically as ν/ξ far from the step in the limit of strong negative
convection (Fig. 6.4b, SI section 5). By contrast, positive convection away from the antibiotic (ν > 0)
reduces the wild-type population density in the antibiotic region as well as the establishment probability,
giving rise to an exponential decay c(ξ) ∼ e−νξ for ξ > 0.

The effects of a finite gradient steepness, characterized by the length scaleLm, can be judged by rescaling
eq. 6.19 byLm, as in eq. 6.13, i.e.,

0 = m2∂2θc+mν∂θc+ σ(θ)c− c2. (6.21)

For ν < 0 in shallow gradients, the profiles are barely affected (see Fig. 6.4c). For ν > 0, on the other hand,
convection can alter the profiles strongly: Asm→ 0, the solution to eq. 6.21 first becomes insensitive to the
diffusion term and finally also to the convection term, such that the population density profile c(ξ) follows
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Figure 6.5: The effect of convecধon on the rate of adaptaধonR and the total death rateB in our analyধcal model.
Panel (a) showsR andB as a funcধon of the gradient length scaleLm = LD/m. For ν = 0, the total death rate
B approaches the theoreধcal predicধons, eq. 6.17. Negaধve/posiধve convecধon shiđs both B and R up/down,
respecধvely. Ploষng B and R as a funcধon of ν in panel (b), we recover the same trend as in stepping stone
simulaধons: negaধve/posiধve convecধon increase/decrease bothR and B similarly. (c) The treatment efficiency
Q = B/R for a step-like anধbioধc profile (black) and gradients of different steepness, from shallow (purple) to
steep (red).

the gradient almost perfectly until it drops steeply to zero at the cut-off position ξ∗ (Fig. 6.4d, see SI section
6), given by

ξ∗ ∝ arctanh(1 − ν2/2)
m

. (6.22)

This cut-off position ξ∗ captures the behavior of the numerical solution very well (Fig. 6.4d). The establish-
ment probability u(ξ) mirrors c(ξ) as long as ξ∗ > 0: for ξ < 0, we have u(ξ) ≈ c(−ξ), and for ξ > 0,
we haveu(ξ) ≈ 1−c(ξ). For ξ∗ < 0, u(ξ) increases very sharply from 0 to 1 at the cut-off position, leaving
only a very small overlapwith c(ξ). Hence, the rate of adaptationR in shallow gradients becomes very small
for high positive convection speeds.

Given the scaling of the population density and establishment probability profiles, we can rationalize the
behavior of the total death rate B and the rate of adaptation R. As shown in Fig. 6.5a and b, both B and
R increase for negative convection because c(ξ) and u(ξ) maintain broader profiles. In shallow gradients,
B and R exhibit a plateau, since c(ξ) and u(ξ) are affected only weakly by negative convection (green).
For positive convection, both B and R decrease rapidly by up to 2 order of magnitude for our range of
parameters. In shallow gradients, the rate of adaptationR decreases faster than the total death rateB with
increasing convection speed because convection affects both c(ξ) and u(ξ) equally, such that their overlap
decreases more rapidly than c(ξ) alone (see SI section 6). However, for the steepest gradients, B and R
decrease at the same pace until at high convection speeds, the death rate B decreases more quickly than R
because of the hard cut-off in b(ξ) (Fig. 6.5).

The behavior of the treatment efficiencyQ = B/R (Fig 6.5c) follows directly from these considerations.
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For ν < 0, i.e., for convection into the antibiotic,Q changes only slightly with ν, and only in relatively steep
gradients (m ≳ 0.1). This is in contrast to the case of convection away from the antibiotic: For shallow
gradients, i.e., Lm ≫ LD, Q is approximately equal to 1 for small positive and all negative convection
speeds. For strong positive convection, the rate of adaptationR becomes very small, such thatQ increases
rapidly (see SI Fig. S2 and SI section 6). As the step-like case is approached, i.e., forLm ≪ LD, the treatment
efficiency Q is reduced further for large positive ν, where the total death rate B decays more quickly than
the rate of adaptationR.

Our numerical findings, supplemented by analytical calculations rationalize all major observations from
our simulations. In particular, we find that convection can strongly alter both the total death rate B and
the rate of adaptation R, but in a manner that depends on the steepness of the gradient. Although there
are subtle differences between the simulated and numerical profiles of c and u (see SI section 7), our simple
model reproduces even the complex phenomenology of the treatment efficiencyQ, including the shift from
an increase inQ in shallow gradients to a decrease inQ in steep ones.

6.4 Discussion

In order to fight an infection efficiently, an antibiotic must kill as many wild-type bacteria as possible be-
fore resistant mutants arise and survive against genetic drift. If a mutant arises in a low-concentration re-
gion, it has little advantage over the wild type and likely goes extinct. By contrast, a mutant arising in a
high-concentration background will quickly establish, thus creating a resistant population that can pop-
ulate regions in the antibiotic gradient inaccessible to the wild type. High population densities in high-
concentration regions induce significant wild-type death, as the susceptible wild type cannot survive well in
these regions. On the other hand, high population densities in high-concentration regions also maximize
the number of resistance mutations that occur in a favorable environment.

We have studied this trade-off between drug-induced wild-type death and adaptation in an antibiotic gra-
dient using simulations and analytical theory. Our simulations reveal that drug-induced death is highest
when the wild-type population density is enriched in high-concentration regions, i.e., for convection to-
wards the antibiotic, and shallow gradients. However, since each wild-type individual harbors the potential
for a resistance mutation to occur, which would then have a big advantage over the wild type in the region
where it occurs, the rate of establishment of resistance mutations has the same general behavior. Similarly,
for strong counter-flow, the drug-induced total death rate is decreased because the wild-type population
density is low in high-drug regions, which in turn limits the rate of establishment of new resistance muta-
tions. Thus, making ad hoc predictions about the treatment efficiency is difficult. Our detailed analysis of
population density c(x) and establishment probabilityu(x) profiles over a wide range of gradient steepness
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and convection speeds shows that in shallow gradients, where both c(x) and u(x) are strongly affected by
convection away from the antibiotic, treatment can become an order of magnitude more efficient than in
no-flow scenarios.

Our simulations are a strongly simplified model of real populations. For instance, we have assumed
that mutation establish independently, i.e., we have neglected clonal interference. Our predictions are thus
strictly speaking only valid when mutations arise rarely enough that they do not interact. Typically, this
condition is quantified by demanding that µNe ≪ 1, where Ne is the effective population size. In a spa-
tial scenario, however, potentially interfering mutations can only arise in a spatial region where both the
population density c and the establishment probability u are large. Thus, our results remain valid as long
as µ

∫
c(x)u(x) ≪ 1. For resistance mutations with small target sizes, mutation rates can be very small,

typically less than 10−6 41,42, and thus our approximationmay be accurate even for relatively large local pop-
ulations. In addition, even whenmutation rates are not small, we expect convection and spatial gradients to
have the same qualitative effects on the establishment of resistance mutations, and thus our results should
remain qualitatively correct in this case.

Individuals in our simulationmerely occupy ”space” in their specific deme; in reality, bacteria have a finite
size, and a population front can advance through mere growth, even against strong counter-flow43. Con-
versely, for strong co-flow, individuals may de-adhere and be carried away from the bulk population, thus
founding extant colonies that enjoy large growth rates in the absence of competition for resources. Such pro-
cesses can be studied by generalizing the diffusion term in our model to a long-range dispersal term as used
frequently to model epidemics44. Since long-range dispersal can allow individuals far from the population
front to escape the bulk population, we expect it to increase the total establishment probability and thus the
rate of adaptation relative to short-range dispersal as discussed here.

We have only discussed one-dimensional populations here, but real surface-boundmicrobial populations
typically grow as two-dimensional colonies, with complex spatial patterns. The establishment of beneficial
mutations in microbial colonies has recently been discussed 15,45. Due to the particular strength of genetic
drift at the front of such populations, beneficial mutations first have to reach a threshold size (depending on
the strength of the selective advantage) neutrally before they become established. Once the mutant clone
reaches the threshold size, the selective advantage of the mutants can deterministically drive them to fixa-
tion in the population. During the initial phase, the mutant clone is contained between boundaries with
characteristic stochastic properties that are not captured in our one-dimensional model 14. However, if the
threshold size is small, the boundary fluctuationswill not have a large impact on the growthofmutant clones.
In such cases, we expect our results to apply also to two-dimensional populations.

The emergence of drug resistance remains a topic of significant interest, both froma scientific and a public
health point of view. Considerable effort is brought forward to create novel antibiotics46 and new therapy
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strategies are developed that attempt to limit the emergence of resistance47,48, but more research is needed
to understand how resistance evolves in complex spatio-temporal settings like the spatial gradients discussed
in this paper. In particular, as we have shown here, convection constitutes an important factor in shaping
the adaptation to antibiotics in spatial concentration gradients and should receivemore attention fromboth
theorists and experimentalists.
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6.5 Appendix

6.5.1 Methods

Individual-based simulation

We perform individual-based, stepping stone simulations where both wild-type and mutants are modeled
explicitly. Thepopulation is divided intodemeswith carrying capacityK onaone-dimensional lattice. Wild-
type and mutants replicate at a rate a0 and migrate at rateD independently on their position. Wild-type in
deme i die at a rate b(xi) = 1

2 [1 + tanh(mxi)]. Since we assume throughout that the antibiotic leaves the
mutants unaffected, mutants do not die in our simulations. Analogously to a Gillespie algorithm, in each
simulation step, a birth, death or migration event is performed according to its relative rate 1,2, as follows.

• Birth. Birth events occur at a total rate equal to a0
∑

i c(xi), where c(xi) is the total number of
individuals in deme i. For each birth event, a source individual is selected at random and replicated
into a random target site between 1 and K within the same deme. Because the target site can either
already be filled with an individual or be empty, this move effectively translates into logistic growth
within the deme.

• Death. In our model, only the wild type can die, thus deaths have a total rate corresponding to∑
i b(xi)cwt(xi), where cwt(xi) represents the number of wild type individuals in deme i. To per-

form a death event, first, a deme i is picked proportionally to its relative death rate b(x)cwt(xi), and
then, a random wild type within the same deme selected to be removed.

• Migration. Migrations are performed at a rateD
∑

i c(xi) by picking a random individual and swap-
ping it with a randomly selected target site from one of the two neighboring demes. As in the case of
birth events, the target site can either correspond to an individual, or to an empty site.

• Time step. Time is tracked by sampling a time interval δt from an exponential distribution with rate∑
i [(a0 +D)c(xi) + b(xi)cwt(xi)], as in a standard Gillespie algorithm. The total elapsed time is

the sum of the sampled time intervals.

• Convection. Convection (with convection speed v) is implemented by shifting the simulation box
by one deme towards or away from the wild type population, depending on whether convection is
negative or positive, respectively. The shift is performed when the time since the last shift is greater
than 1/|v|.

For each simulation, we first allow the wild type to reach the steady-state profile c(x). We then introduce
one mutant element at position x and run the simulation until either all mutants go extinct, or mutants
reach the last deme in the simulation box. No furthermutations are allowed in the course of the simulations.
The probability of fixation u(x) is then computed as the proportion of the simulations in which a mutant
introduced at x reached fixation.
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Numerics

All numerical results were obtained by evaluating the differential equations using Mathematica’s built-in
NDSolve routine with the backwards differentiation (BDF) method, with a maximum step size of 1 and a
domain size of 1000. Initial conditionswere chosen according to the analytical approximations to the steady-
state profiles given in the text. This is only done to speed up computation and increase numerical stability;
starting with different initial conditions leads the same final solution. To obtain steady-state profiles, we
solve the full time-dependent problems until the solution no longer changes for longer evaluation times.

To compute the establishment probability u(x) in realistic wild-type population profiles c(x), we first
computed the steady-state population density and then used the final profile to compute the (constant in
time) local death rate for the mutants b(x) = 1− c(x). The resulting numerical solutions were integrated
numerically using Mathematica’s built-in NIntegrate routine to obtain the total death rate B and the rate
of adaptationR.

6.5.2 Derivation of survival probability

Suppose particles branch at rate a and disappear at rate b. Then the probability u(0;T ) that a particle or its
offspring survive until time T satisfies

u(−ϵ;T ) = [1− ϵ(a+ b)]u(0, T ) + ϵa
[
1− (1− u(0, T ))2

]
(6.S1)

The first term on the right-hand side describes the case of neither disappearing nor branching. The sec-
ond one accounts for the fact that when the initial particle branches then there are two particles, and the
probability of survival of at least one lineage is 1 minus the square of both lineages disappearing. Using
time-translation invariance u(−ϵ;T ) = u(T + ϵ), we obtain in the limit ϵ→ 0

∂tu(t) = (a− b)u(t)− au2(t). (6.S2)

To extend this equation for spatial degrees of freedom simply account in eq. 6.S1 for the random jumps to
neighboring lattice sites in a small time interval ϵ.

6.5.3 Solvingtheestablishmentprobabilityforstep-likeconcentrationprofile

The (ultimate) establishment probability of amutation in step-like antibiotic concentration profile given by

σ(ξ) = σ0Θ(−ξ) (6.S3)
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satisfies eq. 7 in the main text, repeated here for completeness:

0 = ∂2ξu+ σ0Θ(−ξ)u− u2. (6.S4)

To solve this equation, we first treat both sides of the step independently, and then fix integration constants
by invoking differentiability at ξ = 0.

Antibiotic-free region ξ > 0

The fixation probability of mutants in the region ξ > 0 (where σ(ξ) = 0 is determined by the following
differential equation:

0 = ∂2ξu− u2 (6.S5)

with boundary conditions, u(0) = u0 and u(∞) = 0. We exploit a mechanical analogy to solve this
equation. We write eq. 6.S5 as

∂2ξu = −∂uV (u) (6.S6)

with a ‘potential energy’ V (u) = −u3/3. We can then determine the solution for u(ξ) as

ξ =

∫ u(ξ)

u0

du′√
−2V (u′)

. (6.S7)

where the ‘total energy’ E = 1
2 (∂ξu)

2 + V (u) = 0 was chosen to satisfy the boundary condition as
ξ → ∞. The solution thus follows as

u(ξ) = u0

(
1 +

√
u0ξ/

√
6
)−2

, (6.S8)

implying u ∼ 1/ξ2 for large ξ.

Antibiotics region ξ < 0

In the region ξ < 0 the new mutations have a net growth rate σ(ξ) = σ0. The fixation probability is then
given as the solution of

∂2ξu = −σ0u+ u2, (6.S9)
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Exploiting the same mechanical analogy, we have the integral:

u∫
u0

du√
−σ0u2 + 2u3/3 + σ30/3

= −ξ, (6.S10)

where we have used the condition u(−∞) = σ0 to set the total energy. We obtain

u(ξ) =
σ0
2

{
3 tanh2

[√
σ0
2

(ξ∗ − ξ)

]
− 1

}
, (6.S11)

where ξ∗ = 2√
σ0

arctanh
√

1
3 + 2u0

3σ0
.

At ξ = 0, u′ is continuous since u′′(0) is finite. By imposing continuity on the derivatives from the left
and right solutions, we determine u0 = σ0/

√
3.

6.5.4 Treatment efficiency without convection

To find an approximation forQ in the absence of convection, we can computeB andR independently.
For a shallow gradient where c(ξ) = sWT(ξ) = 1 − u(ξ), it follows that B = R and hence Q = 1.

For a step, B can be obtained directly by simple integration of c(ξ), B =
√
2 · 31/4. To compute R, the

integral for ξ > 0 is easily performed to yieldR+ = 2
3

√
14/

√
3− 3, but for ξ < 0, the full solution for

c(ξ) cannot be easily integrated. However, c(ξ < 0) is well approximated by c(ξ) ≈ 1 − (1 −
√
3)eξ .

Thus, we obtain the result R− = B + 2(
√
3 − 3)e

√
3BEi(−

√
3B), where Ei(x) = −

∫∞
−x e

−t/t is the
exponential integral function. Q then evaluates to

Q ≈ 0.581, (6.S12)

close to the numerical value ofQnum ≈ 0.612.

6.5.5 Strong convection

Apopulation growing logistically with an homogeneous rate across demes leads to a Fisherwavewith a front
velocity given by vF = 2

√
Da0

3. In the presence of a convection v, far away from the gradient the wild-
type population would generate a front advancing at speed vF − v. Hence, intuitively, if convection is too
strong, i.e., |v| > vF , the population will not be able to establish a steady-state profile.

To show this formally, we first transform eq. 17 by introducing a new variableψ = ueνξ/2, such that the
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Figure 6.S1: (a) For strong negaধve convecধon, the analyধcal approximaধons to c(ξ) (eq. 6.S16) and u(ξ)
(eq. 6.S17) matches the simulaধon results well. (b) Treatment efficiencyQ for different gradientsm, with asymp-
toধc result, eq. 6.S27 (black).

convection term is replaced by a death term with effective death rate proportional to ν2,

∂τψ(ξ, τ) = ∂2ξψ − ν2

4
ψ + σ0Θ(−ξ)ψ − ψ2e−νξ/2, (6.S13)

ψ(ξ, 0) = eνξ/2.

Around ξ = 0, the exponential factor is approximately equal to 1 and thenonlinearityψ2 canbeneglected
becauseψ ≪ 1. The resulting linear equation then has solutions that can be written asψ =

∑
k ak(τ)e

ikξ .
Each mode then satisfies a differential equation

ȧk = −ωkak, (6.S14)

withωk = k2+ ν2/4−σ0. Thus, the lowest mode k = 0 decays to zero as long as ν2/4−σ0 > 0, and all
higher modes are suppressed by the coupling of modes through the nonlinearity4. Therefore,ψ, and hence
c(ξ), undergo an extinction transition for σ0 > 0when ν2/4 > σ0.

6.5.6 Convection in a step-like gradient

Convection into the antibiotics

For negative v, we first solve for c(ξ). For−2 < ν ≪ 0, we can neglect diffusion and find the equilibrium
population density by solving

0 = ν∂ξc+Θ(−ξ)c− c2. (6.S15)
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The solution for ξ > 0 is
c(ξ) =

1

1 + ξ/|ν|
. (6.S16)

We thus uncover another characteristic length scale Lv = Xν = v/a0, which quantifies the strength of
convection relative to diffusion: ifLv ≫ LD, convection dominates over diffusion, and vice-versa.

Far away fromthe antibiotics, cwill always eventually reach the carrying capacity. Hence, c(ξ → −∞) →
1, which is a fixed point of eq. 6.S15 for x < 0. It follows that c(ξ < 0) ≡ 1.

Plugging eq. 6.S16 into the equation for the establishment probability u(ξ), eq. 18 in the main text, we
find analytical solutions in two cases: for small but finite negative ν, the convection term and the diffusion
term can both be neglected and we recover the quasi-static result u(ξ) = 1 − c(ξ). For strong negative
convection,−2 < ν ≪ 0, we can neglect only the diffusion term and integrate directly. The result is

u(ξ) =
1

2− ξ/|v|
, x < 0,

u(ξ) = 1− 1

2 + ξ/|v|
, x > 0. (6.S17)

Since c(ξ < 0) = 1, it is easy to see that this approximation does not yield a finite rate of adaptation for
infinite domains since mutants arising far away from the antibiotics region still have a relatively high chance
of establishing. In practice, the rate of adaptation is always finite because for finite ν, the decay is slightly
faster that 1/ξ. Assuming a finite domain (or a cut-off, e.g., because of a finite carrying capacity) ranging
from some −ξ0 to ξ0, we can estimate both the rate of adaptation R and the total death rate B, and thus
the treatment efficiencyQ = B/R, as

R = ν log[1 + ξ0/ν] (6.S18)

B = 2ν log[1 + ξ0/2ν] (6.S19)

Q =
log[1+ξ0/ν]

2 log[1+ξ0/2ν]
≳ 1

2 (6.S20)

where we have assumed ξ0/ν ≫ 1 in the last step. In our numerical evaluations, ξ0 = 500 and ν < 2, such
that we haveQ ≈ 0.57.

Convection away from antibiotics

Positive convection (ν > 0) away from the antibiotic limits diffusion of the wildtype into the antibiotics,
thus leading to a reduced wildtype population density in the region of antibiotics. For strong convection
and a step-like drug profile, the population density decays exponentially over the characteristic distanceX/ν.
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Figure 6.S2: Populaধon density profile for a step-like anধbioধc concentraধon gradient and posiধve convecধon
ν > 0. Both in the region of high anধbioধc concentraধon (ξ > 0) and no anধbioধc concentraধon (ξ <
0), the populaধon density approaches its asymptoধc value exponenধally ((a) and (b), analyধcal results as doħed
lines). Fiষng the numerical curves with the analyধcal expressions, eqs. 6.S22 and 6.S24, we obtain the apparent
exponenধal prefactors λnum, which match well with the expressions for λ± given in the text.

This follows by considering the steady-state equation for c(ξ > 0),

0 = ∂2ξ c+ ν∂ξc− c2. (6.S21)

For ξ > 0, c(ξ)2 is positive while c′(ξ) is negative; because these two terms cannot add up to zero, we
cannot neglect the diffusive term. However, since we expect c(ξ) to be small, we can instead neglect c(ξ)2

to obtain the equation 0 = c′′ + νc′, such that

c(ξ > 0) ∝ e−λ+ξ, (6.S22)

where λ+ = ν, which approximates the numerical solution well (Fig. 6.S2).
For ξ < 0, the corresponding equation reads

0 = ∂2ξ c+ ν∂ξc+ c− c2, (6.S23)

which does not have a simple analytical solution. However, we can find by inspection that c(ξ) approxi-
mately behaves as

1− c(ξ < 0) ∝ e−λ−|ξ|, (6.S24)

where λ− is parametrized well by λ− ≈ 2/(ν +
√
ν2 + 4) (see Fig. 6.S2.
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6.5.7 Shallow gradients with convection

For ν > 0 andLm ≫ Lv , we can transform eq. 18 by defining ψ = ce−νξ/2 to obtain

∂τψ(ξ, τ) = ∂2ξψ +

(
σ(ξ)− ν2

4

)
ψ − ψ2e−νξ/2. (6.S25)

Convection only has a relatively small effect on c(ξ) and u(ξ), and only in the region of strong antibiotics
(where σ(ξ) ≪ 1), as long as σ(ξ) > ν2/4. For large enough ξ this will no longer be satisfied. When
σ(ξ) ∼ ν2/4, the convection term leads to a cut-off. Assuming the cut-off is faster than exponential, we
can neglect the non-linearity near the cut-off and thus find a transition to negative growth rate ∂τψ(ξ, τ)
for σ(ξ∗) = ν2/4. Solving for ξ∗, we obtain the approximate cut-off position

ξ∗ = m−1arctanh(1− ν2/2). (6.S26)

Note that ξ∗ = 0 for ν =
√
2. For ν <

√
2, we can estimate R and B analytically by approximating

c(ξ) ≈ σ(ξ)Θ(ξ − ξ∗) and similarly for u(ξ). This leads to

Q =
1

2
+

1

2− ν2
. (6.S27)

For ν < ν∗, this agrees well with the numerical result for shallow gradients (m≪ 1), as shown in Fig. 6.S1.
When ξ∗ < 0, i.e., when ν >

√
2, c(ξ) and u(ξ) retain a small overlap, as shown in Fig. 4b in the main text.

Hence, the treatment efficiencyQ does not diverge at ν∗.

6.5.8 Comparing simulations and numerics

Ourmodel for the dynamics of the population density, like the original Fisher equation, ignores the discrete
nature of individuals. This has been shown to have important consequences, particularly at the tip of the
population front, where the number of individuals per deme is small. A heuristic way to implement the
discreteness of individuals consists in introducing a cut-off in the growth rate when the local population
size becomes too small 5. Such a cut-off alters the front profile, and the resulting correction to the expansion
velocity decays only slowly with the carrying capacityK ,

v∗F = vF

(
1− π2

2 ln2K

)
. (6.S28)
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Figure 6.S3: Comparison between simulated (solid lines) and numerically evaluated (dashed gray) profiles of popula-
ধon density c(ξ) (leđ column, magenta) and establishment probabilityu(ξ) (right column, green), for three different
anধbioধc gradients (step-like, (a) and (e); intermediate gradientm = 0.1, (b) and (f); shallow gradientm = 0.01,
(c) and (g)). Deviaধons between simulaধons and our numerical model can be traced back to a difference in effecধve
convecধon speed: the populaধon density feels a slightly higher effecধve convecধon νnum (d), while the establish-
ment probability profile reflects the actual convecধon speed in the simulaধon νsim (h) unধl the deviaধons in c(ξ)
become too large at high νsim. 229
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Figure 6.S4: (a) Good agreement between simulated (dots) and numerically evaluated (lines) total birth rateB and
rate of adaptaধon R. Deviaধons appear mainly at high posiধve convecধon speeds ν ≫ 0 in shallow gradients,
where the wave front is characterized by strong fluctuaধons (see Fig. 6.S3 and SI Secধon 7. (b) Our theory repro-
duces the observed trends of the treatment efficiencyQ except for the highest posiধve convecধon speeds.

In our simulations, we use K = 100, which should lead to a correction to the velocity by almost 25%.
Quantitative comparison between numerics and simulations reveals such correction. In shallow gradients
with positive convection, where the population density and establishment probability profiles are effectively
cut off at a characteristic position ξ∗ (see eq. 6.S26), we compute the effective convection speed by comparing
the cut-offs in simulated profileswith the numerical curves. The results are shown in Fig. 6.S3(d) and (h): the
population density obtained from simulations at convection speed νsim has cut-offs positions corresponding
to a numerical convection speed νnum that is shifted up by a constant. For instance, even at νsim = 0, we
observe a cut-off consistent with a convection speed νnum = 0.27. The same shift is not visible in the
apparent convection speeds obtained from the establishment profiles; in this case, νsim = νnum, except for
very high velocities, whereu(ξ) is entirely determined by the population density profile c(ξ) (which deviates
from the analytical prediction, see Fig. 6.S3c).

Despite these subtle deviations between ourmodel and simulations, we expect good agreement as long as
the population density is not too small; Since the establishment probability u(x) is typically low where the
wild-type density c(x) is high and vice-versa, and the rate of adaptationR depends only on the product of
c(x) andu(x), regions of small population density should not significantly impact the integral inmost cases.
Fig. 6.S4 shows that there is indeed good agreement between the rate of adaptationR, the total death rate
B and the treatment efficiencyQ obtained from simulations and from numerical evaluation of our model.
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7
Conclusion

This thesis has addressed the effects of ecology on evolutionary dynamics in a very simple model system:
microbial colonies grown on solid agar surfaces. This model system allowed us to isolate the effects of spatial
structure from other ecological interactions that would confound evolutionary dynamics in more complex
system. As a reward, we were able to make quantitative sense of our measurements of typical population
genetic observables.

In Chapter 2, we brought the Luria-Delbrück experiment into space by analyzing colonies grown from
single cells: population sequencing and image analysis together with simple lattice simulations allowed us to
show that neutral mutant clones in spatially structured populations can grow to large sizesmuchmore often
than would be expected from the classical well-mixed model. The accompanying Eden model simulations
hint at an underlying universality that may make our results widely applicable to other spatially structured
populations such as tumors. At a time where sequencing prices have dipped low enough for researchers
to routinely perform large-scale, spatially resolved sequencing studies in solid tumors, a quantitative under-
standing of patterns of intra-tumor heterogeneity (ITH) has come within reach, but mathematical models
often still ignore the spatial aspect of tumor growth and how it influences ITH. Our work here may serve
as a starting point for explicitly spatial models of ITH; indeed, our scaling predictions for the clone size
distribution of neutral mutations were recently applied to rationalize ITH in simulated tumors 1.

In Chapters 3 and 4, we investigated adaptation in microbial colonies. Using mixtures of wild type and
mutants, we showed that adaptation from standing variation ismuch stronger in colonies than inwell-mixed
cultures. This is a direct result of the spatial growth of the colonies. We also showed that not all microbial
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species are created equal when it comes to their evolutionary dynamics: even when population sizes and
selective advantages are identical, different species can vary tremendously when it comes to their adaptive
potential and the establishment probability of beneficial mutants. To explore these differences in more mi-
croscopic detail, we performed microscopic lineage tracking in growing colonies to show that the different
(macroscopic) evolutionary dynamics can be understood from differences in dynamics at the microscopic
scale. Varyingmicroscopic parameters such as adhesion strength systematically, or even just measuring them
accurately, is difficult, especially inside of microbial colonies. We therefore used biophysically explicit, agent-
based models to show that nutrient uptake rate, cell shape, and anisotropic friction can all have a strong
influence on the establishment probability of beneficial sectors. However, we found a mesoscopic parame-
ter, the roughness of the colony front, which was predictive of the establishment probability; changing the
microscopic parameters affected the establishment probability only because they altered the front roughness.
This finding suggests a broader look at evolutionary dynamics in microbial colonies and biofilms: since mi-
croscopic details will inmany cases be inaccessible, one should instead look formesoscopic observables (such
as front roughness) that can be predictive of certain aspects of the (macroscopic) evolutionary dynamics (see
Fig. 7.1).

In Chapter 5, we studied the establishment of mutations with a fitness effect in heterogeneous environ-
ments. While we started with standing diversity to investigate the establishment process in Chapters 3 and 4,
in Chapter 5, we used amodel system for spontaneousmutations whose fitness effect we could easily tune ex-
perimentally. I want to highlight two findings that are especially important in the grand scope of this thesis:
firstly, we had predicted in Chapter 3 that beneficial mutations would only be able to establish if they arose
in the first cell layer in the growth layer. In agreement with this prediction, we found establishment prob-
abilities on the order of 10−7 even for strongly beneficial mutations with s ≈ 20%, to be compared to an
expected establishment probability of 2s ≈ 40% in a well-mixed population. Once a mutation established,
however, its success relative to its conspecifics was astronomical: a single successful mutation could take over
almost half the population over the course of only a few dozen generations. Thus, evolution in microbial
colonies is an extremely noisy process, where most mutations are lost immediately, but a few lucky mutants
can quickly rise to high frequency. When we grew colonies from single cells on rough surfaces, we made
our second major finding: selection seemed to be almost entirely ineffectual in colonies grown on rough
surfaces, where even strongly beneficial mutants established at neutral rates. Through extensive Eden simu-
lations with environmental heterogeneity, we showed that the efficacy of selection is generically reduced by
environmental disorder, which serves as an additional source of noise that selection must overcome.

An important next step is to extend the approach taken in this work tomicrobial biofilmswithmore com-
plex colony morphologies, e.g., due to the secretion of extracellular polymeric substances, that may shape
evolutionary dynamics in interesting ways. In particular, biofilms of B. subtilॾ grown on hard agar form
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Figure 7.1: How can we understand evoluধonary dynamics on the populaধon level in complex systems such as
biofilms without requiring knowledge of all microscopic details? In this thesis, we have shown that it can be possible
to find mesoscopic observables that are predicধve of macroscopic processes.

fascinating patterns: on high nutrient concentration media, they are encased in extracellular matrix, form
wrinkles and have an overall rough exterior, while they have a feathered morphology in low nutrient con-
ditions whose statistics are well described by diffusion-limited aggregation (DLA). This existing theoretical
frameworkmay help explain evolutionary dynamics in these biofilms in the same way that KPZ universality
enabled analytical predictions in this thesis.

Finally, inChapter 6, we investigated the effect of convectionon the establishment of resistancemutations
in antibiotic gradients using simulations and analytical theory. We showed that flow, which is an important
ecological factor for manymicrobial communities such as the gut microbiome 2 or V. cholerae biofilms 3, can
dramatically alter not only the population profiles ofmicrobial population, but also have a strong impact on
the fates of mutations arising in different places in the population. The population dynamics of microbial
populations under flow conditions have recently been investigated inmicrofluidic devices4, and it would be
interesting to study evolutionary dynamics in similar experimental model systems.

What do the results in this thesis tell us about evolutionary dynamics in microbial biofilms and other
spatially structured populations in the wild? To make progress toward answering this question, additional
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complexities faced by natural biofilms can be added in one by one 5. One example is adding time-varying
growth conditions that can arise from seasons, tides or day-and-night cycles6. Such periodic growth con-
ditions could be emulated in the laboratory by growing temperature-sensitive yeast strains at time-varying
temperatures. In addition, while the evolution of resistance in spatial antibiotic gradients has been studied
qualitatively7, a truly quantitative understanding of the rate and mode of evolution in gradients and other
forms of spatial heterogeneity is not yet achieved.

The life cycle ofmanymicrobial species includes periods of sessile growth in biofilms interspersedwithmi-
gration periods. Whether microbial species evolve predominantly while they are in biofilms or swimming is
currently unknown. For example, it is possible that beneficial variants can establish in the communitymuch
more easily if they arise in free-swimming microbes that subsequently settle to grow a biofilm, compared to
if they arise within an existing biofilm, where they have to compete with their conspecifics. On the other
hand, spatial structure can afford evolutionary avenues that are unavailable in swimming population. An-
swers to such questions will require a quantitative understanding of the rate andmode of evolution in both
scenarios.

The matter is further complicated by the fact that the dominant form of biofilms in the wild and in
the human host, e.g., dental plaque 8,9, consists in communities of many different species 10. Interactions
in multi-species biofilms can be synergistic, e.g., through the exchange of public goods, or antagonistic,
through the competition for nutrients or actively through antimicrobial activity 11, and experiments have
shown that ecological interactions can change rapidly in spatially structured communities 12. While engi-
neering microbial strains of the same species to cross-feed 13 or engage in active ”chemical warfare” 14 can em-
ulate multi-species ecological interactions for isolated study, the interactions between different species will
be more multi-faceted. One reason for this is that evolution in multi-species communities need not rely on
spontaneous mutations alone; bacteria can also evolve through the exchange of genetic material (horizontal
gene transfer) by conjugationbetweenbacteria or throughbacteriophages. Bothbacteria-bacteria andphage-
bacteria interactions appear to be relatively limited in biofilms, potentially negatively impacting the efficacy
of horizontal gene transfer, and thus slowing down evolution, in sessile communities 15–17. To estimate the
relative contributions to evolution inmulti-species communities from swimming cells and biofilms requires
the combination of quantitative insights about evolutionary dynamics and horizontal gene transfer in both
growth modes.

Microbial biofilms are ubiquitous and crucial components of virtually all environments 18. Studying their
ecology and evolution is not only important for medical applications, such as combating drug resistance in
P. aeruginosa biofilms in the lungs of cystic fibrosis patients 19 or preventing the contamination of implant
infections 20. Microbial biofilms also perform a number of ecological functions in the environment, and
understanding their assembly and response to environmental change can help us predict the resilience of
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macroscopic ecosystems21,22. In addition, multi-species biofilms are often the result of ecological succession,
wherein primary consumers attach first and are later overgrown by secondary members of the biofilm 23,24.
Ecological successions also characterize the assembly ofmacroscopic eco-systems; for instance, grasses usually
regrow before trees after a forest fire 25. Unraveling general principles about the evolutionary dynamics in
biofilms is thus a formidable task with far-reaching applications.
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Appendix A
Growth and mechanics in yeast colonies

A.1 Introduction

In this Appendix, we characterize the growth of colonies of budding yeast (S. cerevisiae) at different glucose
and agar concentrationwith twomain goals: first, to compare our experimental results with the FKPP equa-
tion, see eq. (1.22) in the Introduction, i.e., we want to test whether the expansion speed v is proportional
to the square root of the individual growth rate k,

v ∼
√
k. (A.1)

Secondly, we want to estimate how nutrient gradients, from the front of the colony into the bulk, and me-
chanical pushing shape where cells grow in the colony.

A.2 Individual growth rates in liquid culture

We first measure individual growth rates of S. cerevisiae during exponential growth in YPD (20g/l peptone,
10g/l yeast extract) media with variable amounts of glucose (cG =0.5, 2, 4, 7, 10, 20, 35, 50g/l). A clonal
culture of the S. cerevisiae W303 lab strain yJHK111 was grown in YPD overnight, diluted 1:10 into fresh
media and grown for another 2 hours. 50µl of this culture were inoculated into 5ml of YPD with different
glucose concentrations in duplicate and grown shaken at 30◦C. The optical density (OD) was measured
every hour for 8 hours to determine cell density. The resulting growth curves are shown in Fig. A.1a. Fitting
the growth curves with an exponential growth model OD(t) = OD(0)2t/τ with a common initial density
OD(0) for all culture, we obtain the per capita growth rates shown in Fig. A.1b. Exponential phase growth
rates k are fitted by the Monod equation

k = kmax
cG

K + cG
, (A.2)
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Figure A.1: Measuring growth rate in liquid culture. (a) Time traces of cell density, measured by opধcal density. (b)
Growth rates at different glucose concentraধons obtained by exponenধal fits to the curves in (a), fiħed with the
eq. (A.2) (black line). Circles and diamonds are from biological replicates.

a common model for microbial growth rates as a function of the concentration cG of the substrate (here,
glucose) 1. K is a fit parameter corresponding to the glucose concentration where the cells reach half their
maximal growth rate. We achieve a good fit with kmax = 0.74hr−1 andK ≈ 0.3g/l.

A.3 Colony growth rates

To measure colony growth rates, we prepared a single batch of YP medium (YPD without glucose) with
different agar concentration (cA =1, 2, 4, 6, 8%), adding glucose after autoclaving to avoid any differences in
nutrient concentrations except for different glucose concentration. For each set of parameters (cG, cA), we
filled one 6 well plate with 5ml per well and inoculated 2µl of overnight culture into the middle of each well.
Colonies were grown at 30◦C for 5 days, with images taken every 24hwith a Zeiss AxioZoom v16microscope.
Images were binarized and colony radii extracted using custom scripts in Mathematica.

For all agar concentrations, colony radii grew roughly linearly over time, such that we used linear fits
over the first 4 days to extract radial growth rates. The results are shown in Fig. A.2a and b. As a function of
glucose concentration cG, the radial growth rate, or front speed v, exhibits roughly power-law scaling (a non-
linear fit gives a best fit with v ∼ c

1/4
G ). Using the per capita growth rate k at a given glucose concentration,

we also plot the front speed as a function of k, resulting in highly nonlinear curves that increase weakly with
growth rate for small growth rates and sharply over a small range of growth rates near the maximal growth
rate. Thus, our results show unequivocally that yeast colonies, at least for the strain and the procedure used
here, are not Fisher waves in the sense of eq. (A.1).

The front speed also decreasedwith agar concentration (see legend in Fig. A.2b). Colonies grown on high
agar concentrationwere thus smaller, but also noticeably taller (Fig. A.2c). Since a higher agar concentration
increases the stiffness of themedium andpotentially alters other physical properties, this suggest a significant
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Figure A.2: (a, b) Radial growth rates, measured from daily images of colonies growing on plates containing varying
concentraধons of glucose and agar (see panel b for legend). For panel b, the growth rates in measured in liquid cul-
ture were used as an esধmate for growth rates at the colony front. (c) Colonies grown on higher agar concentraধon
are taller and less wide, but contain overall about the same amount of cells regardless of agar concentraধon.

role of mechanical effects in shaping colony growth.

A.4 Growth layer thickness

Beyond testing the Fisher wavemodel, we can characterize where cells grow in the colonies, as follows. Since
the colony expansion is entirely caused by cell growth and division (as the cells are non-motile), we can
express the front speed as the cumulative pushing of all cells behind the front. Nutrients diffuse into the agar
occupied by the colony over time, giving rise to a nutrient concentration gradient that is maximal outside
the colony and decreases inside the colony. Since we do not have direct access to the nutrient concentration
profile in our experiments, we introduce a location-dependent growth rate k(x), in cell diameters per unit
time, depending on the distance from the colony front x, such that x = 0 corresponds to the front itself.
We can model the front speed v of a colony of radiusR as

v =

0∫
−R

k(x)dx. (A.3)

For our experiments, since the radial growth speed was constant in time, k(x) must go to zero at some
distance from the front that is roughly constant in time; otherwise, the colonywould grow faster than linear
in radius. We call the region where k(x) > 0 the growth layer. In the simplest case, cells inside the growth
layer, i.e., |x| < λG, where we call λG the growth layer width, grow at themaximal rate k(0), whereas those
outside the growth layer, i.e., |x| > λG, do not grow at all because they do not have access to sufficient
nutrients. This simplified picture is inspired by the finding above (Fig. A.1b) that cells grow at roughly their
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Figure A.3: The growth layer width λ, defined through λ = vk, as a funcধon of per capita growth rate k (a) and
agar concentraধon (b).

maximumgrowth rate until thenutrient concentrationbecomes very low,where the growth rate dips sharply.
In this approximation, we may therefore measure the growth layer width in units of cell diameters, λG/a,
directly as

λG/a = v/k(0) (A.4)

We can generalize this picture by considering other shapes for k(x) and express the front speed in terms of
the growth rate ⟨k(x)⟩λG

averaged over the growth layer as

v = a

0∫
−λG

k(x)dx = aλG⟨k(x)⟩λG
(A.5)

As shown inFig.A.3a, the growth layerwidthλG is roughly constant for lowgrowth rates before it sharply
ramps up near kmax. A higher agar percentage in themedia gives rise to a shorter growth layer (Fig. A.3b), for
all glucose concentrations. This shows that the growth layer width does not solely depend on nutrient con-
centration as one would perhaps naively expect; instead, it is also modulated by the mechanical differences
induced by different agar concentrations cA.

A.5 Single-cell microscopy & PIV

We now examine the assumption that the growth layer can be approximated as a box of length λG within
which all cells grow at the maximal growth rate. We can use eq. (A.5) to describe not only the local velocity
at the front (the radial growth rate), but also the local speed v(x) at a distance x behind the front by writing
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FigureA.4: Example for the result of parধcle image velocimetry (PIV) analysis of single-cell ধmelapsemovies in yeast.
Color and thickness of the arrows indicate the magnitude of the displacement between images (images taken every
2 minutes). Cells are about 5µm in diameter.

v(x) = a

x∫
−λG

k(x)dx. (A.6)

Thus, by measuring dv(x)/dx, we can have direct access to the growth rate at different positions in the
population.

To do this experimentally, we took time lapse microscopy movies of growing yeast fronts at the single
cell scale, grown for several hours on 1% agar at three glucose concentrations. The resulting movies were
then analyzed with the particle image velocimetry (PIV) pipeline in ImageJ to extract local displacements
between images 2, allowing us to measure v(x) directly in growing yeast colonies. This analysis corresponds
to an automated version of themanual cell tracking performed for Fig. 3.B9. An example of the PIV analysis
for one growth condition is shown in Fig. A.4. For all glucose concentrations, the local speed is maximal at
the front and decreases with distance x from the front (Fig. A.5, dots). Notably, the local speed decreases
linearlywithx; for the lowest glucose concentration, there is no change in the speed gradient until it vanishes
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Figure A.5: Measuring the local speed in the colony growth layer via parধcle image velocimetry (PIV) unveils a
disconnect between theory (lines) and experiment (dots), as cells grow and move much deeper into the populaধon
than expected naively from the front speed and per capita growth rate (a-c). The two length scales λG (Growth)
and λP (Pushing) in (d) have a raধo that is consistent for different glucose concentraধons, suggesধng a mechanical
relaধon between of the two length scales.

about 150µm behind the front. For higher glucose concentration, the local speed decreases linearly over the
whole observable range, as well. From eq. (A.6), this implies that k(x) ≈ const. is a good assumption.

A.6 Interpretation and model

In Fig. A.5, we plotted as solid lines eq. (A.6) parametrized by the front speed v(0) and the per capita growth
rate at the front. There is clear disagreement between this theoretical prediction and the measured local
speed. We found two different length scales: the width λG of the layer where cells grow, and the apparent
growth layer width λP = v(0)/k(0) expected if all cells within a distance λP contributed to pushing
the colony expansion. Since the local speed decreases linearly with x and thus k(x) ≈ const., eq. (A.6)
predicts that there should only be one length scale, but instead we find that the two length scales differ
roughly by a factor of five in our colonies, consistent across glucose concentrations (Fig. A.5d). Since the
front speed is the result of cells pushing from behind through growth and division, and we have directly
observed where growth occurs, this must be because not all growing cells contribute to pushing the front
forward. Indeed, some cellsmust contribute to growth in the third dimension, asmature colonies are several
hundred microns tall (Fig. A.2c). The pushing fraction p of cells that contribute to the colony expansion
is equal to the ratio λP /λG, around 15-20% in our experiments (Fig. A.5e). Hence, about 80% of all cell
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division in the bottom layer of cells contribute to growth in height. That colonies are nevertheless wider
than they are tall is presumably due to nutrient depletion in upper cell layers.

Our results suggest that out-of-plane growth is more prominent in colonies grown on high agar con-
centrations, leading to lower front speeds and taller colonies. Two factors may contribute to out-of-plane
growth: first, the growth of new cells could be directed in such a way that some cells form buds that are di-
rected out-of-plane and thus do not generate much in-plane stress. Secondly, friction with the agar surface
combined with growth creates an in-plane stress profile inside the colony, with no stress directly at the front
and increasing stress into the colony. This stress can be relieved by local ”buckling”, where individual cells
are pushed out of the bottom layer if the stress surpasses a threshold stress 3.

These two factors make different qualitative predictions: if the direction of budding is random then
out-of-plane growth should be equally prominent at all positions in the colony. Buckling, on the other
hand, is more likely at higher stresses and since the stress profile inside the colony is increasing, this would
imply that buckling is more prominent further away from the front. This would cause the local speed to
dependnonlinearly on thedistance fromthe front,which is at oddswithourdirect experimental observation.
Thus, unless the buckling threshold is so low in yeast colonies that cells can be pushed out-of-plane by the
small stresses created by the first few cell layers, we can rule out buckling as the major contributing factor to
out-of-plane growth. Instead, cell growth to a large degree seems to be directed out-of-plane, or redirected
through rotations of the cells, depending on the friction (viscous and potentially through active adhesion
mechanisms) between cells and their neighbors, and between the cells and the agar surface4,5. The agar
concentration could plausibly affect not only cell-agar friction, but also cell-cell adhesion: colonies on high
agar concentration are noticeably ”drier” and less macroscopically viscous when picked up with a pipet tip,
presumably because the high osmotic pressure reduces the water content of the colony.

Colony growth depends on both the growth of cells and the generation and transmission of mechanical
stresses. It seems plausible that the agar concentration cA mostly impacts the mechanical component of
colony growth, whereas the nutrient concentration cG controls the growth of individual cells. This assump-
tion would suggest that the local speed v(x) factorizes into nutrient and mechanical contributions. Using
the length scale λG and the pushing fraction p, we can then write the local speed v(x) as

v(x) = λGk

(
1− x

λG

)
× p ≈ vG(cG)× p(cA) (A.7)

Eq. (A.7) implies if we normalize the front speed v(0) as a function of agar concentration by the front speed
at a reference glucose concentration (say, cG =0.5g/l), the result should be roughly independent of agar con-
centration, since p cancels out. Likewise, dividing the front speed as a function of glucose concentration by
the front speed at a reference agar concentration (say, cA =1%), the result should be roughly independent of
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λG of growing cells agrees well with the direct observaধon via PIV.

glucose concentration, since vG cancels out. This is indeed what we find in Fig. A.6a&b. Up to a numerical
prefactor, the height of the lines corresponds to p and vG, respectively, and we can estimate the prefactors
for the case (1% agar, 0.5g/l glucose) from the microscopic observation in Fig. A.5. The results are shown in
Fig. A.6c&d. The pushing fraction p decreases roughly as c−5/4

A , while vG increases with the glucose concen-
tration as c1/4G . Using the per capita growth rates, we can also estimate the width of the layer of cell growth
λG and compare to the value found directly via PIV in Fig. A.5. We find that our estimates overestimate
themeasured values forλG slightly compared with the direct observation (Fig. A.6e). The qualitative trend,
however, is clear: a higher nutrient concentration is able to penetrate deeper into the colony, allowing for
growth further from the front.
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A.7 Discussion

In this Appendix, we have shown that the growth layer width depends both on glucose and agar concentra-
tion, i.e., it is set by a combination of resource gradients, which determine where cells grow, andmechanical
cell-cell and cell-substrate interactions, which determine where the forces created by growth and division
are directed. Our results suggest that these two effects are roughly independent: increasing the nutrient
concentration allows for growth deeper into the populations, whereas increasing the agar concentration in-
creases the propensity of growth forces being directed out of the plane of growth, thus contributing to taller
colonies, at the expense of radial growth speed. The detailed reasons for this are so far unknown, as no direct
measurements of the friction forces in yeast colonies on different substrates are available. Our results thus
provide interesting future directions for further experimental work to measure the mechanical forces inside
microbial colonies, but also for mathematical modeling of the nutrient concentration gradients in micro-
bial colonies, which have so far only been studied for spherical aggregates6, but not for two-dimensional
populations on solid substrates.
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Appendix B
Eden model with tunable line tension

B.1 Introduction

Experiments in yeast colonies suggest that the edge of some microbial colonies is characterized by a strong
line tension that acts to keep the front straight and flattenout any curvature 1,2. Since theboundaries between
two clonal sectors inmicrobial colonies move normal to the front, how the front regulates its roughness and
local curvature can have an impact in evolutionary dynamics in colonies. In the KPZ equation describing
the height h(x, t) of a rough interface, the effect of a line tension described by a term involving the local
curvature κ = ∂2xh of the front, with a line tension parameter ν

∂th = v +
λ

2
(∂xh)

2 + ν∂2xh+
√
Dη. (B.1)

Through this work, we have simulated microbial colonies using the Eden model and have achieved good
agreement between the model and experimental results. However, the Eden model has no parameter that
would allow us to tune the strength of the line tension. In this Appendix, we present one possible way of
incorporating a tunable line tension in the Eden model.

B.2 Simulation algorithm

To increase the relative importance of line tension in the Eden model, we need to modify the growth rate k
of each filled site at the front by a factor f(κ) that is proportional to the local curvature κ of the front. For
simplicity, we choose f(κ) = νκ where we call ν the line tension. The task is then to measure the local
curvature in simulations. To do this, we count the number of filled lattice sites N in a neighborhood of
radius R* and compare it with the number of lattice sites N∗ that would be filled if the interface was flat.
To see that this algorithm measures local curvature, consider Fig. B.1. At the center point (black dot), we
can fit a circle with radius r corresponding to the local radius of curvature. In a neighborhood around the

*For the simulations below, we useR = 10 as a good compromise between simulation speed and lattice artifacts.
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Figure B.1: Sketch of the simulaধon algorithm for finding local curvature. The number of filled sites in a circle of
radiusR is measured and compared to the expected number if the front was flat (dark green).

point of radius R (the ”search radius”), the numberN∗ of filled sites in the flat case is simply πR2/2. To
compute the number of filled sites when the front is curved, we have to compute the areaA. A simple but
lengthy calculation givesA = πR2−A′ ≈ R3

3r in the limit of small curvatureκ (large r), such that the ratio
between filled sites in the curved and flat case becomes

N

N∗ − 1 ∝ κ. (B.2)

Hence, to introduce a tunable line tension as in the KPZ equation, we must modify the local growth rate k
according to

keff = k (1 + νκ) = k

[
1 + aνsim

(
N

N∗ − 1

)]
, (B.3)

where we have introduced the simulation parameter νsim and the fit parameter a to connect νsim to the mea-
sured line tension ν. In the following, we first examine the scaling of the resulting interfaces and determine
the fit parameter a by comparing the interfaces to an analytically predicted front shape. Afterwards, we
present three types of simulation familiar from previous chapter that allow for a direct examination of the
effects of line tension on evolutionary dynamics.
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Figure B.2: Characterizing the interfaces created by the Eden model with tunable line tension. (a, b) As the line
tension parameter νsim is increased, the populaধon front becomes smoother, and deviates from the KPZ staধsধcs
observed without line tension, as explained in the main text. (c) The boundary between two sectors transiধons from
a KPZ-like superdiffusive random walk (l⊥ ∼ lζ∥ , ζ = 2/3) in the standard Eden model without line tension to a

standard (Brownian) random walk (l⊥ ∼ l
1/2
∥ ) for strong line tension. The exponent takes values 1/2 < ζ < 2/3

for intermediate values of νsim.

B.3 Scaling of Eden interfaces with strong line tension

To determine the scaling properties of interfaces created by the Edenmodel with line tension, we grow Eden
clusters starting from a line in a box of widthL = 250 for different values of νsim and characterize the front
roughness over time. As shown in Fig. B.2a, we recover the familiar KPZ scaling t1/3 without additional
line tension (νsim = 0), while increasing line tension decreases the temporal exponent β. The scaling of
the front roughness for different window lengths l also depends on the line tension (Fig. B.2b), decreasing
from the KPZ value of α = 1/2 to α ≈ 0.3 (l1/3 is shown as a guide to the eye). Importantly, the overall
roughness of the front decreased with increasing line tension.

Since the roughness of the boundary between neutral sectors depends on the roughness of the colony
front (see, e.g., Chapter 3), we also simulated the wandering of sector boundaries for different line tensions
and characterized the scaling of their lateral displacement l⊥ as a function of the sector length l∥ with the
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exponent ζ (ζ = 2/3 for the standard Edenmodel). The results are shown in Fig. B.2c&d: without addition
line tension, we again recover the KPZ value ζ = 2/3. For strong line tension, we obtain ζ = 1/2, i.e., the
sector boundaries become standard random walks. This is the expected result for colonies with a flat front.
For intermediate values of νsim, the exponent ζ lies between the two theoretical values (Fig. B.2d).

In summary, we have demonstrated that Eden interfaces grownwith additional line tension are smoother
than in the standard Eden model without additional line tension. This impacts the strength and scaling of
sector boundary fluctuations and can thus alter evolutionary dynamics through, e.g., the establishment prob-
ability of beneficial mutations, which depends explicitly on the scaling properties of the sector boundaries.

B.4 Tuning the model

To tune our model and compare our simulations with the deterministic KPZ equation in an analytically
tractable geometry, we simulated one edge of a beneficial sector expanding into the slower growing wild
type (see Fig. B.3a). Because of its selective advantage s, an established sectors is expected to grow at an angle
≈

√
2s relative to the growth direction, while the wild type is flat on average. In the transition region, a

crossover region arose, whose width depended on both s and the line tension ν. Without line tension, the
transition would consist in a sharp kink. While increasing line tension should change the shape of the front
in the transition region, we expected the front shape to be independent of ν far from the transition region.

To maintain the wedge shape, we need appropriate boundary conditions, i.e., we must fix the derivative
of the front to keep the wedge at a constant angle at the left boundary of the simulation box. To do this, we
increased the fitness of lattice sites at the boundary by a factor of 1+

√
(2 + s)s (see Ref. 3). This simulates

the extra offspring that cells in thewedgewould contribute if the systemwere larger. Since the interfacemust
be flat (although tilted) at the boundary for a simulation box much bigger than the width of the crossover
region, we enforce flatness at the boundary.

Solving the KPZ equation

We set up the deterministic KPZ equation with two types by writing

∂th = [1 + sΘ(x− l(t))] +
1

2
(∂xh)

2 + ν∂2xh, (B.4)

where l(t) is the position of the moving sector boundary. Since the KPZ equation is rotationally invariant,
we can rotate into a co-moving reference frame where l(t) = 0. In this reference frame, we can compute

253



=10
=75

νsim

νsim

νsim

=75 νsim=75

0 250 500 750 1000
0

10

20

30

t

h ∞
(t

)

0 250 500 750 1000
0

1000

2000

0 25 50 75
0

10

20

30

40

νsim

ν

0 200 400 600 800
- 40

- 20

0

20

40

60

x
h

(x
,t

)

0 40302010
0

50

100

150

ν

τ

   ν/2s

a b

c

d

e

Figure B.3: (a) A mutant sector (red) invading the slow-growing wild-type populaধon (black). Shown are traces of
the front every 100 generaধons, simulated at νsim = 75. (b) Shiđing the front traces such that the mutant-wild
type boundary is at (0,0), a crossover emerges over ধme. Using the parameter ν extracted from the front height
h(x ≫ 0, t) far from the crossover via eq.s (B.7) and (B.8) in panel e gives an excellent fit of eq. (B.6) (black
line) to the shiđed front traces (b). Repeaধng the procedure for different νsim, we find the measured line tension
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measured characterisধc ধmes τ ploħed against the measured values of ν also shows a linear relaধonship, with a
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shape of the mutant sector as

h̃(x̃) = 2ν log

[
cosh

(
x̃√
2ν2/s

)]
, (B.5)

which gives the crossover length scale xc =
√
2ν2/s between the mutants and wild type. Using this length

scale and dimensional analysis of the KPZ equation, we can also estimate the characteristic time scale τ ∼
x2c/ν ∼ ν/2s over which the interface is deformed starting from a sharp wedge.

In the rotated frame, the interface between wild type andmutants is vertical at x̃ = 0. In our simulation,
however, the interface moves while the mutants are flat (at x → ∞). Rotating by an angle θc = 2π −
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arccos(−
√
2s) such that themutant front line is flat atx→ ∞, but keeping themutant-wild type interface

at (0, 0), we get the shifted mutant front line for from the origin as

h(x) = −
√
2s(1− s)x+ ν(1− s) log cosh

[√
2s

ν
x

]
, (B.6)

which canbeused to fit the shapeof the front to extract the line tensionν. For largex, wehave log(cosh[x]) ∼
− log 2 + x, such that h(x) saturates at the value

h∞ = −ν(1− s) log 2. (B.7)

Simulation results

We set the wild type (black in Fig. B.3a) to have a growth rate of 1 and the mutants (red) to have a growth
rate advantage of s = 0.1 and simulated the population expansion for different values of νsim. To com-
pare the resulting shapes with the theory, eq. (B.6), we shifted the fronts of different time points such that
the boundary between wild type and mutants was at the origin (Fig. B.3b). While the wedge shape of the
mutants stayed constant over time, the wild type fell behind the original front. For long times, the wild-
type front approached a constant ”lag” h∞ far from the transition. The time traces of the wild-type lag are
shown in Fig. B.3c for two values of ν, showing that a larger line tension parameter in the simulations created
a stronger lag of the wild type. We parametrized the time traces of the lag by

h∞(t) = h∞

(
1− e−t/τ

)
, (B.8)

where τ is the characteristic time scale over which the deformation establishes, introduced above. From h∞,
we computed ν via eq. (B.7) and found the expected proportionality between the simulation parameter
νsim and the line tension ν extracted from the crossover shape in Fig. B.3d with the fit parameter a ≈ 0.5.
Plotting the characteristic time scale τ as a function of the measured line tension parameter ν, we found
excellent agreement with the theoretical prediction τ = ν/2s (Fig. B.3e).

B.5 Effects of line tension on evolutionary dynamics

Having established that line tension of varying strength can be efficiently implemented in a generalized Eden
model, we can now examine how evolutionary dynamics is impacted by strong line tension. As alluded to
in the introduction, we expect line tension to prevent strong curvature of the front, but as shown in Chap-
ter 3, beneficial sectors bulge out of thewild-type population, and likewise, deleteriousmutations are purged
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Figure B.4: a) Frequency fMT of mutants with selecধve disadvantage s over ধme t. Increasing the line tension
ν (see legend) slowed down the rate of decrease of fMT. Here, s = −0.07. b) Same as panel a), but with
ধme rescaled as t2/3. The resulধng curves are linear in a log-plot, indicaধng ln fMT ∼ −(t/τc)

2/3 (dashed
line). c) Fiষng the curves in b), we measured the characterisধc ধme of purging τc as a funcধon of ν for different
s = 0.05, 0.07, 0.10 from boħom to top. The slope of τc(ν) scales as s−4/3 (inset). d) Rescaling ধme as
t′ = (s2t/ν)2/3 and mutant frequency by the iniধal frequency f0MT collapsed all curves of fMT onto a single
master curve.

quickly because the surrounding wild type bulges out and invades the deleterious clone. Thus, if front cur-
vature is suppressed by strong line tension, this may cause selection to act more slowly because fast growing
mutants cannot invade as efficiently. On the other hand, strong line tensionwill reduce the roughness of the
front, which generally increases the establishment probability of beneficial mutants according to the results
in Chapter 4. In the following, we investigate how the purging of deleterious mutants from standing varia-
tion and the establishment of spontaneous beneficial mutations change when the line tension is increased.

Purging of deleterious mutations from standing variation

To study how deleterious mutants are removed from the population when line tension is strong, we started
from a line composed of a mixture of 10% slower growing mutants with fitness disadvantage s in an other-
wise wild-type population and followed the frequency fMT of mutants over time (see Fig. B.4a) for different
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values of the tension ν. The frequency of mutants decayed roughly exponentially over time, and increasing
the line tension slowed the rate of purging by orders of magnitude. For instance, without line tension, the
mutant fraction had decreased by a factor of 10 within about 50 generations, whereas over 1000 generations
were needed for the same decrease with strong line tension.

A closer inspection of the frequency-vs-time curves shows that the decay of fMT is not exactly exponential,
but instead is well fitted by a stretched exponential

fMT(t) = fMT(0)e
−(t/τc)2/3 . (B.9)

We can make a semi-analytical argument to explain this stretched exponential. Consider first the dynamics
of a single mutant sector in the random-walk picture described in Sec. 1.4.2. The frequency of the mutants
is equivalent to the survival function S(t) of a single mutant sector, multiplied by the initial number of
sectors. The long-time limit ofS(t) for a standard randomwalk with a bias v = 2

√
2s in a linear expansion

is asymptotically given by4

S(t) ∼ e−8st2/σ2(t), (B.10)

whereσ(t) in eq. B.10 is the standard deviation of the sector boundary randomwalk. For a standard random
walk, σ(t) ∼ t1/2, leading to an exponential decay ofS(t) over a characteristic time scale τc = 2D/s. For a
sector boundary in a populationwith a front described by theKPZ equation, however, we haveσ(t) ∼ t2/3

(see Sec. 1.4.2). The stretched exponential form of the survival function is thus a direct result of the KPZ of
the population front. We repeated the simulations for different values of s and found that the decay was
faster for larger fitness disadvantages. By fitting the mutant fraction with eq. B.9 for different values of ν
and s, we find the scaling

τc ∼ ν3/2s−2, (B.11)

which allowed us to collapse the data for all ν and s onto a single master curve described by eq. (B.9).

B.6 Establishment of beneficial mutations

If line tension can slow down the loss of deleterious mutants, what happens in the case of beneficial muta-
tions? On the one hand, our results from deleterious mutations seem to predict that selection is weakened
by surface tension. On the other hand, the interfaces and sector boundaries are less noisy for strong surface
tension, which should increase the probability of establishment of beneficial sectors.

To test this, we simulated sector formation by starting from a single mutant in the center of a line of
wild type and recorded the number of simulations where the mutant established into a sector. If the sector
established, we also measured the width of the sector over time to understand the dynamics of establish-
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Figure B.5: Establishment of beneficial mutaধons in Eden model simulaধons with surface tension ν . (a) The expan-
sion speed of establishing beneficial sectors approached its asymptoধc value very slowly for strong line tension. (b)
The establishment probability of beneficial sectors increased with the selecধve advantage s and the line tension
ν . The increase of the establishment probability u with ν was relaধvely slow, increasing as ν0.13 (panel c), and its
scaling with s changed from the theoreধcal value u ∼ s for the standard Eden model to an approximate scaling
u ∼ s2/3 (panel d).

ment. The results are shown in Fig. B.5 for s = 0.1. Without additional line tension, the sector quickly
reached its final lateral expansion speed 2

√
2s (black dashed line). As we increased the line tension ν, a long

crossover region emerged before the final speed was reached. This crossover region could be very broad - for
the largest line tensions we simulated, the sectors did not reach the final speed during the simulation time.
The crossover was deterministic and a direct consequence of the increase line tension. Establishment, on
the other hand, remained a stochastic process, although the probability of establishment was altered by the
line tension ν. The establishment probability u increased with ν, although relatively weakly – we found a
scaling u(ν)/u(0) ≈ ν0.13 (Fig. B.5c). The scaling of u with the selective advantage also appeared to be
affected by line tension, as for the high line tensions we found u ∼ s2/3, whereas for small ν, we recovered
the prediction u ∼ s (see Chapter 3).

B.7 Discussion

In this Appendix, we have introduced a mechanism for tuning the line tension in the Eden model. We
showed that the interfaces created by ourmodel are in excellent agreement with the deterministic KPZ equa-
tion. For increasing line tension, we found a higher establishment rate of beneficial mutations, although
individual establishment events were delayed compared to the classical Eden model, and a decreased rate of
purging of deleteriousmutants from the front, in agreement with experiments2. This could have important
consequences for other expanding cellular populations dominated by surface tension, such as tumors. By
limiting the effectiveness of purifying selection, line tensionmay increase the chances of evolutionary rescue
because deleterious mutants can remain in the population for a long time, which increases the probability
of secondary beneficial mutations or environmental change that eliminates the selective disadvantage of the
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mutants.
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