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Summary

Methods from artificial intelligence (AI) trained on large datasets of sequences and structures 

can now “write” proteins with new shapes and molecular functions de novo, without starting 

from proteins found in nature. In this perspective, I will discuss the state of the field of 

de novo protein design at the juncture of physics-based modeling approaches and AI. New 

protein folds and higher-order assemblies can be designed with considerable experimental success 

rates, and difficult problems requiring tunable control over protein conformations and precise 

shape complementarity for molecular recognition are coming into reach. Emerging approaches 

incorporate engineering principles – tunability, controllability, modularity – into the design 

process from the beginning. Exciting frontiers lie in deconstructing cellular functions with de 
novo proteins and, conversely, constructing synthetic cellular signaling from the ground up. As 

methods improve, many more challenges are unsolved.

eTOC/in brief

Advances in artificial intelligence are revolutionizing protein engineering and design. This 

Perspective discusses the concepts and approaches of de novo protein design, emerging challenges 

in designing structure and function, and the frontiers that lie ahead in deconstructing cellular 

processes with de novo proteins.

Introduction

Proteins can accelerate the speed of chemical reactions by many orders of magnitude, 

convert the energy of light into chemical energy, and regulate the myriads of processes 
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within cells and organisms with the level of accuracy and precision required to sustain 

life. Because of these powerful functions, natural proteins have long been an attractive 

target for molecular engineering. The goals of protein engineering range from understanding 

the mechanisms of molecular and cellular functions to harnessing proteins for practical 

applications in catalysis, biotechnology, and as precision tools in discovery science and 

medicine.

The field of protein design is now fundamentally – and practically - rethinking this 

approach. Rather than reengineering existing proteins, it is becoming possible to build 

proteins with intricate architectures and functions – as powerful as those in nature, but new 

and user-programmable – from the ground up. This is the concept of de novo design1, 

designing proteins from engineering principles or blueprints, without relying on existing 

starting points found in nature.

One can of course ask, why would one build everything new, if one can borrow, reuse, 

and reprogram from nature, or even arrive at functions new to nature despite starting 

from existing proteins2? Indeed, the approach of evolving or recombining existing protein 

components for new functions has been incredibly successful2,3, and de novo design has 

long lagged behind because of its apparent limitations. Designed proteins, if less active 

than their natural counterparts, have required extensive screening campaigns to improve 

activity, and many desired functions seemed out of reach4. But if we could design functional 

proteins completely de novo, from the ground up, without the idiosyncratic features of 

evolved proteins, there may be several distinct advantages (Fig. 1A). The most obvious one 

is to enable functions not yet seen in nature (and for which there are no obvious existing 

starting points for directed evolution). The second advantage is that de novo design could 

allow us to create proteins that integrate engineering principles – tunability, controllability, 

modularity – into the design process from the beginning. We could engineer de novo 
proteins a priori to be (i) tunable, such that it is easy to generate versions with precisely 

altered biochemical parameters, (ii) controllable, such that protein function is responsive to 

internal and external stimuli, and (iii) modular, such that we can integrate different functions 

easily into composite molecular machines and assemblies.

Artificial intelligence (AI) promises a considerable leap in enabling this vision for de 
novo design. Recent advances in the accuracy of protein structure prediction through 

deep learning5–7 have profound influence on the inverse problem, protein design, and are 

changing how de novo design is conceptualized. Classical approaches to protein design first 

define a protein backbone structure at the atomic level and then find a sequence that is 

consistent with that structure8. Designing “function” adds a definition of the structure of 

an active site (typically the relative atomic positioning of key catalytic or binding residues) 

that is built into a designed protein “scaffold”. Much of the difficulty of designing function 

lies in the fact that the designed protein needs to adopt the desired functional site structure 

with extraordinary precision. Even deviations of less than 1 Angstrom in atomic positions 

can cause the design to fail (if we, for example, think of the precise geometric requirements 

of hydrogen bonds). Consequently, much of the method development – and the challenge – 

of de novo design focuses on generating proteins that precisely adopt the desired geometry 
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(specific conformational dynamics and their timescales are other key challenges that I will 

discuss further below).

In contrast, generative approaches from deep learning offer the possibility, in principle, of 

designing structure, sequence, and function at the same time. The key conceptual leap seems 

clear, as structure, sequence, and function are intimately linked. A series of engineering 

problems of increasing difficulty illustrate the progression of design approaches that are 

currently being explored (Fig. 1B): (1) If we had a blueprint of the overall architecture of 

a protein (say, a barrel), could we experimentally realize instances of that architecture that 

are geometrically diverse (say, barrels of different sizes)? (2) If we had a blueprint of the 

positions of the most important atoms of a functional site in a protein, could we build a 

protein around this functional site, without needing to specify the protein fold or architecture 

that may be optimal for that function? (3) If we just had a function we wanted to design, 

could we ask a deep learning model to produce both a functional site and a protein sequence 

and structure model that harbors this site at the same time? (4) Or could we even simply 

ask the computer to design a protein that functions as desired? The answer to the first two 

questions is already yes in principle, approaches for the third are in development, and other 

applications – and more – are coming within reach.

The excitement about these advances in deep learning applied to de novo design does not 

mean that all problems are solved. Much the opposite, the rapid succession of new methods 

and their emerging successes in applications shift the focus from simpler design goals to 

many, often unsolved, larger problems; key and long-standing challenges of accuracy and 

precision, consideration of protein dynamics and conformational landscapes, and the scale 

of design problems are increasingly important. I will organize this review around these key 

challenges, advances, current state, and future opportunities. I will begin with concepts and 

approaches of de novo protein design, followed by chapters on (i) frontiers in design of 

new protein structures, (ii) new molecular functions, (iii) de novo proteins interfacing with 

cellular functions, and (iv) an outlook discussing long-standing and new problems. I will 

highlight developments in de novo design primarily in the last 5 years; there are many 

excellent reviews of earlier milestones (see Table 1 for a non-exclusive list of topic-focused 

reviews).

Concepts and approaches of de novo protein design

For several decades, approaches to computational de novo protein design used physics-based 

approaches and atomistic representations, grounded in structural biology principles and rules 

derived from naturally occurring protein structures. Now, advances in artificial intelligence 

are leading to rapid changes in methods. Still, many key concepts of de novo design and 

important challenges apply to both physics- and AI-based strategies.

Computational protein design as an optimization problem—Computational 

protein design is most fundamentally formulated as an optimization problem (Fig. 2A): 

Given a desired structure (and function), design methods seek to predict an optimal sequence 

that stably adopts that structure (and has that function). De novo design, which I focus on 
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here, does not start from naturally occurring, evolved proteins but aims to expand the space 

of protein structures, sequences, and functions beyond those seen in nature.

A key challenge is that the space of potential new sequences and structures is vast, sparsely 

populated with folded and functional proteins, and poorly mapped. For example, for a small 

protein of 100 residues there are 20100 = ~10130 sequence possibilities when considering 

the 20 naturally occurring amino acid types. Since the number of possibilities is larger than 

the estimated number of atoms in the universe (~1080), trying (termed sampling) all these 

sequences and their possible structures is impossible. Instead, efficient search algorithms 

are needed to navigate the enormous space of possibilities. At the same time, there are in 

principle vast numbers of de novo proteins with new sequences, structures, and functions 

that could be found.

Because functional proteins are rare among all possibilities, we also need rapid methods to 

distinguish between successful and unsuccessful sequences using computed “scores”. Most 

design methods have used either empirical or physics-based scoring or energy functions9 

that aim to estimate protein stability typically by considering atomic packing interactions, 

hydrogen bonding and electrostatic interactions, and solvation terms. The key challenge 

is to balance accuracy with speed, and this compromise necessitates approximations. 

Several sophisticated and well-tested atomistic simulation methods exist that use molecular 

dynamics with physics-based energy functions or even quantum mechanical calculations. 

However, each design candidate needs to be evaluated much faster than typically possible 

with these methods or else the approach is unlikely to find any viable solutions, even 

computationally. Unfortunately, a step-wise approach, first using approximate scoring 

functions followed by more accurate refinement, has proven difficult because fast, highly 

approximate scoring function tend to poorly correlate with the true free energy of proteins. 

In contrast, statistical approaches that learn from evolutionary sequence patterns10 and more 

recent machine learning approaches (discussed below) that take as input even larger amount 

of data from sequence repositories instead of physics-based scores are revolutionizing the 

task of finding experimentally viable sequences.

Still the most fundamental and generally unsolved problem is the design of function. As 

computational design is an optimization problem, we need a quantifiable definition of 

“function” to optimize towards. Herein lie several challenges. Most fundamentally, such as 

for an enzyme, we may not have a sufficiently precise description of the requirements 

for function – such as defined conformational dynamics or electrostatics in an active 

site – even if we could design these properties accurately (see a recent perspective on 

challenges in enzyme design11). There are often multiple requirements for function – such 

as protein stability, the ability to adopt several conformations in a catalytic cycle, their 

rates of interconversion, specific recognition of desired interaction partners and avoidance of 

others, and more. Moreover, functional requirements can involve trade-offs, such as activity 

at the cost of stability, and computational approaches for multi-objective optimization are 

needed to balance these competing objectives. Finally, our ability to engineer many of 

these requirements with sufficient accuracy and precision is still limited, a challenge that I 

will come back to in the chapter on de novo design of molecular functions further below. 

Dependent on the design goal and the availability of a suitable starting point (a naturally 
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occurring protein) with an activity related to the target function, directed evolution may 

be the method of choice because the complex optimization criteria are implicitly encoded 

in an experimental screen for function in the desired context; even novel functions can 

be reached2. On the other hand, the mechanism by which the resulting functional proteins 

operate may not always be clear, and these proteins could therefore ultimately be less 

tunable and engineerable if the effects of mutational changes cannot be predicted.

Sequence optimization with atomistic modeling: fixed and flexible backbone 
design—To make protein design tractable given the challenges of sampling and scoring 

described above, most design approaches make a key conceptual simplification12: They 

divide the design problem into two steps: the first step generates a protein structure 

backbone (without a defined sequence), and the second step optimizes a sequence given 

that backbone (Fig. 2A). The second problem, termed fixed backbone design, was tackled 

first.

A milestone in fixed backbone design was reached in 1997 with the first complete 

computational redesign of a backbone structure existing in nature, a 28-residue zinc finger 

protein8. The design used discrete sampling of amino acid side chains with different 

conformations and residue types, a physics-based scoring function, and a deterministic 

optimization algorithm that found the global minimum energy sequence. A next milestone 

was the first computational design of a protein fold not found in nature, Top7. The design 

process using the modeling program Rosetta to first generate a new protein backbone (I will 

explain how in a section on structure generation using atomistic modeling further below), 

followed by iterative cycles of (i) sequence design given a fixed backbone and (ii) backbone 

minimization given a fixed sequence13. The Top7 example illustrates a key concept: Protein 

backbones are not fixed but they change, albeit often only slightly, when we make sequence 

changes in design or when proteins perform their functions. Many approaches have been 

developed to take this backbone flexibility into account in the design process, either by (i) 

backbone minimization interleaved with fixed backbone design as in the Top7 example13, 

by (ii) sampling small backbone adjustments during design14,15, or (iii) by pre-generating 

backbone ensembles onto which sequences are designed and scored16,17.

Sequence optimization with AI: learning the language of proteins—Increasingly 

deep learning methods are applied to protein sequence design. AI-based protein structure 

prediction methods have learned from the vast amount of information in the database of 

protein structures (PDB) and sequence information for those proteins. Applying similar 

concepts, protein sequence design methods can learn from the vast amount of information in 

sequence databases, including those for which there is no structural information.

There are now many different machine learning models that have been developed for 

protein sequence design and structure generation (for recent reviews see18,19). Typically, AI 

methods for sequence design are evaluated by the extent to which the sequences predicted 

by the model resemble known sequences. A common metric is native sequence recovery, 

the fraction of predicted amino acid types at each position that are identical to those found 

in a native (naturally occurring) reference sequence. I will primarily focus the discussion 

here on AI models that have been experimentally validated. Experimental validation is 
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essential to determine the true success of design methods because only one (or a few) 

incorrectly predicted amino acids in the core of a designed protein will result in catastrophic 

experimental failure but only a small decrease in native sequence recovery.

One class of machine learning models that has been successfully applied to protein design 

are large language models (examples include ProtGPT220, ESM-27 and ProGen21). These 

models are trained on predicting missing amino acid “letters” in a protein sequence 

(analogous to language models trained on predicting missing words in a sentence). Once 

trained, protein language models can generate new protein sequences (just as ChatGPT is 

trained on text and can generate new text). ESM-27 is a language model trained solely 

on sequences (not structures) that has been applied to designing new proteins that are 

stable and monomeric when experimentally tested22. Notably, these proteins are predicted 

to have diverse structures including ones dissimilar to naturally occurring proteins (albeit 

there are no experimentally determined structures of these designs to date). These results 

indicate that the model may have learned an underlying grammar of proteins that generalizes 

beyond the training examples. ProGen21 was similarly trained solely on protein sequences, 

but in this case from >19,000 protein families including labels of functional properties. 

For experimental evaluation, ProGen was fine-tuned on enzyme families (or a curated 

enzyme dataset) to generate designed variants with catalytic parameters similar to the natural 

proteins, including several with low (down to ~31%) sequence identity to any protein in 

the training set. Like ESM-2, ProGen does not require a protein structure for design but 

does require large datasets of sequences for a given protein family. Analogously, a previous 

machine learning model, UniRep23, was shown to predict functional properties of proteins 

to enable variant engineering when fine-tuned on appropriate datasets. A different study 

showed that language models can be adapted for design of diverse functional sequences 

without the need for sequence alignments24. This method successfully generated diverse, 

well-expressing nanobodies for which alignments are difficult because of high diversity 

in loop lengths and sequences. Language models were also successfully applied to model-

guided affinity maturation of antibodies25.

Other models for sequence design take both sequence and three-dimensional structure as 

input. Given a fixed protein backbone, these models predict amino acid identities using 

the local structural environment as context26 (sometimes represented as a graph27,28). 

ProteinMPNN28 builds on a prior model for graph-based protein design27 and has been 

extensively validated experimentally on designing proteins with existing and novel folds and 

large symmetrical protein assemblies. In addition, the model has been fine-tuned to predict 

the effect of single amino acid point mutations (ThermoMPNN29) using large datasets of 

stability measurements30. Frame2seq31 is a recent model that, in contrast to ProteinMPNN, 

predicts sequences in a single pass with increased or comparable accuracy but improved 

speed and a score that reflects prediction accuracy. One important question is to what 

extent deep learning models generalize, i.e. make predictions outside of the datasets they 

are trained on. Here, experimental validation suggests that Frame2seq may be able to design 

stable proteins with undetectable similarity to the starting protein, allowing exploration of 

novel sequence space. Overall, the high success rates of AI-based sequence design methods 

in experimental validation (often >10%, in favorable cases >50%) vastly increases the 

number and types of applications addressable with computational design.
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Structure generation using atomistic modeling: design of all major fold 
classes and symmetrical assemblies—Experimentally validated, state-of-the-art 

models for de novo protein sequence design, such as ProteinMPNN28 and Frame2seq31, 

require a protein backbone as input. This requirement poses two problems. First, one needs 

to have a method to generate new protein backbone conformations (Fig. 2). Second, one 

needs to assess whether these backbones are “designable”, meaning that there exists at least 

one sequence that stably folds into that structure.

The most obvious way to fulfill the designability criterion is to start with a protein backbone 

conformation existing in nature and repurposing it for a new function. Indeed, this approach 

has been successful in many cases. For example, computational design approaches have 

been developed to redesign enzymes for altered substrate specificity32 and protein-protein 

interfaces for orthogonal signaling33. However, seemingly straightforward changes in 

specificity can be surprisingly difficult to design with computational approaches. A primary 

reason is the limitation given by the starting backbone conformation. For example, simply 

replacing a hydrophobic with a polar side chain to interact with a more polar substrate may 

not place the polar functional group in precisely the correct geometry for optimal hydrogen 

bonding with the new substrate, and even small deviations in geometry can have detrimental 

effects on function. For these engineering problems with a close starting point, directed 

evolution strategies are more suitable.

For generating protein backbone conformations de novo, the problem of designability can 

be solved in very elegant ways for all-helical structures. Here, breakthroughs were made 

when applying a set of parametric equations describing the geometry and relative orientation 

of interacting helices (Crick’s parameterization), which make it straightforward to generate 

large sets of designable helical coiled-coils. Extensive design and experimental validation 

studies led to a systematic description of a “periodic table” of coiled-coil architectures34. 

Crick’s parameterization can be extended to arbitrary helical bundle architectures35 that, 

when designed and tested in the laboratory, can be extremely thermostable36. Moreover, 

helical architectures can be spliced together37: The regular geometry of helices allows the 

alignment of helices in different proteins, leading to a facile method to generate a range of 

structurally distinct proteins37 and larger helical architectures through fusion of overlapping 

helical regions. Helical repeat proteins with different curvature38 then allow design of 

large assemblies with an impressive systematic variation in geometries39. The diversity 

of designable all-helical structures still underlies many of the successful applications of 

de novo designs4,40,41. However, while the problem of designing alpha helical proteins 

is largely solved due to our understanding of the design rules, more complex functions 

may require more structurally diverse structures with deviations from canonical helical 

geometries.

Much progress has also been made with the de novo design of protein folds containing 

a mixture of alpha helices and beta strands. A typical design process follows a four-

step approach: The first step defines a “blueprint” of the desired protein fold topology, 

defined as the identity and connectivity of alpha-helical and beta-strand secondary structure 

elements (Fig. 2B). Blueprints allow for the definition of new fold topologies not found 

in nature13. The second step is to assemble a protein backbone from peptide fragments 
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(helices and strands) according to the blueprint and connected by short loops (Fig. 2B). 

Peptide and loop fragments are typically taken from overrepresented fragments in the 

PDB, thus ensuring designability at least at the level of local (one-dimensional) sequence-

structure compatibility13. Designability at the fold level can be assessed by rules found 

in existing protein topologies, such as organization of secondary structure elements into 

tertiary motifs42. An impressive example was the de novo design of symmetrical TIM-barrel 

proteins43, a long-standing challenge in design that required specific side chain-backbone 

hydrogen bonds for defining the strand register between the barrel repeat units to succeed. 

The third step involves sequence design, often iterated with backbone minimization, as 

described for Top713 above. This step generates sequences predicted to be optimal for the 

desired input structure. A final step assesses designed sequences in silico by predicting 

their structures and comparing the prediction to the intended backbone. Designs passing this 

test are experimentally validated. These approaches led to the design of diverse alpha-beta 

protein folds38, and were generalized in methods such as TopoBuilder44.

The design of structures with exclusively beta-sheet secondary structures (all-beta proteins) 

poses distinct challenges. For example, all-beta proteins show a tendency to aggregate. 

Moreover, attempts to derive parametric design methods, such as for helical bundles, have 

not been successful. Instead, breakthroughs were made through the realization that beta-

barrel structures in nature have defined defects that allow relief of strain that would be 

present in idealized barrels45. This principle allowed the design of a range of beta-barrel 

geometries and a functional fluorescence-activating beta-barrel45. Other design efforts have 

generated beta-sandwich folds46,47.

In addition to generating new tertiary structures with different folds, computational design 

has also been applied to generate quaternary structures. Particularly exciting are the 

designs of a large variety of symmetrical assemblies with impressive sizes, with important 

applications as delivery vehicles, reaction compartments, or nanoparticles for vaccines48. 

Designing these assemblies typically involves docking of the component (natural or de 
novo) monomers in the desired symmetry, and redesign of the resulting interfaces. The 

design of these architectures is aided by symmetry: any designed interface interaction (if net 

favorable) will be repeated many times in the assembly, adding up to overall stabilization.

All the structure generation methods discussed above require a desired target structure or 

blueprint that needs to be prespecified at the start of the design process. The AI-based 

structure generation methods described in the next section do not have that requirement, 

opening up new avenues for the formulation of design problems.

Structure generation using AI models: natural and novel folds—The 

breakthroughs in AI-based methods for protein structure prediction, such as Alphafold25, 

trRosetta49 and RoseTTAFold6, have inspired numerous recent advances to invert these 

models for design: Instead of predicting a structure given a sequence, the task is to generate 
a structure from scratch and then predict its sequence (methods that generate sequences and 

structures at the same time are less explored at present). One of the key differences to the 

parametric or blueprint-based structure generation methods in the previous section is that 
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AI-based methods do not necessarily require definition of the desired protein structure or 

fold class a priori.

Among the first AI-based approaches that were experimentally validated by de novo 
design is protein “hallucination”50 that inverts the trRosetta structure prediction model for 

structure generation. Here, sequences are optimized to adopt predicted tertiary structure 

contact maps that resemble those of natural proteins but are different from those of random 

sequences. While hallucination generates both backbones and corresponding sequences, 

many hallucinated designs were not successful when tested experimentally. Considerably 

higher design success rates were reached when the hallucinated backbones were redesigned 

with ProteinMPNN in a second step28. The necessity of this second step may reflect the 

insensitivity of current protein structure prediction methods to amino acid point mutations 

that can be catastrophic in protein design. Hallucination has been used to generate proteins 

and symmetrical assemblies with experimentally validated structures50,51.

More recent AI-based protein design strategies use diffusion models52–54 borrowed from 

image generation. Diffusion models start with images that are successively “noised”, 

followed by training a network on the noised samples to recover the original images. In 

the case of proteins, diffusion models start with protein structures and add successive noise 

to the protein coordinates, followed by training to recover the original structures. Using 

these models for design, one starts from random noise, and the denoising process generates 

samples of protein structures with properties of those resembling typical proteins (Fig. 

2D). One such model, RFdiffusion53, has been used to generate experimentally validated 

protein monomers, symmetrical assemblies and protein binders, and appears to outperform 

hallucination-based approaches. Another diffusion model, Chroma54, has been used to 

generate experimentally validated protein monomers. A particularly exciting property of 

diffusion models is that they can be conditioned in various ways, such as generating 

particular fold topologies (Fig. 1B – 1) or preserving specified functional sites (Fig. 1B 

– 2), applications that will be discussed in the chapter on de novo design of molecular 

functions below.

Frontiers in design of new protein structures

As outlined above, proof-of-principle studies in de novo protein design have built diverse 

representatives of the major secondary structure architectures of proteins (all-alpha, mixed 

alpha-beta, and all-beta) as well as impressive higher-order symmetrical assemblies of them. 

Moreover, new protein structures can now be generated with considerable experimental 

success rates4 (often > 10%), with further increases through the development of recent AI 

models for both structure generation and sequence design. In this chapter I will focus on 

frontiers in design of protein structures. I will describe approaches to explore novel fold 

space, test mechanistic principles through reengineering them, and engineer user-defined 

shapes tunable for new protein functions. Together, these design strategies begin to build a 

framework for the de novo design of complex architectures and molecular machines.

Principles through bottom-up construction—While naturally occurring proteins 

occupy a limited number of protein topologies or folds, the early design success of Top713 
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demonstrated that a stable new topology not seen in nature could be generated through 

computational methods. Generalizing this idea, a systematic exploration of alpha-helical 

coiled-coils led to the design of novel architectures and development of principles to exploit 

these architectures for diverse functions55. Recent advances in AI-based computational 

protein design now allow in principle to map protein fold space systematically. New 

backbone generation methods such as GENESIS56 are being developed to do so, and 

could be used to generate novel folds likened to cosmological “dark matter”. Ultimately, 

more systematic maps of protein fold space could (beyond generating starting materials for 

engineering) allow for better quantification of designability principles and thereby advance 

the speed and accuracy of design.

In naturally occurring proteins, functional mechanisms are often coupled in complex ways, 

reflecting aspects of the history and context in which functions evolved. In contrast, building 

new functions from the ground up might allow the dissection of principles that are difficult 

to entangle in evolved systems, such as principles of conformational switching, allosteric 

control, or mechanical stability. Designing these complex functions de novo is a difficult 

problem currently but could be reachable in the future.

Finally, a key frontier is the ability to dissect quantitative determinants not only of 

molecular, but also of cellular, tissue, and organismal functions. Here, de novo designed 

proteins could be engineered to have precise and systematic variation of molecular 

properties that in turn tune higher-order biological processes (I will come back to this aspect 

in a chapter on de novo proteins for cellular functions below).

Precise control over protein geometries: Synthetic fold families for function
—Nature does not invent a new protein fold for every new protein function. Instead, 

existing protein folds are customized and optimized for new functions through changes 

in fine-grained geometries of functional sites and tuning of relevant protein dynamics. 

To design biological functions with biologically useful activity and required accuracy, 

computational design should therefore be able to exert precise control over fold shape 

as well as functional site geometry and dynamics. Considerable progress has been made 

with controlling overall course-grained variation of protein folds, as described above. In 

this section, I will highlight advances with developing methods that allow fine-grained 

control over the precise geometries of proteins to optimize details of atom-level interactions 

in functional sites. I define “geometry” as the variation or features including length and 

orientations of secondary structure elements within a given fold topology (the identity and 

connectivity of secondary structure elements).

The blueprint structure generation methods (Fig. 2B) described earlier typically generate 

idealized versions of the targeted fold topology, and although thousands of stable variants 

can be designed57, they often are very similar to each other (1–2 Å root mean squared 

deviation, RMSD). Several approaches have been developed to instead systematically 

sample fine-grained geometrical features58–60 such as pocket shapes59. Since a large fraction 

of evolutionary variation involves diversity in positioning of helical elements, the LUCS 

sampling method58 enables generation of synthetic fold families with tunable geometries 

through systematic variation of position, orientation, and lengths of helices (Fig. 2C). 
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Several experimentally determined structures showed how the de novo designed proteins 

with identical fold topology can have large diversity in geometry, in each case in excellent 

atomistic agreement with the design model. The ability to in principle sample thousands of 

finely tunable geometries should allow progress with another frontier: the design of defined 

dynamics and conformational changes (discussed further below).

Complex shapes and blueprints for protein machines—The ability to generate 

larger protein structures through helical fusions and controllable oligomeric assemblies 

opens up new avenues to engineer more complex architectures with arbitrary shapes. These 

shapes could be, for example, the parts of molecular machines and motors (such as rotors 

and axels), which would need to break symmetry to undergo motion (rotation around the 

axel). A fascinating example of the design of diverse synthetic protein-based rotor and axel 

components and their assembly to prototype protein nanomachines61 was recently described. 

There are many open challenges such as driving rotation through energy conversion using 

chemical fuels.

Further advances in AI-based methods might allow design of complex protein shapes for 

nanoscale machines and biological patterns by first drawing a component blueprint and 

assembly plan, followed by custom-optimization of the required protein shapes. In addition, 

the design could consider the engineering principle of modularity during the design process 

of these larger assemblies so that they can be built up from plug-and-play pieces.

De novo design of molecular functions

The progress made with the accurate de novo design of new protein folds and diversified 

shapes and geometries, with success rates approaching >10% or even >50% dependent on 

the design goal4, contrasts with the ongoing challenge of designing new protein functions. 

Typically, computationally designed proteins provided a starting point with robustly 

measurable but low activity that would subsequently need to be optimized experimentally 

to achieve practically useful functions. With the advances of deep learning methods, this 

paradigm is beginning to change, at least for an initial range of functions. I will first 

highlight general principles of computational design of function, then outline how AI-based 

methods are changing the process, and finally describe state-of-the-art applications and 

frontiers.

Principles for designing function: motifs and scaffolds—Most generally, 

computational design of function (Fig. 3) involves two steps: The first step defines the 

requirements for function and the second step optimizes a protein structure and sequence 

that matches these requirements. With advances in deep learning applied to proteins, how 

these steps are carried out is changing rapidly, increasingly with notable success rates.

Most computational approaches to date define the requirements for function as precise and 

pre-organized active site geometries (Fig. 3A, B). More specifically, these geometries are 

often defined as the relative position and orientation of functional groups of amino acid 

residues in a protein active site – for example the positioning of an arginine guanidinium 

group in suitable hydrogen-bonding geometry and distance to a carboxylate on a protein or 
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small molecule binding partner. The key challenge then is to achieve this precise positioning 

for multiple interacting groups in a functional site stably designed into a protein scaffold.

Initial successful applications of this concept defined a few functional site geometries, also 

called motifs, either by rational design of active site interactions or by borrowing motifs 

from natural proteins, and then transplanted (matched) the motif into a different naturally 

occurring protein that was used as scaffold62. These approaches are principally limited 

in several ways: First, the precision with which any motif can be accommodated in a 

scaffold is intrinsically constrained by the available (natural protein) scaffold backbones. 

To optimize the motif precision, only small adjustments to the backbone were possible in 

earlier design processes. As a result, the desired geometry was never placed exactly in the 

desired geometry, often resulting in loss of function. Second, naturally occurring proteins 

are often only marginally stable. Placing a new functional site into them can therefore lead 

to unfolding. Third, more complex functional sites with more than 3 to 4 residues can 

frequently not be matched with reasonable precision to any natural scaffold.

The first and second problems can be addressed by using libraries of de novo designed 

proteins as scaffolds (Fig. 3B). Approaches where scaffolds can be finely tuned in their 

geometries, such as helical bundles through parameterization63 or other folds through the 

structure diversification approaches58–60 described above, are particularly successful. In 

addition, de novo designed proteins are often extremely stable, overcoming issues with 

placing functional sites into them.

The problem of not finding any suitable matches in a given library of pre-generated de novo 
scaffolds is more complex. To a certain extent, this problem can be overcome by increasing 

the numbers: generating tens of thousands of potential motifs through computational 

methods64,65, and matching these into libraries of hundreds or thousands of scaffolds65,66.

However, more general approaches that optimize (or even generate) the protein scaffold 

given a functional site definition, are necessary. Solutions to this “motif scaffolding 

problem” are in active development using various AI models for proteins. For example, 

given a motif geometry as input, both protein hallucination67 and diffusion53 can in principle 

generate a suitable scaffold around that motif for a range of scaffolding problems (Fig. 1B – 

2; Fig. 3C). The key challenges here are in assessing (i) that the generated protein backbone 

is indeed designable and (ii) that the precarious details of non-covalent interactions are 

sufficiently accurate to stabilize the functional site in its desired geometry. Both criteria are 

currently assessed by predicting the structure of the generated design sequence using an 

orthogonal deep-learning method that was not used in backbone generation. While a useful 

computational consistency check, these methods can be insensitive to the effect of small 

details of interactions. Moreover, most of these methods currently do not explicitly model 

any non-protein ligands. Nevertheless, the reported success rates with these approaches 

in functional assays, as detailed for specific applications below, are impressive. Still, 

few functional designs generated by these methods to date have been validated by high-

resolution experimental structures; further data are therefore needed to systematically assess 

the accuracy of designed functional site geometries.
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Finally, AI-based methods should in principle also be applicable to the first step: definition 

of the requirements for function. An example is the MaSIF (molecular surface interaction 

fingerprinting) method that captures “chemical fingerprints” of suitable interaction interfaces 

on a protein target that can be computationally matched with complementary surfaces to 

generate de novo protein binders66 (Fig. 3E). In a different approach, language models 

trained on protein families appear to encode requirements for function, because these models 

can be used successfully to generate designed variants with that function21.

Molecular recognition: protein-protein interactions—The de novo design of protein 

binders recognizing target protein partners68 has led to exciting applications such as 

selective cytokine mimics69, and protein inhibitors of a histone methyl transferase70 and 

the SARS-Cov2 spike protein53. The first approaches to computational binder design 

created new interfaces between existing proteins71 and altered the specificity of existing 

interfaces72. A key development was “hotspot-directed” design73, later generalized using 

a “rotamer interaction field” approach45,65: Here, disembodied amino acid side chains are 

docked against a target surface of interest to identify ideal interactions in a desired surface. 

In a second step, these docked side chains are incorporated in a scaffold protein to generate 

a binder (Fig. 3D), first using natural scaffolds and later de novo designed proteins. An 

impressive larger-scale design study assessed the success rates of this approach65. For a 

panel of 12 targets with different shapes, the computational approach could generate binders 

for all targets, with success rates for identifying binders in the micromolar range between 

<0.01 and 1% (using libraries of 15,000 to 100,000 design candidates per target). To achieve 

nanomolar to picomolar binding affinities, the binders (all hyperstable mini-proteins smaller 

than 65 amino acid residues) were subsequently optimized using mutational screening.

Recent AI-based methods to protein binder design constitute a step advance (Fig. 3E, F), 

leading to higher success rates without reliance on large libraries or extensive experimental 

optimization. For example, RFdiffusion was shown to generate binders in the micromolar 

range for 5 targets with a 19% estimated success rate, testing fewer than 100 designs 

per target53. For two targets, low nanomolar binders were identified with no further 

experimental optimization. Designs generated using the MaSIF method identified binders 

for 4 targets66. For one target, the method yielded a low nanomolar binder without 

experimental optimization. While the RFdiffusion study above used predefined interaction 

hotspots on the targets, AI methods such as MaSIF could also be applied to identify good 

interaction surfaces on targets for which there are no known interaction hotspots. Another 

promising approach applies iterative design and structure prediction cycles to refine initial 

designs in a process akin to in silico directed evolution74. The Sculptor75 method uses 

deep learning to optimize the backbone conformation of a protein binder for a given target 

surface. This method addresses a long-standing challenge in computational design: to mimic 

the ability of antibodies to evolve high shape complementarity to many diverse targets by 

exploiting the conformational plasticity of loops. In addition, computational design methods 

such as Sculptor have the advantage over experimental antibody selection methods that the 

target surface can be specified a priori.

Despite significant advances in binder design, not all challenges are addressed. Key 

difficulties include the design of binders for target surfaces that are highly flexible or 
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very polar. Nevertheless, progress is being made with explicitly considering flexibility in 

molecular recognition76 and biased design for polar contacts in the interface66. It will 

be interesting to analyze the growing number of successfully designed de novo binders 

for privileged interfaces or interaction modes. As yet, helical interaction surfaces on the 

designed binder are overrepresented (although not exclusively). Helices are more designable 

owing to their regular geometries, well-known design rules, and the intrinsic property that 

backbone donor and acceptor groups are internally satisfied; hence, the detrimental effect of 

unsatisfied buried hydrogen bonding donors and acceptors in helical interface is minimized.

Molecular recognition: protein-small molecule interactions—Small-molecule 

recognition is key to numerous protein functions including catalysis and signaling. Design 

of proteins binding to small molecules has remained a difficult problem, with few examples 

of engineering small molecule binding sites de novo into existing proteins77,78, as well as 

de novo designed helical bundles63 and a beta-barrel45. In particular, highly polar or flexible 

small molecules are more challenging targets due to the difficulty of optimizing the precise 

geometries of polar contacts or the entropic penalties incurred when binding ligands with 

many rotatable bonds. Overall, the achieved affinities are typically in the micromolar or high 

nanomolar range before experimental optimization. Nevertheless, these approaches offer 

exciting opportunities for design of small-molecule-induced assemblies to control extra- and 

intracellular signaling processes.

Several deep-learning approaches have been proposed to scaffold motifs for interactions 

with small molecules. To date, many studies report in silico benchmarks. Experimental 

success (although no experimentally determined structures) has been reported for 

scaffolding metal binding sites53. Very recently, an all-atom version of RFdiffusion, 

RFdiffusionAA,79 has been applied to design proteins binding to the therapeutic 

digoxigenin, the enzymatic cofactor heme, and other targets. For digoxigenin, ~4,400 

designs were experimentally screened to identify three designs that showed enrichment 

in a yeast display assay, with one design binding in the nanomolar range. While these are 

currently modest success rates, an exciting aspect of the method is that it could achieve high 

shape complementarity to small molecules by simply defining the target without having to 

pre-generate a binding motif. It will be interesting to compare the agreement between the 

AI-generated design models and experimentally determined structures for these emerging 

design methods.

Multi-objective optimization: Conformational changes and switches—The 

functions of evolved proteins are typically complex and composite, such as coupling binding 

to conformational changes, or posttranslational modifications to changes in activity. To 

ultimately match and surpass the advanced functions of natural proteins, de novo design 

approaches must be able to optimize over these different objectives. Such approaches are at 

early stages, with some notable advances.

One frontier area is to design tunable conformational switches by optimizing single 

sequences over multiple conformational states. Pioneering examples led to the design of 

a protein that switches between two different secondary structures80 and proteins that have 

different designed conformations distinguished by alternative states of a tryptophan side 
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chain moving on the millisecond time scale81. Most recently, switches have been designed 

that upon peptide binding interconvert between two different structured states related by an 

overall hinge-motion of two helical subdomains82. This latter application was enabled by 

the ability of the AI-based sequence design model ProteinMPNN28 to optimize sequences 

while simultaneously considering two different structures. In the case of hinge-proteins, the 

problem is simplified since most intramolecular interactions stay the same except certain 

intra-domain interactions altered by the hinge.

For some naturally occurring protein switches, AlphaFold2 can recapitulate alternative states 

among the different generated model predictions83. It is an open question to what extent 

AI-based structure prediction methods can predict and design multiple states de novo, 

without having been trained on natural examples of a given conformational switch.

Ideally, computational methods should be able to accurately predict the underlying 

distributions of conformations, and efforts to develop such methods are underway84,85. It 

will be exciting to see applications of these concepts to the de novo design of conformational 

switches and other advanced functions that require explicit consideration of conformational 

changes or allosteric effects76. The area of multi-objective designs of conformational 

switches is likely to see further advances in the design of more complex, composite protein 

functions de novo.

De novo proteins for cellular functions

Synthetic signaling systems that can control biological processes (chimeric antigen receptors 

are a prominent example) have many significant applications in fundamental biology, 

bioengineering, and medicine. The vast majority of such signaling systems built to date 

have used naturally occurring components (genetic elements and proteins) and recombined 

or reprogrammed them for new functions3,86. The increasing success of de novo protein 

design now allows, in principle, to build protein signaling systems entirely from the ground 

up. Unlike natural proteins that are evolved to function in specific contexts, de novo proteins 

could be engineered a priori with context-independent function that allow tunability and 

modular behavior (Fig. 1). In addition, new functions not yet seen in nature may become 

accessible. De novo proteins could be engineered to sense new signals, integrate signals 

and perform logic, and precisely regulate downstream biological behaviors (Fig. 4). For 

each of these functions, computational methods could generate elementary components with 

tunable properties (such as binding on- and off-kinetics, diverse assembly geometries, etc.), 

and these components could be linked together in a modular fashion to generate diverse 

signaling behaviors. In this section I will describe progress with computational engineering 

of proteins for cellular functions, from reprogramming existing proteins to designing 

components de novo. I will also highlight how engineering principles of modularity and 

tunability are being incorporated into the design process, and how designs are interfaced 

with cellular processes to dissect principles of regulation.

Design of sensors and actuators with diverse inputs and tunable outputs—The 

ability to sense and respond to molecular signals is a fundamental ability of all living 

systems, and engineering it de novo could advance many areas of science, technology, 
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and medicine. Examples include metabolic engineering, by monitoring intermediates in 

production of industrially valuable chemicals; cell signaling, by creating tools to dissect 

normal and disease processes with improved precision; and cancer treatment, by achieving 

tight regulation of advanced therapies such as CAR-T-cells. An exciting example of a 

computationally designed sensor that functions at the organism level to track the distribution 

of the plant signaling molecule auxin in plant roots in real time was recently described87 

(Fig. 4A).

A key challenge in designing new sensor/actuator systems is to develop generalizable ways 

to couple detection (sensing) of a signal to a cellular output response (actuation). Unless 

the signal is intracellular or readily traverses a cell membrane, engineered sensor/actuator 

systems must transmit the signal from the outside of the cell to the inside. No entirely de 
novo engineered transmembrane signaling system exists yet. Nevertheless, progress has been 

made with reengineering existing transmembrane signaling systems to modulate allosteric 

signal transduction88 and quaternary structure changes89 in GPCRs.

Ideally, an engineered system should be specific to the signal but modular in its output 

response, such that a given input signal can be linked to a variety of output responses that 

could be changed without having to reengineer the entire system. One architecture that 

fulfils these criteria is chemically-induced heterodimerization (CID). Here, two components 

of a sensor preferentially heterodimerize in the presence of a small molecule, which can 

be linked in a modular fashion to complementation of a functional output reporter. Many 

suitable split reporters exist that activate, for example, fluorescence, enzyme activity, or 

most generally expression of any gene or gene combination. CID systems can be entirely 

intracellular, but can also provide a coupling mechanism across the membrane when sensing 

triggers the preferential assembly of transmembrane proteins with domains on either side 

of the membrane. Several CID systems have been rationally engineered based on selecting 

binders to drug-bound proteins as starting points90–92. To date, one modular sense/response 

system has been built by de novo computational design of a small molecule recognition 

site78 (Fig. 4A), albeit by engineering it into an existing protein-protein interface to create 

a CID system. The synthetic system showed dose-response behavior in cells to detect a 

metabolic intermediate produced via an engineered pathway. The output response could 

be exchanged in a modular fashion, and a crystal structure of the assembly showed good 

agreement with the computational design model.

Advances in computational design now pave the way to design CID systems with tunable 

binding behaviors entirely de novo. Moreover, the specific architecture of CID systems 

can determine different input/output behaviors (Fig. 4B). For example, CID systems can 

exhibit a “bandpass filter” response93, where the signal is high only at intermediate 

signal concentrations but low otherwise. Other CID systems can show “molecular ratchet” 

responses that shift the response amplitude and sensitivity dependent on the concentrations 

of the CID components94. Modeling the quantitative response of different CID architectures 

creates exciting opportunities to realize different input / output behaviors with engineered 

systems. Looking into the future beyond CIDs, one could imagine creating de novo sensors 

and actuators for diverse inputs such as peptides, pH, light, ionic strength, temperature, and 

mechanical force.
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Regulation and logic—Another key property of all living systems is the ability to 

integrate signals and make decisions. Cellular decision making takes place in complex 

signaling networks, where not all interactions and their functions are known. Synthetic 

signaling systems offer the advantage of simplifying feedback and regulatory mechanisms 

such that they can be finely tuned and robustly controlled.

A pioneering study engineered de novo helical bundle proteins such that they could be 

embedded into positive and negative feedback system controlling both natural signaling 

(the yeast mating pathway) and synthetic gene circuits95. The regulation mechanisms were 

based on a protein domain replacement strategy in the de novo designed LOCKR (latching 

orthogonal cage-key proteins) system96 (Fig. 4C). Here, an output element located on a helix 

is buried inside a de novo helical bundle but can be displaced by a “key”, a helical input 

element, that competes with the locked helix. Feedback mechanisms could be engineered 

by designing a degronLOCKR, where the output element is a protein motif important in 

regulation of degradation (degron). The degron is exposed in the presence of the input signal 

(the key) and targets a fused cargo protein to the proteasome. The system was shown to 

be tunable, even in a combinatorial fashion, by modulating the key’s production (via an 

inducible promoter) or the key’s binding affinity to the degronLOCKR (by changing the 

length of the key).

A different study implemented colocalization-dependent regulation (Co-LOCKR) that 

perform AND, OR, and NOT Boolean logic operations in response to combinations of 

molecules present at the cell surface97 (Fig. 4D). Other de novo proteins that have been 

used to implement Boolean logic in cells include sets of helical bundle heterodimers with 

engineered specificities mediated by hydrogen bonding networks linked to a split luciferase 

reporter or transcriptional regulators98 and designed coiled-coil dimerization domains linked 

to split proteases99.

Self-assembly and localization in cells—There has been long-standing interest in 

the signaling properties of cellular assemblies, ranging from higher-order oligomers to 

membrane-less compartments. Engineering such systems de novo could both contribute to 

deconstructing the function of natural systems as well as exploit specific characteristics such 

as signal amplification. Efforts to engineer de novo proteins that self-assemble in cells are 

beginning to emerge. For example, de novo helical proteins were designed to assemble into 

membraneless organelles whose assembly dynamics can be controlled. One assembly was 

shown to co-compartmentalize an enzyme pair to improve product formation100. In a second 

example, pairs of de novo designed symmetric protein homo-oligomers each comprising 

2–120 individual protein components were shown to assemble in mammalian cells into 

protein networks whose mechanical properties could be tuned intracellularly101. A third 

study designed de novo single-pass alpha-helical transmembrane domains that assemble 

into defined dimers, trimers, and tetramers102. These and similar designs could be used to 

probe how defined changes in valences and geometries of protein signaling assemblies affect 

biological responses.

Other approaches are beginning to engineer cellular delivery by designing de novo binders 

to transmembrane receptors triggering endocytosis103. Another study developed a de novo 
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designed system with dual function for both delivery and subcellular localization104. 

Here, an arginine-rich peptide is designed to penetrate the cell and subsequently bind 

a complementary acidic partner that can be fused to various other proteins to control 

subcellular localization.

Interfacing with and deconstructing biological processes—Ultimately, to 

deconstruct and regulate complex biological processes, de novo engineered systems must 

have robust interfaces with complex biological machinery. One way to do so is to use de 
novo designed proteins as assembly parts for downstream biological processes. Here the 

de novo components could provide controllable inputs (such as the CID systems discussed 

above78,92), tunable assembly kinetics, or defined geometries. Design efforts with these 

goals are beginning to emerge and provide new tools to probe necessary and sufficient parts 

of natural signaling. For example, extracellular 2-dimensional arrays of de novo designed 

proteins have been used as assembly parts105 linked to intracellular proteins of interest via 

transmembrane helices. Inducible extracellular assembly promoted intracellular clustering, 

which was then used to trigger polarity of protein targets in mammalian cells and dissect 

regulatory events sufficient for cytoskeleton polarization. In another example, de novo 
designed proteins were used to change valences and geometries of synthetic cell surface 

receptor ligands. Here, de novo designed cyclic homo-oligomers with up to eight subunits 

were linked to a de novo designed FGF receptor binding protein and applied to probe and 

manipulate FGF signaling106. Notably, defined oligomers are uniquely engineerable with 

designed proteins, in contrast to standard antibody reagents or natural binders.

Engineering principles—Increasingly, de novo design studies adopt strategies to 

engineer protein functions that can be readily expanded beyond a single example into 

families of de novo proteins that could be used as elementary components in engineering 

larger, compositive synthetic signaling systems. Consider for example, instead of building 

one sensor for a specific signal, building a family of sensors for that signal that have 

different input/output characteristics. Another example would be to engineer a set of 

signaling assemblies with the same architecture but controllable by different signals. A 

third example would be a set of de novo protein-protein interaction elements with different 

on- and off-kinetics or oligomeric assembly properties, which can be linked together in 

combinatorial and modular fashion. Ideally, all of these could be combined to construct 

signaling systems with desired “off-the-shelf” characteristics and not requiring extensive re-

optimization in each specific context. Table 2 summarizes examples of emerging approaches 

to designing extendable systems to be tunable, controllable, and composable.

Challenges and next opportunities

Advances in AI are revolutionizing protein design, and new methods are emerging rapidly. 

Currently, successful experimental applications address relatively simple problems, such 

as design of idealized folds (still with an overrepresentation of all-helical proteins), 

symmetrical assemblies, and protein-protein interfaces – albeit most recently with examples 

of remarkable shape complementarity. The increasing success rates of these applications are 

bringing important, long-standing challenges, such as design of precise geometries of polar 

functional sites and dynamical proteins, into reach. Latest developments such as protein 
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diffusion models that model not just the protein backbone but all atoms including side chains 

and ligands79 can be used to generate proteins de novo around small molecule ligands, albeit 

still requiring screening of relatively large numbers of designs. Further-reaching design 

goals such as molecular machines are coming into reach, and more complex composite 

functions can be deconstructed into designable components and implemented61.

Deep learning and data—The step-change with AI-based protein structure prediction 

required vast datasets of protein structures and sequences. In principle, function is also 

encoded in these structures and sequences, and this encoding has been used by machine 

learning models to generate functional proteins21,23–25. However, precise requirements for 

specific target activities and dynamics are more difficult to extract for desired properties 

where we lack informative datasets. Herein lie both significant challenges and opportunities 

for advances reachable by deep learning. Integration with approaches for quantitative 

measurements of functional parameters at scale seems to be one promising avenue. There 

are exciting opportunities for new capabilities to generate robust and accurate large-scale 

datasets that validate designs and probe their stability30,57, as well as recent high-throughput 

methods for rapid determination of rate constants and affinities107.

Multiple objectives and energy landscapes—Advanced protein functions will most 

likely involve integration of properties, such as the cycles of molecular recognition, resulting 

conformational changes, and exposure of new recognition sites exhibited by naturally 

occurring protein switches (such as regulatory GTPases). More generally, diverse inputs 

modulate protein functions through shifts in their free energy landscapes. Ideally, new 

methods should be capable of shaping specific properties of these landscapes – such 

as multiple defined minima and the barriers between them – during the design process. 

There are numerous challenges with such an approach that would explicitly consider these 

aspects of function, including methods and informative data at sufficient scales to train 

models as well as characterize functional designs. Progress will also require approaches that 

can simultaneously quantify and optimize these multiple objectives. Such multi-objective 

optimization could be contrasted to – or integrated with - designs that deconstruct coupled 

functions to make them modular and individually tunable, such as the sense-response 

systems discussed above that combine separate modules for sensing and responding.

Extracting principles—As designing functional proteins beyond simpler model systems 

becomes possible, extracting principles becomes important. In particular, principles are 

needed such that de novo protein systems are actually tunable, modular and controllable 

without extensive trial-and-error or individual optimization for new contexts (such as cell 

type). Ideally, designs would be the result of directed and interpretable optimization (not a 

black box) that can systematically vary desired properties.

Since its first applications, the field of protein design has promised fundamental insights 

into sequence – structure – function – dynamics relationships, “learning by building”. The 

growing power of engineering protein components de novo provides different opportunities 

to also probe the functional principles of proteins embedded in complex interconnected 

biology. At the same time, these directions will also accelerate the engineering of advanced 

cellular functions with de novo components, with ultimate applications to cell therapies.
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Emergent properties and advanced cellular functions with de novo 
components—The interactions and modular combinations of naturally occurring proteins 

lead to emergent cellular behavior that is not displayed by the individual components 

alone. For example, systems of proteins undergoing reversible covalent modification (e.g., 

phosphorylation) with opposing regulators (e.g., kinases and phosphatases) can show 

ultrasensitive switching, meaning that a small change in the concentration or activity of 

a regulator can cause a sharp change in output (modified protein)108. In nature, such 

switches are assembled into cascades for signal amplification108. As a second example, 

interlinked positive and negative regulation can control cell “states”, meaning long-term, 

stable patterns of gene expression109, that can be responsive to environmental signals. 

Already, the modularity of existing proteins can be used to reprogram advanced cellular 

functions110, and machine learning can guide modular engineering111. The concept of 

composing protein systems from de novo designed elements should allow bottom-up design 

to make these advanced biological functions engineerable. This approach should allow both 

deconstruction and construction.

Conclusion

The field of computational de novo design is making a step change into a new beginning. 

Advances in AI applied to protein design now make many, albeit relatively simple, design 

goals easier and more successful. Versatile protein folds and even large protein assemblies – 

which already have exciting clinical applications as vaccines – can be engineered with high 

structural accuracy. It is increasingly possible to engineer de novo proteins that bind tightly 

to user-specified surfaces on target proteins. Applications of these de novo binding proteins 

range from probes for fundamental cell biology to therapeutic candidates. Long-standing 

goals of de novo design, such as proteins sensing new small molecule signals, design 

of advanced functions involving conformational changes and allostery, and engineering 

emergent behaviors such as ultrasensitive switching, still pose significant challenges but are 

coming within reach. Progress is also being made with interfacing designed systems with 

biology, for example to control the geometry, localization, and timing of cellular assembly 

processes.

Numerous exciting challenges lie ahead. Current frontiers include prediction of protein 

behavior beyond structure: quantitative parameters such as binding affinities, conformational 

dynamics, and ultimately cellular functions. Advances in deep learning will require 

informative data at sufficient scales to enable accurate design of these behaviors. Advanced 

protein functions are often composite, coupling input signals to diverse functional outputs; 

predictive design should hence be capable of integrating multiple objectives. Extracting 

principles from data is important to make desired protein properties indeed engineerable. 

New opportunities lie in building complex functions from the ground up. Here, de novo 
proteins could be designed a priori with engineering principles of tunability, controllability, 

and modularity. Families of such de novo components with tunable and controllable 

properties could be recombined to generate diverse behaviors. Interfacing these de novo 
systems with biological processes could enable both deconstructing cellular functions and 

controlling them. The rapidly evolving field of de novo protein design provides an exciting 
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environment for the creativity of scientists and engineers to address the many more unsolved 

than “solved” challenges at the interfaces of biological and new-to-nature functions.
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Figure 1. De novo protein design in the age of AI.
(A) Designing proteins de novo (from scratch, without starting from a natural protein) 

can explore new structures and functions, and design proteins a priori with engineering 

principles in mind: Proteins could be designed to be tunable in their quantitative properties 

(rates, affinities, etc.), controllable by arbitrary inputs, and modular such that protein 

elements can be linked together for diverse input/output behaviors. (B) Advances in AI 

change the process of de novo protein design. User-defined goals (left) and inputs (middle) 

are used to generate proteins with new structures and functions (right). Categories 1–4 

depict increasingly straightforward prompts leading to increasingly complex design outputs. 

Blue shading indicates design goals with experimentally validated examples. B-1: AI-based 

methods to design new protein structures can be unconstrained (generating diverse protein 
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folds; alpha-helices shown in red and beta-strands in yellow) or constrained to diversify a 

particular fold. B-2: Most current methods to design function specify a “motif” with defined 

residue positions and orientations in a functional site. In a second step, a protein is generated 

de novo that surrounds and stabilizes the precise functional site geometry. This process is 

called “motif scaffolding”. B-3: Advances in AI-based methods are in development that 

only define the target, and the design method generates a predicted binder. B-4: Starting 

from a target function (for example converting substrate S to product P), an AI method 

could generate a protein with the requirements for that function. Currently, protein language 

models trained on specific protein families or large experimental datasets can generate new 

sequences with functions similar to those in the training set.
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Figure 2. Protein design concepts and approaches.
(A) De novo protein design is formulated as an optimization problem: Given a design 

objective (a protein with a desired shape and function), find one or more amino acid 

sequences that have that structure and function. Most design methods divide the process into 

two steps: First, a structure containing only the polypeptide backbone is generated, and then 

a sequence is designed for that backbone. For each step, design methods that use atomistic 

modeling (blue) or AI-based approaches (orange) are indicated. (B) Classical design 

methods use a “blueprint” defining a protein fold topology (identity and order of secondary 

structure elements) and then assembles a 3-dimensional backbone from ideal helix, strand, 

and loop peptide fragments. (C) Backbone generation methods can systematically sample 
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geometries (positions, orientations and sizes of secondary structure elements with varied 

connecting loops) within a given fold. These methods generate synthetic fold families that, 

just like evolved protein families, can be optimized for diverse functions. (D) A recent AI-

based method, protein diffusion, generates protein backbones through a denoising process 

from random backbone starting coordinates. This method generates diverse protein folds 

without having to pre-specify a topology as input.
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Figure 3. De novo design of molecular functions.
(A) General approach to design molecular functions. (B-C) Design of proteins binding to 

small molecules, using classical design methods (B) that place target binding sites into 

pre-generated protein scaffolds, or AI-based approaches (C) that generate new protein 

backbones around a binding site motif or target. (D-F) Design of proteins binding to 

target proteins (blue shapes). Regions that are optimized by sequence design are shown 

as dark red shape. (D) Rotamer interaction field approach65. Specific interactions with a 

target protein surface are identified through docking of disembodied side chains, yielding an 

interaction field into which pre-existing scaffolds are docked and optimized. (E) Fingerprint 

approach66. Interaction sites on the target are identified by predicting interaction fingerprints 
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using the MaSIF deep-learning method, followed by identification of complementary 

fingerprints from a library of >400 Million patches. Matching patches are then scaffolded 

into de novo proteins and optimized. (F) Diffusion approach53. AI-based protein diffusion is 

used to generate a binding protein with shape complementarity to a pre-specified hotspot on 

the target. A second step assigns a sequence to the diffused binder backbone.
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Figure 4. De novo design to control cellular functions.
(A) Computational design of small-molecule sensors that couple auxin ligand binding 

to conformational change and fluorescence energy transfer (FRET)87 (left) or metabolite-

induced protein-protein dimerization to split reporter complementation78 (right). (B) 

Different quantitative behaviors for CID systems. Top: “ratchet” mechanism, where ligand 

binding leads to a conformational change in one protein that creates a composite binding 

interface for the second protein. Bottom: “molecular glue” mechanism where the small 

molecule can bind either partner. This mechanism can lead to “bandpass filter” behavior 

where complex formation is low at high ligand concentrations because each of the two 

protein partners are bound by a different ligand molecule. (C) Mechanism of the de novo 
designed LOCKR system, where an output element is buried but can be displaced by a 

competing key element, leading to an output. (D) Application of the Co-LOCKR system to 

perform logic operations based on the composition of receptors present on the cell surface97.
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Table 1.

Recent computational protein design reviews with title, short summary, and reference.

Protein design concepts and progression of the field

Recent advances in de novo protein design: 
principles, methods, and applications.

State of protein design before broader adoption of AI-based methods: generation 
of backbone structures, sequence optimization, design energy functions, and 
design of molecular functions.

4

De novo Protein Design, a Retrospective Evolution of the field of de novo protein design, with focus on physicochemical 
principles, functional helical bundles, membrane proteins, and protein 
assemblies.

40

A Brief History of de novo Protein Design: 
Minimal, Rational, and Computational

Progress in protein design illustrated through a timeline of de novo protein 
structures solved to atomic resolution. 41

Understanding a protein fold: The physics, 
chemistry, and biology of alpha-helical coiled coils

Progress in understanding and engineering alpha-helical coiled coils including 
design principles, biological functions, and applications of coiled coils in 
synthetic biology.

55

Machine / deep learning

Structure-Based Protein Design with Deep 
Learning

Outline of deep learning approaches to protein design and comparison to prior 
design methods. 112

Deep Generative Modeling for Protein Design Comparison of 5 classes of generative models used for protein design. 19

From Sequence to Function through Structure: 
Deep Learning for Protein Design

Summary and comprehensive tables of recent deep learning methods for (i) fixed 
backbone sequence design, (ii) structure generation, (iii) sequence generation, 
and (iv) concomitant design of sequence and structure.

18

Protein-protein interactions

Computational Design of Novel ProteinProtein 
Interactions - An Overview on Methodological 
Approaches and Applications

Methods and successful cases of designing protein-protein interactions using (i) 
template-based approaches (utilizing known protein-protein interactions) and (ii) 
de novo design.

68

Applications to biological engineering

Computational Protein Design-the next Generation 
Tool to Expand Synthetic Biology Applications

Summary of computational designs shown to modulate activities in cells, 
including enzymes, protein specificity engineering, cellular pathway control, and 
higher-order protein assemblies.

86

Advances in the Computational Design of Small-
Molecule-Controlled Protein-Based Circuits for 
Synthetic Biology

Computational approaches to designing protein-based sensors for small-
molecule inputs coupled to functional outputs in cells. 92

Designed protease-based signaling networks Summary of approaches that have engineered protease-based synthetic circuits 
for cellular regulation. 113

Design of protein switches

Design Principles of Protein Switches Applications of switch design inspired by naturally occurring protein switches, 
and challenges with designing them de novo. 114

Membrane proteins

Principles and Methods in Computational 
Membrane Protein Design

Overview of innovations in the generation of new membrane protein structures 
and functions. 115

Computational Design of Transmembrane Proteins Principles for transmembrane protein design and successful examples. 116

Enzymes

The Road to Fully Programmable Protein Catalysis Key developments and opportunities in the challenging field of enzyme design. 11
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Table 2.

Protein systems engineered to be tunable, controllable, and composable, with publication title, short summary, 

and reference.

Families of components with tunable properties

Expanding the space of protein geometries by 
computational design of de novo fold families

De novo protein fold families with finely tunable shapes through systematic 
variation of helical elements. 58

An enumerative algorithm for de novo design of 
proteins with diverse pocket structures

Families of de novo NTF2 fold proteins with pockets tunable for ligand 
binding. 59

De novo design of protein homo-oligomers with 
modular hydrogen-bond networkmediated specificity

Alpha-helical homo-oligomers with diverse interaction specificity determined 
by central hydrogen-bond networks. 117

Programmable design of orthogonal protein 
heterodimers

Orthogonal 4-helix protein heterodimers of two helical hairpins, with 
interaction specificity determined by hydrogen-bond networks. 118

De novo design of bioactive protein switches Orthogonal LOCKR systems that function in vitro, in yeast and in mammalian 
cells. 96

Reconfigurable asymmetric protein assemblies 
through implicit negative design

Families of beta sheet-mediated heterodimers with diverse on- and off-rates. 39

Controllability

Reprogramming an ATP-driven protein machine into 
a light-gated nanocage

Generalizable strategy to control reversible shape changes of a protein 
nanocage through light-triggered conformational switching of a covalently 
attached azobenzene linker.

119

Computational design of a modular protein sense-
response system

Control of protein-protein assembly through de novo design of a small 
molecule binding site into a protein-protein interface. 78

A rational blueprint for the design of chemically-
controlled protein switches

Computational protein design strategy to repurpose drug-inhibited protein-
protein interactions as OFF- and ON-switches. 91

Rational Design of Chemically Controlled 
Antibodies and Protein Therapeutics

Design and application of small-molecule-controlled switchable protein 
therapeutics using an engineered OFF-switch system91 (above).

120

Designed protein logic to target cells with precise 
combinations of surface antigens

Application of the LOCKR systems96 (above) as colocalization- dependent 
protein switches (Co-LOCKR) that can perform Boolean logic operations on 
the cell surface.

97

Modularity

Computational design of a modular protein sense-
response system

A de novo designed chemically-induced heterodimerization system78 (above) 
can be linked to diverse modular split response systems.

78

Reconfigurable asymmetric protein assemblies 
through implicit negative design

Tunable beta-sheet heterodimers39 (above) can be assembled into complexes 
with up to 6 different components.

39

Modular and Tunable Biological Feedback Control 
Using a de Novo Protein Switch

The LOCKR system96 (above) can be modularly recombined and rationally 
tuned to implement feedback control of endogenous signaling pathways and 
synthetic gene circuits.

95

De novo design of modular and tunable protein 
biosensors

The LOCKR system96 (above) can be adapted into modular biosensors for 
diverse proteins.

121
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