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Multi-Ethnic Genome-wide Association Study for Atrial 
Fibrillation
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Abstract

Atrial fibrillation (AF) affects over 33 million individuals worldwide1 and has a complex 

heritability.2 We conducted the largest meta-analysis of genome-wide association studies for AF to 
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date, consisting of over half a million individuals including 65,446 with AF. In total, we identified 

97 loci significantly associated with AF including 67 of which were novel in a combined-ancestry 

analysis, and 3 in a European specific analysis. We sought to identify AF-associated genes at the 

GWAS loci by performing RNA-sequencing and expression quantitative trait loci (eQTL) analyses 

in 101 left atrial samples, the most relevant tissue for AF. We also performed transcriptome-wide 

analyses that identified 57 AF-associated genes, 42 of which overlap with GWAS loci. The 

identified loci implicate genes enriched within cardiac developmental, electrophysiological, 

contractile and structural pathways. These results extend our understanding of the biological 

pathways underlying AF and may facilitate the development of therapeutics for AF.

Atrial fibrillation (AF) is the most common heart rhythm disorder, and is a leading cause of 

heart failure and stroke.3 Prior genome-wide association studies (GWAS) have identified at 

least 30 loci associated with AF.4–9 We conducted a large-scale analysis with over half a 

million participants, including 65,446 with AF, from more than 50 studies. Our AF sample 

was composed of 84.2% European, 12.5% Japanese, 2% African American, and 1.3% 

Brazilian and Hispanic populations (Supplementary Table 1). We used the Haplotype 

Reference Consortium (HRC) reference panel to impute variants from SNP array data for 

75% of the samples (Figure 1). In the remainder, we included HRC overlapping variants 

from 1000 Genomes imputed data, or from a combined reference panel. We analyzed 

8,328,530 common variants (minor allele frequency (MAF) >5%), 2,884,670 low frequency 

variants (1%> MAF ≥5%), and 936,779 rare variants (MAF ≤1%).

The combined-ancestry meta-analysis revealed 94 AF-associated loci, 67 of which were 

novel at genome-wide significance (P-value (P) < 1×10−8). This conservative threshold 

accounts for testing independent variants with MAF ≥0.1% using a Bonferroni correction, 

while use of a more commonly utilized threshold of 5×10−8 resulted in the identification of 

an additional 10 loci (Supplementary Table 2). The majority of sentinel variants (n=92) 

were common (MAF >5%), with relative risks ranging from 1.04 to 1.55. Two low 

frequency sentinel variants were identified within the genes C1orf185 and UBE4B (Figure 
2, Table 1, Supplementary Table 3, Supplementary Figure 1).

We then conducted a gene set enrichment analysis with the results from the combined-

ancestry meta-analysis using MAGENTA. We identified 55 enriched gene sets or pathways 

that largely fall into cardiac developmental, electrophysiological, and cardiomyocyte 

contractile or structural functional groups (Supplementary Table 4). In total, 48 of the 67 

novel loci contain one or more genes within 500kb of the sentinel variant that were part of 

an enriched gene set or pathway (Supplementary Figure 2).

Next, we performed ancestry-specific meta-analyses. Among individuals of European 

ancestry, we identified 3 additional loci associated with AF, each of which had a sub-

threshold association (P < 1×10−6) in the combined-ancestry meta-analysis. These loci were 

located close to or within the genes CDK6, EPHA3, and GOSR2 (Supplementary Table 5, 

Supplementary Figure 3-4). The region most significantly associated with AF in 

Europeans, Japanese, and African Americans (Supplementary Figure 5–6) was on 

chromosome 4q25, upstream of the gene PITX2 (Supplementary Figure 7). We did not 
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observe significant heterogeneity of effect estimates across ancestries for most associations, 

suggesting that top genetic susceptibility signals for AF have a relatively constant effect 

across ancestries (Table 1, Supplementary Table 3, Supplementary Figure 8). The 

proportion of heritability explained by the loci from the European ancestry analysis was 

42%, compared to previously reported 25%10 (Supplementary Table 6).

In conditional and joint analyses of the European ancestry results, we found 11 loci with 

multiple, independent AF-associated signals. At a locus centered on a cluster of sodium 

channel genes, we identified 3 regions that independently associate with AF within 

SCN10A, SCN5A and a third signal between both genes. At the previously described TBX5 
locus,8 we detected a novel independent signal close to TBX3. Pairwise linkage 

disequilibrium (LD) estimates between the independent variants at both loci were extremely 

low (r2 <0.03; Supplementary Table 7).

For 13 AF loci, the sentinel variant or a proxy (r2 >0.6) was a missense variant. A missense 

variant (rs11057401) in CCDC92 was predicted to be damaging by 4 of 5 in silico prediction 

algorithms (Supplementary Table 8); and was previously associated with coronary artery 

disease.11 Since most AF-associated variants reside in non-coding regions we sought to 

determine if the sentinel variants or their proxies (r2 >0.6) fell within regulatory regions in 

heart tissues based on chromatin states from the Roadmap Epigenomics Consortium. At 64 

out of 67 novel loci, variants were located within regulatory elements (Supplementary 
Table 9); AF-associated loci were also significantly enriched within regulatory elements 

(Supplementary Figure 9).

We then sought to link risk variants to candidate genes by assessing their effect on gene 

expression levels. First, since AF often arises from the pulmonary veins and left atrium 

(LA), we performed RNA sequencing, genotyping, and eQTL analyses in 101 human left 

atrial samples without structural heart disease from the Myocardial Applied Genomics 

Network repository. Second, we identified eQTLs from right atrial (RA) and left ventricular 

(LV) cardiac tissue from the Genotype Tissue Expression (GTEx) project. Finally, we 

performed a transcriptome-wide analysis using the MetaXcan12 method, which infers the 

association between genetically predicted gene expression and disease risk.

We observed eQTLs to one or more genes at 17 novel loci. Of the 10 eQTLs detected in LA 

tissue 8 were also detected in RA or LV, with consistent directionality. For example, we 

observed that rs4484922 was an eQTL for CASQ2 in LA tissue only. Although we detected 

more AF loci with eQTLs in the RA or LV data, for many of these (n=8) the results pointed 

to multiple genes per locus (Supplementary Table 10–12). LA eQTL studies may facilitate 

the prioritization of candidate genes, but are currently limited by sample size.

For the transcriptome-wide analyses we used GTEx human atrial and ventricular expression 

data as a reference. We identified 57 genes significantly associated with AF. Of these, 42 

genes were located at AF loci, whereas the remaining 15 were >500kb from an AF sentinel 

variant (Supplementary Table 13, Figure 3). The probable candidate genes at each locus 

are summarized in Supplementary Table 12. For example, at the locus with lead variant 

rs4484922 we observed results from all downstream analyses pointing towards the nearest 
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gene CASQ2, at rs12908437 towards the gene IGFR1, and at rs113819537 towards the gene 

SSPN. However, for many loci the evaluation of candidate genes remains challenging.

We then sought to assess the pleiotropic effects of the identified AF risk variants. First, we 

queried the NHGRI-EBI GWAS Catalog to detect associations to other phenotypes 

(Supplementary Table 14). Second, using the UK Biobank,13 we performed a phenome-

wide association study (pheWAS) for 12 AF risk factors (Supplementary Table 15). As 

illustrated in Figure 4, distinct clusters of variants were associated with AF as well as 

height, BMI, and hypertension. For example, we observed a pleiotropic effect at rs880315 

(CASZ1) for blood pressure14 and hypertension14, that was also observed in the UK 

Biobank (association with hypertension, P = 2.56×10−34).

In sum, we identified a total of 97 distinct AF loci from 65,446 AF cases and more than 

522,000 referents. In recent pre-publication results, Nielsen et al., reported 111 loci from 

60,620 AF cases and more than 970,000 referents,15 including more than 18,000 AF cases 

from our prior report.8 We therefore performed a preliminary meta-analysis for the top loci 

in nonoverlapping participants from these two large efforts with a resulting total of over 

93,000 AF cases and more than 1 million referents. In aggregate, we identified at least 134 

distinct AFassociated loci (Supplementary Table 16).

Four major themes emerge from the identified AF loci. First, two AF loci contain genes that 

are primary targets for current antiarrhythmic medications used to treat AF. The SCN5A 
gene encodes a sodium channel in the heart, the target of sodium-channel-blockers such as 

flecainide and propafenone. Similarly, KCNH2 encodes the alpha subunit of the potassium 

channel complex, the target of potassium-channel-inhibiting medications such as 

amiodarone, sotalol, and dofetilide. SCN5A and KCNH2 have previously been implicated in 

AF through GWAS,8 candidate gene analysis16 and family-based studies.17,18

Second, transcriptional regulation appears to be a key feature of AF etiology. TBX3 and the 

adjacent gene TBX5 encode transcription factors, that have been shown to regulate the 

development of the cardiac conduction system.19 Similarly, the NKX2–5 encodes a 

transcription factor, that is an early cue for cardiac development and has been associated 

with congenital heart disease20 and heart rate21 (Supplementary Table 14). Further, 

reduced function of the transcription factor encoded by PITX2 has been associated with AF, 

shortening of the left atrial action potential, and with modulation of sodium channel blocker 

therapy in the adult left atrium.22–24 A transcriptional co-regulatory network governed by 

transcription factors encoded by TBX5 and PITX2 has been shown to be critical for atrial 

development.25

Third, the transcriptome-wide analyses revealed a number of compelling findings. 

Decreased expression of PRRX1 associated with AF, a result consistent with findings where 

reduction of PRRX1 in zebrafish and stem cell-derived cardiomyocytes was associated with 

action potential shortening.26 Further, increased expression of TBX5 and KCNJ5 was 

associated with AF, a finding consistent with gain-of-function mutations in TBX5 reported 

in a family with Holt-Oram syndrome and a high penetrance of AF.27 Similarly, KCNJ5 
encodes a potassium channel that underlies a component of the IKAch current, a channel that 
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is upregulated in AF. Thus, prior studies support both the role of PRRX1, TBX5, and 

KCNJ5 in AF and the observed directionality.

Fourth, many of the novel loci implicate genes that underlie Mendelian forms of arrhythmia 

syndromes. Mutations in CASQ2 lead to catecholaminergic polymorphic ventricular 

tachycardia.28,29 Pathogenic variants in PKP2 impair cardiomyocyte communication and 

structural integrity, and are a common cause of arrhythmogenic right ventricular 

cardiomyopathy.30,31 Mutations in GJA5, KCNH2, SCN5A, KCNJ2, MYH7, NKX2–5, have 

been mapped in a variety of inherited arrhythmia, cardiomyopathy, or conduction system 

diseases.32 Our observations highlight the pleiotropy of variation in genes specifying cardiac 

conduction, morphology, and function, and underscore the complex, polygenic nature of AF.

In conclusion, we conducted the largest AF meta-analysis to date and report a more than 

three-fold increase in the number of loci associated with this common arrhythmia. Our 

results lay the groundwork for functional evaluations of genes implicated by AF risk loci. 

Our findings also broaden our understanding of biological pathways involved in AF and may 

facilitate the development of therapeutics for AF.

Online Methods

Samples

Participants from more than 50 studies were included in this analysis. Participants were 

collected from both case-control studies for atrial fibrillation (AF) and population based 

studies. The majority of studies were part of the Atrial Fibrillation Genetics (AFGen) 

consortium and the Broad AF Study (Broad AF). Additional summary level results from the 

UK Biobank (UKBB) and the Biobank Japan (BBJ) were included (Figure 1). Cases include 

participants with paroxysmal or permanent atrial fibrillation, or atrial flutter, and referents 

were free of these diagnoses. Adjudication of atrial fibrillation for each study is described in 

the Supplementary Notes. Ascertainment of AF in the UK Biobank includes samples with 

one or more of the following codes 1) Non-cancer illness code, self-reported (1471, 1483), 

2) Operation code (1524), 3) Diagnoses – main/secondary ICD10 (I48, I48.0–4, I48.9), 4) 

Underlying (primary/secondary) cause of death: ICD10 (I48, I48.0–4, I48.9) 5) Diagnoses – 

main/secondary ICD9 (4273), 6) Operative procedures – main/secondary OPCS (K57.1, 

K62.1–4).8,10,33 Baseline characteristics for each study are reported in Supplementary 
Table 17. We analyzed: 55,114 cases and 482,295 referents of European ancestry, 1,307 

cases and 7,660 referents of African American ancestry, 8,180 cases and 28,612 referents of 

Japanese ancestry, 568 cases and 1,096 referents from Brazil and 277 cases and 3,081 

referents of Hispanic ethnicity. Samples from the UK Biobank, the Broad AF Study, and the 

following studies from the AFGen consortium: SiGN, EGCUT, PHB and the Vanderbilt 

Atrial Fibrillation Registry, were previously not included in primary AF GWAS discovery 

analyses. There is minimal sample overlap from the studies MGH AF, BBJ and AFLMU 

between this and previous analyses. Ethics approval for participation was obtained 

individually by each study. All relevant ethical regulations were followed for this work. 

Written informed consent was obtained from all study participants.
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The Institutional Review Board (IRB) at Massachusetts General Hospital reviewed and 

approved the overall study.

Genotyping and Genotype Calling

Samples within the Broad AF Study were genotyped at the Broad Institute using the 

Infinium PsychArray-24 v1.2 Bead Chip. They were genotyped in 19 batches, grouped by 

origin of the samples and with a balanced case control mix on each array. Common variants 

(≥1% MAF) were called with GenomeStudio v1.6.2.2 and Birdseed v1.33,34 while rare 

variants (<1% MAF) were called with zCall.35 Batch specific quality control (QC) was 

performed on each call-set including >95% sample call rate, Hardy-Weinberg-Equilibrium 

(HWE) P > 1×10−6 and variant call-rate >97%. For common variants, a consensus merge 

was performed between the call-sets from GenomeStudio and Birdseed. For each genotype 

only concordant calls between the two algorithms were kept. The common variants from the 

consensus call were then combined with the rare variants calls from the zCall algorithm. 

Samples from all batches were joined prior to performing pre-imputation QC steps. Detailed 

procedures for genotyping and genotype calling for the SiGN study,36 the UK Biobank,37,38 

and the Biobank Japan9 are described elsewhere. Details on genotyping and calling for all 

participating studies are listed in Supplementary Table 18.

Imputation

Pre-imputation QC filtering of samples and variants was conducted based on recommended 

guidelines as described in Supplementary Table 19. QC steps were performed by each 

study and are described in Supplementary Table 18. Most studies with European ancestry 

samples performed imputation with the HRC reference v1.139 panel on the Michigan 

Imputation Server v1.0.1.40 Studies without available HRC imputation were included based 

on imputation to the 1000 Genomes Phase 1 integrated v3 panel (March 2012).41 

Participants of the SiGN study were imputed to a combined reference panel consisting of 

1000 Genomes phase 1 plus Genome of the Netherlands.42 Studies from Brazil were 

imputed with the HRC reference v1.1 panel. Studies of Japanese ancestry or Hispanic 

ethnicity were imputed to the 1000G Phase 1 integrated v3 panel (March 2012). Studies of 

African American ancestry were imputed to the HRC reference v1.1 panel or the 1000G 

Phase 1 integrated v3 panel (March 2012). Studies were advised to use the HRC preparation 

and checking tool (http://www.well.ox.ac.uk/~wrayner/tools/) prior to imputation. 

Prephasing and imputation methods for each study are described in Supplementary Table 
18.

Primary statistical analyses

Genome-wide association testing on autosomal chromosomes was performed using an 

additive genetic effect model based on genotype probabilities. Each ancestry group was 

analyzed separately for each study. For the Broad AF Study, the primary statistical analysis 

was performed jointly on unrelated individuals, excluding one of each pair for related 

samples with PI_HAT >0.2 as calculated in PLINK v1.90.43,44 Samples with sex 

mismatches and sample call rate <97% were excluded. Ancestry groups were defined with 

ADMIXTURE45 based on genotyped, independent, and high quality variants, using the 
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supervised method with 1000Genomes phase 1 v3 samples as reference. A cutoff of 80% 

European ancestry was used to define the European subset and a cutoff of 60% African 

ancestry was used to define the African American subset. A Brazilian cohort within the 

Broad AF Study was analyzed separately. Principal components were calculated within each 

ancestry group with the smartpca program from EIGENSOFT v6.1.146. For the UK 

Biobank, a European subset was selected within samples with self-reported white race 

(British, Irish, or other) and similar genetic ancestry. Genetic similarity was defined with the 

aberrant47 package in R based on principal components, following the same method as 

described for the UK Biobank.38 We excluded samples with sex mismatches, outliers in 

heterozygosity and missing rates, samples that carry sex chromosome configurations other 

than XX or XY, and samples that were excluded from the kinship inference procedure as 

flagged in the UK Biobank QC file. We further removed one sample for each pair of third 

degree or closer relatives (kinship coefficient >0.0442), preferentially keeping samples with 

AF case status. Primary analyses for all other studies were performed at the study sites and 

the summary level data of the results were provided. Prevalent cases were analyzed in a 

logistic regression model and most incident cases were analyzed in a Cox proportional 

hazards model. Studies with both prevalent and incident cases analyzed these either 

separately using a logistic regression model or Cox proportional hazards model respectively, 

or jointly in a logistic regression model. The following tools were used for primary GWAS: 

ProbABEL,48 SNPTEST,49 FAST,50 mach2dat (http://www.sph.umich.edu/csg/yli), R,51 

EPACTS (http://genome.sph.umich.edu/wiki/EPACTS), Hail (https://github.com/hail-is/hail) 

and PLINK44 (Supplementary Table 18). Summary level results were filtered, keeping 

variants with imputation quality >0.3 and MAF * imputation quality * N events ≥10. Post-

analysis QC steps of summary level results included a check of allele frequencies, inspection 

of Manhattan-plots, QQ-plots, PZ-plots, and the distribution of effect estimates and standard 

errors, calculation of genomic inflation (λGC), and consistent directionality for known AF 

risk variants.5

Meta-analyses

Summary level results were meta-analyzed jointly with METAL (released on 2011–03-25) 

using a fixed effects model with inverse-variance weighted approach, correcting for genomic 

control.52 Separate meta-analyses were conducted for each ancestry. The results for the 

Japanese9 and Hispanic8 specific analyses have previously been reported and therefore their 

ancestry-specific results are not shown. Variants were included if they were present in at 

least two studies and showed an average MAF ≥0.1%. To correct for multiple testing, a 

genome-wide significance threshold of P < 1×10−8 was applied for each analysis. This 

threshold is based on a naive Bonferroni correction for independent variants with MAF 

≥0.1%, using an LD threshold of r2 <0.8 to estimate the number of independent variants 

based on European ancestry LD.53 As these meta-analyses are based on effect estimates and 

standard errors from both logistic regression and Cox proportional hazards regression, we 

report variant effects as relative risk, calculated as the exponential of effect estimates. For 

sentinel variants reaching genome-wide significance in the combined ancestry meta-

analysis, we assessed if effect estimates were homogeneous across ancestries by calculating 

an I2 statistic54 across ancestry specific meta-analyses. We account for multiple testing 
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across 94 variants using a Bonferroni correction, resulting in a significance threshold of P < 

5.32×10−4 for the heterogeneity test.

Broad AF LD reference and proxies

A linkage disequilibrium (LD) reference file was created including 26,796 European 

ancestry individuals from the Broad AF study. The LD reference was based on HRC 

imputed genotypes. Monomorphic variants and variants with imputation quality <0.1 were 

removed prior to conversion to hard calls. A genotype probability (GP) threshold filter of GP 

>0.8 was applied during hard call conversion. For multi-allelic sites the more common 

alleles were kept. Variants were included in the final reference file if the variant call rate was 

>70%.

We identified proxies of sentinel variants as variants in LD of r2 >0.6 based on the Broad AF 

LD reference file, using PLINK v1.90.43,44

Meta-analysis of provisional loci

We meta-analyzed 111 variants from externally reported15 provisional loci within 

predominantly non-overlapping samples from the Broad AF Study, BBJ, EGCUT, PHB, 

SiGN and the Vanderbilt AF Registry with METAL (released on 2011–03-25).52 The 

predominantly nonoverlapping samples included a total of 32,957 AF cases and 83,546 

referents, with minimal overlap from the studies MGH AF, BBJ and AFLMU. We 

subsequently meta-analyzed these results with the reported provisional results with METAL 

using a fixed effects model with inverse-variance weighted approach. We analyzed a total of 

93,577 AF cases and 1,053,762 referents. We compared our discovery results with the 

provisional loci using the same significance cutoff of P < 5×10−8 for both results. 

Overlapping loci were identified, if the reported sentinel variants were located within 500kb 

of each other. For overlapping loci with differing sentinel variants we calculated the LD 

between the sentinel variants, based on the Broad AF LD reference panel of European 

ancestry.

Variant consequence on protein coding sequence

The most severe consequence for variants was identified with the Ensembl Variant Effect 

Predictor version 89.7 using RefSeq as gene reference and the option “pick” to identify one 

consequence per variant with the default pick order.55 We queried sentinel variants and their 

proxies to identify tagged variants with HIGH and MODERATE impact including the 

following consequences: “transcript_ablation”, “splice_acceptor_variant”, 

“splice_donor_variant”, “stop_gained”, “frameshift_variant”, “stop_lost”, “start_lost”, 

“transcript_amplification”, “inframe_insertion”, “inframe_deletion”, “missense_variant” and 

“protein_altering_variant”. We evaluated each identified consequence on the protein coding 

sequence with in silico prediction tools to assess potentially damaging effects. The 

evaluation included MutationTaster56 (disease causing automatic or disease causing), SIFT57 

(damaging), LRT58 (deleterious), Polyphen259 prediction based on HumDiv and HumVar 

(probably damaging or possibly damaging).
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Chromatin states

Chromatin state annotation.—We identified chromatin states for sentinel variants and 

their proxies from the Roadmap Epigenomics Consortium 25-state model (2015)60 using 

HaploReg v4.61 We looked for chromatin states occurring in any included tissues as well as 

chromatin states occurring in heart tissue. Heart tissues include E065: Aorta, E083: Fetal 

Heart, E095: Left Ventricle, E104: Right Atrium and E105: Right Ventricle.

Regulatory region enrichment.—1,000 sets of control loci were generated by matching 

SNPs to sentinel variants from the AF combined-ancestry analysis, with the SNPSnap62 

tool. We used the European 1000 Genomes Phase 3 population to match via minor allele 

frequency, gene density, distance to nearest gene and LD buddies using r2 >0.6 as LD cutoff 

and otherwise default settings. We excluded input SNPs and HLA SNPs from the matched 

SNPs. Loci were defined as SNPs and their proxies with r2 >0.6 based on LD from the 

European 1000 Genomes Phase 3 population. We identified SNPs in regulatory regions 

across all tissues and in cardiac tissues (E065, E095, E104, E105) based on the Roadmap 

Epigenomics Consortium 25-state model (2015)60 using HaploReg v4.61 Regulatory regions 

included the following states: 2_PromU, 3_PromD1, 4_PromD2, 9_TxReg, 10_TxEnh5, 

11_TxEnh3, 12_TxEnhW, 13_EnhA1, 14_EnhA2, 15_EnhAF, 16_EnhW1, 17_EnhW2, 

18_EnhAc, 19_DNase, 22_PromP and 23_PromBiv. We calculated the percent overlap of 

each annotation per locus, defined as number of SNPs per locus that fall in regulatory 

regions divided by total number of SNPs per locus. Statistical significance was calculated 

with a permutation test from the perm package in R.63

Expression quantitative trait loci (eQTL)

Variants identified from GWAS were assessed for overlap with eQTLs from two sources: 1) 
Left atrial (LA) tissue from the Myocardial Applied Genomics Network (MAGNet) 
repository. We performed RNA sequencing (RNA-seq) on 101 left atrial tissue samples 

from the MAGNet repository (http://www.med.upenn.edu/magnet/) on the Illumina HiSeq 

4000 platform at the Broad Institute Genomic Services. Left atrial tissue was obtained at the 

time of cardiac transplantation from normal donors with no evidence of structural heart 

disease. All left atrial samples were from individuals of European ancestry. A summary of 

the clinical characteristics for these samples is shown in Supplementary Table 20. Reads 

were aligned to the reference genome by STAR v2.4.1a64 and assigned to genes based on the 

GENCODE gene annotation.65 Gene expression was measured in fragments per kilobase of 

transcript per million mapped reads (FPKM) and subsequently quantile-normalized and 

adjusted for age, sex, and the first 10 principal components. Genotyping was performed on 

the Illumina OmniExpressExome-8v1 array and imputed to the HRC reference panel. 

Principal components were calculated with the smartpca program from EIGENSOFT 

v6.1.146 and European ancestry was confirmed by assessing principal components in the 

samples combined with 1000 Genomes European samples.41 Associations between gene 

expression and genotypes were tested in a linear regression model with QTLtools v1.0,66 in 

order to detect cis-eQTLs, defined as eQTLs within 1MB of the transcription start site of a 

gene. To account for multiple testing, an empirical false discovery rate (FDR) was used to 

identify significant eQTLs with a FDR <5%. 2) Genotype-Tissue Expression (GTEx) 
project.67 We queried the GTEx version 6p database for cis-eQTLs with significant 
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associations to gene expression levels in the two available heart tissues: left ventricle and 

right atrial appendage.68

Association between predicted gene expression and risk of atrial fibrillation

To investigate transcriptome-wide associations between predicted gene expression and AF 

disease risk, we employed the method MetaXcan v0.3.5.12 MetaXcan extends the previous 

method PrediXcan69 to predict the association between gene expression and a phenotype of 

interest, using summary association statistics. Gene expression prediction models were 

generated from eQTL datasets using Elastic-Net to identify the most predictive set of SNPs. 

Only models that significantly predict gene expression in the reference eQTL dataset (FDR 

<0.05) were considered. Pre-computed MetaXcan models for the two available heart tissues 

(left ventricle and right atrial appendage) in the genotype-tissue expression project version 

6p (GTEx)68 were used to predict the association between gene expression and risk of AF. 

Summary level statistics from the combined ancestry meta-analysis were used as input. 4859 

genes were tested for left ventricle and 4467 genes were tested for right atrial appendage. 

Bonferroni correction was applied to account for the number of genes tested across both 

tissues, resulting in a significance threshold of P < 5.36×10−6, calculated as 0.05/(4859 

+ 4467).

Conditional and joint analyses

Conditional and joint analyses70 of GWAS summary statistics were performed with 

Genomewide Complex Trait Analysis (GCTA v1.25.2)71 using a stepwise selection 

procedure to identify independently-associated variants on each chromosome. We used the 

Broad AF LD reference file for LD calculations.

Gene set enrichment analysis (GSEA)

A Meta-Analysis Gene-set Enrichment of variaNT Associations (MAGENTA) v2.472 was 

performed with a combined gene set input database 

(GO_PANTHER_INGENUITY_KEGG_REACTOME_BIOCARTA) based on publicly 

available data. The analysis was conducted using the summary level results from the 

combined ancestry meta-analysis. 4045 gene sets were included and multiple testing was 

corrected via false discovery rate (FDR). Gene sets were manually assigned to one or more 

of the following functional groups: developmental, electrophysiological, contractile/

structural, and other. Genes within 500 kilobases of a sentinel variant were identified based 

on the longest spanning transcribed region in the RefSeq gene reference. For each gene set, 

genes close to significant loci were listed. The selected genes were assigned to one or more 

functional groups based on their affiliation to gene sets. Functional groups from gene sets 

with a single label were preferentially assigned.

Association with other phenotypes

To determine if the sentinel AF risk variants had associations with other phenotypes, two 

sources of data were used:
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1) GWAS catalog.

We queried the NHGRI-EBI Catalog of published genome-wide association studies73,74 

(accessed 2017–08-31) to detect associations of AF risk variants with other phenotypes.

2) UK Biobank phenome-wide association study (PheWAS).

A PheWAS was conducted in the UK Biobank in European ancestry individuals. Ancestry 

definition and sample QC exclusions were performed in the same manner as for the primary 

statistical analysis, as described above. We further removed one sample for each pair of 

second degree or closer relatives (kinship coefficient >0.0884), preferentially keeping the 

sample with case status or non-missing phenotype. We included the following phenotypes: 

height, body mass index (BMI), smoking, hypertension, heart failure, stroke, mitral 

regurgitation, bradyarrhythmia, peripheral vascular disease (PVD), hypercholesterolemia, 

coronary artery disease (CAD), and type II diabetes. Phenotype definitions are shown in 

Supplementary Table 21. Number of samples analyzed, as well as case and referent counts 

for each phenotype are listed in Supplementary Table 22. Binary phenotypes were 

analyzed with a logistic regression model and quantitative phenotypes with a linear 

regression model using imputed genotype dosages in PLINK 2.00.44 As covariates we 

included sex, age at first visit, genotyping array, and the first 10 principal components.

Proportion of heritability explained

We calculated SNP-heritability (h2
g) of AF-associated loci with the REML algorithm in 

BOLT-LMM v2.275 in 120,286 unrelated samples of European ancestry from a subset of the 

UK Biobank dataset comprising a prior interim release as previously described in separate 

work from our group.10 We defined loci based on a 1MB (+/− 500kb) window around 84 

sentinel variants from the European ancestry meta-analysis. We transformed the h2
g 

estimates into liability scale (AF prevalence = 2.45% in UK Biobank). We then calculated 

the proportion of h2
g explained at AF loci by dividing the h2

g estimate of AF-associated loci 

by the total h2
g for AF, that was based on 811,488 LD-pruned and hard-called common 

variants (MAF ≥1%).10

Life Sciences Reporting Summary

Further information on experimental esign is available in the Life Sciences Reporting 

Summary.

Data Availability and Accession Code Availability

The datasets generated during and/or analyzed during the current study are available from 

the corresponding author upon reasonable request. The results of this study are available on 

the Cardiovascular Disease Knowledge Portal (http://www.broadcvdi.org/). The left atrial 

RNAsequencing data can be accessed via dbGaP under the accession number phs001539.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Study and analysis flowchart
Top, overview of the participating studies, number of AF cases and referents, and the percent 

of samples imputed with each reference panel. Middle, summary of the primary analyses 

and the newly discovered loci for AF. Bottom, overview of the secondary analyses to 

evaluate AF risk variants and loci.
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Figure 2. Manhattan plot of combined-ancestry meta-analysis
The plot shows 67 novel (red) and 27 known (blue) genetic loci associated with AF at a 

significance level of P < 1×10−8 (dashed line), for the combined-ancestry meta-analysis 

(n=588,190). The significance level accounts for multiple testing of independent variants 

with MAF ≥0.1% using a Bonferroni correction. P-values (two-sided) were derived from a 

meta-analysis using a fixed effects model with an inverse-variance weighted approach. The 

y-axis has a break between –log10(P) of 30 and 510 to emphasize the novel loci
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Figure 3. Volcano plot of transcriptome-wide analysis from human heart tissues
The plots show the results from the transcriptome-wide analysis based on left ventricle (a, 

n=190) and right atrial appendage (b, n=159) tissue from GTEx, calculated with the 

MetaXcan method based on the combined-ancestry summary level results (n=588,190). 

Each plotted point represents the association results for an individual gene. The x-axis shows 

the effect size for associations of predicted gene expression and AF risk for each tested gene. 

The y-axis shows the –log10(P) for the associations per gene. Genes with positive effect 

(red) showed an association of increased predicted gene expression with AF risk. Genes with 

negative effect (blue) showed an association of decreased predicted gene expression with AF 

risk. The highlighted genes are significant after Bonferroni correction for all tested genes 

and tissues with a P-value < 5.36×10-6. The result for one gene for right atrial appendage (b) 

is not shown (SNX4, Effect = 6.94, P = 0.2).

Roselli et al. Page 24

Nat Genet. Author manuscript; available in PMC 2018 September 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. Cross-trait associations of AF risk variants with AF risk factors in the UK Biobank
The heatmap shows associations of novel and known sentinel variants at AF risk loci from 

the combined-ancestry meta-analysis. Shown are variants and phenotypes with significant 

associations after correcting for 12 phenotypes via Bonferroni with P < 4.17×10-3. P-values 

(two-sided) were derived from linear and logistic regression models. Listed next to each trait 

is the number of cases for binary traits or total sample size for quantitative traits. 

Hierarchical clustering was performed on a variant level using the complete linkage method 

based on Euclidian distance. Coloring represents Z-scores for each respective trait or 

disease, oriented toward the AF risk allele. Red indicates an increase in the trait or disease 

risk while blue indicates a decrease in the trait or disease risk. Abbreviations, BMI, body-

mass index, CAD, coronary artery disease, PVD, pulmonary vascular disease.
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