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Abstract

Journey Before Destination: Understanding Quantum Dynamical Phenomena in
Condensed Phases

by

Addison Jon Schile

Doctor of Philosophy in Chemistry

University of California, Berkeley

Professor David T. Limmer, Chair

The simplest picture of a chemical reaction through a reaction coordinate supposes a system
begins as a set of reactants whose energy must fluctuate to overcome some activation barrier
en route to the reacted products. These fluctuations are atypical in that they have large
energy changes relative to the available thermal energy and thus reactions are exceedingly
rare. Often, though, these reactions can occur after some initiation event, which removes this
barrier and allows the reaction to freely proceed. Such is the case for photoinduced chemical
reactions in which light-matter coupling instantaneously pumps energy into the system and
serves as this initiator. These reactions are prevalent in all walks of the chemical sciences.The
generic understanding of these reactions is, however, complicated by the many strongly-
interacting degrees-of-freedom typically involved. Worse yet, these reactions, except in the
most controlled of cases, mostly occur in condensed phase environments such as solvents,
solid frameworks, or protein complexes, which dramatically increase the complexity of these
dynamics while having important consequences on the reactions.

In this thesis we have applied the tools of nonequilibrium statistical mechanics to understand
these photoinduced chemical reactions. These approaches rely on the accurate, but efficient
treatment of multi-dimensional quantum systems through rigorous application of approxi-
mate theories consistent with fundamental thermodynamic relations. When satisfied, the
resulting picture of the dynamics is numerically efficient and quantitatively accurate for
many observables. Furthermore, path sampling approaches can be applied through the use
of a quantum trajectory framework of the dynamics, which unravels the complex dynamics
into a set of reduced simplified reaction coordinates. These techniques, as is demonstrated
on model systems of photoinduced phenomena, can describe the complex dynamics and
simulate the experimental observations of real condensed phase systems.
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Chapter 1

Introduction

“Highly organized research is
guaranteed to produce nothing
new.”

— Frank Herbert [102]

1.1 Photoinduced Chemical Reactions

The interaction of light and matter induces a wide range of chemical and physical phenomena
that arise in much of the natural world and in many of the major technological advances
of the 20th and 21st centuries. By introducing additional energy that can flow throughout
the system, light-matter interactions allow the detailed manipulation of material properties
and chemical reactivity as exemplified through photoinduced chemical reactions. Rather
than waiting for rare equilibrium fluctuations that take a reaction over an energy barrier,
photochemical reactions give rise to unique chemistry by redistributing additional energy
among the many degrees-of-freedom after light excitation.

Applications tied to such reactions are nearly limitless. Much of the natural world relies
on light harvesting processes, such as photosynthesis,[79, 125, 210, 211] to efficiently generate
energy for use in life cycles. In these processes light interacts with a photoexcitable com-
plex and with high efficiency generates excited, mobile electrons that may move throughout
the system for use in other reactions such as the creation of ATP. These processes can be
analogously synthesized in the lab through so-called artificial photosynthesis to construct
materials that harvest the power of the sun to efficiently and cleanly generate electricity.

Chemical reactions may also be directly dependent on light-matter interactions. From
photoinitiated polymerization reactions[53] to photoinduced electron transfer reactions,[201,
276] photochemical reactions occupy a special cornerstone of chemistry itself, which is built
on the details of electrons in chemical bonding. Through these wide variety of reactions
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photochemistry can be found throughout the natural world and can serve as a toolbox for
chemical synthesis in the laboratory.[53]

Another class of photochemical reactions involve structural molecular transformations
in what are known as photoisomerization reactions.[16, 223, 246, 275] In these reactions
no chemical reaction occurs—there are no distinct changes in the chemical bonds—but a
physical transformation is undergone from a molecule in a starting configuration to a rear-
ranged state. These physical transformations can be used to perform work in microscopic
systems, but are even found in biological contexts where human vision is dependent on the
photoisomerization of a molecule.[223, 275]

While photoinduced chemical reactions are ubiquitous, general guiding principles that
describe macroscopic properties of the reactions such as the timescale and yields through
their mechanistic details remain elusive. In other words, what is the journey these systems
take in going toward their destination? From the perspective of this thesis, there are three
distinguishing features associated with these reactions that render our theoretical under-
standing of such processes a challenge: nonadiabatic effects, nonequilibrium phenomena,
and nonmarkovian dynamics. Each of these unique aspects, which are described below, that
occur during photoinduced processes not only introduce additional complexity into the dy-
namics, but are also largely dependent on the microscopic details of each individual system,
which obfuscate the general principles that describe these reactions.

Nonadiabatic

A large portion of quantum chemistry research has focused on applications of the Born-
Oppenheimer (BO) approximation, which underpins key concepts in chemical dynamics such
as the potential energy surface. In this approximation, the total wavefunction can be written
as a product of the nuclear wavefunction and an electronic wavefunction that is parametric
on the nuclear coordinates. Dynamics of the nuclei evolve due to forces obtained from the
potential energy surface, which is the resulting energy obtained from the time-independent
Schrodinger equation of the BO Hamiltonian.

The electronic and nuclear degrees-of-freedom are uncoupled under the BO approxima-
tion and the dynamics of the system evolve in a single electronic state. Photoinduced
reactions fundamentally violate this approximation—a wavepacket is prepared on an elec-
tronically excited state due to the light-matter interaction and the system eventually relaxes
back down to the ground electronic state potentially through a number of other electronic
states thus involving multiple electronic states.[138] In the absence of interactions with an
external radiation field, transitions of the system from one electronic state to another are
radiationless and must be induced by couplings between electronic states mediated by the
nuclear coordinates. These couplings are referred to as nonadiabatic and represent an ele-
ment of the dynamics that goes beyond the BO approximation. Additionally, the accurate
calculation of these couplings through electronic structure programs can require immense
computational resources—a challenge that is not specifically addressed in this thesis.



CHAPTER 1. INTRODUCTION 3

Nonadiabatic dynamics can complicate a simplistic description of photoinduced chemical
processes through a few key effects. First, since the wavepacket evolves on multiple potential
energy surfaces, the mechanism of photoinduced reactions can be rather complex. The forces
acting on the nuclei can be dramatically different depending on the electronic state, which
from a classical perspective means the reaction proceeds along a delicately balanced pathway
along each potential energy surface with specific transitions between each electronic state.
Compared to adiabatic processes, which proceed on a single potential energy surface, an
expanded coordinate space that includes both nuclear and electronic degrees-of-freedom is
required to describe nonadiabatic dynamical reaction pathways.

Another aspect of complex nonadiabatic dynamics are quantum mechanical interference
effects.[215, 287] The system is described by a complex probability amplitude referred to as
the wavefunction. Since the wavefunction is a probability amplitude rather than a probability
density, observing the system in particular configurations depends on the phase information
in the wavefunction. These considerations are particularly important when the wavepacket
passes through conical intersections which are singular points in the nonadiabatic coupling
in the nuclear configuration space due to degeneracies in the electronic energies. Depending
on the way the system approaches and proceeds through the conical intersection, particular
elements of the wavefunction can obtain phases that cause interference with other wave-
function elements and probabilistically restrict or guide the nuclear motion along certain
pathways. These interference effects would otherwise be absent in a purely BO description.

Nonequilibrium

In any introductory chemistry course, one is immediately taught general principles of chem-
ical reactions that relate equilibrium thermodynamics to kinetics. These relations such as
the well-known Arrhenius law and Eyring’s Transition State Theory rest on assumptions
through which general mathematical expressions can be derived.[69] These assumptions sug-
gest that chemical reactions proceed due to rare fluctuations that take a system from a set of
configurations characterizing the reactant through a specific or set of specific configurations
characterizing the transition state that are short-lived to the set of configurations charac-
terizing the product of the reaction.[55] At the core of these assumptions is that the system
is in thermal equilibrium when in its reactant or product configurations and that the neces-
sary fluctuations that take the system through the transition state are rare due to a large
energy barrier in the potential energy surface. In this picture, the rate of a chemical reaction
can be decomposed into the probability for the system to fluctuate into the transition state
configuration—which gives rates the Arrhenius temperature dependence—multiplied by the
speed at which the system passes through the transition state.[44]

Photoinduced processes inherently break these equilibrium assumptions—light-matter
interactions nearly instantaneously place the system in higher-energy electronic states and
this additional energy can then be redistributed to nuclear degrees-of-freedom and the sur-
rounding condensed environment. Often these processes are barrierless due to the additional
energy that is initially pumped in, but can also be constrained by kinetic factors. Despite
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potential energy considerations that determine minimum energy pathways, pathways along
more quickly fluctuating coordinates may be opened or the system can fall into kinetic traps
that are inaccessible at thermal equilibrium. In this sense, the equilibrium picture of con-
sidering a probability times a speed, even if applicable, would be difficult to compute. The
probability for particular fluctuations to occur that take the system along a reaction pathway
are no longer dictated by equilibrium statistical mechanics, but are now determined by the
kinetics of dynamics along competing fluctuating degrees-of-freedom.

Condensed phase environments further complicate the picture by expanding the relevant
reaction coordinate space. Heightened fluctuations in the bath can dramatically change the
typical configurations and reduced or implicit descriptions of the environment’s influence
on photoinduced reactions must appropriately account for these effects beyond the equilib-
rium description. At equilibrium, fluctuations are constrained by fundamental laws such
as microscopic reversibility and detailed balance, however, out of equilibrium much more
relaxed constraints are imposed.[52, 122] These relations determine the fluctuations that
allow energy to be redistributed between the system and its surroundings and in general do
not rigorously hold under certain approximations. Without proper description, important
effects from this energy redistribution may be missed that determine the outcome of certain
chemical reactions as encoded in macroscopic observables.

Nonmarkovian

Photoinduced reactions have often been observed to occur on an ultrafast (< 1 ps) timescale,
which is in part due to the nonadiabatic and nonequilibrium effects. The degrees-of-freedom
associated with condensed phase environments, however, move or relax on a timescale that is
commensurate or slower than the ultrafast reaction dynamics. When these slower timescales
have an important impact on the dynamics, we observe what are called nonmarkovian effects.
Nonmarkovianity is the phenomena associated with after-effects that act on some system as
a result of its previous dynamics. The consequence of nonmarkovianity is twofold. First,
nonmarkovianity implies that there are additional degrees-of-freedom whose dynamics are
important to the system dynamics.[193] These additional degrees-of-freedom are hence part
of the reaction coordinate and complicate its description from a few-body picture to a many-
body one.

The second consequence is that the idea of a transition state as a single configuration or
set of configurations is no longer meaningful. At equilibrium, for example, a transition is
often the configuration associated with a rare fluctuation along a slowly moving degree-of-
freedom and once the transition state is reached, the reaction proceeds or fails with some
probability or rate. With nonmarkovianity, the dynamics up to the point of the transition
state are important. Supposing now an additional important slow degree-of-freedom, the
transition state may now depend on how this other degree-of-freedom has fluctuated or will
fluctuate along with the original reaction coordinate.[95, 183] In this manner, the transition
state can be described by a configuration or set of configurations and the history of how it
proceeded to that point.
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1.2 Outline

As we have discussed, the challenges in theoretically describing photoinduced chemical reac-
tions are associated with there being a large number of degrees-of-freedom, an importance of
remaining faithful to fundamental physical laws, and a difficulty in elucidating the general
principles of these reactions from the microscopic details. This thesis aims to address these
challenges head on. In particular, the work described herein illustrates new theoretical and
experimental tools that can be used for studying condensed phase photoinduced reactions
and shows how these tools can be specifically applied.

This thesis is organized into five remaining chapters. In Chapter 2, the theoretical foun-
dations upon which this thesis rests are outlined. These foundations cover the quantum me-
chanical theory of dynamics for molecular systems in condensed phase environments and the
relation between such dynamics and experimental observations through spectroscopy. While
the remaining chapters are relatively self-contained, this chapter serves as a useful reference
for the subsequent work. Chapters 3 and 4 introduce new theoretical tools for simulating
and analyzing the dynamics of condensed phase quantum systems. Problems associated
with elucidating complicated reaction mechanisms in many-body systems are tackled with
the methods proposed in Chapter 3 while efficient numerical techniques for simulating these
systems are developed in 4.

These methods are then applied in two contexts. In Chapter 5 we show how the methods
developed can be used to create model Hamiltonians for describing photoinduced chemical
reactions, specifically the photoisomerization of azobenzene. Here it is illustrated how these
new methods can lead to a dramatic reduction in the number of degrees-of-freedom needed
to properly describe these reactions. Chapter 6 then showcases how these methods can be
used to simulate spectroscopic observables and how a relatively new spectroscopy technique,
two-dimesional electronic vibrational spectroscopy, can be used to obtain mechanistic insight
in condensed phase photoinduced reactions, specifically, in light-harvesting complexes.
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Chapter 2

Theoretical Aspects of Condensed
Phase Quantum Dynamics

“When you play the game of
thrones, you win or you die.
There is no middle ground.”

— Cersei Lannister [162]

In this chapter we outline the formalism, illustrate the methods, and derive the important
equations that will serve as the theoretical foundation of this thesis. As this thesis concerns
itself with the quantum dynamical phenomena of condensed phase systems, we will first
discuss the basics of quantum molecular dynamics of closed systems that adequately describes
gas-phase dynamics. This description will be followed by a discussion of dynamics of open
quantum systems and quantum master equations, which can be applied to condensed phase
systems. The final section will discuss connections between the underlying dynamics and
experimental observations through the time-dependent response function formalism.

2.1 Quantum Dynamics of Closed Systems

When a system is completely isolated from its surroundings there is no exchange of energy,
particles, or any other form of quantum information with an environment. In this instance,
the system is considered to be closed and is entirely described by a wavefunction, |ψ〉.
The energy of the system is an observable characterized by the Hamiltonian operator, H.
Observable values of the energy are given by the eigenvalues of the Hamiltonian as encoded
in the time-independent Schrödinger equation,

H|ψ〉 = E|ψ〉, (2.1)

with associated eigenvectors, which is a particular wavefunction. The average energy of
the system, or average of any operator (replace H with some operator A in the following



CHAPTER 2. THEORETICAL ASPECTS OF CONDENSED PHASE QUANTUM
DYNAMICS 7

equation), is given by an inner product

〈H〉 = 〈ψ|H|ψ〉, (2.2)

which is obtained experimentally by averaging over repeated measurements. The dynamics
of the system is determined by the time-dependent Schrödinger equation,

∂t|ψ(t)〉 = − i
~
H|ψ(t)〉, (2.3)

where ~ is the reduced Planck constant. The time-dependent Schrödinger equation has the
formal solution, for time-independent Hamiltonians,

|ψ(t)〉 = e−iHt/~|ψ(0)〉 ≡ U(t)|ψ(0)〉 (2.4)

where U(t) = e−iHt/~ is the propagator. The system is not generically in a particular
eigenstate—of the Hamiltonian or any other Hermitian operator—but often exists in a su-
perposition of states. In some suitable basis, this superposition is written as

|ψ〉 =
∑
n

cn|n〉, (2.5)

where {|n〉} are the set of basis states and {cn} are the set of complex coefficients giving
the amplitude of a particular basis state. When expanded in the energy eigenbasis—the set
eigenvectors of the Hamiltonian {|n〉} with eigenvalues H|n〉 = En|n〉—the time-dependence
of the wavefunction is built into the complex coefficients, that is,

|ψ(t)〉 =
∑
n

cn(t)|n〉, (2.6)

where cn(t) = e−iEnt/~cn(0).
While formally quite simple, these equations are of impractical use for describing real

molecular systems. As will be explained below, finding solutions to either Eq. 2.1 or 2.3
is prohibitively expensive even for modern supercomputing architectures due to exponential
computational scaling associated with representing the wavefunction of many-body systems.
The remainder of this section is devoted to characterizing exact and approximate methods
for computing the dynamics of such closed systems.

Nonadiabatic Effects

For much of the 20th century, major advancements in quantum chemistry utilized the adi-
abatic or Born-Oppenheimer (BO) approximation.1 This approximation considers the ab
initio molecular Hamiltonian

H =
∑
I

P2
I

2MI

+
∑
i

p2
i

2mi

+
∑
i<j

Vee(ri,j) +
∑
i,I

VeN(ri,I) +
∑
I<J

VNN(RIJ). (2.7)

1Much of this discussion can be found in a number of textbooks. For an excellent introduction of the
BO approximation and other topics in electronic structure theory we refer the reader to Ref. [245].
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Here electron degrees-of-freedom are denoted in lower case and nuclei are denoted in upper
case, MI (mi) is a nuclear (electron) mass, PI (pi) is the nuclear (electron) momentum. The
potential energy terms are given by the two-body Coloumb potentials of the electron-electron
(ee), electron-nuclear (eN), and nuclear-nuclear (NN) interactions, which are all dependent
on the distances (denoted by r or R) between each particle.

The central tenet of the Born-Oppenheimer approximation is that the nuclei are massive
relative to the electrons, that is for all I and i, MI � mi, and thus the electronic mo-
tion is instantaneous compared to nuclear motion. The approximate, Born-Oppenheimer,
Hamiltonian is given by,

HBO =
∑
i

p2
i

2mi

+
∑
i<j

Vee(ri,j) +
∑
i,I

VeN(ri,I) +
∑
I<J

VNN(RIJ) (2.8)

where the nuclear coordinates are now taken to be a vector of fixed c-numbers rather than
quantum mechanical operators. The result is that the positions of the nuclei may be con-
sidered as parametric and the solution to the time-independent Schrödinger equation with
HBO gives adiabatic eigenstates that are products of an electronic and nuclear wavefunction
(for the α eigenstate),

|Ψα(r,R)〉 = |φα(r; R)〉|χα(R)〉, (2.9)

with eigenvalues HBO|Ψα(r,R)〉 = Eα|Ψα(r,R)〉 where |φα(r; R)〉 is the electronic wave-
function, which is parametrically dependent on the nuclear coordinates and |χα(R)〉 is the
nuclear wavefunction. These electronic eigenstates can be found independently at each value
of the nuclear coordinates and the associated eigenenergies characterize the so-called poten-
tial energy surface from which the forces acting on the nuclei can be derived.

To see the effect of nonadiabatic dynamics—dynamics with the full Hamiltonian—it is
useful to first consider dynamics of an adiabatic eigenstate, which is a typical initial condition
of a system upon vertical excitation through light-matter interaction. In this case, we insert
Eq. 2.8 and 2.9 into Eq. 2.3 and project out the nuclear wavefunction, from which we obtain

∂t|φα〉 = − i
~
HBO|φα〉, (2.10)

with solution |φα(t)〉 = e−iEαt/~|φα(t)〉. Taking the inner product of the time-dependent
electronic wavefunction with another electronic eigenstate allows us to find the amplitude of
finding the system in another electronic eigenstate at time t,

〈φβ|φα(t)〉 = 〈φβ|e−iEαt/~|φα(t)〉 = e−iEαt/~δαβ. (2.11)

In other words, the system stays completely populated on a single electronic state throughout
the course of its time evolution.

Now including the additional term from the nuclear kinetic energy not present in the BO
Hamiltonian we have,

H|Ψα(r,R)〉 =

(∑
I

P2
I

2MI

+HBO

)
|Ψα(r,R)〉 =

(∑
I

P2
I

2MI

+ Eα

)
|Ψα(r,R)〉, (2.12)
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where we have used the fact that |Ψα(r,R)〉 is an eigenstate of the BO Hamiltonian. Inserting
the identity of the momentum operator∑

I

P2
I

2MI

= −
∑
I

~2

2MI

∂2

∂R2
I

(2.13)

and applying it on the wavefunction gives us

−
∑
I

~2

2MI

∂2

∂R2
I

|Ψα(r,R)〉 = −
∑
I

~2

2MI

∂2

∂R2
I

|φα(r; R)〉|χα(R)〉

= −
∑
I

~2

2MI

|φα(r; R)〉
(
∂2

∂R2
I

|χα(R)〉
)

−
∑
I

~2

MI

(
∂

∂RI

|φα(r; R)〉
)(

∂

∂RI

|χα(R)〉
)

−
∑
I

~2

2MI

(
∂2

∂R2
I

|φα(r; R)〉
)
|χα(R)〉. (2.14)

As we proceeded above, we will take an inner product of this term with a different BO
eigenstate,

−
∑
I

~2

2MI

〈Ψβ(r,R)| ∂
2

∂R2
I

|Ψα(r,R)〉 = −
∑
I

~2

2MI

δαβ〈χβ(R)| ∂
2

∂R2
I

|χα(R)〉

−
∑
I

~2

MI

dI,αβ(R)〈χβ(R)| ∂
∂RI

|χα(R)〉

−
∑
I

~2

2MI

gI,αβ(R)〈χβ(R)|χα(R)〉 (2.15)

where the first term is simply the nuclear kinetic energy and

dI,αβ(R) = 〈φβ(r; R)| ∂
∂RI

|φα(r; R)〉 (2.16)

gI,αβ(R) = 〈φβ(r; R)| ∂
2

∂R2
I

|φα(r; R)〉. (2.17)

Here we have defined two quantities dI,αβ(R), which is the derivative or nonadiabatic cou-
pling vector, and gαβ(R), which is the (scalar) diagonal BO correction. In many cases, the
latter of these two is small and can be ignored, though some work has shown the importance
of its inclusion in limited cases.[86, 164]

It can be shown through an application of the Hellman-Feynman theorem that the deriva-
tive coupling is equal to a scaled energy gradient,

dI,αβ(R) =
〈φβ(r; R)| ∂H

∂RI
|φα(r; R)〉

Eβ − Eα
. (2.18)
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As can be seen from this equation, the magnitude of the derivative coupling grows when
the energy between two adiabatic states decreases. In many chemical reactions that proceed
only along the ground state, this term remains small and can thus be ignored. In the
case of photoinduced chemical reactions, the nuclear wavepacket moves along the excited
state to regions where the ground state may be high in energy relative to its equilibrium
position. In these instances, the adiabatic energies become close and may even go to zero at
a conical intersection, in which case the derivative coupling terms becomes large and even
singular. As this matrix element quantifies the rate of population transfer—which can be
seen by including this term in Eq. 2.3 and working through the procedure of Eq. 2.11—fast
population transfer from one adiabatic electronic state to another may occur in these regions
of the potential energy and the dynamics will proceed in multiple electronic states.

Another dramatic effect from nonadiabatic dynamics is the so-called geometric phase.[287]
The BO solution to the time-dependent Schrödinger equation can be rewritten as

|φα(r, t; R)〉 = exp

[∫ t

0

dt′〈φα(r, t′; R)|∂t|φα(r, t′; R)〉
]
|φα(r, 0; R)〉. (2.19)

Here we will denote the phase accumulated throughout the dynamics as

γ =

∫ t

0

dt′〈φα(r, t′; R)|∂t′ |φα(r, t′; R)〉

=

∫ t

0

dt′〈φα(r, t′; R)| ∂
∂R
|φα(r, t′; R)〉 · ∂R

∂t′

=

∫ Rt

R0

B(R) · dR (2.20)

where

B(R) = 〈φα(r, t′; R)| ∂
∂R
|φα(r, t′; R)〉. (2.21)

This phase, often referred to as the geometric or Berry phase, is thus a line integral over
the nonadiabatic coupling vector. If we consider the line integral over a particular closed
path and evaluate it using contour integration, it is nonzero only around singular points
in the wavefunction, which are points of degeneracy in the adiabatic electronic states—
in other words at conical intersections. Since the Berry phase is nonzero around conical
intersections, the sign of the phase depends on the direction followed along the closed path.
Hence a wavefunction as it is proceeding toward a conical intersection can interfere with
itself depending on the direction with which components of the wavefunction go around the
conical intersection. The accurate incorporation of these phase interference effects can have
a dramatically large impact on the qualitative behavior of the dynamics of the system.[61,
214, 215]
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Wavefunction Representations

So far we have considered adiabatic wavefunctions that are solutions to the time-independent
Schrödinger equation with the BO Hamiltonian. Action of the full Hamiltonian on this
representation, as we have seen above, induces couplings which may become large or even
signular at particular nuclear configurations. An alternate representation that avoids these
singularities is thus warranted and gives rise to the so-called diabatic representation. The
diabatic states, {|ϕα〉}, are position-independent, that is, they are electronic states that are
unchanged by motion of the nuclear degrees-of-freedom and are states for which the derivative
coupling is zero. To find the diabatic states, one must find a nuclear position-dependent
unitary transformation that sets the derivative coupling to zero at all configurations.[138] In
this sense, the nuclear kinetic energy operator becomes diagonal with respect to the diabatic
electronic states, however, the diabatic electronic states are no longer orthogonal with respect
to the potential and have nonzero couplings from that potential,

Vαβ = 〈ϕα|V |ϕβ〉, (2.22)

which are referred to as the diabatic couplings. The procedure to find the diabatic states
is unique when the adiabatic and diabatic bases are complete, however, this is impossible
to achieve in practice.[138] There are thus a number of procedures that seek to compute
an approximate unitary transformation that minimizes the derivative coupling in a suitably
large basis of diabatic states.[14, 207, 208, 281]

Once an appropriate diabatic representation has been found an ansatz for the wave-
function must be imposed for efficient numerical calculations. The simplest approach for
an ansatz is to assume a direct product basis, in which the wavefunction is expanded in
products of one-dimensional basis functions.[138] The minimal direct product wavefunction
is given by a Hartree product

|Ψ〉 = |ϕ〉
N∏
m=1

|χm〉, (2.23)

where ϕ denotes the electronic wavefunction and {|χm〉} are the wavefunctions of the N
nuclear degrees-of-freedom. As this Hartree product contains an expansion of each one-
dimensional wavefunction with a single basis function it can be said to be minimally entan-
gled. Nonadiabatic quantum dynamical phenomena, as we have previously discussed, induces
entanglement by coupling different basis functions. Going beyond the Hartree product we
can include products of superpositions of each one-dimensional wavefunction,

|Ψ〉 =

(∑
α

cα|ϕα〉
)

N∏
m=1

∑
j

cα,jm |χjm〉, (2.24)

where {cα, cα,jm} are the complex coefficients describing that superposition. Put more com-
pactly, this wavefunction has the form

|Ψ〉 =
∑
α

∑
j1,j2,...,jN

Aα,j1,j2,...,jN |ϕα〉
N∏
m=1

|χjm〉, (2.25)
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where Aα,j1,j2,...,jN is the (N + 1)−dimensional coefficient tensor, which is a product of all
the one-dimensional coefficients

Aα,j1,j2,...,jN = cα

N∏
m=1

cαjm (2.26)

Here we have invoked a form of the wavefunction in which its constituent basis functions
are time-independent with time-dependent coefficients. The equation of motion for this
wavefunction is given by the time-dependent Schrödinger equation for the coefficients

Ȧα,j1,j2,...,jN (t) = − i
~

∑
β,k1,k2,...,kN

Hα,j1,j2,...,jN
β,k1,k2,...,kN

Aβ,k1,k2,...,kN (t) (2.27)

with the Hamiltonian matrix elements given by

Hα,j1,j2,...,jN
β,k1,k2,...,kN

=

(
〈ϕα|

N∏
m=1

〈χjm |
)
H

(
|ϕβ〉

N∏
m=1

|χkm〉
)
. (2.28)

The matrix elements of the Hamiltonian can either be precomputed at the beginning
of a calculation and then stored in memory or, for large systems, may be computed on-
the-fly so as not to incur steep memory costs. In either case, a preferable choice of the
time-independent basis functions are those that converge in the number of basis functions
quickly and have analytical forms for the matrix elements. One such choice that fits these
requirements is the discrete variable representation (DVR) basis.[157] A DVR basis is a
complete basis that diagonalizes the position operator with eigenvalues representing the
location of the basis functions on the one-dimensional grid. Thus matrix elements for any
potential energy operator, which are functions of the position operators, are also diagonal
and can be evaluated by simply computing the value of the potential at the grid point. An
additional benefit of the DVR basis is the analytical form for the kinetic energy operator,
which is often tridiagonal depending on the particular DVR basis employed. Since the
DVR basis represents operators in a sparse way, sparse linear algebra techniques, such as
Krylov subspace methods,[188] can be used to dramatically speed up and reduce the memory
requirements of such calculations.

Multiconfigurational Time-Dependent Hartree Theory

While the direct product form of the wavefunction is conceptually simple, it is only practically
useful for systems of a few degrees-of-freedom at most due to exponential computational
scaling of the wavefunction with the number of degrees-of-freedom. To see this scaling we
assume a system with N degrees-of-freedom that requires n basis functions per degree-of-
freedom. The memory requirements then scale as nN and thus as N grows we encounter the
so-called curse of dimensionality.
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An alternative approach to the direct product representation is the Multiconfigurational
Time-Dependent Hartree (MCTDH) method.[18] The MCTDH wavefunction is given by

|Ψ(t)〉 =
∑
α

∑
j1,j2,...,jN

Aα,j1,j2,...,jN (t)|ϕα〉
N∏
m=1

|φmα,jm(t)〉, (2.29)

where |ϕα〉 is the electronic wavefunction, Aα,j1,j2,...,jN (t), is the coefficient tensor, and the
nuclear degrees-of-freedom are now represented by single particle functions |φmα,jm(t)〉. This
approach relies on two key differences to the direct product representation. The first dif-
ference is that the wavefunction is expanded in a basis of time-dependent functions, the
single particle functions (SPFs). These SPFs are typically represented by an expansion of
a time-independent basis, the primitive basis functions (PBFs), as in the aforementioned
direct product approach,

|φmα,jm(t)〉 =
∑
p

cα,jm,p(t)|χjm〉. (2.30)

The coefficient tensor is still time-dependent, but the time-dependence of the basis functions
adds additional complexity to the total wavefunction offering a more compact and thus
lower memory representation at the cost of having a more complex equation of motion.
Since the SPFs can optimally represent the wavefunction locally rather than relying on a
global basis, fewer of them are required and the memory requirements of the coefficient
tensor are significantly reduced. Considering a wavefunction that requires p SPFs per mode
where p < n, the memory savings to the coefficient tensor is (n/p)N . As the number of
degrees-of-freedom grows, the curse of dimensionality remains, but scales at a lower rate
than the direct product representation.

The second difference is that these basis functions can be, although it is not always
used in practice, multidimensional in that they represent multiple degrees-of-freedom in the
total wavefunction. This technique is referred to as mode-combination and is essentially a
direct product basis expansion for multiple modes, but combined into a single set of SPFs.
As the direct product basis is limited to a few degrees-of-freedom due to the scaling of
the coefficient tensor, the mode combination technique reduces the scaling of the coefficient
tensor by placing additional memory requirments into the SPFs. When utilized efficiently,
this approach allows MCTDH to treat tens of degrees-of-freedom going well beyond the
capabilities of the direct product approach.

The equation of motion for the MCTDH wavefunction is found by applying the Dirac-
Frenkel variational principle[58, 74, 199] (~ = 1 throughout the remainder of this subsection),

〈δΨ|H − i∂t|Ψ〉 = 0, (2.31)

where |δΨ〉 is an infinitesimal variation of the wavefunction. By adopting a particular gauge
condition

i〈φm,βjm
(t)|φ̇m,αkm

(t)〉 = 0 (2.32)
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we obtain two coupled equations of motion for the coefficients and the SPFs, respectively,

iȦJ(t) =
∑
K

〈ΦJ(t)|H|ΦK(t)〉AK(t) (2.33)

i|φ̇mα,j(t)〉 = (1− P (m)
α )

∑
β,k,l

(ρ−1
m,α)jk〈H〉(m)

αβ,kl|φmβ,l(t)〉, (2.34)

where J and L are composite indices capturing all the previously listed indices and |ΦJ(t)〉
represents a product of all the SPFs in composite index J . A detailed explanation of all the
terms is rather involved and is thus detailed explicitly in Appendix A.

One additional consequence of using time-dependent basis functions is that the corre-
sponding matrix elements—with respect to the SPFs specifically—cannot be precomputed
and stored in memory for rapid application like in Eq. 2.27 and must be computed on-the-fly.
For computational efficiency, it is thus imperative to impose a sum-of-products form of the
Hamiltonian. Considering a general many-body expansion of the Hamiltonian we obtain the
sum-of-products form

H =
s∑
r

drh
(el)
r

N∏
m=1

h(m)
r (2.35)

where dr is the coefficient for the rth term and h
(m)
r is an operator that acts on the mth

mode, which can include the electronic states, (el). With this form, each one-body operator
can act independently on the SPFs and efficient tensor contraction algorithms can be utilized
to calculate the final matrix elements.

A final comment about the MCTDH method is that the wavefunction ansatz still, as was
previously mentioned, scales exponentially with the number of degrees-of-freedom, albeit at
a slower rate than the direct product form. An extension of MCTDH, which goes beyond
the scope of this thesis, generalizes the mode combination concept and recursively applies
the MCTDH ansatz to groups of degrees-of-freedom, called the multilayer variant or ML-
MCTDH.[270, 274] This ansatz and subsequent equations of motion scales polynomially
with the number of degrees-of-freedom and has the capacity to represent hundreds and even
thousands of degrees-of-freedom with model Hamiltonians (see for example Ref. [271] in
which the authors performed a calculation with 100,000 degrees-of-freedom).

2.2 Quantum Dynamics of Open Systems

In the previous section, we considered isolated systems and methods for simulating their
dynamics. These strategies are appropriate for treating gas-phase systems or systems of
small clusters where the number of degrees-of-freedom remain limited. Condensed phases,
however, contain many degrees-of-freedom from an accompanying solvent, solid, or potential
interfaces and representing every degree-of-freedom, even with advanced numerical tech-
niques, is computationally intractable. Treating these sorts of systems with a closed systems
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approach also formally prevents the correct description of condensed phase phenomena such
as thermalization due to dissipation and dephasing.

Fortunately, even though condensed phases dramatically increase the size and complexity
of the system, we are often only interested in some small relevant subsystem. This subsystem
can exchange energy and particles with its surrounding environment and it is thus considered
open. We will formally consider condensed phases as characterized by a Hamiltonian of the
form,

H = HS +HB +HSB, (2.36)

where HS is the Hamiltonian of the relevant system, HB is the Hamiltonian of the bath, and
HSB describes their interaction that allows exchange of energy and particles. The bath is
typically taken to be a set of degrees-of-freedom whose fluctuations obey Gaussian statistics
and thus are described by a set of harmonic oscillators,

HB =
∑
k

ωk
2

(p2
k + q2

k), (2.37)

with linear interactions with the system

HSB = S
∑
k

ckqk. (2.38)

Here {(pk, qk)} are the set of dimensionless momenta and positions2 of the bath, S is some
operator that acts on the system through which the system is coupled to the bath, and {ck}
are the set of coupling coefficients encoding the strength of coupling between the system and
each mode of the bath. While we will consider the case of a single bath, the generalization to
multiple, uncorrelated baths is straightforward due to the separability in the Hamiltonian.
These coupling coefficients are characterized by the spectral density,

J(ω) =
π

2

∑
k

c2
kδ(ω − ωk). (2.39)

Since the number of degrees-of-freedom in the bath is significantly larger than in the system,
its energy spectrum is accordingly more dense and thus this spectral density is often taken
to have some continuous functional form, which will be discussed in later chapters.

Mixed States and Density Matrices

As we have discussed, the wavefunction can be written as a linear combination of basis
functions,

|ψ〉 =
∑
n

cn|n〉 (2.40)

2One could also use mass-weighted coordinates, which is achieved by the change of variables pk →√
1

ωkmk
pk and qk →

√
mkωkqk. Under this transformation the spectral density also changes to J(ω) =

π
2

∑
k

c2k
mkωk

δ(ω − ωk)
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and with complex coefficients cn. Since the coefficients are complex, they have an associated
phase, which when taking expectation values of operators through a measurement

〈A〉 = 〈ψ|A|ψ〉 =
∑
nm

cnc
∗
mAmn (2.41)

it becomes clear that the phase relationship between these coefficients is important. When
the system can be described by a wavefunction in this form, it is assumed that we have
a scheme under which we can measure both the amplitude and phase components of the
complex coefficients. When this is the case, we can equivalently describe the state of the
system as a density matrix, which is an outer product of wavefunction, given by

ρ = |ψ〉〈ψ| =
∑
nm

cnc
∗
m|n〉〈m|. (2.42)

By comparing Eq. 2.41 and 2.42 it is clear that expectation values are given by

〈A〉 = Tr{ρA}, (2.43)

which is a trace of the product of the density matrix and operator of the observable. When
the density matrix is written as an outer product of a single wavefunction, our system is
said to be in a pure state and importantly the density matrix can be diagonalized and with
a single eigenvalue that is 1 and the rest 0.

More often is the case in which we cannot measure the entirety of the wavefunction,
that is we cannot determine both the amplitudes and phases of all the coefficients, due to
incomplete information or an insufficient experimental technology. We still, however, have
access to expectation values of observables, but measured over a statistical mixture of pure
states,

〈A〉 = E|ψ〉[〈ψ|A|ψ〉] =
∑
nm

Ecncm [cnc
∗
m]Amn, (2.44)

where Ex is the expectation value over the random variable x. As we mentioned above, a
pure state has a particular phase relationship between all the coefficients and thus they are
correlated random variables, Ecncm [cnc

∗
m] 6= Ecn [cn]Ecm [c∗m]. We can then define a density

matrix, which is an average of pure state outer products

ρ = E|ψ〉[|ψ〉〈ψ|] =
∑
nm

Ecncm [cnc
∗
m]|n〉〈m|. (2.45)

Again by comparing Eq. 2.44 and 2.45, we see that Eq. 2.43 is satisfied without change. In
this case, diagaonlizing the density matrix gives more than one nonzero eigenvalue and thus
our system is said to be in a mixed state.

A tempting picture to use instead would be an expectation value of pure state wavefunc-
tions,

|Ψ〉 = E|ψ〉[|ψ〉] =
∑
n

Ecn [cn]|n〉. (2.46)
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This picture, however, does not give the correct expectation value of our operator

〈Ψ|A|Ψ〉 =
∑
nm

Ecn [cn]Ecm [c∗m]Amn 6= 〈A〉, (2.47)

hence only the density matrix is capable of characterizing the statistical uncertainty in the
measurement of pure states. Such uncertainty arises in the condensed phase—a massive
increase in the number of degrees-of-freedom and thus accessible states as well as a lack of
detailed control inhibits our ability to measure with any certain the pure state of the system
characterized by the coefficients’ amplitudes and phases. Thus we see that the density matrix
is the most natural object with which to describe the state and dynamics of a condensed
phase system.

The time evolution of the density matrix is obtained by considering the time evolution
of a wavefunction. Writing the density matrix as a statistical ensemble of pure state outer
products—which can always be found by working in a suitable basis that diagonalizes the
density matrix—the time evolution is clearly given by,

ρ(t) =
∑
n

pn|ψn(t)〉〈ψn(t)|

=
∑
n

pnU(t)|ψn(0)〉〈ψn(0)|U †(t)

= U(t)ρ(0)U †(t) (2.48)

By differentiating this equation with respect to t we obtain an equation of motion for the
density matrix given by the Liouville-von Neumann equation,

∂tρ(t) = − i
~

[H, ρ(t)] ≡ −iLρ(t), (2.49)

where L· = ~−1[H, ·] is referred to as the generator of the dynamics. Since H is written in a
separable form in Eq. 2.36, the generator is also separable,

L = LS + LB + LSB. (2.50)

Throughout this section we will also consider general Hamiltonians that can be written
as a zeroth-order Hamiltonian, H0 plus some external perturbation, V , (note the similarities
between the system-bath Hamiltonian above) in the form

H = H0 + V. (2.51)

It will often be convenient to work in the frame of reference of H0, which is given by the
Dirac or interaction picture. This reference is define by the transformations to operators A
and wavefunctions |ψ(t)〉 as

AI(t) = eiH0t/~AeiH0t/~ (2.52)

|ψI(t)〉 = eiH0t/~|ψ(t)〉 = eiH0t/~e−iHt/~|ψ(0)〉, (2.53)



CHAPTER 2. THEORETICAL ASPECTS OF CONDENSED PHASE QUANTUM
DYNAMICS 18

where the subscript I will be used to denote the interaction representation. The density
matrix, being an operator, is written in the interaction picture as

ρI(t) = eiH0t/~ρ(t)e−iH0t/~, (2.54)

which upon differentiation gives the following equation of motion,3

∂tρI(t) = − i
~

[VI(t), ρI(t)] ≡ −iLV (t)ρI(t). (2.55)

This equation has the solution,

ρI(t) = ρI(0)− i
∫ t

0

dsLV (s)ρI(s), (2.56)

which is obtained by the method of separation of variables. This equation can be expanded
through iteration, that is by plugging the right-hand side into itself we obtain

ρI(t) = ρI(0)− i
∫ t

0

dsLV (s)ρI(0)−
∫ t

0

ds

∫ s

0

ds′LV (s)LV (s′)ρI(s
′), (2.57)

after a single iteration. Performing this iteration an infinite number of times we obtain the
so-called Dyson series,

ρI(t) =

{
1 +

∞∑
n=1

(−i)n
∫ t

0

ds

∫ s

0

ds1 · · ·
∫ sn−1

0

dsnLV (s)LV (s1) · · · LV (sn)

}
ρI(0), (2.58)

which defines the propagator denoted by

G(t, t0) = exp+

{
−i
∫ t

t0

dsLV (s)

}
. (2.59)

Here we have used a shorthand for the series expansion where the subscript on the exponen-
tial refers to the chronological time-ordering of the integrals in the series. This propagator
may also be found by Taylor-series-expanding the full exponential and then reordering and
summing the terms such that the time-ordering relation in Eq. 2.58 is satisfied. The back-
ward propagator (reversed in time), which will also be of use, follows the anti-chronological
time-ordering and is denoted by

G̃(t, t0) = exp−

{
i

∫ t

t0

dsLV (s)

}
. (2.60)

3Interestingly, this equation of motion is different by a sign for the equation of motion of any other
operator in the interaction picture due to the underlying time-dependence of ρ(t) in the Schrödinger picture.
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Projection Operators and Reduced Dynamics

So far in this section, we have alluded to the idea of describing a reduced subsystem of interest
that can interact with its surroundings. Here we consider the mathematical techniques
through which we achieve this construction. In particular, we utilize the projection operator
formalism in which we reduce the dimensionality of the Hilbert space by projecting out the
subspace of the environment. This construction is achieved by defining a system projection
operator, P , that acts on the full density matrix ρ. This operator is a bounded linear
operator with eigenvalues 0 or 1 and is idempotent, P2 = P . The projection operator for
the environment or irrelevant part is defined as the complement to P , Q = 1 − P , which
can be easily shown to also satisfy the properties of a projection operator. These projection
operators are thus said to be complete.

The specific projection operator we shall henceforth use is given by

P· = TrB{·}ρeq
B , (2.61)

where ρeq
B is the thermal density matrix of the bath degrees-of-freedom given by

ρeq
B =

e−βHB

TrB{e−βHB}
(2.62)

where β = 1/kBT with T the temperature and kB Boltzmann’s constant. This projection
operator effectively traces out the bath degrees-of-freedom and is idempotent,

P2A = TrB{TrB{A}ρeq
B }ρeq

B

= TrB{A}TrB{ρeq
B }ρeq

B

= PA. (2.63)

With this projection operator, we can then define the reduced density matrix, σ(t),

Pρ(t) = σ(t)ρeq
B , (2.64)

which is the kronecker product of the density matrix characterizing the state of the system
degrees-of-freedom and the bath equilibrium density matrix.

We shall make use of our projection operators by inserting the identity into Eq. 2.55

∂t(P +Q)ρI(t) = −i(P +Q)LV (t)(P +Q)ρI(t) (2.65)

Due to the complementarity of the projection operators, the equation of motion can be
separated into a set of coupled equations of motion

∂tPρI(t) = −iPLV (t)(P +Q)ρI(t) (2.66)

∂tQρI(t) = −iQLV (t)(P +Q)ρI(t), (2.67)

which describe the time-evolution of the system and bath subspaces, respectively.
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The solution of the bath projected density matrix can be found through the means of
the Green’s function method

QρI(t) = G(t, 0)Qρ(0)− i
∫ t

0

dτG(t, τ)QLV (τ)PρI(τ) (2.68)

where

G(t, t0) = exp+

{
−i
∫ t

t0

dsQLV (s)

}
. (2.69)

By differentiating with respect to t it can be easily shown that this equation satisfies Eq.
2.67. Substituting Eq. 2.68 into Eq. 2.66 gives the Nakajima-Zwanzig-Mori equation[174,
179, 296]

∂tPρI(t) = −iPLV (t)PρI(t)−
∫ t

0

dτPLV (t)G(t, τ)QLV (τ)PρI(τ)− iPLV (t)G(t, 0)QρI(0).

(2.70)
Before proceeding further, it is informative to understand each piece of Eq. 2.70. The first

term, which is the full dynamics of the projected density matrix projected onto the reduced
subsystem. Since the density matrix is “pre-projected” before action of the generator, any
bath and system-bath coupling terms, due to the choice of projector in Eq. 2.61, are zero
and we are left with the dynamics of the subsystem without the presence of a bath. The
final term represents a force that acts on the system from any initial correlations between the
system and bath in the density matrix. In the context of photoinduced reactions, the system
and bath are typically uncorrelated due to weak coupling without instantaneous excitation
energy and hence we often assume ρ(0) = σ(0)ρeq

B . In this case, the final terms is exactly
zero.

The second term often generates the source of most difficulty in simulations with this
formalism and thus warrants a deeper discussion. Qualitatively this term represents the effect
of considering an initial interaction between the system and bath (PρI(τ)), propagation of
that correlation in the bath subspace up to time t (G(t, τ)Q), and then the interaction
between the two subspaces projected onto the system at time t (PLV (t)). This term thus
constitutes a “reaction-field effect” and the integral represents a sum over all contributions
from times before t. This effect characterizes the memory of correlations—a measure of the
correlation time length—between the system and bath and is often referred to as the memory
kernel.

The Nakajima-Zwanzig-Mori equation derived here is given in the so-called time-convolution
(TC) form in that the second term in Eq. 2.70 is a convolution integral. There has been
much progress in the development of numerical algorithms for computing the dynamics in
this form,[49, 133, 234] but we will work with the Tokuyama–Mori time-convolutionless
(TCL) or time-local form.[258] In this formulation, we use the backward propagator

ρI(t0) = G̃(t, t0)ρI(t) (2.71)
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and substitute this relation into Eq. 2.68 such that the right-hand side only depends on
ρI(t) and no previous time information about the state is required

QρI(t) = G(t, 0)QρI(0)− i
∫ t

0

dτG(t, τ)QLV (τ)PG̃(t, τ)(P +Q)ρI(t). (2.72)

We define the following quantity, the self-energy,

Σ(t) = −i
∫ t

0

dτG(t, τ)QLV (τ)PG̃(t, τ), (2.73)

which upon insertion into Eq. 2.72 and rearranging to isolate QρI(t) gives

QρI(t) = [1− Σ(t)]−1G(t, 0)QρI(0) + [1− Σ(t)]−1Σ(t)PρI(t). (2.74)

This equation can then be inserted into Eq. 2.66 to give the TCL counterpart of the
Nakajima-Zwanzig-Mori equation[45, 235]

∂tPρI(t) = −iPLV (t)[1− Σ(t)]−1PρI(t)− iPLV (t)[1− Σ(t)]−1G(t, 0)QρI(0). (2.75)

This equation can be compactly written as

∂tPρI(t) = K(t)PρI(t) + I(t)QρI(0) (2.76)

where

K(t) = −iPLV (t)[1− Σ(t)]−1P (2.77)

I(t) = −iPLV (t)[1− Σ(t)]−1G(t, 0). (2.78)

We will refer to these terms as the TCL kernel and inhomogeneous term, respectively.

Weak Coupling and Markovian Limits—the Redfield Equation

Up to this point we have made no approximations and Eq. 2.70 and 2.76 are the exact
equations of motion for the reduced density matrix. If we consider a system-bath interaction
as the external perturbation we can write it as a scaled quantity

V = HSB = ζH̃SB (2.79)

where ζ is a dimensionless parameter that quantifies that scale of this Hamiltonian from
which we also obtain the scaled interaction-picture generator

LV (t) = ζL̃V (t). (2.80)

In the case where the system and bath are weakly coupled we have ζ � 1 and we can expand
the TCL kernel in powers of ζ

K(t) =
∞∑
n=1

ζnKn(t). (2.81)
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Here, as we previously discussed, we have taken the inhomogenous term in Eq. 2.76 to be
zero. We can likewise expand the self-energy term in a geometric series

[1− Σ(t)]−1 =
∞∑
n=0

Σn(t), (2.82)

which is guaranteed to be convergent when ζ is small as we are considering here. Taking
also the lowest orders of the propagators, G(t, τ) ≈ 1 and G̃(t, τ) ≈ 1, we have for the
lowest-order terms in the kernel expansion,

K1(t) = −iPL̃V (t) (2.83)

K2(t) = −
∫ t

0

dτPL̃V (t)QL̃V (τ)P . (2.84)

We can use our definitions for the for the interaction generator and projection operators
to evaluate these kernels. The first-order term is

K1(t)PρI(t) = −iTrB{L̃V (t)σI(t)ρ
eq
B }ρeq

B

= −iL̃SV (t)σI(t)ρ
eq
B TrB{L̃BV (t)ρeq

B }. (2.85)

The interaction generator can be written as a kronecker product of its system and bath
components, L̃V (t) = L̃SV (t) ⊗ L̃BV (t), which allows us to evaluate the partial trace of the
bath

TrB{L̃BV (t)ρeq
B } =

∑
k

ckTrB{qk,I(t)ρeq
B } = 0. (2.86)

The second term follows along similar reasoning,

K2(t)PρI(t) = −
∫ t

0

dτTrB{L̃V (t)QL̃V (τ)σI(t)ρ
eq
B }

= −
∫ t

0

dτTrB{L̃V (t)L̃V (τ)σI(t)ρ
eq
B } (2.87)

where we have used the identity Q = 1 − P and Eq. 2.86 to eliminate the resulting P
term via Eq. 2.86. By explicitly acting P on the left-hand side of Eq. 2.76, multiplying
by the inverse of ρeq

B on both sides, and reabsorbing the dimensionless parameter ζ into the
generators we obtain

∂tσI(t) = −
∫ t

0

dτTrB{LV (t)LV (τ)σI(t)ρ
eq
B }

= − 1

~2

∫ t

0

dτTrB{[HSB,I(t), [HSB,I(τ), σI(t)ρ
eq
B ]]}

= − 1

~2

∫ t

0

dτ [SI(t), SI(τ)σI(t)]C(t− τ) + [σI(t)SI(τ), SI(t)]C
∗(t− τ) (2.88)
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where we have defined the bath correlation function

C(t) =
∑
kl

ckclTrB {qk,I(t)ql,I(0)ρeq
B }

=
∑
k

c2
kTrB {qk,I(t)qk,I(0)ρeq

B } , (2.89)

and in the last line we have used the fact that the bath modes are uncorrelated harmonic
oscillators.

Up to this point we have been working in the interaction picture. Upon transforming
back to the Schrödinger picture we have two sources of time-dependence in the equation of
motion

∂tσ(t) = ∂t
(
e−iHSt/~σI(t)e

iHSt/~
)

= − i
~

[HS, σ(t)] + e−iHSt/~(∂tσI(t))e
iHSt/~ (2.90)

Substituting in Eq. 2.88 and using some simplifying notation for the zeroth-order system
propagators, Ut = e−iHSt/~, gives

∂tσ(t) = − i
~

[HS, σ(t)]− 1

~2

∫ t

0

dτUt[SI(t), SI(τ)σI(t)]U
†
tC(t− τ)

+ Ut[σI(t)SI(τ), SI(t)]U
†
tC
∗(t− τ). (2.91)

Inserting the expressions for the interaction picture operators and density matrix gives4

∂tσ(t) = − i
~

[HS, σ(t)]− 1

~2

∫ t

0

dτ [S, SI(t− τ)σ(t)]C(t− τ)

+ [σ(t)SI(t− τ), S]C∗(t− τ). (2.92)

As the only integrated time-dependence is found in one of the system-bath coupling opera-
tors, we can incorporate the scalar dependence from the bath correlation function into that
operator only, which we define as the “dressed” system-bath coupling operators

S̃(t) ≡ SI(t)C(t) (2.93)

S̃∗(t) ≡ SI(t)C
∗(t), (2.94)

and transforming the integration variable τ → t− τ we obtain the time-dependent Redfield
or TCL2 equation

∂tσ(t) = − i
~

[HS, σ(t)]− 1

~2

∫ t

0

dτ [S, S̃(τ)σ(t)] + [σ(t)S̃∗(τ), S]. (2.95)

4This expression can be easily found by expanding out the commutators and working through the simple
operator mechanics, i.e., UtU

†
t = 1 and UtU

†
τ = Ut−τ .
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The matrix elements of the dressed system-bath coupling operators can be found in the
energy eigenbasis

S̃(t) =
∑
jk

eiωjktSjkC(t)|j〉〈k| (2.96)

where H|j〉 = Ej|j〉 and ωjk = ~−1(Ej − Ek). The bath correlation function can also be
found using the same technique and is a ubiquitous result in the theory of open quantum
systems, so we shall go through it step-by-step,

C(t) =
∑
k

c2
kTrB {qk,I(t)qk,I(0)ρeq

B }

=
∑
k

c2
k

∑
m

〈m|eiHB,ktqke−iHB,ktqkρeq
B |m〉

=
∑
k

c2
k

∑
m

pn
2
〈m|(eiωkta†k + e−iωktak)(a

†
k + ak)|m〉

=
∑
k

c2
k

∑
m

pm[eiωkt〈m|a†kak|m〉+ e−iωkt〈m|aka†k|m〉]

=
∑
k

c2
k

2
[eiωktn(ωk) + e−iωkt(n(ωk)− 1)]

=
∑
k

c2
k

2
[(2n(ωk) + 1) cos(ωkt)− i sin(ωkt)]. (2.97)

In the 3rd line we have used the identity for the position operator of a harmonic oscillator
in terms of its creation, a†k, and annihilation, ak, operators and the 5th line we have used
the Bose-Einstein distrubtion for the thermal expectation value of the number operator,
n(ωk) =

∑
m pm〈m|a†kak|m〉 with the commutation relation of bosons [ak, a

†
k] = 1, which has

the functional form n(ω) = (eβ~ω − 1)−1. We can now insert the identity for the spectral
density

C(t) =
∑
k

c2
k

2
[(2n(ωk) + 1) cos(ωkt)− i sin(ωkt)]

=
1

π

∫ ∞
0

dω
π

2

∑
k

c2
kδ(ω − ωk)[(2n(ω) + 1) cos(ωt)− i sin(ωt)]

=
1

π

∫ ∞
0

dωJ(ω)[(2n(ω) + 1) cos(ωt)− i sin(ωt)]. (2.98)

Often this relation will be equivalently given as5

C(t) =
1

π

∫ ∞
0

dωJ(ω)[coth(β~ω/2) cos(ωt)− i sin(ωt)], (2.99)

5In the encouraging words of a famous Bill Nye segment, “Try it!”
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but importantly provides a direct relation between the bath correlation function, which
encodes the system-bath coupling, to its power spectrum, which is a measurable quantity
through various forms of spectroscopy.[176, 182]

Another useful approximation beyond just the weak system-bath coupling approximation
can be made. If the bath relaxes to its thermal distribution on a timescale that is much faster
than the system, C(t) ∼ e−ωt where ω � ωjk for all j, k, then we can assume that the time,
t, in the integral of Eq. 2.95 can be taken to infinity, which underpins the Markovian
approximation. The dressed system-bath coupling operators under this approximation are
given by element-wise multiplication of the Fourier-Laplace transforms of the bath correlation
function and the system-bath coupling operator,

S̃ =
∑
jk

Sjk|j〉〈k|
∫ ∞

0

dτeiωjkτC(τ)

=
∑
jk

C̃(ωjk)Sjk|j〉〈k| (2.100)

which can in some cases be evaluated analytically, but is often found numerically. The
resulting equation of motion can be written by substituting Eq. 2.100 into Eq. 2.95, which
is referred to as the Redfield equation distinct from the time-dependent Redfield equation,
which we refer to as TCL2 throughout this thesis.

Secular Approximation—the Lindblad Equation

The TCL2 and Redfield equations offer simple theories that work well in the weak-coupling
and Markovian regimes of open quantum systems dynamics. Both theories, however, suffer
from the drawback that neither equations of motion satisfy the complete positivity property
of a physical dynamical generator. Complete positivity is satisfied when the density matrix
obtained from the dynamics is a physical density matrix, that is, {σ(t)} = 1 and σjj(t) ≥ 0
for all j. The first of these requirements, trace-preservation, is satisfied by TCL2 and Redfield
theory, however, the latter, positivity, is not in general satisfied. Violations of positivity are
statements of negative probability of finding the system in a particular state. Since this
is an unphysical result—probabilities must be nonneagtive—we will explore an additional
approximation that rectifies this problem.

If we consider the system-bath coupling operator to be written in the energy eigenbasis,
we can write it as a sum of operators with elements matching particular frequency, ε, that
is[123, 268]

S =
∑
ε

S(ε) (2.101)

where
S(ε) =

∑
jk s.t. ωjk=ε

Sjk|j〉〈k|. (2.102)
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In this projected basis, the dressed system-bath coupling operator is then scaled by the
Fourier-Laplace transform of the bath correlation function at its particular frequency, S̃(ε) =
C̃(ε)S(ε). In this case, it is more useful to work in the interaction picture where the projected
operators obtain time-dependence through

SI(t, ε) = eiεtS(ε). (2.103)

Transforming the Redfield equation into the interaction picture and substituting in Eqs.
2.101 and 2.103 we obtain

∂tσI(t) = − 1

~2

∑
εε′

ei(ε+ε
′)t
(
C̃(ε′)[S(ε), S̃(ε′)σI(t)] + C̃(−ε′)[S̃∗(ε′)σI(t), S(ε)]

)
. (2.104)

The secular approximation concerns itself with the oscillatory terms due to ei(ε+ε
′)t in

the previous equation relative to the decoherence and relaxation timescales set by C̃(ε).
If the timescale of these system oscillations, τs = |ε + ε′|−1, is significantly shorter the
timescale of the system-bath coupling interaction—an approximation that is often satisfied
when ζ � 1—then and term in which ε′ 6= −ε cycle averages to zero over the timescale of a
single system-bath coupling interaction.[123, 268] The resulting master equation is given by

∂tσI(t) = − 1

~2

∑
ε

C̃(ε)[S(ε), S(ε)σI(t)] + C̃(−ε)[S(ε)σI(t), S(ε)], (2.105)

which can be simplified to

∂tσI(t) =
1

~2

∑
ε

1

2
C̃(ε)[2S(ε)σI(t)S(ε)− {S†(ε)S(ε), σI(t)}]. (2.106)

Transforming back to the Schrödinger picture and substituting Γε = C̃(ε)/~2 we obtain the
Gorini-Kossakowski-Sudarshan-Lindblad (GKSL)6 master equation[158, 93]

∂tσ(t) = − i
~

[HS, σ(t)] +
∑
ε

Γε

(
Sεσ(t)S†ε −

1

2
{S†εSε, σ(t)}

)
. (2.107)

It has been shown that this master equation has the Dynamical Semigroup property, which
means it generates a trace-preserving and completely-positive dynamics,[158, 93] which will
be of relevance throughout this thesis, particularly in Chapter 3.

Stochastic Unravelling

The weak coupling quantum master equation framework encoded in the Lindblad equa-
tion dramatically reduces the number of degrees-of-freedom of a system interacting with

6This equation is often in the literature referred to as the Lindblad equation or Lindbladian a moniker
which we adopt throughout this thesis.
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a condensed phase environment, however, due to strongly interacting system degrees-of-
freedom through, e.g., nonadiabatic effects a substantial number of degrees-of-freedom may
be required to yet describe the system. For a direct product basis, we found that the
computational resources scaled exponentially with the number of degrees-of-freedom for a
wavefunction. As a density matrix is fundamentally an outer product of wavefunctions,
the computational resources scale exponentially in twice the number of degrees-of-freedom,
which dramatically increases the computational cost even for small systems. Furthermore,
algorithms that rely on compact representations of the density matrix—i.e., a corresponding
MCTDH for density matrices—exist,[200] but are lacking in development relative to their
wavefunction counterparts.

A workaround to this issue is provided through the stochastic unraveling of the density
matrix, which simulates the density matrix through Monte Carlo sampling of wavefunction
“trajectories”. Consider the following stochastic differential equation, which is the stochastic
unraveling of the Lindblad master equation,7

d|ψ(t)〉 = − i
~
Heff|ψ(t)〉dt+

∑
n

( √
ΓnLn

〈ψ(t)|ΓnL†nLn|ψ(t)〉
− 1

)
|ψ(t)〉dNn, (2.108)

where |ψ(t)〉 is the (electron and nuclear) wavefunction of the system at time t. The first term
in Eq. 2.108 represents coherent, deterministic dynamics with the effective Hamiltonian, Heff,

Heff = HS −
i

2

∑
n

ΓnL
†
nLn, (2.109)

which adds to the original Hermitian operator, HS, an anti-Hermitian term due to the
coupling with the bath through the operators Ln and their adjoints, L†n. The Ln operators,
include both dissipative and dephasing actions of the bath and Γn are the associated bare
rates of those actions. The second term in Eq. 2.108 is a Poisson jump process reflecting
projective actions of the bath with statistics dNn = 0, 1 and dN2

n = dNn and rates for each
Ln corresponding to the quantum expectation, Γn〈ψ(t)|L†nLn|ψ(t)〉.

This equation implies that during the time evolution of a trajectory over some increment
dt the system has one of two choices. The system can proceed along an uninterrupted
deterministic pathway given by the unitary dynamics of the system Hamiltonian in the
absence of an environment. Alternatively, the system can interact with its weakly coupled
environment through the jump operators. As this interaction occurs stochastically, the
probability of a jump occuring over the interval is given by

pjump(dt) = dt
∑
n

Γn〈ψ(t)|L†nLn|ψ(t)〉 (2.110)

7Here we have replaced the index ε with n and the operators Sε with Ln to note a more general case than
that of Eq. 2.107, which was taken from first principles with a microscopic model. Often a Lindlbad master
equation is imposed phenomenologically and the rates and jump operators are not defined with respect to
the energy eigenbasis.
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and the probability of the nth jump occurring is given by the nth term in the sum.
The jump probability distribution can be sampled through Monte Carlo procedures where

at each discrete time one of the two pathways is randomly chosen according to the probability
of the jump occurring. This algorithm however is only accurate to order dt and is practically
inefficient. A more efficient algorithm is given by a Gillespie-like algorithm, which is described
in Algorithm 1. A key difference in this algorithm is that rather than sampling the jump
probability distribution, the Gillespie algorithm samples the waiting time distribution. As
the bath is weakly interacting with the system in this framework, the jumps are somewhat
rare and most of the simulation time can be spent performing an efficient wavefunction
propagation—by efficient matrix vector based algorithms or MCTDH propagation—with
intermittent checks on the conditions for a jump occurring.

Algorithm 1: Gillespie-like algorithm for computing a trajectory with the quantum
jump stochastic differential equation.

Result: A sequence of wavefunctions {|ψ(t)〉} that gives a trajectory realization.
Initialize with a wavefunction |ψ(0)〉, set a time step dt, and a draw random
number, r, from the uniform distribution [0,1];

while t < tobs do
reset dt to original value;
while t < t+ dt do

propagate |ψ(t)〉 into a trial wavefunction |ψ̃(t+ dt)〉 under action of Heff;

if 〈ψ̃(t+ dt)|ψ̃(t+ dt)〉 < r then
using linear or logarithmic bisection, find τ , such that t ≤ τ ≤ t+ dt
satisfying the condition 〈ψ̃(τ)|ψ̃(τ)〉 = r;
draw a new uniform random number rj;
compute jump probabilities for each jump operator with associated rate
pn = Γn〈ψ̃(τ)|L†nLn|ψ̃(τ)〉;
find first n that satisfies rj <

∑n+1
m=1 pm∑
m pm

;

set τ → t;

set ΓnLn|ψ̃(t+dt)〉
pn

→ |ψ(t)〉;
set t+ dt− τ → dt;

else
set t+ dt→ t;

set |ψ̃(t+ dt)〉 → |ψ(t)〉;
add |ψ̃(t+dt)〉√

〈ψ̃(t+dt)|ψ̃(t+dt)〉
to the sequence of wavefunctions

end

end

end
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Stochastic unraveling procedures are, however, not unique in that the only conditions
required to satisfy an unraveling are that the average over trajectories reproduces the density
matrix, which can be done in a number of ways. Another common unraveling is given by
the quantum state diffusion equation[89, 90, 91]

d|ψ(t)〉 = − i
~

(HS − i~
∑
n

ΓnL
†
nLn)|ψ(t)〉dt

+
∑
n

Γn
(
2〈Ln〉Ln − 〈L†n〉〈Ln〉

)
|ψ(t)〉dt

+
∑
n

(Ln − 〈Ln〉)|ψ(t)〉dWn(t) (2.111)

Here the stochastic variable, dW (t) undergoes a Wiener process with Gaussian white noise
statistics and represents a system-bath interaction that is continuous in time rather than
discrete. Relations to various experimental setups in atomic physics can be drawn between
these two unravelings (see Ref. [192]), but such a discussion goes beyond the scope of this
thesis.

Another advantage of the stochastic unraveling, as will be outline in Chapter 3, is the
ability to probe deeper statistics than just the mean in the ensemble of the density matrix.
By simulating individual trajectories not only can the mean, but also can the higher-order
moments that encode the fluctuations of the dynamics be calculated through the stochastic
unraveling framework.

2.3 Time-Dependent Response

Throughout this chapter we have considered the equations that underpin the quantum dy-
namics of systems in condensed phases. Knowledge of the dynamics is practically useful
because it enables us to draw theoretical connections to experimental observations. One
such set of observations is the way in which a system responds to some perturbation. Exper-
imental measurements are often performed in this manner—a field is generated that causes
the system to change and this change is probed through further interactions with the gener-
ated field or detection of the changes to the field. The theoretical formalism describing these
phenomena will now be outlined.

Here we consider perturbations of the form,

V = −f(t)A, (2.112)

where f(t) is some time-dependent scalar function and A is an operator. Using the interaction
picture formalism discussed in Sec. 2.2, we can rewrite the time-dependent density matrix
in a Dyson series as a sum of nth-order density matrices

ρI(t) =
∞∑
n=0

ρ
(n)
I (t), (2.113)
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where

ρ
(0)
I (t) = ρ(0) (2.114)

ρ
(n)
I (t) = (−i)n

∫ t

0

ds · · ·
∫ sn−1

0

dsnLV (s) · · · LV (sn)ρ(0). (2.115)

As we are interested in observing the dynamical behavior of the system after some per-
turbation, we are interested in understanding the changes in the properties of the system
through observable quantities associated with operators, e.g., B,

〈δB(t)〉 = 〈B(t)〉 − 〈B〉0, (2.116)

where the brackets denote the quantum mechanical expectation value of an observable 〈·〉 =
Tr{·ρ}. If we take our initial condition to be the thermal equilibrium state of the unperturbed
Hamiltonian,

ρI(0) = ρeq

=
e−βH0

Tre−βH0
(2.117)

and substitute the Dyson expansion for the density matrix then our quantum mechanical
expectation values become equilibrium expectation values 〈·〉 → 〈·〉eq and we obtain a similar
expansion in the response of the expectation value

〈δB(t)〉 =
∑
n

(−i)n
∫ t

0

ds · · ·
∫ sn−1

0

dsn〈BI(t)LV (s) · · · LV (sn)ρeq〉 (2.118)

≡
∑
n

〈δB(n)(t)〉eq. (2.119)

Understanding the behavior of these terms at various orders is the foundation on which we
will develop a theory of response.

Quantum Linear Response Theory

If we suppose the propagator can be written as a reduced propagator scaled by some dimen-
sionless parameter,

LV (s) = ζL̃V (s) (2.120)
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we can then reduce the terms in Eq. 2.118 based on perturbative arguments when ζ � 1.
Specifically, truncating this expansion at linear order gives

〈δB(t)〉 ≈ −i
∫ t

0

ds〈BI(t)LV (s)〉eq +O(ζ2)

= − i
~

∫ t

0

dsTr{BI(t)[VI(s), ρ
eq]}

=
i

~

∫ t

0

dsf(s)Tr{[BI(t), AI(s)]ρ
eq}

=
i

~

∫ t

0

dsf(s)Tr{[BI(t− s), A]ρeq} (2.121)

where we have used the cyclic permutation invariance property of the trace in the last line
to incorporate the time-dependence of A into B. We will define the so-called response
function[43, 141] as

R(t) =

{
i
~〈[BI(t), A]〉eq t > 0

0 t < 0,
(2.122)

through which it is clear that

〈δB(t)〉 =

∫ t

0

dsf(s)R(t− s). (2.123)

This result is the foundation of quantum linear response theory and it states that the time-
dependent response of some observable out of its equilibrium state can be related, through
a convolution integral, to a time correlation function at equilibrium. In other words, the dy-
namics of a system out of equilibrium, to linear order, are entirely encoded in the fluctuations
and time-correlations at equilibrium in accordance with Onsager’s regression hypothesis.

It will also be useful to consider the frequency spectrum of the response function, which
is obtained via Fourier transform

χ(ω) =

∫ ∞
−∞

dteiωtR(t), (2.124)

which we refer to as the susceptibility. A further simplification which is of use is considering
the response of the observable to which the external field is coupled. In this case the response
function is given as a difference in autocorrelation functions

R(t) =
i

~
Θ(t) (〈AI(t)A〉eq − 〈AAI(t)〉eq) , (2.125)

where Θ(t) is the Heaviside step function. Due to our strict adherence to quantum mechanics,
the two autocorrelation functions can be related to one another through the detailed balance
relation

C(ω)

C(−ω)
= eβ~ω, (2.126)
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where

C(ω) =

∫ ∞
−∞

dteiωt〈AI(t)A〉eq. (2.127)

Using this result we can also obtain the Fluctuation Dissipation Theorem,[36, 141] which
relates the power spectrum of the time-dependent observable to the susceptibility

SA(ω) = 2~[n(ω) + +1]Imχ(ω), (2.128)

where n(ω) = (eβ~ω−1)−1 is the Bose-Einstein distribution. One may note the striking simi-
larity between the general results presented here and those found in Sec. 2.2. This similarity
is to be expected as the weak-coupling quantum master equation relates the dynamics of the
system to the interactions between the system and environment through a response theory
of the environment.

Linear Spectroscopy

As we alluded to earlier, a utility in the response theory is in relating the dynamics to
experimental observations, one such example coming from spectroscopy. In spectroscopy, we
consider an external perturbation of the form[176, 182]

V = −E(t)µ (2.129)

where E(t) is some oscillating electric field from a light source and µ is the molecular dipole
moment operator. This form assumes both a weak-coupling approximation for the interaction
between the light and matter in the system as well as a long-wavelength approximation of the
light relative to the length of the molecular system. The quantity of interest in spectroscopy
is the absorption coefficient

κ =
∂tE

I
, (2.130)

which is the ratio the rate of energy absorbed by the system, ∂tE, and the intensity of
incident light, I. We can write down the energy absorption rate as[43]

∂tE = − 1

T

∫ T

0

dt
∂E(t)

∂t
〈µ(t)〉, (2.131)

where the integral is a cycle average taken over a period of oscillation of the magnetic field.
Since we are interested in a time-dependent average of some observable as it responds

to a weakly interacting external perturbation, the quantum linear response theory naturally
applies. Inserting our linear response expansion for 〈µ(t)〉 in Eq. 2.131 we obtain

∂tE = − 1

T

∫ T

0

dt
∂E(t)

∂t

[
〈µ〉eq +

∫ ∞
0

dτRµ(τ)E(t− τ)

]
(2.132)
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with the response function, Rµ(τ) = −i〈[µI(τ), µ]〉/~. For simplicity we assume a monochro-
matic light source from which the electric field has the following form

E(t) =
1

2

[
E0e

iωt + E∗0e−iωt
]
, (2.133)

with E0 the amplitude of the electric field. By inserting Eq. 2.133 into Eq. 2.132 and
performing the integral over a period of the light-field, T = 2π/ω, we obtain

∂tE =
i

4
ω|E0|2[χµ(−ω)− χµ(ω)]

=
ω

2
|E0|2Imχµ(ω) (2.134)

where we have denoted the susceptibility as χµ(ω). Dividing this by the intensity of the light
source, I = c|E0|2/8π, then gives the linear absorption coefficient as

κ(ω) =
4πω

c
Imχµ(ω). (2.135)

It should come as no surprise based on the results of the previous section that the absorption
coefficient has a similar form to the FDT as it is a measurement of the power spectrum of
the time-dependent energy expectation due to some external perturbation.

Nonlinear Spectroscopy

Linear spectroscopy provides a route measuring the system through its response from a sin-
gle interaction with the light-matter coupling field. Advances in spectroscopy have led to
numerous experimental techniques generally referred to as multidimensional or nonlinear
spectroscopy, which utilize multiple light-matter interactions—through a carefully chosen
sequence of light pulses—to obtain additional information beyond that which linear spec-
troscopy can show. The theoretical formalism for describing such experiments follows simi-
larly to that of linear spectroscopy, but goes beyond the linear response approximation. In
particular, the time-dependent quantity of interest is the energy absorption as obtained from
the change in the net polarizaiton of the system,

〈δP (t)〉 = Tr{µI(t)ρI(t)}, (2.136)

which can be expanded to give

〈δP (n)(t)〉 =

∫ ∞
0

dτn · · ·
∫ ∞

0

dτ1R
(n)
µ (τn, . . . , τ1)E1(t− τn − · · · − τ1) · · ·En(t− τn), (2.137)

where we have introduced the nth order response function

R(n)
µ (τn, . . . , τ1) =

(
i

~

)n
Θ(τ1) · · ·Θ(τn)

× 〈[· · · [µI(τ1 + · · ·+ τn), µI(τ1 + · · ·+ τn−1)], · · · ], µI(0)]〉eq.
(2.138)
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The measured absorption is still obtained through the, now nonlinear, susceptibility, but
the additional light-matter interactions demand some interpretation as they relate to the
experiments.

The 2nd-order response function will contain, for example, the following terms

〈µI(τ1 + τ2)µI(τ1)µI(0)〉
〈µI(τ1)µI(τ1 + τ2)µI(0)〉.

Recalling the definition of the interaction picture operators it is clear that the dipole oper-
ators will induce transitions between eigenstates that will then oscillate at different relative
phases between the two terms. Additional complexity can be accounted for by considering
also the wavevector dependence of the electric field and dipole operators. These additional
phase relationships show how different experimental setups can selectively probe various
signals while eliminating noise from others. While the details of these considerations are
left for thorough discussion elsewhere (see Ref. [176] for a detailed theoretical description of
nonlinear spectroscopy), we note that these additional complexities encode more information
about the system and hence are in part why nonlinear spectroscopy is so elucidating.
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Chapter 3

Quantum Transition Path Sampling

“And so, does the destination
matter? Or is it the path we
take? I declare that no
accomplishment has substance
nearly as great as the road used
to achieve it. We are not
creatures of destinations. It is
the journey that shapes us. Our
callused feet, our backs strong
from carrying the weight of our
travels, our eyes open with the
fresh delight of experiences
lived.”

— Nohadon [217]

3.1 Introduction

Understanding the dynamics of quantum systems in condensed phases is an active area of
research across physics and chemistry [71, 115, 121, 175]. Advances in time-resolved spec-
troscopies, such as pump-probe transient absorption and coherent two-dimensional spec-
troscopy, have made it possible to measure dynamics on ultrafast timescales, [63, 140, 172,
185] but require sophisticated simulation methodologies to help interpret and unravel the
microscopic motions probed [72, 111]. In this chapter, we demonstrate how the Transition
Path Sampling (TPS)[26, 55] framework can be used effectively for studying the dynamics

This chapter is based on work that has been published in The Journal of Chemical Physics [222]
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of nonadiabatic quantum systems. We do this by taking advantage of a stochastic trajectory
representation of a detailed-balance-preserving quantum master equation, which allows for
the generation of a trajectory ensemble whose statistics and correlations can be studied. We
show how the use of path ensembles can elucidate dynamical mechanisms directly using a
generalization of committor analysis [26, 55, 190] for coherent dynamics. Additionally, we
show how TPS can be used to compute rate constants for rare dynamical events without
assuming a specific mechanism or postulating a relevant reaction coordinate using path en-
semble free energies [26, 55]. While the current framework is restricted to quantum jump
dynamics, the perspective is general and the tools are generalizable to other open quantum
dynamics [173, 269].

Nonadiabatic open quantum systems display a wide variety of chemical physics, from
excitonic behavior in chromophoric systems[115, 121] to conical intersections[60, 98] and span
a number of time, energy, and length scales[265]. This vast range of scales makes developing
computational techniques for studying nonadiabatic dynamics difficult. The break down
of the Born-Oppenheimer approximation necessitates that the dynamical evolution of the
system is based on Schrödinger’s equation, while the surrounding environment necessary
to accurately describe dissipation makes its straightforward application intractable due to
the exponential scaling with system size. Thus, most numerical techniques are developed
to treat a few degrees of freedom quantum mechanically, resolving discrete electronic states
or wavepackets, while the other degrees of freedom are treated with path integrals[260], or
approximately semi-classically[19, 169], with mixed quantum-classical dynamics[129, 163,
264], or with reduced density matrix equations[132, 168, 173].

Independent of the computational technique, the prevailing perspective for studying such
nonadiabatic open quantum dynamics relies on computing and analyzing the average dy-
namics that a few tagged degrees of freedom undergo when the rest of the system has been
integrated out. This is sometimes done implicitly, by focusing on average populations even
though the surroundings are represented molecularly, as is done with semiclassical meth-
ods [27, 149, 260, 264]. Often, however, this is done explicitly, as in methods that construct
an equation of motion for the average behavior of the system directly, as in quantum master
equation approaches [20, 22, 98, 116, 132, 251]. While this dimensionality reduction can
be illuminating, it does result in a loss of information, as the fluctuations about the av-
erage dynamical behavior can encode important correlations. For example, understanding
the mechanism of a rare dynamical event with information on just the average trajectory
of the system is difficult. Most often a mechanism is inferred by varying a parameter of
the system and noting the subsequent change in the rate. Instead of noting the response
to a parameter, this same information exists in principle in the ensemble of trajectories, or
dynamical fluctuations of the system, at a fixed value of a parameter. In static systems
this is just a statement of the fluctuation-dissipation relation, but such statements can be
extended to codify the relation between fluctuations and response in dynamical systems far
from equilibrium [230, 263]. Indeed in classical systems, trajectory ensemble techniques have
resulted in methods like Transition Path Sampling[26, 55] to sample rare dynamical events
and generalizations of reaction coordinates and transitions state to complex systems [26, 55,
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109, 190]. This has enabled the study of mechanisms of rare events in a wide variety of
systems and settings [23, 85, 84, 130].

The application of trajectory ensembles to quantum dynamics, however, has not been
as successful as in classical dynamics. Central to this failure is the difficulty in generating
meaningful trajectories for open quantum systems. For many trajectory-based methods,
the dynamics are reliable only for very short times due either to approximations that fail
to accurately represent the back-reaction of the bath onto the system and consequently
violate detailed balance [128] or because of the dynamical sign problem and exponential
complexity of exact system-bath dynamics. Alternatively, path integral methods such as
recent extensions to Ring Polymer Molecular Dynamics[97] that incorporate non-adiabatic
effects[6, 165, 206, 239, 249] can recover the correct equilibrium statistics, and could be
used to generate quantum trajectory ensembles in cases where they are also faithful to the
quantum dynamics. Efforts to use practical methods such as surface hopping with trajectory
ensembles have been proposed [233] though their reliability is questionable, as the form of
the stationary distribution is unknown, making deriving acceptance criteria difficult. Recent
work to identify an incompressible phase space structure for the density matrix of an open
quantum system in the presence of quenched disorder holds significant promise [59].

In cases where the system and bath are weakly coupled however, the stochastic unravel-
ing method from quantum optics as applied to quantum master equations supplies a means
to identify quantum trajectories[31, 192]. In this method, a deterministic density matrix
equation is converted to an average over stochastically evolved wavefunctions. Provided a
microscopic model of the system bath interaction, the stochastic evolution be can developed.
Such quantum trajectories are observable in simple systems using weak measurements [177].
A significant amount of work has been done using quantum jump trajectories in driven sys-
tems and under steady-state conditions, which have revealed the potential for dynamical
phase transitions [13, 81], correlated dynamics [146], and localization [150]. Here we adopt
this perspective and develop it with the motivation to study rare reactive events in nonadi-
abatic and quantum coherent dynamics. As this method is derived from a quantum master
equation formalism, its dynamics obey detailed balance, and so its statistical fluctuations
encode accurate information on the bath fluctuations that result in rare reactive events.
While the bath is not represented in molecular detail, the fluctuations it imposes on the
systems dynamics are directly observable.

The remainder of this chapter is outlined in five sections. In the following section, the
trajectory formalism is introduced and the formulation of path ensembles and a scheme
to sample them with TPS is developed. This path ensemble formalism is then applied to
three different model systems: first to a three-level chromophoric system to show how path
ensembles can be used to sample correlations in trajectories directly (Sec. 3.3), then to
a proton-coupled electron transfer model in which the quantum committor distribution is
utilized (Sec. 3.4), and finally to a system exhibiting rare barrier crossing to show the
efficiency of TPS to compute a rate constant with no mechanistic assumptions (Sec. 3.5).
Some final conclusions and thoughts for future work are presented in Sec. 3.6.
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3.2 Quantum Jump Path Ensembles

In this section we develop a reactive path ensemble formalism for stochastic quantum jump
dynamics[32]. Specifically, we consider the reduced dynamics of a subset of degrees of free-
dom, the system, embedded in an environment with an infinite number of degrees of freedom,
the bath, and focus our discussion to instances where those reduced dynamics are Markovian
and weakly coupled to the environment. For concreteness we will consider Hamiltonians in
the full Hilbert space, H, partitioned into three terms,

H = HS +HB +HSB, (3.1)

where HS is the system Hamiltonian, HB is the bath Hamiltonian, and HSB is the system-
bath coupling term. Throughout, we will take HSB as a sum of Kronecker products of linear
operators in the system and bath Hilbert spaces,

HSB =
∑
i

∑
n

cn,iSi ⊗Bn,i, (3.2)

where si is a system operator, and Bn,i the corresponding bath operator. The coefficient cn,i
relates the local system-bath coupling strength and in the case where the bath is harmonic,
it is convenient to introduce the spectral density,

Ji(ω) =
π

2

∑
n

c2
n,iδ(ω − ωn). (3.3)

as the weighted sum of the system-bath coupling strengths and density of states at bath
frequency ωn. The spectral density can be inferred from linear absorption measurements [182]
or computed from atomistic simulations. [148].

Stochastic Wavefunctions from Quantum Jumps

Provided the Markovian, weak coupling, and secular assumptions, trajectories traced out by
the system degrees of freedom consist of periods of coherent evolution punctuated by abrupt
changes in the state of the system, reflecting the instantaneous action of the bath. These
trajectories represent physical realizations of a piecewise deterministic stochastic process
in a projective Hilbert space[31] and provide a theoretical description of quantum jump
observations in experiments. [92, 284] The time evolution for a wavefunction in the system
Hilbert space over a quantum jump trajectory is given by the stochastic equation of motion,

d|ψt〉 = − i
~
Heff|ψt〉dt+

∑
n

( √
ΓnLn

〈ψt|ΓnL†nLn|ψt〉
− 1

)
|ψt〉dNn, (3.4)

where |ψt〉 is the wavefunction of the system at time t and ~ is Planck’s constant divided by
2π. The first term in Eq. 3.4 represents coherent, deterministic dynamics with the effective
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Hamiltonian, Heff,

Heff = HS −
i

2

∑
n

ΓnL
†
nLn, (3.5)

which adds to the original Hermitian operator, HS, an anti-Hermitian term due to the
coupling with the bath through the operators Ln and their adjoints, L̂†n. The Ln operators,
include both dissipative and dephasing actions of the bath and Γn are the associated bare
rates of those actions. The second term in Eq. 3.4 is a Poisson jump process reflecting
projective actions of the bath with statistics dNn = 0, 1 and dN2

n = dNn and rates for each
Ln corresponding to the quantum expectation, Γn〈ψt|L†nLn|ψt〉.

When averaged over a large number of realizations Eq. 3.4 returns a master equation de-
scribing the probability flow of the Poisson stochastic process, which is of Lindblad form[158,
93],

∂tσ(t) = − i
~

[HS, σ(t)] +
∑
n

Γn

(
Lnσ(t)L†n −

1

2
{L†nLn, σ(t)}

)
, (3.6)

where ∂tσ(t) is the time derivative of the reduced density matrix, σ, and [·, ·] is the commu-
tator and {·, ·} the anti-commutator. Because the system and bath are weakly coupled, each
stochastic trajectory is independent and the density matrix is obtainable from the stochastic
wavefunctions by σ(t) = 〈|ψt〉〈ψt|〉 where the brackets denote an average over the Poisson
random noise. This master equation is known to form a dynamical semigroup, so that the
equation of motion conserves the norm and positivity of the reduced density matrix.[32, 93,
158] The semigroup property is vital for a trajectory analysis as it ensures each trajectory
has physical meaning and can be experimentally realized.[30] Stochastic equations of motion
have been previously developed for a number of quantum master equations[135, 137], how-
ever, the representation often gives unphysical trajectories stemming from the underlying
master equation’s failure to form a dynamical semigroup. Additionally, stochastic unravel-
ing has the algorithmic benefit of reduced scaling in propagating wavefunctions compared
to propagating density matrices[194], which takes the overall scaling in terms of the number
of system states N from O(N3) to O(MN2) where M is the number of trajectories required
to converge the density matrix.

The operators, Ln, are identified as Lindblad operators and can be obtained directly from
the original system-bath coupling operators[123, 268] of a microscopic model provided non-
secular terms that couple populations and coherences are negligible[15]. In this case, it will
be most convenient to represent the Lindblad operators in the energy eigenbasis, denoted
Lij, and are given by

Lij = PijS (3.7)

where Pij is an operator that projects out the ij elements of the system-bath coupling opera-
tor in the energy eigenbasis, i.e., Pijs = Sij|φi〉〈φj|, where |φi〉 is the ith energy eigenfunction
of HS. The associated rates in the energy eigenbasis, Γij, are given by the Fourier-Laplace
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transform of the bath correlation function

Γij =

∫ ∞
0

dt e−iωijt〈B(t)B(0)〉eq, (3.8)

where 〈· · ·〉eq is a thermal average and ωij = (Ei − Ej)/~ where Ei (Ej) is the ith (jth)
eigenvalue of HS [182]. By the fluctuation-dissipation theorem for quantum time-correlation
functions, these rates thus obey detailed balance,

Γij
Γji

= eβ~ωij , (3.9)

where β = 1/kBT is inverse temperature, T , times Boltzmann’s constant, kB. This ensures
that in the long time limit, the density matrix is given by a Gibbs state, σ =

∑
i e
−βEi |φi〉〈φi|.

The Lindblad operators for nonzero frequencies, which are non-diagonal, are associated with
population transfer while the zero frequency Lindblad operators, which are diagonal, are the
dephasing operators [32].

Reactive Path Ensembles

Provided the stochastic equation of motion for the system wavefunction, we can define an en-
semble of trajectories parameterized by a trajectory length tobs. This follows closely previous
work considering the spacetime thermodynamics of quantum jump processes [81]. We define a
sequence of wavefunctions visited over the observation time, Ψ(tobs) = {|ψ0〉, |ψ∆t〉, . . . , |ψtobs〉}
and the probability of observing that sequence, P [Ψ(tobs)], is given by

P [Ψ(tobs)] ∝ p0(|ψ0〉)
tobs−∆t∏
t=0

u(|ψt〉 → |ψt+∆t〉), (3.10)

where p0(|ψ0〉) is the probability of observing the initial wavefunction and u(|ψt〉 → |ψt+∆t〉)
are the transition probabilities for each interval of time ∆t. The transition probabilities
represent the probability of waiting times between jumps multiplied by the probability for
each jump,

u(|ψt〉 → |ψt+∆t〉) = 1− 〈ψt|ΓnL
†
nLn|ψt〉

r(|ψt〉)
e−r(|ψt〉)∆t (3.11)

where r(|ψt〉) is the waiting time probability between jumps

r(|ψt〉) = 〈ψt|
∑
n

ΓnL
†
nLn|ψt〉, (3.12)

and the ratio in front of the exponential is the probabilty to make a jump due to the action
of the nth Lindblad operator, both of which follow directly from Eq. 3.4. These transition
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probabilities have been shown to obey a differential Chapman-Kolmogorov equation and
yield a Markovian stochastic process in the projective Hilbert space. [31]

We define the normalization of the path ensemble as the path partition function Z(tobs),
which is obtained by integrating over all paths

Z(tobs) =

∫
D[Ψ(tobs)]P [Ψ(tobs)], (3.13)

from which is clear that stochastic unraveling samples a real-time path integral, with prob-
ability measure D[Ψ(tobs)] for realizations over the Poisson random noise. The absence of a
dynamical sign problem is due to the Markovian and weak system-bath coupling approxi-
mations. Observable quantities can be computed directly by averaging the time-dependent
expectation value over the ensemble of trajectories

〈O(t)〉 =

∫
D[Ψ(tobs)]P [Ψ(tobs)]〈ψt|O|ψt〉 (3.14)

where the usual quantum operator expectation value at time t ≤ tobs is averaged over the
stochastic paths, denoted with 〈. . . 〉. As a result of the detailed balance condition in Eq.
3.9, the trajectories obeys microscopic reversibility as codified by the Crooks Fluctuation
Theorem[52]. This result implies both the Jarzsynski equality[122] and the correct physical
interpretation to the flow of energy into and out of the system through heat and work[104,
105].

While Eq. 3.10 denotes the total path probability, it is possible to only consider those
trajectories that undergo a rare, or reactive event. To do this we define the probability of
observing a rare event, PAB[Ψ(tobs)], in which the system begins in some quantum state A
at time 0 and ends in some other quantum state B, at tobs,

PAB[Ψ(tobs)] ∝ P [Ψ(tobs)]〈ψ0|hA|ψ0〉〈ψtobs|hB|ψtobs〉, (3.15)

where hA(B) is a projection operator for state A (B). The normalization of the path proba-
bility, ZAB(tobs), and observables in this conditioned ensemble are computed as,

ZAB(tobs) =

∫
D[Ψ(tobs)]P [Ψ(tobs)]〈ψ0|hA|ψ0〉〈ψtobs|hB|ψtobs〉 (3.16)

and,

〈O(t)〉AB =

∫
D[Ψ(tobs)]PAB[Ψ(tobs)]〈ψt|O|ψt〉, (3.17)

analogously as in the unconditioned path emsemble, and we adopt the subscript AB on the
brackets to denote an average in the reactive path ensemble. Here the semigroup property
is requisite due to the dependence of the normalization on the physicality of individual
trajectories. Though we specifically consider path ensembles conditioned on reactive events,
this formalism is general, and can be used for conditioning on time extensive quantities as
done with the s-ensemble and related techniques [33].
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If the probability of observing the transition form A to B in the unconstrained ensem-
ble, P [Ψ(tobs)], is small, then accurately determining expectation values in the reactive path
ensemble through brute force sampling will be difficult. One means to overcome such sam-
pling problems is to use Transition path sampling (TPS) algorithms to sample PAB[Ψ(tobs)]
directly[26, 55]. Typically the most efficient Monte Carlo move for reactive path spaces
is the so-called “shooting move”[55]. Shooting moves generate new trial trajectories by
re-integrating the equation of motion forward and backward from some uniformly chosen
intermediate time along the trajectory. If the integration of the trial trajectory uses the
same equation of motion as that which defines the desired path ensemble, and the Monte
Carlo procedure uses a symmetric change in the configuration about the intermediate time,
the acceptance ratio is

Pacc[Ψ
o → Ψn] = min

{
1, 〈ψn0 |hA|ψn0 〉〈ψntobs|hB|ψ

n
tobs
〉
}

(3.18)

where Ψo and Ψn are the old and new trajectories with their arguments suppressed for
compactness, Pacc is the acceptance probability for the Monte Carlo move, and the projection
operators are evaluated at the end points of the new trajectory. Since the equation of motion
for the quantum jump trajectory is stochastic, one-sided shooting can be done in order to
increase the acceptance probability [55]. Here only the bias from the conditioning functional
of PAB[Ψ(tobs)] appears due to the symmetry in the Monte Carlo moves.

Rate Constants

Much like in the classical path ensemble formalism, a rate constant can be computed by a
time derivative of the side-side correlation function, CAB(t),[44]

k(t) =
d

dt
CAB(t) (3.19)

where

CAB(t) =
〈hA[ψ0]hB[ψt]〉
〈hA[ψ0]〉 , (3.20)

which is the conditional probability of the system being in state B at time t, given the system
started in state A at time t = 0. With the identification of the ensemble averages in Eq.
3.20 as conditioned path partition functions it follows directly just as it does with classical
path ensembles[55] that the rate constant is a time-derivative of a ratio of these conditioned
path partition functions

k(t) =
d

dt

ZAB(t)

ZA(t)
, (3.21)

where

ZA(tobs) =

∫
D[Ψ(tobs)]P [Ψ(tobs)]〈ψ0|hA|ψ0〉 (3.22)
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is the reactant path partition function. The ratio of partition functions is computable by
thermodynamic integration. By rewriting the ratio as an integral,

ln
ZAB
ZA

=

∫ B

0

dλ

(
∂ lnZAλ
∂λ

)
(3.23)

the rate is identical to the reversible work to “stretch” the ensemble of trajectories from the
reactant to product regions. While thermodynamic integration is one means to compute
this reversible work, any other free energy method could be use analogously. To this end,
umbrella sampling can be used to constrain trajectories beginning in region A to end in
overlapping intermediate regions λ in the interval ranging from A to B and constructing
a “path free energy” in this coordinate. Because the rate has been constructed as a ratio
of path partition functions or likewise a difference of path free energies, the calculation is
independent of path taken along the thermodynamic integration, hence a priori knowledge
of the reaction coordinate is unnecessary. The rate constant can then be computed either
directly from the ratio of path partition functions or by computing the time-derivative. In
the former case, one uses the identity at some steady-state time,

k =
1

tobs

ZAB(tobs)

ZA(tobs)
. (3.24)

valid for tobs intermediate to the molecular timescale of a transition, τmol, and the reaction
timescale, 1/k, (τmol < tobs � 1/k) The rate constant is thus directly proportional to the
ratio of path partition functions in this steady-state by the inverse of the steady-state time.
Alternatively, the time derivative of this path partition function ratio can be computed by
which the ratio is computed at a number of times and the slope, in the steady-state regime,
is precisely the rate constant.

3.3 Conditioned Ensembles

In this section, we illustrate the utility of conditioned path ensembles for gaining mechanistic
insight in open quantum dynamics. In particular, we show how conditioned ensembles build
in correlations that elucidate the mechanistic details of specific rare events. Our work focuses
on energy transfer dynamics in a donor-bridge-acceptor (DBA) system, schematically shown
in Fig. 3.1(a). This system was recently considered by Jang and co-workers who applied a
novel quantum master equation, termed the polaron-transformed quantum master equation
(PQME)[118, 120], to a model three-level chromophoric system coupled to a bath[119].
Depending on the strength of the coupling to the bath, the energy transport between the
donor and acceptor states could follow from either a superexchange mechanism, in which an
excitation initially localized on the donor state is transferred coherently to the acceptor state,
or from a sequential hopping mechanism, in which the excitation is transferred incoherently
through a barrier-crossing-like event to reach the acceptor state after passing through the
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intermediate bridge state. By increasing the coupling strength between the system and bath,
one can observe a smooth transition between these mechanisms, which gives rise to an overall
turnover in the rate of charge transfer.

The PQME method is able to treat a broad range of the system-bath coupling strength
by making use of a small polaron transform to the original system bath model. This transfor-
mation incorporates the bath modes into the system Hamiltonian through a reorganization
energy, which changes the site energies, and hopping integrals, which dampen the electronic
coupling terms in the system Hamiltonian exponentially as the system-bath coupling strength
increases. After the application of the small polaron transform, the system Hamiltonian be-
comes,

HS =
∑
l

εl|l〉〈l|+
∑
l 6=l′

Vll′|l〉〈l′|. (3.25)

where l = D,B,A, labels the donor, bridge and acceptor sites, εl are the site energies
reduced by the reorganization energy, and Vll′ are the inter-site couplings that are dressed by
the polaron transform. In this model there are nonzero inter-site couplings between D − B
and B −A, but no direct coupling between D−A. A consequence of the polaron transform
is that the form of Vll′ depends on the system-bath coupling

Vll′ = vll′e
−ηλ2r (3.26)

where vll′ are the bare inter-site couplings and are multiplied by an exponentially small term
in the system-bath coupling strength, η, with temperature dependent prefactor

λ2
r =

π

η

∫
dω J(ω) coth(β~ω/2) (3.27)

which is a thermally weighted integral over the spectral density. Following Jang and cowork-
ers,[119] the spectral density is, using the convention of Eq. 3.3, taken to be of ohmic
form

J(ω) =
2

π

η

3!

ω

ω2
c

e−ω/ωc , (3.28)

where ωc is the bath cutoff frequency. In principle, an inhomogeneous term arising from
initial correlations between the system and bath modifies the system hamiltonian in a time
dependent manner. However for the conditions we consider its effect is negligible, so we do
not consider it in the following.

The resultant PQME is a weak-coupling master equation for the quasiparticle small
polaron, interacting with the deformed environment, where the residual off-diagonal coupling
to the bath is treated perturbatively [118]. In order to put the PQME into a quantum jump
form, we must make two additional approximations to the equations of motion. First, we
ignore non-secular terms that couple populations from coherences in the energy eigenbasis.
Second, while the PQME is a time-local equation, it is non-Markovian in that the rates of
transitions induced by the bath are time-dependent. In principle the Lindblad operators in



CHAPTER 3. QUANTUM TRANSITION PATH SAMPLING 45

0 2

ln ⌘

1

2

3

k
/

p
s�

1

0.2

0.4

0.6

0.8

1.0

h⇢
ii(

t)

0 1 2 3 4 5

t / ps

0.0

0.2

0.4

0.6

0.8

1.0

h⇢
ii(

t)

0 2

ln ⌘

1

2

3

k
/

p
s�

1

0.2

0.4

0.6

0.8

1.0
h⇢

ii(
t)

0 1 2 3 4 5

t / ps

0.0

0.2

0.4

0.6

0.8

1.0

h⇢
ii(

t)

0 2

ln ⌘

1

2

3

k
/

p
s�

1

0.2

0.4

0.6

0.8

1.0

⇢
i(
t)

0 1 2 3 4 5

t / ps

0.0

0.2

0.4

0.6

0.8

1.0

⇢
i(
t)

0 2

ln ⌘

1

2

3

k
/

p
s�

1

0.2

0.4

0.6

0.8

1.0
⇢

i(
t)

0 1 2 3 4 5

t / ps

0.0

0.2

0.4

0.6

0.8

1.0

⇢
i(
t)

|Bi
<latexit sha1_base64="N0HYmZ+cUUE/3LpYFdJES37hPMY=">AAAB8HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GOpF48V7Ie0oWy2k3bpZhN2N0KJ/RVePCji1Z/jzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4Zua3H1FpHst7M0nQj+hQ8pAzaqz08FTvKSqHAvvlilt15yCrxMtJBXI0+uWv3iBmaYTSMEG17npuYvyMKsOZwGmpl2pMKBvTIXYtlTRC7Wfzg6fkzCoDEsbKljRkrv6eyGik9SQKbGdEzUgvezPxP6+bmvDaz7hMUoOSLRaFqSAmJrPvyYArZEZMLKFMcXsrYSOqKDM2o5INwVt+eZW0LqqeW/XuLiu1eh5HEU7gFM7BgyuowS00oAkMIniGV3hzlPPivDsfi9aCk88cwx84nz/Q75Bn</latexit><latexit sha1_base64="N0HYmZ+cUUE/3LpYFdJES37hPMY=">AAAB8HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GOpF48V7Ie0oWy2k3bpZhN2N0KJ/RVePCji1Z/jzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4Zua3H1FpHst7M0nQj+hQ8pAzaqz08FTvKSqHAvvlilt15yCrxMtJBXI0+uWv3iBmaYTSMEG17npuYvyMKsOZwGmpl2pMKBvTIXYtlTRC7Wfzg6fkzCoDEsbKljRkrv6eyGik9SQKbGdEzUgvezPxP6+bmvDaz7hMUoOSLRaFqSAmJrPvyYArZEZMLKFMcXsrYSOqKDM2o5INwVt+eZW0LqqeW/XuLiu1eh5HEU7gFM7BgyuowS00oAkMIniGV3hzlPPivDsfi9aCk88cwx84nz/Q75Bn</latexit><latexit sha1_base64="N0HYmZ+cUUE/3LpYFdJES37hPMY=">AAAB8HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GOpF48V7Ie0oWy2k3bpZhN2N0KJ/RVePCji1Z/jzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4Zua3H1FpHst7M0nQj+hQ8pAzaqz08FTvKSqHAvvlilt15yCrxMtJBXI0+uWv3iBmaYTSMEG17npuYvyMKsOZwGmpl2pMKBvTIXYtlTRC7Wfzg6fkzCoDEsbKljRkrv6eyGik9SQKbGdEzUgvezPxP6+bmvDaz7hMUoOSLRaFqSAmJrPvyYArZEZMLKFMcXsrYSOqKDM2o5INwVt+eZW0LqqeW/XuLiu1eh5HEU7gFM7BgyuowS00oAkMIniGV3hzlPPivDsfi9aCk88cwx84nz/Q75Bn</latexit><latexit sha1_base64="N0HYmZ+cUUE/3LpYFdJES37hPMY=">AAAB8HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0GOpF48V7Ie0oWy2k3bpZhN2N0KJ/RVePCji1Z/jzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4Zua3H1FpHst7M0nQj+hQ8pAzaqz08FTvKSqHAvvlilt15yCrxMtJBXI0+uWv3iBmaYTSMEG17npuYvyMKsOZwGmpl2pMKBvTIXYtlTRC7Wfzg6fkzCoDEsbKljRkrv6eyGik9SQKbGdEzUgvezPxP6+bmvDaz7hMUoOSLRaFqSAmJrPvyYArZEZMLKFMcXsrYSOqKDM2o5INwVt+eZW0LqqeW/XuLiu1eh5HEU7gFM7BgyuowS00oAkMIniGV3hzlPPivDsfi9aCk88cwx84nz/Q75Bn</latexit>

|Di
<latexit sha1_base64="njGNuUFlWom3PWiDtllB3Vq4LoY=">AAAB8HicdVDJSgNBEK1xjXGLevTSGARPYUYEPQb14DGCWSQZQk+nkjTp7hm6e4Qw5iu8eFDEq5/jzb+xswhxe1DweK+KqnpRIrixvv/hLSwuLa+s5tby6xubW9uFnd2aiVPNsMpiEetGRA0KrrBquRXYSDRSGQmsR4OLsV+/Q214rG7sMMFQ0p7iXc6oddLt/WVLU9UT2C4Ug5I/AfF/kS+rCDNU2oX3VidmqURlmaDGNAM/sWFGteVM4CjfSg0mlA1oD5uOKirRhNnk4BE5dEqHdGPtSlkyUecnMiqNGcrIdUpq++anNxb/8pqp7Z6FGVdJalGx6aJuKoiNyfh70uEamRVDRyjT3N1KWJ9qyqzLKD8fwv+kdlwK/FJwfVIsn8/iyME+HMARBHAKZbiCClSBgYQHeIJnT3uP3ov3Om1d8GYze/AN3tsn1YWQag==</latexit><latexit sha1_base64="njGNuUFlWom3PWiDtllB3Vq4LoY=">AAAB8HicdVDJSgNBEK1xjXGLevTSGARPYUYEPQb14DGCWSQZQk+nkjTp7hm6e4Qw5iu8eFDEq5/jzb+xswhxe1DweK+KqnpRIrixvv/hLSwuLa+s5tby6xubW9uFnd2aiVPNsMpiEetGRA0KrrBquRXYSDRSGQmsR4OLsV+/Q214rG7sMMFQ0p7iXc6oddLt/WVLU9UT2C4Ug5I/AfF/kS+rCDNU2oX3VidmqURlmaDGNAM/sWFGteVM4CjfSg0mlA1oD5uOKirRhNnk4BE5dEqHdGPtSlkyUecnMiqNGcrIdUpq++anNxb/8pqp7Z6FGVdJalGx6aJuKoiNyfh70uEamRVDRyjT3N1KWJ9qyqzLKD8fwv+kdlwK/FJwfVIsn8/iyME+HMARBHAKZbiCClSBgYQHeIJnT3uP3ov3Om1d8GYze/AN3tsn1YWQag==</latexit><latexit sha1_base64="njGNuUFlWom3PWiDtllB3Vq4LoY=">AAAB8HicdVDJSgNBEK1xjXGLevTSGARPYUYEPQb14DGCWSQZQk+nkjTp7hm6e4Qw5iu8eFDEq5/jzb+xswhxe1DweK+KqnpRIrixvv/hLSwuLa+s5tby6xubW9uFnd2aiVPNsMpiEetGRA0KrrBquRXYSDRSGQmsR4OLsV+/Q214rG7sMMFQ0p7iXc6oddLt/WVLU9UT2C4Ug5I/AfF/kS+rCDNU2oX3VidmqURlmaDGNAM/sWFGteVM4CjfSg0mlA1oD5uOKirRhNnk4BE5dEqHdGPtSlkyUecnMiqNGcrIdUpq++anNxb/8pqp7Z6FGVdJalGx6aJuKoiNyfh70uEamRVDRyjT3N1KWJ9qyqzLKD8fwv+kdlwK/FJwfVIsn8/iyME+HMARBHAKZbiCClSBgYQHeIJnT3uP3ov3Om1d8GYze/AN3tsn1YWQag==</latexit><latexit sha1_base64="njGNuUFlWom3PWiDtllB3Vq4LoY=">AAAB8HicdVDJSgNBEK1xjXGLevTSGARPYUYEPQb14DGCWSQZQk+nkjTp7hm6e4Qw5iu8eFDEq5/jzb+xswhxe1DweK+KqnpRIrixvv/hLSwuLa+s5tby6xubW9uFnd2aiVPNsMpiEetGRA0KrrBquRXYSDRSGQmsR4OLsV+/Q214rG7sMMFQ0p7iXc6oddLt/WVLU9UT2C4Ug5I/AfF/kS+rCDNU2oX3VidmqURlmaDGNAM/sWFGteVM4CjfSg0mlA1oD5uOKirRhNnk4BE5dEqHdGPtSlkyUecnMiqNGcrIdUpq++anNxb/8pqp7Z6FGVdJalGx6aJuKoiNyfh70uEamRVDRyjT3N1KWJ9qyqzLKD8fwv+kdlwK/FJwfVIsn8/iyME+HMARBHAKZbiCClSBgYQHeIJnT3uP3ov3Om1d8GYze/AN3tsn1YWQag==</latexit>

|Ai
<latexit sha1_base64="IhgasklLsUWKk2RsZeTZvU97zoY=">AAAB8HicbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMeoF48RTKIkS5id9CZDZmaXmVkhxHyFFw+KePVzvPk3Th6IJhY0FFXddHdFqeDG+v6Xl1taXlldy68XNja3tneKu3t1k2SaYY0lItF3ETUouMKa5VbgXaqRykhgI+pfjf3GA2rDE3VrBymGknYVjzmj1kn3jxctTVVXYLtY8sv+BOSHBPOkBDNU28XPVidhmURlmaDGNAM/teGQasuZwFGhlRlMKevTLjYdVVSiCYeTg0fkyCkdEifalbJkov6eGFJpzEBGrlNS2zPz3lj8z2tmNj4Ph1ylmUXFpoviTBCbkPH3pMM1MisGjlCmubuVsB7VlFmXUcGFsPDyIqmflAO/HNycliqXszjycACHcAwBnEEFrqEKNWAg4Qle4NXT3rP35r1PW3PebGYf/sD7+AbQ0pBn</latexit><latexit sha1_base64="IhgasklLsUWKk2RsZeTZvU97zoY=">AAAB8HicbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMeoF48RTKIkS5id9CZDZmaXmVkhxHyFFw+KePVzvPk3Th6IJhY0FFXddHdFqeDG+v6Xl1taXlldy68XNja3tneKu3t1k2SaYY0lItF3ETUouMKa5VbgXaqRykhgI+pfjf3GA2rDE3VrBymGknYVjzmj1kn3jxctTVVXYLtY8sv+BOSHBPOkBDNU28XPVidhmURlmaDGNAM/teGQasuZwFGhlRlMKevTLjYdVVSiCYeTg0fkyCkdEifalbJkov6eGFJpzEBGrlNS2zPz3lj8z2tmNj4Ph1ylmUXFpoviTBCbkPH3pMM1MisGjlCmubuVsB7VlFmXUcGFsPDyIqmflAO/HNycliqXszjycACHcAwBnEEFrqEKNWAg4Qle4NXT3rP35r1PW3PebGYf/sD7+AbQ0pBn</latexit><latexit sha1_base64="IhgasklLsUWKk2RsZeTZvU97zoY=">AAAB8HicbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMeoF48RTKIkS5id9CZDZmaXmVkhxHyFFw+KePVzvPk3Th6IJhY0FFXddHdFqeDG+v6Xl1taXlldy68XNja3tneKu3t1k2SaYY0lItF3ETUouMKa5VbgXaqRykhgI+pfjf3GA2rDE3VrBymGknYVjzmj1kn3jxctTVVXYLtY8sv+BOSHBPOkBDNU28XPVidhmURlmaDGNAM/teGQasuZwFGhlRlMKevTLjYdVVSiCYeTg0fkyCkdEifalbJkov6eGFJpzEBGrlNS2zPz3lj8z2tmNj4Ph1ylmUXFpoviTBCbkPH3pMM1MisGjlCmubuVsB7VlFmXUcGFsPDyIqmflAO/HNycliqXszjycACHcAwBnEEFrqEKNWAg4Qle4NXT3rP35r1PW3PebGYf/sD7+AbQ0pBn</latexit><latexit sha1_base64="IhgasklLsUWKk2RsZeTZvU97zoY=">AAAB8HicbVDLSgNBEOyNrxhfUY9eBoPgKeyKoMeoF48RTKIkS5id9CZDZmaXmVkhxHyFFw+KePVzvPk3Th6IJhY0FFXddHdFqeDG+v6Xl1taXlldy68XNja3tneKu3t1k2SaYY0lItF3ETUouMKa5VbgXaqRykhgI+pfjf3GA2rDE3VrBymGknYVjzmj1kn3jxctTVVXYLtY8sv+BOSHBPOkBDNU28XPVidhmURlmaDGNAM/teGQasuZwFGhlRlMKevTLjYdVVSiCYeTg0fkyCkdEifalbJkov6eGFJpzEBGrlNS2zPz3lj8z2tmNj4Ph1ylmUXFpoviTBCbkPH3pMM1MisGjlCmubuVsB7VlFmXUcGFsPDyIqmflAO/HNycliqXszjycACHcAwBnEEFrqEKNWAg4Qle4NXT3rP35r1PW3PebGYf/sD7+AbQ0pBn</latexit>

(a) (b)

(c)

(a) (b)

(c)(c)

(a) (b)

h⇢
l(

t)
i

<latexit sha1_base64="Cuc4oHVa2KGTt3i/NUxOriCp3PU=">AAACA3icbZDLSsNAFIYn9VbrLepON4NFqJuSiKDLohuXFewFmhAm05N26GQSZiZCKQU3voobF4q49SXc+TZO0yy09YeBj/+cw5nzhylnSjvOt1VaWV1b3yhvVra2d3b37P2DtkoySaFFE57IbkgUcCagpZnm0E0lkDjk0AlHN7N65wGkYom41+MU/JgMBIsYJdpYgX3kcSIGHLAnh0nAcU2fGcytwK46dScXXga3gCoq1AzsL6+f0CwGoSknSvVcJ9X+hEjNKIdpxcsUpISOyAB6BgWJQfmT/IYpPjVOH0eJNE9onLu/JyYkVmoch6YzJnqoFmsz879aL9PRlT9hIs00CDpfFGUc6wTPAsF9JoFqPjZAqGTmr5gOiSRUm9gqJgR38eRlaJ/XXafu3l1UG9dFHGV0jE5QDbnoEjXQLWqiFqLoET2jV/RmPVkv1rv1MW8tWcXMIfoj6/MHtjmW6A==</latexit><latexit sha1_base64="Cuc4oHVa2KGTt3i/NUxOriCp3PU=">AAACA3icbZDLSsNAFIYn9VbrLepON4NFqJuSiKDLohuXFewFmhAm05N26GQSZiZCKQU3voobF4q49SXc+TZO0yy09YeBj/+cw5nzhylnSjvOt1VaWV1b3yhvVra2d3b37P2DtkoySaFFE57IbkgUcCagpZnm0E0lkDjk0AlHN7N65wGkYom41+MU/JgMBIsYJdpYgX3kcSIGHLAnh0nAcU2fGcytwK46dScXXga3gCoq1AzsL6+f0CwGoSknSvVcJ9X+hEjNKIdpxcsUpISOyAB6BgWJQfmT/IYpPjVOH0eJNE9onLu/JyYkVmoch6YzJnqoFmsz879aL9PRlT9hIs00CDpfFGUc6wTPAsF9JoFqPjZAqGTmr5gOiSRUm9gqJgR38eRlaJ/XXafu3l1UG9dFHGV0jE5QDbnoEjXQLWqiFqLoET2jV/RmPVkv1rv1MW8tWcXMIfoj6/MHtjmW6A==</latexit><latexit sha1_base64="Cuc4oHVa2KGTt3i/NUxOriCp3PU=">AAACA3icbZDLSsNAFIYn9VbrLepON4NFqJuSiKDLohuXFewFmhAm05N26GQSZiZCKQU3voobF4q49SXc+TZO0yy09YeBj/+cw5nzhylnSjvOt1VaWV1b3yhvVra2d3b37P2DtkoySaFFE57IbkgUcCagpZnm0E0lkDjk0AlHN7N65wGkYom41+MU/JgMBIsYJdpYgX3kcSIGHLAnh0nAcU2fGcytwK46dScXXga3gCoq1AzsL6+f0CwGoSknSvVcJ9X+hEjNKIdpxcsUpISOyAB6BgWJQfmT/IYpPjVOH0eJNE9onLu/JyYkVmoch6YzJnqoFmsz879aL9PRlT9hIs00CDpfFGUc6wTPAsF9JoFqPjZAqGTmr5gOiSRUm9gqJgR38eRlaJ/XXafu3l1UG9dFHGV0jE5QDbnoEjXQLWqiFqLoET2jV/RmPVkv1rv1MW8tWcXMIfoj6/MHtjmW6A==</latexit><latexit sha1_base64="Cuc4oHVa2KGTt3i/NUxOriCp3PU=">AAACA3icbZDLSsNAFIYn9VbrLepON4NFqJuSiKDLohuXFewFmhAm05N26GQSZiZCKQU3voobF4q49SXc+TZO0yy09YeBj/+cw5nzhylnSjvOt1VaWV1b3yhvVra2d3b37P2DtkoySaFFE57IbkgUcCagpZnm0E0lkDjk0AlHN7N65wGkYom41+MU/JgMBIsYJdpYgX3kcSIGHLAnh0nAcU2fGcytwK46dScXXga3gCoq1AzsL6+f0CwGoSknSvVcJ9X+hEjNKIdpxcsUpISOyAB6BgWJQfmT/IYpPjVOH0eJNE9onLu/JyYkVmoch6YzJnqoFmsz879aL9PRlT9hIs00CDpfFGUc6wTPAsF9JoFqPjZAqGTmr5gOiSRUm9gqJgR38eRlaJ/XXafu3l1UG9dFHGV0jE5QDbnoEjXQLWqiFqLoET2jV/RmPVkv1rv1MW8tWcXMIfoj6/MHtjmW6A==</latexit>

h⇢
l(

t)
i

<latexit sha1_base64="Cuc4oHVa2KGTt3i/NUxOriCp3PU=">AAACA3icbZDLSsNAFIYn9VbrLepON4NFqJuSiKDLohuXFewFmhAm05N26GQSZiZCKQU3voobF4q49SXc+TZO0yy09YeBj/+cw5nzhylnSjvOt1VaWV1b3yhvVra2d3b37P2DtkoySaFFE57IbkgUcCagpZnm0E0lkDjk0AlHN7N65wGkYom41+MU/JgMBIsYJdpYgX3kcSIGHLAnh0nAcU2fGcytwK46dScXXga3gCoq1AzsL6+f0CwGoSknSvVcJ9X+hEjNKIdpxcsUpISOyAB6BgWJQfmT/IYpPjVOH0eJNE9onLu/JyYkVmoch6YzJnqoFmsz879aL9PRlT9hIs00CDpfFGUc6wTPAsF9JoFqPjZAqGTmr5gOiSRUm9gqJgR38eRlaJ/XXafu3l1UG9dFHGV0jE5QDbnoEjXQLWqiFqLoET2jV/RmPVkv1rv1MW8tWcXMIfoj6/MHtjmW6A==</latexit><latexit sha1_base64="Cuc4oHVa2KGTt3i/NUxOriCp3PU=">AAACA3icbZDLSsNAFIYn9VbrLepON4NFqJuSiKDLohuXFewFmhAm05N26GQSZiZCKQU3voobF4q49SXc+TZO0yy09YeBj/+cw5nzhylnSjvOt1VaWV1b3yhvVra2d3b37P2DtkoySaFFE57IbkgUcCagpZnm0E0lkDjk0AlHN7N65wGkYom41+MU/JgMBIsYJdpYgX3kcSIGHLAnh0nAcU2fGcytwK46dScXXga3gCoq1AzsL6+f0CwGoSknSvVcJ9X+hEjNKIdpxcsUpISOyAB6BgWJQfmT/IYpPjVOH0eJNE9onLu/JyYkVmoch6YzJnqoFmsz879aL9PRlT9hIs00CDpfFGUc6wTPAsF9JoFqPjZAqGTmr5gOiSRUm9gqJgR38eRlaJ/XXafu3l1UG9dFHGV0jE5QDbnoEjXQLWqiFqLoET2jV/RmPVkv1rv1MW8tWcXMIfoj6/MHtjmW6A==</latexit><latexit sha1_base64="Cuc4oHVa2KGTt3i/NUxOriCp3PU=">AAACA3icbZDLSsNAFIYn9VbrLepON4NFqJuSiKDLohuXFewFmhAm05N26GQSZiZCKQU3voobF4q49SXc+TZO0yy09YeBj/+cw5nzhylnSjvOt1VaWV1b3yhvVra2d3b37P2DtkoySaFFE57IbkgUcCagpZnm0E0lkDjk0AlHN7N65wGkYom41+MU/JgMBIsYJdpYgX3kcSIGHLAnh0nAcU2fGcytwK46dScXXga3gCoq1AzsL6+f0CwGoSknSvVcJ9X+hEjNKIdpxcsUpISOyAB6BgWJQfmT/IYpPjVOH0eJNE9onLu/JyYkVmoch6YzJnqoFmsz879aL9PRlT9hIs00CDpfFGUc6wTPAsF9JoFqPjZAqGTmr5gOiSRUm9gqJgR38eRlaJ/XXafu3l1UG9dFHGV0jE5QDbnoEjXQLWqiFqLoET2jV/RmPVkv1rv1MW8tWcXMIfoj6/MHtjmW6A==</latexit><latexit sha1_base64="Cuc4oHVa2KGTt3i/NUxOriCp3PU=">AAACA3icbZDLSsNAFIYn9VbrLepON4NFqJuSiKDLohuXFewFmhAm05N26GQSZiZCKQU3voobF4q49SXc+TZO0yy09YeBj/+cw5nzhylnSjvOt1VaWV1b3yhvVra2d3b37P2DtkoySaFFE57IbkgUcCagpZnm0E0lkDjk0AlHN7N65wGkYom41+MU/JgMBIsYJdpYgX3kcSIGHLAnh0nAcU2fGcytwK46dScXXga3gCoq1AzsL6+f0CwGoSknSvVcJ9X+hEjNKIdpxcsUpISOyAB6BgWJQfmT/IYpPjVOH0eJNE9onLu/JyYkVmoch6YzJnqoFmsz879aL9PRlT9hIs00CDpfFGUc6wTPAsF9JoFqPjZAqGTmr5gOiSRUm9gqJgR38eRlaJ/XXafu3l1UG9dFHGV0jE5QDbnoEjXQLWqiFqLoET2jV/RmPVkv1rv1MW8tWcXMIfoj6/MHtjmW6A==</latexit>

Figure 3.1: Energy transfer dynamics in the DBA model. a) Schematic energy levels used in
the study. b) Donor to acceptor energy transfer rate constants as a function of system-bath
coupling, η, for the full PQME (open circles) and for the Lindblad PQME (blue squares).
c) Population dynamics are shown for the donor (red), bridge (black), and acceptor (blue)
sites for η = 0.2 (top panel) and η = 9.0 (bottom panel).

the quantum jump equation can take time dependent forms, and as long as the rates are
strictly positive the complete positivity of the density matrix will be preserved. However,
we make a Markovian approximation and neglect this time-dependence.

Given these approximations, we can construct Lindblad operators from the elements of a
time-independent Redfield-like tensor. As the rates of these operators obey detailed balance,
it is most convent to express them in the energy eigenbasis. For population transfer between
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each pair of energy eigenstates, the Lindblad operators are

Lij = |φi〉〈φj|, Γij = Riijj (3.29)

and the single dephasing operator is

Ld =
∑
i

√
Riiii|φi〉〈φi| (3.30)

where we have absorbed the dephasing rate into the dephasing operator, and so have Γd = 1.
The elements of the Redfield-like tensor follow directly from Jang et al., and in the energy
eigenbasis are,

Riijj =
1

~2

∑
l 6=l′

∑
m 6=m′

Jll′Jmm′F ii,jjll′,mm′ (3.31)

whose kernel in our Markovian approximation is

F ii,jjll′,mm′ =

∫ ∞
0

dt
(
1− e−Kll′,mm′ (t)

)(
Sij,jjll′,mm′ −

∑
j′

Sij,j
′j′

mm′,ll′

)
+ h.c., (3.32)

where Kll′,mm′(t) = (δlm + δl′m′ − δlm′ − δl′m)C(t) and δlm is the Kronecker delta. The
correlation function C(t) is given by

C(t) =

∫ ∞
0

dωJ(ω)[coth(β~ω/2) cos(ωt)− i sin(ωt)]

and the overlap factors, Sii,jjll′,mm′ , coming from the change from the site to energy eigenbasis
are given by

Sij,j
′j′

ll′,mm′ = 〈φi|m〉〈m′|φj′〉〈φj′ |l〉〈l′|φj〉
and we employ h.c. to refer to the Hermitian conjugate of the product of the previous terms
in Eq. 3.32.

Throughout we will use εB − εD = 200 cm−1, εB − εA = 200 cm−1, jBD = jBA = 100
cm−1, and ωc = 200 cm−1. With this equation of motion, and these parameters, we consider
the dynamics of the system initially prepared in the donor state, |D〉. The donor state
is energetically unfavored, and so relaxation mediated by the bath will lead to population
transfer to the acceptor states. For the inter-site coupling strengths considered, the energy
eigenstates are primarily localized on specific sites, becoming exactly commensurate in the
limit of large system bath coupling strength, η. For simplicity, we will label the energy
eigenstates by |φl〉, for the state primarily supported on site l, and the corresponding state
in the site basis with |l〉.

Though the Lindbladization procedure described above invokes both the Markovian and
secular approximation, the dynamics show quantitative agreement with the original simula-
tions of Jang et. al.[119] The rate constants computed from population dynamics, shown in
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Figure 3.2: Population dynamics in the reactive ensemble. Representative stochastic trajec-
tories for the donor (red), bridge (black), and acceptor (blue) populations are shown for (a)
for η = 0.2 and (b) for η = 9.0 and averaged populations are shown in (c) for η = 0.2 and
(d) for η = 9.0.

Fig. 3.1(b), are accurate across the whole range of system-bath coupling strengths exhibiting
a maximum rate at η = 2, which agrees with the full PQME result. Example population
dynamics computed from, an unconditioned ensemble, 〈ρl(t)〉, where ρl is the population
operator, ρl = |l〉〈l| for site l = (D,B,A), exhibit the same qualitative changes from co-
herent dynamics at weak system-bath coupling to hopping dynamics at strong system-bath
coupling. These results were accomplished with 40,000 trajectories for each η. As was noted
in early applications of the PQME method, [118] non-Markovian effects from the perspective
of the non-transformed system Hamiltonian are treated in the system Hamiltonian to some
degree by the PQME method due to incorporation of the bath modes from the small polaron
transform. The deviation near the maximum stems from the secular approximation, which
decouples additional transfer from coherences to the populations and slightly reduces the
overall rate.

To study the mechanism of charge transport through trajectory analysis, we consider
ensembles of trajectories conditioned on observing the system in the donor state at t = 0
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Figure 3.3: The average number of mechanistic jumps per trajectory are shown as a function
of η. The average number of superexchange jumps (dashed blue curve with blue circles)
have values on the left y-axis and the average number of hopping jump sequences (dashed
red curve with red circles) have values on the right y-axis.

and in acceptor eigenstates at t = tobs. These conditioned probabilities are computed in a
reactive path ensemble with initial and final states given by the projectors

hA = |D〉〈D| and hB = |φA〉〈φA| (3.33)

so that the system begins in the donor state, which is a superposition of energy eigenstates,
undergoes dephasing and dissipation through the action of the bath, and ends in an energy
eigenstate mostly localized in the acceptor state. Additionally, we take tobs = 120 fs, which
is much shorter than the time for population decay from the donor state on average, as
shown in Fig. 3.1(c), but long enough that the system builds up population in the acceptor
eigenstate with high probability.

Figures 3.2(a) and (b) show example quantum jump trajectories for η = 0.2 and η = 9.0,
respectively. At weak coupling, the individual trajectories begin by undergoing Hamiltonian
evolution with populations that are nearly identical to those in the unconditioned ensemble.
After this initial delocalization through coherent dynamics, the system undergoes a quantum
jump, which transfers population instantaneously between the eigenstates and gives rise
to the decoherence apparent at long times in the averaged populations. Trajectories in
the strong coupling regime are starkly different exhibiting no coherent evolution, due to
the smaller inter-site coupling, and with quantum jumps transferring populations between
the eigenstates. In the average populations, these quantum jumps result in exponential
population transfer averaged populations, due to the exponential waiting time for the jump
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to occur. The short tobs consists largely of trajectories that have made donor-to-acceptor
eigenstate transitions, but no reverse acceptor-to-donor transitions.

The conditioned populations for η = 0.2 and η = 9.0 are shown in Fig. 3.2(c) and (d),
respectively. In the weak coupling regime, where the superexchange mechanism dominates
the transitions, the conditioned populations show a near direct transfer between the donor
and acceptor states, while the dynamics in the bridge population remain nearly invariant
to the conditioning relative to the unconditioned dynamics. At early times, the populations
in the donor and bridge states rise at the same rate, and opposite to that of the acceptor
states, which suggests that in this conditioned ensemble of trajectories the transfer follows the
superexchange mechanism. In the strong coupling regime, where the hopping mechanism
dominates, the conditioned populations show a sharp rise in the bridge state population
followed by an increase in the acceptor state population. At short times the slopes now
of the donor and bridge states are opposite one another, and at later times the slopes of
the bridge and acceptor states are opposite. These features suggest that these trajectories
primarily undergo hopping dynamics.

To verify this interpretation of the dynamics, we can directly resolve the bath operation
that results in transfer from the donor to acceptor states in the individual quantum jump
trajectories. Specifically, superexhange trajectories are those in which the Lindblad operator
that acts to localize the population on the acceptor eigenstate is either LDA or LBA with
no other population transfer jump occurring prior to these jumps. Using these operations
ensures that transitions are made directly to the acceptor eigenstate either from the donor
eigenstate or from the bridge eigenstate after coherent transfer of population to the bridge
state. Hopping trajectories are similarly characterized with a Lindblad operator that localizes
the population in the acceptor eigenstate directly from the bridge eigenstate, but only after
first making a donor to bridge jump, LBA and LDB, which offers the usual barrier crossing
interpretation resulting from bath fluctuations.

With these characterizations, we can now directly test how each mechanism contributes
to the dynamics of the density matrix over a range of η. Figure 3.3 shows the fraction
of superexchange trajectories, fSE, and the corresponding fraction of hopping trajectories,
fH = 1 − fSE, that occur in the reaction path ensemble. At weak system-bath coupling
the majority of transfer events occurs via the superexchange mechanism, while at strong
system-bath coupling the hopping mechanism is dominant. The decay of the fraction of
superexchange jumps is exponential in the system bath coupling, which can be predicted by
superexchange theory, due to the exponential decay of the inter-site coupling with increasing
system-bath coupling in the polaron-transformed Hamiltonian. However, for all values of
η considered, the average rate of energy transfer is a combination of superexchange and
hopping. While superexchange theory predicts a monotonically decreasing rate, the rate of
transfer via hopping is nonmonotonic, which is implied by the continued decrease in the
overall rate in Fig. 3.1(b), in the strong coupling regime where the mechanism is dominated
by hopping transitions. This nonmonotonic behavior is the result of self-trapping, which
decreases the rate at large values of η.
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3.4 Committor Analysis

In the context of photo-induced nonadiabatic dynamics, the rate of an event is often less
important than its associated yield. The yield of such a process depends on how the dy-
namics of a specific chemical system favors forming the product state over relaxing back to
the reactant state. In the context of chemical reactions this manifests itself in the chemical
selectivity. In this section, we show how path ensembles can be used to understand this
selectivity by studying the dynamics of a proton-coupled electron transfer (PCET) model
developed by Hammes-Schiffer and co-workers[267]. In particular, we show how stochastic
unraveling can be used to interrogate the relaxation mechanisms that determine quantum
yield following photoexcitation using a generalization of commitment analysis incorporat-
ing the commitment to different potential product states. Understanding the mechanism
of yields is of broad importance to understanding a number of chemical reactions in photo-
chemistry such as photoisomerization reactions [15, 98] and other relaxation phenomena like
hot carrier generation [56].

The model we study (model A from Ref. describes the photoinduced PCET for a system
with electronic energy bias coupled to a bath. The system is composed of two harmonic
oscillators, depicted in Fig. 3.4, coupled to a harmonic oscillator bath. The system is
strongly coupled to this bath, so the small polaron transform is again utilized to ensure the
accuracy of a weak coupling perturbation theory. In this polaron-transformed frame, the
system Hamiltonian is,

HS = − ~2

2m

∂2

∂q̂2
+
∑
l=0,1

Ul(q)|l〉〈l| (3.34)

where q̂ is the proton coordinate with mass m, l labels the donor, |1〉〈1|, and acceptor, |0〉〈0|,
electronic states, each with an associated harmonic potential energy, Ul(q)

Ul(q) =
1

2
mω2

l (q − ql)2 + εl

where, εl is the potential energy minimum, ql its equilibrium position, and ωl its characteris-
tic frequency. In this model, the system-bath coupling is treated in the electronic coupling,
so that the bath serves to localize the excited electron and reduce the rate of electronic oscil-
lation arising from off-diagonal coupling in the original system Hamiltonian. The electronic
coupling can then be treated perturbatively with secular Redfield theory. Thus in this model
electron transfer occurs because of bath fluctuations that temporarily permit the coherent
electron transfer.

The resulting Lindblad operators are population transfer operators between the vibra-
tional states on different electronic states,

Lln,l′n′ = |l〉|n〉〈n′|〈l′|, Γli,1j = Rln,l′n′ (3.35)
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where the pair ln, label the electronic state l = |0〉, |1〉 and n, the vibrational eigenstate.
There is one dephasing operator that is just the unit operator for the donor state

Ld =
∑
n

√
G1n|1〉|n〉〈n|〈1|. (3.36)

weighted by the rate
√
G1n, so that Γd = 1. The population transfer rates are given by a

Fourier-transform of the bath-correlation function formally expressed for acceptor to donor
transitions and donor to acceptor transitions, respectively, as

Rln,l′n′ =
1

~2
|Vll′ |2|Fnn′|2

∫ ∞
−∞

dt ei(E
l
n−El

′
n′ )t/~M(t) (3.37)

where Vll′ is the electronic coupling matrix element which is nonzero only for l 6= l′, Fnn′ is the
Franck-Condon overlap factor between the vibrational states on different electronic states,
Fnn′ = 〈0|〈n|n′〉|1〉, and El

n is the energy of the nth vibrational state of the lth electronic
state, and M(t) is the thermally averaged, polaron transformed, bath correlation function.
The elements of this tensor give the rate of transfer between the vibrational states of each
electronic state. The dephasing rates are given by

G1n =
∑
n′

R1n,0n′ (3.38)

as the bath is only coupled to the donor electronic state, only the coherences of the donor
state undergo dephasing. Following Ref. the bath correlation function is computed using a
high-temperature approximation,

M(t) ≈ exp

(
−λst

2

~2β
− itλs

~

)
, (3.39)

where λs is the reorganization energy. Given the form of the Lindblad operators and their
associated rates, population transfer only occurs between vibrational states of different elec-
tronic states, with an average dissipation roughly given by λs. As the original dynamics were
simulated with the secular approximation, the Lindblad master equation we employ gives
equivalent dynamics, just in a different representation.

We consider dynamics following a vertical excitation of the ground vibrational eigenstate
of the acceptor into the donor electronic state. The subsequent initial condition, |ψv0〉, is
illustrated in Fig. 3.4 and is given by

|ψv0〉 =
∑
i

cn|i〉|1〉 (3.40)

where the coefficient cn = 〈0|〈0|n〉|1〉 is the vibrational overlap factor of the 0th vibrational
state of electronic state 0, with the ith vibrational state of electronic state 1. Throughout
this section we use ∆ε = ε1− ε0 = 1 eV, so that the acceptor state is energetically preferred,
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Figure 3.4: Population dynamics of PCET model from RDM simulation (red) and from
stochastic unraveling (blue). Error bars are computed from block averaging and represent a
95 percent confidence interval. The inset shows the potential energy surfaces of the acceptor
(red parabola) and the donor (blue parabola) states.

ω0 = ω1 = 3000 cm−1, and q0 = −0.5 Å, q1 = 0 Å, The electronic coupling is taken to
be V01 = 0.03 eV, m = 1 amu, the mass of a hydrogen atom, the temperature is T = 300
K and the reorganization energy is λs = 0.892 eV. For these parameters and initial condi-
tion, we find we can truncate the Hilbert space to include only the lowest 30 vibrational
levels in each electronic state. The population dynamics in the donor state, 〈ρ1(t)〉 where
ρ1 =

∑
n |1〉|n〉〈n|〈1|, following this vertical excitation are compared between the reduced

density matrix formalism and simulation with stochastic unraveling in Fig. 3.4. With 40,000
trajectories the population dynamics are well-converged and exhibit the same dynamical fea-
tures. With these choices of parameters, following a fast initial relaxation aided by the large
Franck-Condon overlap for high energy states, a metastable population forms at interme-
diate times relative to the equilibrium distribution in which the donor-state population is
negligible. This metastable state is due to a branching process that occurs during the vibra-
tional relaxation that splits population into the donor and acceptor states, resulting in an
enhancement of population in the donor state, 0.3, over its equilibrium value, essentially 0.0.
Using trajectory analysis we can clarify the mechanism by which this branching occurs and
thus understand what bath fluctuations give rise to a preferential population of the donor
state over the acceptor state.

To study the mechanism of preferential relaxation into the donor state, we define the
reactive path ensemble for this model as

hA = |ψv0〉〈ψv0 | and hB = |1〉|0〉〈0|〈1| (3.41)
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Figure 3.5: Projections of the wavepackets onto the position basis (q) in the acceptor state
(left column) and the donor state (right column) for the unconditioned path ensemble (top
row) and the conditioned path ensemble (bottom row) as described in the text. Positions of
high wavepacket probability are in red and near zero are blue. All plots use a single color
range.

where the vertically excited initial condition is taken as the reactant and ground vibrational
level of the donor as the product, and consider tobs = 50 ps which is long enough to ob-
serve initial relaxation to the ground vibrational state of the donor, but shorter than the
characteristic time to thermally transfer population from the donor, over the potential bar-
rier to the acceptor state. As was noted in Ref. the projections of the wavepacket onto
the coordinate basis shows the relaxation into each minima. We have computed analogous
wavepacket projections which are constructed by χ(q, t) = 〈q|ψt〉 where |q〉 is an eigenvec-
tor of the position operator q and compared them with those averaged in the reactive path
ensemble 〈|χ(q)|2〉AB to those in unconditioned ensemble, 〈|χ(q)|2〉. These are shown in Fig.
3.5, where the normalization is computed for the both ensembles by ensuring wavefunction
normalization at t = 0. Figure 3.5 shows how the conditioned wavepacket begins branch-
ing from the unconditioned wavepacket, at roughly 10 ps seemingly commiting to either the
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donor and acceptor state after undergoing an initial dephasing which damped the oscillations
in the donor state.

While the averaged dynamics illustrate correlations between early time wavepacket mo-
tion and eventual localization in the donor or acceptor states, specific causal relationships
and mechanistic information cannot be determined from them alone. In order to clarify the
specific mechanism by which relaxation preferentially localizes in the donor state we have
performed a committor analysis [26, 55, 190]. For each trajectory within the reactive path
ensemble, we compute the probability, pB(t), that a given state of the system at some in-
termediate time 0 < t < tobs commits to the donor state. This is computed by averaging
the fraction of trajectories that localizes in the donor state, integrated from the common
intermediate state.

Figure 3.6(a) shows the commitment probabilities along all of the reactive trajectories
taken from the unconditioned ensemble. At the initial time of each trajectory the commit-
ment probability is the same and equal to the unconditioned yield of the reaction. which in
this case is 0.3. Over the trajectory time, pB(t) changes as each trajectory begins to jump
into different vibrational eigenstates that are more or less likely to localize in the donor state.
At long times, pB(t) approaches 1, as required for a member of the reactive path ensemble.
For each trajectory there is a unique time, t1/2, where the commitment probability jumps
above 1/2. The ensemble of configurations defined by the state of the system at t = t1/2 are
members of a transition state ensemble. By understanding the commonalities of trajectories
in this ensemble, we can identify the required dynamical fluctuation for ending in the donor
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<latexit sha1_base64="xVhIW7j6TSbM/L94FiVIL1PvLFA=">AAAB8nicbVBNSwMxEM3Wr1q/qh69BItQBcuuCHosevFYwX7Adi3ZNNuGZpMlmRXK0p/hxYMiXv013vw3pu0etPXBwOO9GWbmhYngBlz32ymsrK6tbxQ3S1vbO7t75f2DllGppqxJlVC6ExLDBJesCRwE6ySakTgUrB2Obqd++4lpw5V8gHHCgpgMJI84JWAlv9HzcBXO4fHstFeuuDV3BrxMvJxUUI5Gr/zV7SuaxkwCFcQY33MTCDKigVPBJqVualhC6IgMmG+pJDEzQTY7eYJPrNLHkdK2JOCZ+nsiI7Ex4zi0nTGBoVn0puJ/np9CdB1kXCYpMEnni6JUYFB4+j/uc80oiLElhGpub8V0SDShYFMq2RC8xZeXSeui5rk17/6yUr/J4yiiI3SMqshDV6iO7lADNRFFCj2jV/TmgPPivDsf89aCk88coj9wPn8AIbaP1g==</latexit><latexit sha1_base64="xVhIW7j6TSbM/L94FiVIL1PvLFA=">AAAB8nicbVBNSwMxEM3Wr1q/qh69BItQBcuuCHosevFYwX7Adi3ZNNuGZpMlmRXK0p/hxYMiXv013vw3pu0etPXBwOO9GWbmhYngBlz32ymsrK6tbxQ3S1vbO7t75f2DllGppqxJlVC6ExLDBJesCRwE6ySakTgUrB2Obqd++4lpw5V8gHHCgpgMJI84JWAlv9HzcBXO4fHstFeuuDV3BrxMvJxUUI5Gr/zV7SuaxkwCFcQY33MTCDKigVPBJqVualhC6IgMmG+pJDEzQTY7eYJPrNLHkdK2JOCZ+nsiI7Ex4zi0nTGBoVn0puJ/np9CdB1kXCYpMEnni6JUYFB4+j/uc80oiLElhGpub8V0SDShYFMq2RC8xZeXSeui5rk17/6yUr/J4yiiI3SMqshDV6iO7lADNRFFCj2jV/TmgPPivDsf89aCk88coj9wPn8AIbaP1g==</latexit><latexit sha1_base64="xVhIW7j6TSbM/L94FiVIL1PvLFA=">AAAB8nicbVBNSwMxEM3Wr1q/qh69BItQBcuuCHosevFYwX7Adi3ZNNuGZpMlmRXK0p/hxYMiXv013vw3pu0etPXBwOO9GWbmhYngBlz32ymsrK6tbxQ3S1vbO7t75f2DllGppqxJlVC6ExLDBJesCRwE6ySakTgUrB2Obqd++4lpw5V8gHHCgpgMJI84JWAlv9HzcBXO4fHstFeuuDV3BrxMvJxUUI5Gr/zV7SuaxkwCFcQY33MTCDKigVPBJqVualhC6IgMmG+pJDEzQTY7eYJPrNLHkdK2JOCZ+nsiI7Ex4zi0nTGBoVn0puJ/np9CdB1kXCYpMEnni6JUYFB4+j/uc80oiLElhGpub8V0SDShYFMq2RC8xZeXSeui5rk17/6yUr/J4yiiI3SMqshDV6iO7lADNRFFCj2jV/TmgPPivDsf89aCk88coj9wPn8AIbaP1g==</latexit><latexit sha1_base64="xVhIW7j6TSbM/L94FiVIL1PvLFA=">AAAB8nicbVBNSwMxEM3Wr1q/qh69BItQBcuuCHosevFYwX7Adi3ZNNuGZpMlmRXK0p/hxYMiXv013vw3pu0etPXBwOO9GWbmhYngBlz32ymsrK6tbxQ3S1vbO7t75f2DllGppqxJlVC6ExLDBJesCRwE6ySakTgUrB2Obqd++4lpw5V8gHHCgpgMJI84JWAlv9HzcBXO4fHstFeuuDV3BrxMvJxUUI5Gr/zV7SuaxkwCFcQY33MTCDKigVPBJqVualhC6IgMmG+pJDEzQTY7eYJPrNLHkdK2JOCZ+nsiI7Ex4zi0nTGBoVn0puJ/np9CdB1kXCYpMEnni6JUYFB4+j/uc80oiLElhGpub8V0SDShYFMq2RC8xZeXSeui5rk17/6yUr/J4yiiI3SMqshDV6iO7lADNRFFCj2jV/TmgPPivDsf89aCk88coj9wPn8AIbaP1g==</latexit>

t � t1/2 / ps
<latexit sha1_base64="rEBSHxU+urC66dqq+h0IilywoGU=">AAACAXicbVBNS8NAEN34WetX1IvgZbEIXmyTIuix6MVjBfsBbQib7aZdutmE3YlYQr34V7x4UMSr/8Kb/8Ztm4O2Phh4vDfDzLwgEVyD43xbS8srq2vrhY3i5tb2zq69t9/Ucaooa9BYxKodEM0El6wBHARrJ4qRKBCsFQyvJ37rninNY3kHo4R5EelLHnJKwEi+fQj4DIOfuZXqGHeBPUCGKzjRY98uOWVnCrxI3JyUUI66b391ezFNIyaBCqJ1x3US8DKigFPBxsVuqllC6JD0WcdQSSKmvWz6wRifGKWHw1iZkoCn6u+JjERaj6LAdEYEBnrem4j/eZ0Uwksv4zJJgUk6WxSmAkOMJ3HgHleMghgZQqji5lZMB0QRCia0ognBnX95kTSrZdcpu7fnpdpVHkcBHaFjdIpcdIFq6AbVUQNR9Iie0St6s56sF+vd+pi1Lln5zAH6A+vzBx1NlWQ=</latexit><latexit sha1_base64="rEBSHxU+urC66dqq+h0IilywoGU=">AAACAXicbVBNS8NAEN34WetX1IvgZbEIXmyTIuix6MVjBfsBbQib7aZdutmE3YlYQr34V7x4UMSr/8Kb/8Ztm4O2Phh4vDfDzLwgEVyD43xbS8srq2vrhY3i5tb2zq69t9/Ucaooa9BYxKodEM0El6wBHARrJ4qRKBCsFQyvJ37rninNY3kHo4R5EelLHnJKwEi+fQj4DIOfuZXqGHeBPUCGKzjRY98uOWVnCrxI3JyUUI66b391ezFNIyaBCqJ1x3US8DKigFPBxsVuqllC6JD0WcdQSSKmvWz6wRifGKWHw1iZkoCn6u+JjERaj6LAdEYEBnrem4j/eZ0Uwksv4zJJgUk6WxSmAkOMJ3HgHleMghgZQqji5lZMB0QRCia0ognBnX95kTSrZdcpu7fnpdpVHkcBHaFjdIpcdIFq6AbVUQNR9Iie0St6s56sF+vd+pi1Lln5zAH6A+vzBx1NlWQ=</latexit><latexit sha1_base64="rEBSHxU+urC66dqq+h0IilywoGU=">AAACAXicbVBNS8NAEN34WetX1IvgZbEIXmyTIuix6MVjBfsBbQib7aZdutmE3YlYQr34V7x4UMSr/8Kb/8Ztm4O2Phh4vDfDzLwgEVyD43xbS8srq2vrhY3i5tb2zq69t9/Ucaooa9BYxKodEM0El6wBHARrJ4qRKBCsFQyvJ37rninNY3kHo4R5EelLHnJKwEi+fQj4DIOfuZXqGHeBPUCGKzjRY98uOWVnCrxI3JyUUI66b391ezFNIyaBCqJ1x3US8DKigFPBxsVuqllC6JD0WcdQSSKmvWz6wRifGKWHw1iZkoCn6u+JjERaj6LAdEYEBnrem4j/eZ0Uwksv4zJJgUk6WxSmAkOMJ3HgHleMghgZQqji5lZMB0QRCia0ognBnX95kTSrZdcpu7fnpdpVHkcBHaFjdIpcdIFq6AbVUQNR9Iie0St6s56sF+vd+pi1Lln5zAH6A+vzBx1NlWQ=</latexit><latexit sha1_base64="rEBSHxU+urC66dqq+h0IilywoGU=">AAACAXicbVBNS8NAEN34WetX1IvgZbEIXmyTIuix6MVjBfsBbQib7aZdutmE3YlYQr34V7x4UMSr/8Kb/8Ztm4O2Phh4vDfDzLwgEVyD43xbS8srq2vrhY3i5tb2zq69t9/Ucaooa9BYxKodEM0El6wBHARrJ4qRKBCsFQyvJ37rninNY3kHo4R5EelLHnJKwEi+fQj4DIOfuZXqGHeBPUCGKzjRY98uOWVnCrxI3JyUUI66b391ezFNIyaBCqJ1x3US8DKigFPBxsVuqllC6JD0WcdQSSKmvWz6wRifGKWHw1iZkoCn6u+JjERaj6LAdEYEBnrem4j/eZ0Uwksv4zJJgUk6WxSmAkOMJ3HgHleMghgZQqji5lZMB0QRCia0ognBnX95kTSrZdcpu7fnpdpVHkcBHaFjdIpcdIFq6AbVUQNR9Iie0St6s56sF+vd+pi1Lln5zAH6A+vzBx1NlWQ=</latexit>
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<latexit sha1_base64="2x/86dpYfgYsjnBeMJn4qGn8Ni0=">AAAB/HicbVDLSsNAFJ3UV62vaJduBotQF9akCLosdeOygn1AG8JkOmmHTh7M3AghxF9x40IRt36IO//GaZuFVg9cOJxzL/fe48WCK7CsL6O0tr6xuVXeruzs7u0fmIdHPRUlkrIujUQkBx5RTPCQdYGDYINYMhJ4gvW92c3c7z8wqXgU3kMaMycgk5D7nBLQkmtWYzdr57gO+ByDm9kXzfzMNWtWw1oA/yV2QWqoQMc1P0fjiCYBC4EKotTQtmJwMiKBU8HyyihRLCZ0RiZsqGlIAqacbHF8jk+1MsZ+JHWFgBfqz4mMBEqlgac7AwJTterNxf+8YQL+tZPxME6AhXS5yE8EhgjPk8BjLhkFkWpCqOT6VkynRBIKOq+KDsFeffkv6TUbttWw7y5rrXYRRxkdoxNURza6Qi10izqoiyhK0RN6Qa/Go/FsvBnvy9aSUcxU0S8YH98kO5Mh</latexit><latexit sha1_base64="2x/86dpYfgYsjnBeMJn4qGn8Ni0=">AAAB/HicbVDLSsNAFJ3UV62vaJduBotQF9akCLosdeOygn1AG8JkOmmHTh7M3AghxF9x40IRt36IO//GaZuFVg9cOJxzL/fe48WCK7CsL6O0tr6xuVXeruzs7u0fmIdHPRUlkrIujUQkBx5RTPCQdYGDYINYMhJ4gvW92c3c7z8wqXgU3kMaMycgk5D7nBLQkmtWYzdr57gO+ByDm9kXzfzMNWtWw1oA/yV2QWqoQMc1P0fjiCYBC4EKotTQtmJwMiKBU8HyyihRLCZ0RiZsqGlIAqacbHF8jk+1MsZ+JHWFgBfqz4mMBEqlgac7AwJTterNxf+8YQL+tZPxME6AhXS5yE8EhgjPk8BjLhkFkWpCqOT6VkynRBIKOq+KDsFeffkv6TUbttWw7y5rrXYRRxkdoxNURza6Qi10izqoiyhK0RN6Qa/Go/FsvBnvy9aSUcxU0S8YH98kO5Mh</latexit><latexit sha1_base64="2x/86dpYfgYsjnBeMJn4qGn8Ni0=">AAAB/HicbVDLSsNAFJ3UV62vaJduBotQF9akCLosdeOygn1AG8JkOmmHTh7M3AghxF9x40IRt36IO//GaZuFVg9cOJxzL/fe48WCK7CsL6O0tr6xuVXeruzs7u0fmIdHPRUlkrIujUQkBx5RTPCQdYGDYINYMhJ4gvW92c3c7z8wqXgU3kMaMycgk5D7nBLQkmtWYzdr57gO+ByDm9kXzfzMNWtWw1oA/yV2QWqoQMc1P0fjiCYBC4EKotTQtmJwMiKBU8HyyihRLCZ0RiZsqGlIAqacbHF8jk+1MsZ+JHWFgBfqz4mMBEqlgac7AwJTterNxf+8YQL+tZPxME6AhXS5yE8EhgjPk8BjLhkFkWpCqOT6VkynRBIKOq+KDsFeffkv6TUbttWw7y5rrXYRRxkdoxNURza6Qi10izqoiyhK0RN6Qa/Go/FsvBnvy9aSUcxU0S8YH98kO5Mh</latexit><latexit sha1_base64="2x/86dpYfgYsjnBeMJn4qGn8Ni0=">AAAB/HicbVDLSsNAFJ3UV62vaJduBotQF9akCLosdeOygn1AG8JkOmmHTh7M3AghxF9x40IRt36IO//GaZuFVg9cOJxzL/fe48WCK7CsL6O0tr6xuVXeruzs7u0fmIdHPRUlkrIujUQkBx5RTPCQdYGDYINYMhJ4gvW92c3c7z8wqXgU3kMaMycgk5D7nBLQkmtWYzdr57gO+ByDm9kXzfzMNWtWw1oA/yV2QWqoQMc1P0fjiCYBC4EKotTQtmJwMiKBU8HyyihRLCZ0RiZsqGlIAqacbHF8jk+1MsZ+JHWFgBfqz4mMBEqlgac7AwJTterNxf+8YQL+tZPxME6AhXS5yE8EhgjPk8BjLhkFkWpCqOT6VkynRBIKOq+KDsFeffkv6TUbttWw7y5rrXYRRxkdoxNURza6Qi10izqoiyhK0RN6Qa/Go/FsvBnvy9aSUcxU0S8YH98kO5Mh</latexit>
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<latexit sha1_base64="RaMRfkuAdz+o/CvDm41T0DnS4HA=">AAAB8nicbVBNS8NAEJ34WetX1aOXxSLUS02KoMeiF48V7AekpWy2m3bpZhN2J0IJ/RlePCji1V/jzX/jts1BWx8MPN6bYWZekEhh0HW/nbX1jc2t7cJOcXdv/+CwdHTcMnGqGW+yWMa6E1DDpVC8iQIl7ySa0yiQvB2M72Z++4lrI2L1iJOE9yI6VCIUjKKV/KSfeZe1Kamoi36p7FbdOcgq8XJShhyNfumrO4hZGnGFTFJjfM9NsJdRjYJJPi12U8MTysZ0yH1LFY246WXzk6fk3CoDEsbalkIyV39PZDQyZhIFtjOiODLL3kz8z/NTDG96mVBJilyxxaIwlQRjMvufDITmDOXEEsq0sLcSNqKaMrQpFW0I3vLLq6RVq3pu1Xu4Ktdv8zgKcApnUAEPrqEO99CAJjCI4Rle4c1B58V5dz4WrWtOPnMCf+B8/gCU4ZAg</latexit><latexit sha1_base64="RaMRfkuAdz+o/CvDm41T0DnS4HA=">AAAB8nicbVBNS8NAEJ34WetX1aOXxSLUS02KoMeiF48V7AekpWy2m3bpZhN2J0IJ/RlePCji1V/jzX/jts1BWx8MPN6bYWZekEhh0HW/nbX1jc2t7cJOcXdv/+CwdHTcMnGqGW+yWMa6E1DDpVC8iQIl7ySa0yiQvB2M72Z++4lrI2L1iJOE9yI6VCIUjKKV/KSfeZe1Kamoi36p7FbdOcgq8XJShhyNfumrO4hZGnGFTFJjfM9NsJdRjYJJPi12U8MTysZ0yH1LFY246WXzk6fk3CoDEsbalkIyV39PZDQyZhIFtjOiODLL3kz8z/NTDG96mVBJilyxxaIwlQRjMvufDITmDOXEEsq0sLcSNqKaMrQpFW0I3vLLq6RVq3pu1Xu4Ktdv8zgKcApnUAEPrqEO99CAJjCI4Rle4c1B58V5dz4WrWtOPnMCf+B8/gCU4ZAg</latexit><latexit sha1_base64="RaMRfkuAdz+o/CvDm41T0DnS4HA=">AAAB8nicbVBNS8NAEJ34WetX1aOXxSLUS02KoMeiF48V7AekpWy2m3bpZhN2J0IJ/RlePCji1V/jzX/jts1BWx8MPN6bYWZekEhh0HW/nbX1jc2t7cJOcXdv/+CwdHTcMnGqGW+yWMa6E1DDpVC8iQIl7ySa0yiQvB2M72Z++4lrI2L1iJOE9yI6VCIUjKKV/KSfeZe1Kamoi36p7FbdOcgq8XJShhyNfumrO4hZGnGFTFJjfM9NsJdRjYJJPi12U8MTysZ0yH1LFY246WXzk6fk3CoDEsbalkIyV39PZDQyZhIFtjOiODLL3kz8z/NTDG96mVBJilyxxaIwlQRjMvufDITmDOXEEsq0sLcSNqKaMrQpFW0I3vLLq6RVq3pu1Xu4Ktdv8zgKcApnUAEPrqEO99CAJjCI4Rle4c1B58V5dz4WrWtOPnMCf+B8/gCU4ZAg</latexit><latexit sha1_base64="RaMRfkuAdz+o/CvDm41T0DnS4HA=">AAAB8nicbVBNS8NAEJ34WetX1aOXxSLUS02KoMeiF48V7AekpWy2m3bpZhN2J0IJ/RlePCji1V/jzX/jts1BWx8MPN6bYWZekEhh0HW/nbX1jc2t7cJOcXdv/+CwdHTcMnGqGW+yWMa6E1DDpVC8iQIl7ySa0yiQvB2M72Z++4lrI2L1iJOE9yI6VCIUjKKV/KSfeZe1Kamoi36p7FbdOcgq8XJShhyNfumrO4hZGnGFTFJjfM9NsJdRjYJJPi12U8MTysZ0yH1LFY246WXzk6fk3CoDEsbalkIyV39PZDQyZhIFtjOiODLL3kz8z/NTDG96mVBJilyxxaIwlQRjMvufDITmDOXEEsq0sLcSNqKaMrQpFW0I3vLLq6RVq3pu1Xu4Ktdv8zgKcApnUAEPrqEO99CAJjCI4Rle4c1B58V5dz4WrWtOPnMCf+B8/gCU4ZAg</latexit>
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<latexit sha1_base64="IqW2N36QktBwntGQavLhE1DLrrE=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipKQflilt1FyDrxMtJBXI0BuWv/jBmaYTSMEG17nluYvyMKsOZwFmpn2pMKJvQEfYslTRC7WeLQ2fkwipDEsbKljRkof6eyGik9TQKbGdEzVivenPxP6+XmvDGz7hMUoOSLReFqSAmJvOvyZArZEZMLaFMcXsrYWOqKDM2m5INwVt9eZ20r6qeW/Wa15X6bR5HEc7gHC7BgxrU4R4a0AIGCM/wCm/Oo/PivDsfy9aCk8+cwh84nz/XEYzy</latexit><latexit sha1_base64="IqW2N36QktBwntGQavLhE1DLrrE=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipKQflilt1FyDrxMtJBXI0BuWv/jBmaYTSMEG17nluYvyMKsOZwFmpn2pMKJvQEfYslTRC7WeLQ2fkwipDEsbKljRkof6eyGik9TQKbGdEzVivenPxP6+XmvDGz7hMUoOSLReFqSAmJvOvyZArZEZMLaFMcXsrYWOqKDM2m5INwVt9eZ20r6qeW/Wa15X6bR5HEc7gHC7BgxrU4R4a0AIGCM/wCm/Oo/PivDsfy9aCk8+cwh84nz/XEYzy</latexit><latexit sha1_base64="IqW2N36QktBwntGQavLhE1DLrrE=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipKQflilt1FyDrxMtJBXI0BuWv/jBmaYTSMEG17nluYvyMKsOZwFmpn2pMKJvQEfYslTRC7WeLQ2fkwipDEsbKljRkof6eyGik9TQKbGdEzVivenPxP6+XmvDGz7hMUoOSLReFqSAmJvOvyZArZEZMLaFMcXsrYWOqKDM2m5INwVt9eZ20r6qeW/Wa15X6bR5HEc7gHC7BgxrU4R4a0AIGCM/wCm/Oo/PivDsfy9aCk8+cwh84nz/XEYzy</latexit><latexit sha1_base64="IqW2N36QktBwntGQavLhE1DLrrE=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqMeiF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipKQflilt1FyDrxMtJBXI0BuWv/jBmaYTSMEG17nluYvyMKsOZwFmpn2pMKJvQEfYslTRC7WeLQ2fkwipDEsbKljRkof6eyGik9TQKbGdEzVivenPxP6+XmvDGz7hMUoOSLReFqSAmJvOvyZArZEZMLaFMcXsrYWOqKDM2m5INwVt9eZ20r6qeW/Wa15X6bR5HEc7gHC7BgxrU4R4a0AIGCM/wCm/Oo/PivDsfy9aCk8+cwh84nz/XEYzy</latexit>

Figure 3.6: Commitment probabilities as a function of time along each trajectory are shown
in a). Each probability is shifted in time by t1/2 the time when the commitment probability
jumps to greater than 1/2. The fraction (p1/2(n)) of configurations at t1/2 in the nth vi-
brational state of the acceptor state (red bars) and the donor state (blue bars) is shown in
b).
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Figure 3.7: Commitment probabilities for initialization in each vibrational state of the accep-
tor (top panel) and the donor (bottom panel). The red line is the commitment probability
from the unconditioned path ensemble.

state.
By analyzing the transition state ensemble, we have found that there are specific vibra-

tional relaxation pathways that contribute the yield of the donor state. We have identified
these pathways by computing the probability, p1/2(n), that members of the transition state
ensemble reside in a particular vibrational state of the donor or acceptor,

p1/2(n) =

∫
D[Ψ(tobs)]PAB[Ψ(tobs)]δ(n− 〈ψt1/2|n|ψt1/2〉) (3.42)

where the average is over the reactive ensemble, n =
∑

l |l〉|n〉〈n|〈l| and the time is taken as
the commitment time. Figure 3.6 (b) shows the fraction of vibrational states in the transition
state ensemble, which has support over only 3 states, the 4th and 5th vibrational state of the
acceptor and the 4th vibrational state of the donor. These states are greater in energy than
the ground vibrational state of the donor state by either twice the solvent reorganization
energy in the case of the donor state or just the solvent reorganization energy in the acceptor
state.

To understand the importance of the reorganization energy in determining the commit-
ment probability we computed the commitment probability, p̃B(n), for starting in a given
vibrational state on either electronic states, unconditioned on being a member of the reactive
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path ensemble. This is shown in shown in Fig. 3.7. As a function of the vibrational state,
the commitment probability oscillates around the unconditioned value of 0.3. The oscilla-
tions in these commitment probabilities have a period of nearly 2 times the reorganization
energy. Comparing this to the transition rates computed from the Γij’s it is clear that the
average dissipation incurred by a jump is given by the solvent reorganization energy, and the
bottleneck to localizing in the donor state is passing through specific vibration levels whose
energy the bath can most effectively dissipate. Hence, the statistics of the dissipation for
each jump has a determining impact on the commitment probability and subsequently the
quantum yield. Within this small polaron framework, this result suggests that engineering
the reorganization energy by changing the solvent could be used to enhance the yield of
photo-induced PCET.

3.5 Evaluation of Rate Constants

Computing rate constants can often be a challenging endeavor, especially for systems with
rare events that control the rate process. In those systems, simple rate theories like Transition
State Theory[69, 280] (TST) are relied upon due to their ease of implementation, however,
such theories often break down for systems in condensed phases due to entropic effects and
recrossing events that are excluded in the theory. Furthermore the application of many
simple theories requires a priori detailed knowledge of the mechanism, which can be elusive
in complex condensed-phase systems. In this section, we utilize the path ensemble formalism
to compute a rate constant in a model system with rare barrier crossing transitions.

The model in question has a system Hamiltonian

Ĥs = − ~2

2m

∂2

∂q2
+ U(q). (3.43)

The potential (depicted in Fig. 3.8), U(q), has a quartic polynomial form

U(q) = aq4 − bq2 + εq, (3.44)

where q is the position operator. The first two terms in the potential are necessary for
producing a symmetric double-well potential, while the linear term induces a bias to one
well that breaks the symmetry, a requirement for obtaining eigenstates that are localized to
each well. In units of ~ = 1 we have taken the mass of the particle to be m = 1 and β = 2×103

with dimensionless potential parameters a = 0.02 kBT , b = −1.0 1kBT , and ε = 0.2 kBT . The
eigenstates are found using the sinc-function discrete variable representation (DVR) basis of
Colbert and Miller[50]. The DVR grid was uniformly spaced over a range q ∈ [−8, 8] with
a distance ∆q = 0.05 Å. Despite the large basis set required for converging the eigenstates,
only the lowest 10 eigenstates, which are labeled in energy-ascending order from 0 to 9, were
needed in propagating the dynamics.
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We construct the Lindblad operators using a weak coupling secular Redfield theory where
for each energy eigenstate pair |φi〉 and |φj〉 we have population transfer operators given by

Lij = |φi〉〈φj| (3.45)

and rates, Γij, given by

Γij =
1

π

∫ ∞
0

dte−iωijt
∫ ∞

0

dωJ(ω)[coth(β~ω/2) cos(ωt)− i sin(ωt)] (3.46)

where the spectral density, J(ω), has an Ohmic form with an exponential cutoff

J(ω) = ηωe−ω/ωc

with a coupling strength of η = 0.01 and cutoff frequency ωc = (E2 − E0)/~. With these
parameters the system is very weakly coupled to the bath, so secular Redfield theory is
accurate, and the cutoff frequency is chosen to induce vibrational relaxation in each well of
the quartic potential. Transitions between the wells will primarily occur as a result of barrier
crossing, as is shown in the average wave-packet dynamics in the reactive ensemble in Fig.
3.8(b). This trajectory illustrates directly the importance of tunneling in the model, as an
initially localized wavepacket in the reactant state transfers to the product state without
having much support present in the barrier region. Since within the secular approximation,
populations and coherences are decoupled, for simplicity we neglect dephasing operations
without loss of generality.

We define a reactive path ensemble for transitions between the left and right well, as
defined by

ĥA = |φ0〉〈φ0|+ |φ2〉〈φ2| ĥB = |φ1〉〈φ1|, (3.47)

which represent projectors for the lowest two eigenstates of the left well and the lowest
eigenstate of the right well. The initial condition was a thermal distribution restricted to
the reactant region,

ψ0 =

√
e−βE0

Z
|φ0〉+

√
e−βE2

Z
|φ2〉 (3.48)

where Z = e−βE0 + e−βE2 . The rate constant from population dynamics, kpop, is given by
the time-derivative of the population in the product state,

kpop =
d〈hB(t)〉

dt
, (3.49)

and when evaluated in the steady-state regime, the rate of the transition is estimated to be
kpop = 0.0106 ns−1.

The rate constant was also computed via TPS, as outlined in Sec. 6.2 C. Specifically,
the ratio of path partition functions was estimated using umbrella sampling [262]. We
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�3

�2

�1

0

1

2

U
(
q̂
)

/
k

B
T

-2

-3

q / Å
<latexit sha1_base64="HSv9ZKGV0OnjM7ybnZTpj2F43w4=">AAAB/3icbVDLSgMxFL3js9bXqODGTbAIruqMCApuWt24rGAf0BlKJs20ocnMmGSEMnbhr7hxoYhbf8Odf2Om7UJbDyQczrmXnJwg4Uxpx/m2FhaXlldWC2vF9Y3NrW17Z7eh4lQSWicxj2UrwIpyFtG6ZprTViIpFgGnzWBwnfvNByoVi6M7PUyoL3AvYiEjWBupY+/fI+8SneSXJ7DuS5F51eqoY5ecsjMGmifulJRgilrH/vK6MUkFjTThWKm26yTaz7DUjHA6KnqpogkmA9yjbUMjLKjys3H+EToySheFsTQn0mis/t7IsFBqKAIzmWdUs14u/ue1Ux1e+BmLklTTiEweClOOdIzyMlCXSUo0HxqCiWQmKyJ9LDHRprKiKcGd/fI8aZyWXafs3p6VKlfTOgpwAIdwDC6cQwVuoAZ1IPAIz/AKb9aT9WK9Wx+T0QVrurMHf2B9/gCdkpSQ</latexit><latexit sha1_base64="HSv9ZKGV0OnjM7ybnZTpj2F43w4=">AAAB/3icbVDLSgMxFL3js9bXqODGTbAIruqMCApuWt24rGAf0BlKJs20ocnMmGSEMnbhr7hxoYhbf8Odf2Om7UJbDyQczrmXnJwg4Uxpx/m2FhaXlldWC2vF9Y3NrW17Z7eh4lQSWicxj2UrwIpyFtG6ZprTViIpFgGnzWBwnfvNByoVi6M7PUyoL3AvYiEjWBupY+/fI+8SneSXJ7DuS5F51eqoY5ecsjMGmifulJRgilrH/vK6MUkFjTThWKm26yTaz7DUjHA6KnqpogkmA9yjbUMjLKjys3H+EToySheFsTQn0mis/t7IsFBqKAIzmWdUs14u/ue1Ux1e+BmLklTTiEweClOOdIzyMlCXSUo0HxqCiWQmKyJ9LDHRprKiKcGd/fI8aZyWXafs3p6VKlfTOgpwAIdwDC6cQwVuoAZ1IPAIz/AKb9aT9WK9Wx+T0QVrurMHf2B9/gCdkpSQ</latexit><latexit sha1_base64="HSv9ZKGV0OnjM7ybnZTpj2F43w4=">AAAB/3icbVDLSgMxFL3js9bXqODGTbAIruqMCApuWt24rGAf0BlKJs20ocnMmGSEMnbhr7hxoYhbf8Odf2Om7UJbDyQczrmXnJwg4Uxpx/m2FhaXlldWC2vF9Y3NrW17Z7eh4lQSWicxj2UrwIpyFtG6ZprTViIpFgGnzWBwnfvNByoVi6M7PUyoL3AvYiEjWBupY+/fI+8SneSXJ7DuS5F51eqoY5ecsjMGmifulJRgilrH/vK6MUkFjTThWKm26yTaz7DUjHA6KnqpogkmA9yjbUMjLKjys3H+EToySheFsTQn0mis/t7IsFBqKAIzmWdUs14u/ue1Ux1e+BmLklTTiEweClOOdIzyMlCXSUo0HxqCiWQmKyJ9LDHRprKiKcGd/fI8aZyWXafs3p6VKlfTOgpwAIdwDC6cQwVuoAZ1IPAIz/AKb9aT9WK9Wx+T0QVrurMHf2B9/gCdkpSQ</latexit><latexit sha1_base64="HSv9ZKGV0OnjM7ybnZTpj2F43w4=">AAAB/3icbVDLSgMxFL3js9bXqODGTbAIruqMCApuWt24rGAf0BlKJs20ocnMmGSEMnbhr7hxoYhbf8Odf2Om7UJbDyQczrmXnJwg4Uxpx/m2FhaXlldWC2vF9Y3NrW17Z7eh4lQSWicxj2UrwIpyFtG6ZprTViIpFgGnzWBwnfvNByoVi6M7PUyoL3AvYiEjWBupY+/fI+8SneSXJ7DuS5F51eqoY5ecsjMGmifulJRgilrH/vK6MUkFjTThWKm26yTaz7DUjHA6KnqpogkmA9yjbUMjLKjys3H+EToySheFsTQn0mis/t7IsFBqKAIzmWdUs14u/ue1Ux1e+BmLklTTiEweClOOdIzyMlCXSUo0HxqCiWQmKyJ9LDHRprKiKcGd/fI8aZyWXafs3p6VKlfTOgpwAIdwDC6cQwVuoAZ1IPAIz/AKb9aT9WK9Wx+T0QVrurMHf2B9/gCdkpSQ</latexit>

420-2-4

2.5

7.5

12.5

Figure 3.8: Model for thermally activated barrier crossing. (a)The quartic potential used
as a function of the position (blue) with its associated eigenstate wavefunctions (red filled
curves). (b) The average wavepacket conditioned on beginning in the left well and evolving
to the right.

employed umbrella potentials of the form of hard walls to constrain the B-region of the
trajectories using overlapping indicator functions of different eigenstates, denoted by hλ,
that were observed along typical transition paths. These umbrella potentials constrained the
final wavefunction to be projected into an eigenstate contained in λ and by using overlapping
indicator functions. The full path partition function could be reconstructed as a function of
λ using histogram reweighted techniques [144, 238].

Specifically, umbrella sampling was performed using overlapping indicator functions, hλ,
ranging from eigenstates 0-10, with at least one indicator function equal to hA = |0〉〈0| +
|2〉〈2| and one equal to hB = |1〉〈1|. For each window 16,000 trajectories were harvested
for every Monte Carlo sweep over an entire trajectory and the expectation value of the
position operator 〈q〉tobs corresponding to the eigenstate of the wavefunction at t = tobs was
computed. The statistics of 〈ψtobs |q|ψtobs〉 obtained from this procedure were reweighted
using the WHAM procedure [144], which given the discrete outcomes of the observables is a
simple optimization routine. This procedure was repeated for a range of values for tobs from
24 ps to 60 ps. An example of the resulting path partition function ratios for tobs = 24 ps.
is shown in Fig. 3.9.

These path partition function ratios provide details about the transition rate. First, the
ratio divided by tobs precisely gives the rate of transitions between the reactant state and an
intermediate λ-region provided tobs is in the linear regime of population transfer. Hence, the
rate constant is given in the same thermodynamic language from path ensembles in both
the quantum and classical regimes. Finally, the ratio of path partition functions at different
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Figure 3.9: Evaluation of the rate using TPS. Ratio of path partition functions computed
with tobs = 24 ps along the reversible work path. The rightmost point is the rate constant
computed from TPS at the observation time. (inset) Ratio of path partition function as a
function of tobs. Error bars represent a 95 percent confidence interval computed from block
averaging. The black line is a linear fit kTPStobs.

values of λ offer insight about the mechanism. As λ is tuned from eigenstates near the
reactant state to the product state the ratio of path free partition functions, as in Fig. 3.9,
decreases indicating a more rare and hence slower rate process, but for eigenstates that are
energetically higher than the potential energy barrier, the path partition function ratio is
very small, smaller than the ratio for the product state. Hence, states energetically above
the potential energy barrier rarely contribute to the predominant transition paths and the
typical transitions between the wells are tunneling events.

The resulting rate constant obtained from this umbrella sampling procedure is kTPS =
0.010± 0.002 ns−1, which agrees quantitatively with the rate obtained from the population
dynamics. Of important note is the short length of trajectories required for computing
the rate constant with TPS compared to the population dynamics. Given many accurate
quantum dynamics methods have exponential scaling in time, these results suggest that TPS
can provide a practical alternative to computing a rate constant to population dynamics.

For comparison, the rate was also computed from transition state theory (TST) using

kTST =
ω0

2π
e−β∆E‡ (3.50)

where ω0 is the frequency of the reactant well, ∆E‡ is the activation energy [69, 280, 44].
The rate obtained by classical TST is 0.0019 ns−1, which largely deviates from our result.
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A temperature-dependent tunneling correction, κ(β), can also be added, k = κ(β)kTST to
account for the tunneling transitions that are predicted by our trajectory analysis. For a
parabolic barrier this correction is [170, 253],

κ(β) =
~βωb/2

sin(~βωb/2)
, (3.51)

here ωb is the frequency of the parabolic barrier and corrects the overall rate constant to
be 0.011 ns−1, which now adds quantitative agreement with the rate obtained from TPS.
Such agreement should be expected at low temperature with an approximately parabolic
well and barrier as is the case for the quartic potential used here [253]. However, in the TPS
calculation no assumption about the mechanism was required.

3.6 Conclusion

We have presented a path ensemble formalism useful for the study of quantum dynamics in
condensed phases. The formalism enables the computation of conditioned ensembles for typ-
ical applications of TPS. To formalize a reactive path ensemble, we required an equation of
motion that satisfies detailed balance, the complete positivity of the overall density matrix,
and is stochastic. These conditions are satisfied by unravelling a Lindblad master equation
into a quantum jump equation. The path ensemble formalism was applied to three systems,
for each of which we devised a mapping from the original quantum master equation into
a Lindblad form without loss of accuracy. This included developing a stochastic polaronic
quantum master, illustrating an ability to invoke weak coupling approximations on trans-
formed Hamiltonians in order to study systems that in the untransformed case were in the
strong system-bath coupling regime. The use of conditioned ensembles showed the built-in
correlations that can be obtained by sampling biased trajectories. These sorts of correlations
could, in principle, be sampled by multi-time correlation functions [7], which can be difficult
to compute and often require high-level methods due to violations of the quantum regression
theorem [72]. Trajectory analysis also enables the identification of transport mechanisms in
these systems by sampling the sequence of quantum jumps that occur along trajectories.

We also illustrated how TPS could be used to compute a rate constant. TPS was found
to be efficient for sampling rare barrier-crossing trajectories and accurately reproduces the
rate constant computed from population dynamics of the reduced density matrix. The
necessary trajectory length for quantitative agreement was multiple orders of magnitude less
than the reduced density matrix simulation. Other dynamics methods that satisfy properties
enabling the path ensemble formalism, especially those that drastically improve the accuracy
of weak-coupling quantum master equations, are applicable [106, 113, 173, 269] and for those
methods with a computational complexity that scales with simulation time, TPS may be a
key alternative to permit the calculation of rate constants. While the examples used here
are relatively small systems with few degrees of freedom, we expect the utility of the present
framework to be clear for large, multidimensional systems. Not only will the calculations be
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made possible by the reduced scaling of stochastic unraveling, the physical insight gained will
become useful in detecting relevant reaction coordinates as the number of potential pathways
increase.
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Chapter 4

Hybrid Quantum Master Equations

“In the moment when I truly
understand my enemy,
understand him well enough to
defeat him, then in that very
moment I also love him.”

— Ender Wiggin [38]

4.1 Introduction

The ultrafast excited-state relaxation dynamics of polyatomic systems are nearly universally
mediated by motion through conical intersections[227, 285]. Advanced time-dependent spec-
troscopies have made the identification of such molecular motions possible in principle[41,
61, 139, 181, 185], elucidating their role in many photochemical reactions[57, 134, 286].
Theory and simulation are useful tools to interpret and elucidate the microscopic motions
associated with the degrees of freedom probable with experiment. However, the ability to
accurately and efficiently simulate such nonadiabatic dynamics in the condensed phase is
challenging[107, 108, 265]. Nonadiabatic systems by definition contain many strongly cou-
pled nuclear and electronic degrees of freedom, blurring the separation of time scales between
their motion, and demanding a quantum description of both. In the condensed phase, the
ability to correctly describe dissipation requires that a bath is represented either implicitly
or explicitly, complicating approximations that make such calculations tractable in the gas
phase. Here, we describe a framework to leverage a separation of energy and time scales to
arrive at a hybrid method to study the dynamics of molecules through conical intersections.
The method we employ treats the most strongly coupled modes explicitly, and develops a

This chapter is based on work that has been published in The Journal of Chemical Physics [221]
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hybrid reduced description for the remaining modes by identifying some as slow and oth-
ers as fast relative to the nonadiabatic dynamics. This methodology enables us to study
photochemical quantum yields in widely different environments.

Existing approaches to study motion through conical intersections in condensed phases
fall into two broad categories. One way is to represent all of the interacting degrees of
freedom and compute the dynamics of a closed system, albiet one with a large enough
number of states to approximate the environment. These sorts of approaches can range from
numerically exact methodologies such as the Multiconfigurational Time-Dependent Hartree
(MCTDH) method[18, 274], the Quasiadiabatic Path Integral method[260, 261], and multiple
spawning techniques[19, 151] to more approximate methods such as mixed-quantum classical
theories like Ehrenfest[127] and surface hopping[132, 147, 264], and semiclassical theories as
obtained from the mapping approaches.[166, 244, 254] Exactly representing the degrees of
freedom has the advantage that arbitrary degrees of freedom can be represented provided a
large enough basis. While these tools have shown promise in a variety of systems, they still
can be limited by severe exponential scaling in numerically exact approaches or by invoking
uncontrolled approximations that can break fundamental symmetries like detailed balance,
complicating the description of a thermalizing bath.

An alternate approach relies on the master equation approach of open quantum sys-
tems[32, 179, 296], in which the dynamics of only a few relevant degrees of freedom are
represented explicitly in a reduced density matrix that is coupled implicitly a set of environ-
mental degrees of freedom. Often the environment is taken as an infinite bath of harmonic
degrees of freedom, though this is not required. When a harmonic bath is used, these meth-
ods assume that a linear response relationship between the system and bath holds and thus
the bath represents a set of degrees of freedom that obey gaussian statistics. When this ap-
proximation is valid, these methods also have a range of accuracy from the numerically exact
Hierarchical Equation of Motion (HEOM)[248] to perturbative treatments such as Redfield
theory.[204] By construction, most of these approaches accurately describe dissipation to
the environment. However, they suffer from pitfalls in computational complexity, as HEOM
scales roughly factorially in the system-bath coupling strength, or accuracy, as many per-
turbative theories have known issues with preserving the trace and positivity of the reduced
density matrix.

In this chapter, we propose the use of a hybrid methodology, in the spirit of previous
work[21, 22, 256], in which both approaches are utilized in regimes where they are valid. The
most strongly coupled, anharmonic degrees of freedom are evolved directly and the remain-
ing degrees of freedom are treated with different approximate theories, whose applicability
rests in identifying relevant separations of time and energy scales. This approach has the
advantage of a reduced computational cost compared to the most demanding numerically
exact methods, while retaining both flexibility and accuracy and relies heavily on recent work
in applying the so-called frozen mode approximation to quantum master equations.[173] The
present chapter is organized in four remaining sections. In Sec. 4.2, the general framework
for developing a hybrid method in the context of conical intersection models is outlined.
In Sec. 4.3, this methodology is benchmarked in models of internal conversion of pyrazine
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and photoisomerization of rhodopsin by comparing to existing numerically exact results. In
Sec. 4.4 we apply the framework to address the dependence of the quantum yield on the
environment. Some concluding remarks are given in Sec. 4.5.

4.2 Theory

In this section we describe the framework on which a hybrid methodology can be built.
This framework can begin from an ab initio molecular Hamiltonian, provided a diabatic
basis can be constructed that minimizes the nonadiabatic coupling from the kinetic energy
derivatives.[138, 266] In the diabatic basis we can write the Hamiltonian as,

H =
∑
i,j

|i〉 [T (Q)δij + Vij(Q)] 〈j|, (4.1)

where T (Q) is the kinetic energy operator, which is diagonal, Vii(Q) is the potential energy
surface of the ith diabatic electronic state and Vi 6=j(Q) is the diabatic coupling between
states i and j with Q = {Q1, Q2, . . . , QN} the vector of displacements of each N nuclear
degree of freedom from a reference geometry, Q0, or generalized modes. In principle, the
full system can be completely described at all times by its density matrix, ρ(t), whose time
evolution is given by the Liouville-von Neumann equation

∂tρ(t) = −i[H, ρ(t)] (4.2)

where [·, ·] is the commutator. Due to exponential scaling of standard basis set treatments,
this description becomes intractable for systems beyond only a few degrees of freedom, and
in the condensed phase reduced descriptions are required. Throughout we will set ~ = 1 and
use mass weighted coordinates unless otherwise explicitly stated.

Mode expansion

To build a reduced description of the dynamics, we first impose some structure on the many
body potential Vij(Q) appropriate for a molecule in a surrounding environment with a conical
intersection. Within a general mode expansion[138], Vij(Q) can be approximated as,

Vij(Q) =V
(0)
ij +

∑
k

V
(1)
ij (Qk) +

∑
k<l

V
(2)
ij (Qk, Ql) + . . . (4.3)

where V
(n)
ij is a potential function that couples n modes of the system, truncated here to

second order. Generally, each order potential could be a distinct function of its arguments,
whose repeated indices we suppress for clarity.

As we are interested in motion in the vicinity of a conical intersection, we will isolate
two orthogonal coordinates, the tuning mode, qt, and a coupling mode, qc, which define a
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surface of points where the two potential energy surfaces i and j intersect, giving rise to
large non-adiabatic coupling. In the following, these are the modes we will consider strongly
coupled. In principle, additional modes with coupling constants large relative to the bare
electronic energy gap, or modes with large amplitude motion, should be included in this
description. For the models we study only these two coordinates are included.

We will assume that only the tuning mode undergoes large amplitude motion away from
the reference geometry. Under such assumption, which could be relaxed, we have a potential
for the tuning mode of the form,

V
(1)
ij (qt) = δij

(
vi(qt) + κ

(i)
t qt

)
(4.4)

where vi(qt) is in general anharmonic. We assume the coupling mode is harmonic,

V
(1)
ij (qc) = δij

(
1

2
Ωcq

2
c + κ(i)

c qc

)
+ (1− δij)λ(ij)qc (4.5)

with frequency, Ωc, is given by,

Ωc =

(
∂2Vii
∂q2

c

)
Q0

, (4.6)

where the constants V
(0)
ij are defined by the reference geometry Q0. We pull out the linear

portions of the potentials, parameterized by κ
(i)
k , for clarity, which are Holstein-like coupling

coefficients given by,

κ
(i)
k =

(
∂Vii(Q)

∂qk

)
Q0

, (4.7)

and λ(ij) is a Peierls-like coupling coefficient, given by

λ(ij) =

(
∂Vij
∂qc

)
Q0

(4.8)

which is the only off-diagonal term in the diabatic state basis we consider and due to her-
miticity, λ(ij) = λ(ji). The existence of both λ(ij) and the κ

(i)
k ’s reflect that at a conical

intersection, both the electronic gap as well as the electronic coupling are modulated by
nuclear degrees of freedom. The remaining modes are assumed to be harmonic,

V
(1)
ij (Qk) =

1

2
ωkQ

2
k + c

(i)
k Qk (4.9)

with frequencies,

ωk =

(
∂2Vii
∂Q2

k

)
Q0

, (4.10)

and additional Holstein couplings,

c
(i)
0,k =

(
∂Vii(Q)

∂Qk

)
Q0

, (4.11)
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for each ith electronic state.
Provided the linear response form for all of the modes not including qt, the highest-order

mode coupling potential we consider that is consistent with this choice is bilinear in the
modes. Specifically, we take

V
(2)
ij (Qk, Ql) = c

(i)
k,lQkQlδij(1− δlk) (4.12)

where c
(i)
k,l is the coupling coefficient that transfers vibrational energy between the kth and

lth modes,

c
(i)
k,l =

(
∂2Vii

∂Qk∂Ql

)
Q0

, (4.13)

which we take as diagonal in the diabatic states. By construction this is zero between the
tuning and coupling modes, as these are chosen to be orthogonal. With the exception of the
tuning mode, the remaining coordinates are all harmonic, so we can in principle orthogonalize
the remaining N − 2 subspace defined outside of qt and qc. The enables us to set c

(i)
k,l to zero

for all l and k that do not include qc or qt.
The resultant potential has a simple approximate form. The diabatic coupling is given

by
Vi 6=j(Q) = λ(ij)qc (4.14)

containing only the coupling mode with Peierls constant, where here we have taken V
(0)
i 6=j = 0.

The diabatic potentials are given by

Vii(Q) = V
(0)
ii + vi(qt) + κ

(i)
t qt +

1

2
Ωcq

2
c + κ(i)

c qc

+ qt
∑
k

c
(i)
t,kQk + qc

∑
k

c
(i)
c,kQk +

∑
k

c
(i)
0,kQk

+
∑
k

1

2
ωkQ

2
k (4.15)

where the tuning and coupling coordinates can exchange energy with the remaining N − 2
modes, in such a way as to renormalize the effective Holstein and Peierls couplings. This
potential is envisioned as including only the minimal ingredients required to describe a conical
intersection with a surrounding environment, as additional complexity could be added if any
of the approximations above were found invalid.[138]

System bath partitioning

For an isolated system, the N mode diabatic potential described above can be simulated
directly using compact basis set techniques like MCTDH and multiple spawning. [18, 19,
151, 274] However, in a condensed phase, in order to correctly describe dissipation and
relaxation, we require that the number of modes goes to infinity, such that the ωk’s will form
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a continuous band of frequencies. While basis set techniques can approximate this continuous
band, doing so typically results in algorithms that scale exponentially in time[28]. As the
remaining environment modes are expected to be less strongly coupled to the electronic
degrees of freedom, we can consider ways to integrate them out and arrive at a reduced
description of the dynamics of the system. In this way, we will define the total Hamiltonian,
H = HS + HSB + HB, as a partitioning between a system, bath and coupling terms. To
determine an effective partitioning, we can leverage the identification of the relevant coupling
constants and their expected scales.

Since we expect the coupling and tuning modes to be strongly coupled to the electronic
states, we will treat their dynamics in the absence of additional coupling exactly. Restricting
ourselves to two diabatic states, we refer to them, along with the electronic states, as the
system Hamiltonian, HS,

HS =
∑
i,j=1,2

|i〉hiδij + λqc(1− δij)〈j|

hi = T + V
(0)
ii + vi(qt) + κ

(i)
t qt +

1

2
Ωcq

2
c + κ(i)

c qc (4.16)

where T is the kinetic energy of the tuning and coupling modes and we have removed the
electronic state dependence from λ. In the case that both coordinates are harmonic, this
Hamiltonian reduces to the so-called linear vibronic model[138]. The remaining degrees of
freedom, the Qk’s, will make up a bath portion of the Hamiltonian. The coupling between
the bath degrees of freedom and the system will be denoted by the system-bath coupling
Hamiltonian, HSB. This term can be written in the direct product form,

HSB =
∑
n=0,c,t

Sn
∑
k

cin,kQk (4.17)

s(c,t) =
∑
i

|i〉q(c,t)〈i| , S0 =
∑
i

|i〉〈i| ,

where Sn in general includes both direct coupling to the electronic system and vibrational
relaxation through coupling to the tuning or coupling modes. To describe the system-bath
coupling strengths, it is useful to define the spectral densities, Jn(ω), for each system bath
operator,

Jn(ω) =
π

2

∑
k

c2
n,k

ωk
δ(ω − ωk). (4.18)

and are parameterized by a reorganization energy, Er,n,

Er,n =
1

π

∫ ∞
0

dω
Jn(ω)

ω
, (4.19)

and a characteristic frequency, ωc,n. The reorganization energy reflects the overall strength
of the coupling of the system to the bath, and the characteristic frequency determines the
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decay of the spectral density at infinite frequency. In order to treat the bath perturbatively,
the dimensionless coupling parameter, η, given by

η = max
n

[
2

π2ωc,n

∫ ∞
0

dω
Jn(ω)

ω

]
(4.20)

must be small on an absolute scale, η � 1. This parameter reflects the competing effects
of the reorganization energy and characteristic frequency on the decay of higher-order cor-
relation functions used in a perturbative expansion, and can be derived explicitly for simple
models.[145, 173] For fixed Er,n, η increases as ωc,n gets smaller, generally violating the cri-
teria for perturbation theory. This scaling of η with ωc,n makes it difficult to use standard
quantum master equation approaches for studying motion through conical intersections, as
the relevant scale of the system dynamics is ultrafast, rendering typical bath relaxation
times comparatively long[87, 88]. To remedy this requires confronting non-Markovian effects
directly.

The remaining terms in the Hamiltonian are labeled as the bath, HB, and are given by
a set of noninteracting harmonic oscillators,

HB =
1

2

∑
k∈slow

ωk
(
P 2
k +Q2

k

)
+

1

2

∑
k∈fast

ωk
(
P 2
k +Q2

k

)
, (4.21)

which we will partition into a group labeled fast and a group labeled slow, depending on the
oscillator’s frequency, ωk relative to a parameter ω∗. Here ω∗ is a frequency that delineates
between the fast and slow modes of the bath relative to a characteristic time scale of the
system. As motion through a conical intersection is mediated by the nonadiabatic coupling,
we assume the characteristic time scale of the system to be given by the Peierls coupling, λ,
and consider slow modes to be those with ωk < λ.

Hybrid dynamical approach

Given the system-bath partitioning proposed above, we can develop an approximate way to
evolve a reduced system dynamics that is capable of correctly describing dissipation even
when some of the bath degrees of freedom are non-Markovian owing to the large separation of
timescales between non-adiabatic system dynamics and slow environmental motions. To this
aim we follow the procedure outlined in Ref. Specifically, we consider the time dependent
reduced density matrix, σ(t), as

σ(t) = TrB{ρ(t)} (4.22)

where the trace is taken over all Q defined in the bath part of the Hamiltonian. In order to
obtain a closed evolution equation for σ(t), we leverage the expected separation of timescales
between evolution in the fast part of the bath and those in the slow part of the bath.
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Following the partitioning in HB, we can similarly partition a given spectral density into
the slow and fast portions,[21, 22, 173]

Jn(ω) = Jn,slow(ω) + Jn,fast(ω). (4.23)

where
Jn,slow(ω) = S(ω)Jn(ω) (4.24)

delineates the slow portion and

Jn,fast(ω) = [1− S(ω)]Jn(ω) (4.25)

the fast portion where

S(ω) =

{
(1− (ω/ω∗)2)2 ω < ω∗

0 ω ≥ ω∗
(4.26)

is a splitting function, parameterized by ω∗. In the limit that ω∗ � λ, we can consider
the slow modes as static over the course of system dynamics. In such a limit, the total
time-dependent density matrix factorizes into an initial piece from the slow modes and a
time dependent remainder in which the fast modes of the bath and the system degrees of
freedom evolve, ρ(t) ≈ ρQ∈slow(0)ρQ∈fast,S(t). In such a case, the slow modes contribute only
as a source of quenched disorder to the system Hamiltonian, and induces an inhomogeneous
broadening due to different realizations of initial conditions. We include this part of the
system-bath coupling directly into the Hamiltonian as,

H̃S = HS +
∑
n

sn
∑
k∈slow

cn,kQ̃k, (4.27)

where Q̃k is a classical variable, not an operator. Since these modes are incorporated into the
system Hamiltonian, provided the assumed separation of time scales holds, they are treated
to all orders in their coupling strength.

The reduced density matrix is obtained by averaging over different realizations of the
reduced density matrix corresponding to different realizations of initial conditions,

σ(t) =

∫
dQ̃ p(Q̃)σ̃(t), (4.28)

where
σ̃(t) = TrQ∈fast{ρ(t)} (4.29)

is the reduced density matrix computed by tracing over only the fast degrees of freedom,
which depends parametrically on the slow bath degrees of freedom. The initial conditions of
the slow modes are drawn from the distribution p(Q̃). Depending on the temperature relative
to the characteristic frequency of the slow bath modes, p(Q̃) may be a Wigner distribution
or a Boltzmann distribution.
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The remaining modes in the bath now have a smaller overall reorganization energy. Since
by construction, these modes relax on a timescale faster than the system, they induce Marko-
vian or nearly-Markovian dissipation and decoherence. For this reason, we can treat these
degrees of freedom with time-dependent Redfield theory, also known as the 2nd-order Time
Convolutionless master equation[45, 235] (TCL2). In the TCL2 formalism, the dynamics of
the each realization of the reduced density matrix are given by,[194]

∂tσ̃(t) = −i[H̃S, σ̃(t)] +∑
n

[Θn(t)σ̃(t), sn] + [sn, σ̃(t)Θ†n(t)], (4.30)

where Θn(t) is the system operator dressed by the time-dependent rates given by the bath
correlation function. In the eigenstate basis of H̃S, each element is given by

(Θn)ij (t) = (sn)ij

∫ t

0

dτe−iωijτCn(τ) (4.31)

where ωij = (εi−εj) are the dimensionless frequencies of the system given by scaled differences
in the eigenvalues, εi, of H̃S. The bath correlation function, Cn(t) is given by

Cn(t) =
1

π

∫ ∞
0

dω Jn,fast(ω) [coth(βω/2) cos(ωt)

− i sin(ωt) ] . (4.32)

where β is inverse temperature times Boltzmann’s constant. Since TCL2 stems from second-
order perturbation theory, we expect for it to be accurate when η � 1, where the dimension-
less coupling is computed over only the fast modes, Jn,fast, with a characteristic frequency
given by ω∗. Together, this hybrid formulation, denoted TCL2-FM, due to Montoya-Castillo,
Berkelbach and Reichman,[173] offers a potentially computationally efficient and accurate[72,
251] way to study motion through conical intersections under our physically motivated as-
sumptions of scale separation.

4.3 Comparison with exact results

Non-markovian bath limit

To understand the effectiveness of this approach, we first consider the case where the char-
acteristic electronic timescale, λ, is well separated by the characteristic bath frequency, ωc,
such that ωc/λ � 1. This is expected to hold when the remaining bath degrees of freedom
are described by long wavelength solvent modes, either from slow dipolar or density fluctu-
ations.[73, 241] We explore this regime in the relaxation of the S2(ππ∗) − S1(nπ∗) conical
intersection of pyrazine, following a model developed by Kuhl and Domcke.[142, 143] The
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Hamiltonian has the form of a linear vibronic model, with an additional ground electronic
state. In dimensionless harmonic-oscillator coordinates it is given by,

HS = |0〉h0〈0|+
∑
i,j=1,2

|i〉hiδij + λqc(1− δij)〈j| (4.33)

hi = hg + V
(0)
i + κ

(i)
t qt

h0 =
∑
n=c,t

Ωk

2

(
pk + q2

k

)
where Ωt(c) is the frequency of the tuning (coupling) mode, κ

(i)
t denotes the Holstein-like

coupling of the tuning mode to each electronic state i, h0 denotes the Hamiltonian of the
ground electronic state, and the vertical energy shifts from the ground state are V

(0)
i ’s. There

are no other Holstein-like couplings, so the system-bath coupling is given by

HSB = (|1〉〈1|+ |2〉〈2|)
∑
n=c,t

qn
∑
k

cn,kQn,k. (4.34)

with spectral densities of the Debye form,

Jn(ω) = 2Er,nωc,n
ω

ω2 + ω2
c,n

, n = c, t, (4.35)

which results from an exponentially decaying bath correlation function. The form of system
bath coupling induces vibrational relaxation in each of the electronic states. The specific
parameters for the system are Ωc = 0.118, Ωt = 0.074, κ

(1)
t = −0.105, κ

(2)
t = 0.149, λ = 0.262,

V
(0)

1 = 3.94, and V
(0)

2 = 4.84, all in eV, while the temperature of the bath was taken to be
300 K. The initial condition is generated by vertical excitation from the ground electronic
state |0〉 into the diabatic electronic state |2〉 by

σ(0) = |2〉|χ02〉〈χ02|〈2|, (4.36)

where |χ02〉 denotes the vibrationally-coherent wavepacket obtained from Frank-Condon
overlaps between the ground electronic state |0〉 and electronic state |2〉. The system was ex-
panded in a direct product basis of 20 harmonic oscillator eigenstates for each mode, making
the system size 800 total states. The dynamics were propagated in a truncated basis, which
with this initial condition is converged by considering only the lowest 500 energy eigenstates.
A sketch of the system is shown in Fig. 4.1(a).

We compare the validity of the dynamics obtained from TCL2 and the hybrid TCL2-FM,
to the dynamics obtained from the numerically exact hierarchy equations of motion (HEOM)
method by Chen et al.[46] These calculations were converged using the same basis with a
hierarchy depth of 12. Since the system was at high temperature, no Matsubara terms were
included. We first compute the time-dependent diabatic population in electronic state |2〉,

P2(t) = Tr{|2〉〈2|σ(t)}. (4.37)
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Figure 4.1: Diabatic populations given by Eq. 4.37 for a bath with ωc = 0.0132 eV with
values of the reorganization energy Er = 0.006571 eV (a) and Er = 0.01314 eV (b). Shown
in the inset of (a) are the potential energies for each electronic state along the coordinate
qt. In the inset of (b) is shown the results for secular Redfield theory with frozen modes.
HEOM data was taken from Ref.

from a trace over all vibronic states. Two different characteristic frequencies of the bath are
compared, a fast bath in which both the tuning and coupling modes are ωc,(c,t) = 0.0132 eV
and a slower bath in which ωc,(c,t) = 0.00397 eV. Thus, in both cases the bath relaxes on a
timescale of at least an order of magnitude slower compared to the Peierls coupling, ω/λ� 1,
and we can choose a large value of ω∗ to treat the slow degrees of freedom. Details on the
sensitivity of the results to the specific choice of ω∗ are reported in Appendix B, but over the
range from ω∗ = [0.0165, 0.0329] we obtain nearly indistinguishable population dynamics.
For both baths studied, we choose ω∗ = 0.0219 eV. Only 50 initial conditions are needed
to obtain well-converged populations, which are drawn from a Boltzmann distribution with
1000 modes for each bath using the discretization procedure outlined in Ref.

The populations obtained in the case of the faster bath are compared in Fig. 4.1. Ul-
trafast relaxation from state |2〉 into state |1〉 occurs within 50 fs, as the initial wavepacket
proceeds through the conical intersection. This is followed by a prolonged period of coherent
wavepacket motion that persists up to 0.5 ps, before decohering. At weaker system-bath
couplings than the ones presented here, TCL2 exhibits quantitative accuracy compared to
HEOM. At larger system bath coupling strengths, Er = 0.006571 and 0.01314 eV, TCL2
exhibits positivity violations of the density matrix, which for fixed time step leads to insta-
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Figure 4.2: Diabatic populations for a bath with ωc = 0.00397 eV with values of the reor-
ganization energy Er = 0.001314 eV (a), Er = 0.006571 eV (b), and Er = 0.01314 eV (c).
HEOM data was taken from Ref.
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Figure 4.3: Projections onto the adiabatic ground- (left column) and excited-state (right
column) surfaces for the dimensionless coordinate qt (a) and for qc (b) for the pyrazine
system with ωc = 0.0132 eV and Er = 0.006571. The top row shows results from TCL2 -FM
while the bottom row shows results from HEOM from Ref.

bilities in the dynamics. This failure is due to the breakdown of perturbation theory and
requires contributions from higher-order correlation functions, as multiphonon processes be-
come important. This is evident by noting that the dimensionless couplings are η = 0.317
and 0.634, which are not much less the 1 as required by perturbation theory.

The hybrid approach, TCL2-FM, removes all positivity violations from TCL2 and achieves
quantitative accuracy at all values of the reorganization energy studied, as compared to
HEOM. The stability of the dynamics is a consequence of the frozen modes reducing the
dimensionless couplings by nearly an order of magnitude, to η = 0.055 and 0.086, returning
the treatment of the bath into the perturbative regime. The accuracy is a consequence of the
small effect of the slow modes on the dynamics, acting only to further decohere vibrational
oscillations but not significantly dissipate energy, due to the large separation of timescales
between system and bath relaxation.

By invoking both the Markovian approximation, which takes the time integral in Eq. 4.31
to infinity, and the secular approximation, which decouples the dynamics of the populations
from coherences in the energy eigenbasis[32], we get an equation of motion that is guaranteed
to preserve positivity of the density matrix.[93, 158] These approximations fail to exhibit
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the extended vibrational coherence and over-estimates the rate of relaxation. Neither effects
are improved by the addition of frozen modes. The lack of vibrational dephasing is due to
the neglect of coherence-coherence couplings in the relaxation tensor within the secular ap-
proximation[143] and the over-estimation of the rate is due to the Markovian approximation.
As shown in the inset to Fig. 4.1b), they do, however, obtain the correct long-time of the
populations as thermalization with the environment is accurately modeled.

Shown in Fig. 4.2 are the populations for the case of the slower bath, where non-
Markovian effects are more pronounced. As expected, TCL2 fails at an even smaller reorga-
nization energy than in the fast bath regime due to the violation of the 2nd-order cumulant
approximation. TCL2-FM remedies this failing and recovers quantitative accuracy for all
reorganization energies studied. Again the stability is a consequence of reducing the dimen-
sionless coupling by an order of magnitude. In this case the original couplings are η = 0.210,
1.05 and 2.10, and are reduced to η = 0.021, 0.106 and 0.213 by freezing the slow modes. As
has been noted previously,[173] the inclusion of the slow modes as static disorder effectively
incorporates all-order effects from those bath modes, albeit only their influence on the altered
eigen-structure of the Hamiltonian. When the timescales of system and bath relaxation are
well separated, as is expected to hold generally in systems with conical intersections where
electronic relaxation is ultrafast, this frozen mode approximation allows for an accurate low
order quantum master equation description of the dynamics.

A rigorous test of the accuracy of frozen modes can be obtained by comparing the pro-
jection of the wavepackets in the adiabatic basis obtained from,

P ad
j (qt, t) =

∫
dqc〈qc|〈qt|〈ẽj|σ(t)|ẽj〉|qt〉|qc〉 (4.38)

P ad
j (qc, t) =

∫
dqt〈qc|〈qt|〈ẽj|σ(t)|ẽj〉|qt〉|qc〉 (4.39)

where |ẽj=1,2〉 are the adiabatic electronic wavefunctions given by the diabatic-to-adiabatic
transformation[161]

|ẽj〉 =
∑
j′

S(qc, qt)|j′〉 (4.40)

where S(qc, qt) is the rotation matrix given by

S(qc, qt) =

(
cosα(qc, qt) − sinα(qc, qt)
sinα(qc, qt) cosα(qc, qt)

)
(4.41)

and α(qc, qt) is the diabatic-to-adiabatic mixing angle. These projections record information
about the entire density matrix since it requires unitary transformations acting on both
populations and coherences. Figure 4.3 (a) shows the projection of the wavepacket along the
tuning mode obtained from TCL2-FM compared to those obtained from HEOM. The results
from the TCL2-FM approach are virtually indistinguishable from the HEOM results at all
times. This implies that the full density matrix is accurately computed with TCL2-FM.
Projections along the coupling mode are shown in Fig. 4.3 (b). Again, TCL2-FM exhibits
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quantitative accuracy. That the full density matrix is accurately obtained also implies that
arbitrary observables, including spectroscopic signals[72] might be reliably computed.

Markovian bath limit

To understand the limits of this approach, we next consider the case where the characteristic
electronic timescale, λ, is not separated by the characteristic bath frequency, ωc, such that
ωc/λ ∼ 1. This limit is expected when the remaining bath degrees of freedom couple directly
to the electronic states through optical solvent modes or to high frequency vibrations. We
study this case in a model for the photoisomerization dynamics of retinal rhodopsin, shown
in the inset of Fig. 4.4 (a). This model has been studied by Thoss and Wang using the nu-
merically exact multilayer formulation of MCDTH, ML-MCTDH.[255] The model describes
the dynamics along a periodic isomerization coordinate, φ, which plays the role of the tuning
mode, and a harmonic coupling coordinate, qc.

The system Hamiltonian has the following form,

HS =
∑
i,j=0,1

|i〉(T + Vi)δij + λqc(1− δij)〈j|, (4.42)

where T is the total kinetic energy operator,

T =
1

2I
pφ +

Ωc

2
p2
c , (4.43)

where I is the moment of inertia for the tuning mode. The potential energies for each
electronic state, Vi, are

Vi = V
(0)
i + (−1)i

1

2
Wi(1− cosφ) +

Ωc

2
q2
c + δ1iκcqc (4.44)

where Wn are the energy amplitudes of the isomerization potential, and V
(0)
i are the energy

shifts of each diabatic state relative to the energy in the cis state. The coupling mode is
described by the frequency Ωc and Holstein coupling κc. The specific parameters for this
model are I−1 = 1.43 × 10−3, V

(0)
0 = 0.0, V

(0)
1 = 2.0, W0 = 2.3, W1 = 1.5, Ωc = 0.19,

λ = 0.19, and κc = 0.095, all in eV. The system was expanded in a basis of plane waves
for the isomerization mode and harmonic oscillator eigen- states for the coupling mode with
a basis set size of 301 and 24, respectively. This choice gave a Hilbert space size of 14448
states, but the dynamics were converged using only the lowest 1000 energy eigenstates.

The form of the system-bath coupling is given by

HSB = |1〉〈1|
∑
k

ckQk, (4.45)

which describes the response of a polar solvent to an instantaneous change in the charge
distribution of the molecule. The spectral density used is Ohmic with an exponential cutoff,

J(ω) =
πEr
ωc

ωe−ω/ωc , (4.46)
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and the value of this cutoff frequency used was ωc = 0.2 eV. The temperature was taken
to be 0 K. The initial condition was a vertical excitation of the ground vibrational state of
electronic state |0〉 into electronic state |1〉, given by

σ(0) = |1〉|χ01〉〈χ01|〈1|, (4.47)

where again |χ01〉 denotes the vibrationally-coherent wavepacket obtained from Frank-Condon
overlaps between the two electronic states.

To test the validity of the TCL2 with frozen mode approach, we simulated the dynamics
up to 2 ps and compared to the exact result obtained from ML-MCTDH for a range of
reorganization energies, which represented the system degrees of freedom and a discretized
bath of ∼ 40 modes explicitly. We specifically compute the time-dependent population of
the trans state,

Ptrans(t) = Tr{θ(|φ| − π/2)}, (4.48)

where θ(x) is the Heaviside step function and the trace implies integration over the φ and
qc coordinates, following initial excitation. For this model, the electronic timescale inferred
from the Peierls coupling, λ is nearly the same as the characteristic frequency of the bath,
ωc, or ωc/λ ∼ 1. Since the electronic and bath timescales are not well separated, we expect
that while choosing to freeze some modes of the bath will reduce the system-bath coupling
and stabilize the perturbation theory description of the fast bath modes, this will come at
a cost of incorrectly describing the time-dependent dissipation as modes that are being held
frozen should contribute. We first consider the consequences of choosing ω∗ = ωc, which will
reduce the strength of coupling from modes that have frequencies smaller than the position
of the peak in the spectral density, while treating the peak and modes with higher frequency
with perturbation theory. We discretized the bath using 1000 modes and sampled over the
Wigner transform of the Boltzmann distribution. Only five trajectories were averaged over
due to the negligible effect of the frozen modes to TCL2 dynamics as discussed below.

Figure 4.4 shows the time dependent population in the trans state. At the smallest
value of the reorganization energy used, Er = 0.0159 eV, shown in Fig. 4.4(a), the dynamics
are characterized by relaxation of the population after 0.1 ps and highly damped decay of
vibrational coherences on a similar timescale. For this case, Markovian Redfield theory and
TCL2 are nearly indistinguishable. This is a consequence of being well within the weak
coupling limit, with η = 0.050. The dynamics are in quantitative agreement with available
numerically exact ML-MCTDH results.1 Adding frozen modes has no real effect on the
dynamics, which might be expected at a small value of system-bath coupling.

At a reorganization energy that is a factor of ten larger, Er = 0.159 eV, Redfield theory
exhibits positivity violations that render the dynamics unstable after 1.5 ps. These results
are shown in Fig. 4.4(b). These violations are corrected by TCL2, over short times, but
at longer times TCL2 also becomes unstable. Using frozen modes stabilizes the dynamics

1We discovered a typographical error in the parameters from Ref. [255] for the reorganization Er = 0.0159
eV results. One of the authors generously computed the dynamics up to 1 ps for us to compare, which is
shown in Fig. 4.4 (a).
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Figure 4.4: Shown are the results for the population in the trans state at different reorgani-
zation energies: Er = 0.0159 eV (a), Er = 0.159 eV (b), and Er = 0.318 eV (c). Numerically
exact ML-MCTDH results from Ref.are shown in dashed black lines, Redfield theory in green
dotted, TCL2 in blue dashed-dotted lines, and TCL2 -FM in dashed red. The inset of (a)
shows a figure of the periodic system along the φ coordinate. In (c) we also show the results
when the entire bath is discretized and frozen (solid purple) giving rise to a purely unitary
dynamics for each realization of bath modes. The unitary-FM dynamics were obtained by
sampling over 100 trajectories.

at longer times, but has no effect at intermediate times. In all three descriptions the early
qualitative features are correct, but the population in the trans state is too large for TCL2
and TCL2-FM at 2 ps and it does not decrease at long times as the exact ML-MCTDH
results do. Under these conditions, the coupling to the bath is reduced from η = 0.495
to η = 0.177 using frozen modes, which are still larger than should be expected to yield
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Figure 4.5: Shown in (a) is the harmonic oscillator model with initial condition. The spectral
densities used are shown in (b) with ωc = Ωt in blue and ωc = Ωt/10 in red. Projections
onto the diabatic electronic surfaces in the dimensionless coordinate qt are shown in (c) for
Er,t = 0.2 with ωc = Ωt (top) and ωc = Ωt/10 (bottom).

accurate results. Thus, there are expected multi-phonon processes that are missed by the
perturbative treatment in TCL2.

At even larger reorganization energies, both TCL2 and TCL2-FM show positivity vio-
lations and result in unstable dynamics past 1 ps. These results are shown in Fig. 4.4(c).
At this value of the reorganization energy, the couplings to the bath both without and with
frozen modes are η = 1.01 and η = 0.372 respectively, are too large to self-consistently trun-
cate the cumulant expansion at second order. By taking ω∗ to be larger, we can sufficiently
reduce the coupling to the remaining bath degrees of freedom that the dynamics are stable,
but still dissipative within a TCL2 description. However, the dynamics deviate from the
numerically exact result, as the approximation that degrees of freedom with ω < ω∗ are
static, is not valid as λ < ω∗, leading to a description of the dynamics that is not consistent.
While in the pyrazine model the large separation of time scales allowed a large range of ω∗

to be selected without disrupting the subsequent relaxation dynamics, this separation is not
present for the rhodopsin model studied.

To formulate a correct description of the system dynamics in the limit of strong system-
bath coupling when motion in the system and bath are on similar time scales requires that the
reorganization energy be reduced without freezing fast bath modes. This could be done by
adding an additional effective bath mode into the description of the system, whose dynamics
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would be treated exactly. While including additional modes into the system Hamiltonian
dramatically increases the Hilbert space, using unravelling techniques that reduce the scaling
of master equation propagation[135, 268], adding a few additional modes is possible. This is
an active area of research, though beyond the scope of the present study.

4.4 Application to Photoisomerization Quantum

Yields

With the limitations of our approach mapped out, we now study the dependence of the
photoisomerization quantum yield on the bath. We consider the nonadiabatic relaxation
through a conical intersection of a linear vibronic model constructed to have features simi-
lar to those in a molecular photoisomerization processes.[96, 110] Specifically, we construct
a model where a conical intersection lies above two adjacent basins, one metastable with
respect to the other. Our approach enables us to study a wide range of system-bath cou-
pling strengths in the Markovian and non-Markovian regimes and understand the impact of
the yield on these parameters. Describing the dynamical features arising in such complex
environments are paramount to describing the yields, as they are completely determined by
relaxation rates rather than being constrained by thermodynamic considerations.[294]

The Hamiltonian we consider has the form,

HS =
∑
i,j=0,1

|i〉hiδij + λqc(1− δij)〈j| (4.49)

hi =
∑
k=c,t

Ωk

2

(
p2
k + q2

k

)
+ κ

(i)
t qt + V

(0)
i

with a system-bath coupling,

HSB = (|0〉〈0|+ |1〉〈1|)
∑
n=c,t

qn
∑
k

ck,nQk, (4.50)

meant to model vibrational relaxation and an Ohmic spectral density with exponential cutoff,

Jn(ω) =
πEr,n
ωc,n

ωe−ω/ωc,n , n = c, t. (4.51)

for both the coupling and tuning modes. The model described here, shown in Fig. 4.5 (a),
is similar to a model studied by Thorwart and co-workers[197, 65]. We set the parameters

to be Ωc = 0.112, Ωt = 0.0620, κ
(0)
t = −0.186, κ

(1)
t = 0.186, λ = 0.0248, V

(0)
1 = −0.031, and

V
(0)

2 = 0.031 in eV, while the temperature of the bath is taken to be 300 K. The Hamiltonian
was expanded in a basis of harmonic oscillator eigenstates with 75 states used for the tuning
mode and 5 states for the coupling mode. The dynamics were propagated in the energy
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eigenbasis with a truncated basis of 400 states, which shows convergence to the full Hilbert
space.

We have tuned the system Hamiltonian parameters to include a metastable well in the
higher-energy electronic state. The barrier to transferring population along the ground adia-
batic state is ∼ 0.129 eV, so there will be a separation of timescales between initial relaxation
into the minima of the two diabatic states and subsequent barrier crossings. We consider
the dynamics following a vertical excitation into state |1〉 from the ground vibrational state
of |0〉,

σ(0) = |1〉|χ01〉〈χ01|〈1|. (4.52)

and are interested in the quantum yield into state |1〉 following subsequent relaxation over
times long relative to vibrational relaxation, but short relative to relaxation into a thermal
state.

We have studied the dynamics of this model with two different environments, one in the
Markovian regime where ωc ∼ λ, and one in the non-Markovian regime where ωc � λ. These
two regimes are illustrated by their spectral densities in Fig. 4.5 (b). For both baths, we have
studied the dynamics over a range of reorganization energies. The fast bath we study has a
cutoff frequency of ωc,t = 0.062 eV for the tuning mode and ωc,c = 0.112 eV for the coupling
mode. Since the bath is moderately fast relative to the timescale induced by the electronic
coupling and the reorganization energies used are small, the largest has a coupling constant
of η < 0.1, these populations are accurately obtained from TCL2 without the use of frozen
modes. The slow bath we study has cutoff frequencies for the tuning mode ωc,t = 0.0062 eV
with the coupling mode held fixed. Since this system is in a more non-Markovian regime, the
dynamics using TCL2 alone exhibit positivity violations at significantly smaller values of the
reorganization energy relative to the fast bath, and we thus use the frozen mode approach.
However, we found it necessary to only freeze modes in the bath associated with the tuning
mode. For each value of the reorganization energy we used ω∗ = 0.00868 eV, decreasing the
largest value of the coupling to η = 0.05. We find that choosing ω∗ between 0.008 eV and
0.014 eV results in quantitatively similar population dynamics for all system bath coupling
strengths considered. We simulated the dynamics with 50 trajectories, by discretizing the
slow bath into 1000 modes for the tuning mode.

Shown in Fig. 4.5(c) are the projections of the wavepacket onto the position basis of the
tuning mode for each diabatic state, given by,

Pj(qt, t) =

∫
dqc〈qc|〈qt|〈j|σ(t)|j〉|qt〉|qc〉 , (4.53)

for both baths. In the fast bath case, the wavepacket starts in electronic state |1〉 and
coherently oscillates with enough energy to put it back in the Franck-Condon region at
short times. The bath dissipates energy from this wavepacket, which reduces the vibrational
coherence until the wavepacket can no longer reach the Franck-Condon region. In the slow
bath case, the wavepacket dynamics are markedly different, showing an extended lifetime in
higher-energy vibrational states. The rate of decoherence appears to be much faster as the
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oscillations of the wavepacket are damped out almost instantly, which is a reflection of the
role of slow bath being a source of inhomogeneous broadening.

These different relaxation mechanisms result in different quantum yields, and strikingly
different dependence on the bath reorganization energy. We define the quantum yield as the
diabatic population in state |1〉 in the quasi-steady-state limit,

P1(tss) = Tr{|1〉〈1|σ(tss)}, (4.54)

where tss is the time taken for the diabatic populations to be nearly time invariant, which
for the parameters studied is around 4 ps. In the case of the fast bath, we find the yield
increases monotonically with the reorganization energy. This is shown in Fig. 4.6, where
η is proportional to the reorganization energy with ωc fixed and we take η and Er from
the total spectral density, not the reduced values from just the fast modes. The increase
in the yield with reorganization energy in the fast bath is attributable to the fact that
with increasing Er, the wavepacket spends less time in the Franck-Condon region where
population can transfer between the two diabatic states through electronic coupling. As is
evident from the wavepacket dynamics, increasing the reorganization energy will increase the
rate of vibrational dissipation and hence the localization of the wavepacket into the minima
of the diabatic states. In the case of the slow bath, we find the opposite trend. Increasing the
reorganization energy results in a decreasing the quantum yield. This decrease is attributable
to the increased rate of decoherence and slower rate of dissipation due to the lag in the bath’s
ability to remove energy from the system.

These results are in contrast to some other observations on related linear vibronic models.
Previously, Thorwart and coworkers have found that the lifetime of vibrational coherence
could be tuned by the reorganization energy or characteristic frequency of the bath and the
persistence of this coherence had large impact on the photoisomerization yield.[62, 65, 197]
While we note that the former of these claims is verified by our simulations, we note that
the diabatic potentials they studied do not have metastability as the zero point energy in
the higher-energy electronic state is on the order of the barrier height for population transfer
along the ground adiabatic state. Having a well-defined quantum yield, in which there is a
long-lived metastable state, requires a separation of timescales between the initial relaxation
and eventual thermalization. If the barrier height is not sufficiently large, as in their previous
work,[62, 65, 197] then there will not be a separation of timescales, and thus there will not
be a uniquely defined quantum yield. Nevertheless, the complex dependence of the quantum
yield on the parameters of the bath that we have found illustrates the rich chemical dynamics
of conical intersection models that can be interrogated efficiently.

4.5 Conclusion

In this chapter, we have developed a strategy for simulating nonadiabatic relaxation through
conical intersections in the condensed phase. The framework leverages the separation of
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Figure 4.6: Yields of P1(t) taken in the quasi-steady-state limit for ωc,t = Ωc/10 (blue
squares) and ωc,t = Ωt (red circles), as a function of the coupling strength, η computed from
the total spectral density.

timescales between the ultrafast dynamics of a few strongly coupled nuclear degrees of free-
dom, and the remaining weakly coupled degrees of freedom. In cases where the characteristic
timescales of these two motions are well separated, when the nonadiabatic coupling is much
larger than the characteristic frequency of the bath, we can consider the slowest of those
modes frozen and treat the remaining with perturbation theory. Freezing the slowest modes
produces a source of static disorder, and acts to decohere the resultant dynamics. Weak
coupling perturbation theory, in the form of TCL2, correctly describes the time dependent
dissipation to the environment and without the low frequency modes has a large domain of
applicability. This is consistent with what has been previously observed in the context of
the spin boson model.[173]

When applicable, the strategy we have presented represents a computationally efficient
framework for simulating dynamics in condensed phase environments. This efficiency is due
to the optimal representation of subsets of degrees of freedom. The hybrid method used in
this chapter formally scales asO(tNtrajNbathN

3) whereNtraj is the number of trajectories used
that can be trivially parallelized, Nbath is the number of baths andN is the number of states in
the system, and is linear in time, t.[194] Wavefunction based methods like ML-MCTDH suffer
from an exponential scaling in the size of the system that must be represented, albeit with
a reduced scaling than naive direct product wavefunctions. This scaling arises in condensed
phase models through the representation of explicit bath degrees of freedom, which causes
super-linear scaling in the number of baths and causes exponential scaling in time due to
the difficulty in avoiding Poincare recurrences. While exact quantum master equations, like
HEOM, do not suffer from exponential scaling in time, they offer little benefit to the overall
scaling as they scale factorially in in the number of auxiliary degrees of freedom that must be
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represented. This scaling causes significant memory requirements and also has super-linear
scaling in the number of baths. This makes low temperature, and non-Markovian systems
particularly difficult to study. As this approach extends the limitations of weak-coupling
theories, it can be combined with importance sampling tools developed at weak-coupling to
study reaction mechisms.[222] In molecular systems, when the number of degrees of freedom
as well as anharmonicities in the system increases, we thus expect the hybrid approach of
this chapter to be useful in providing numerically accurate results.
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Chapter 5

Azobenzene Photoisomerization

“Mordor. The one place in
Middle-earth we don’t want to
see any closer, and the one
place we’re trying to get to.”

— Samwise Gamgee [259]

5.1 Introduction

The study of trans-to-cis azobenzene photoisomerization has long been fraught with debate
over its complex gas-phase reaction mechanism. Experimental observations have shown that
excitations at different wavelengths exhibit different quantum yields in violation of Kasha’s
rule—excitation with UV light to the S2 state has a nearly factor of two smaller yield than
excitation with blue light to the S1 state,[16] however, the origin of this discrepancy was
not widely understood.[76, 77, 78, 198, 203, 202, 218, 219, 226] Understanding the reaction
mechanism was seen as key to understanding origin of this violation. The gas-phase reaction
mechanism has, however, been elucidated through the use of advanced numerical techniques
and time-resolved spectroscopy within the past few years.[180, 292] In particular, it has been
shown that isomerization after both S1 and S2 excitation occurs through an “inversion-
assisted” rotation rather than pure inversion or rotation, but that an additional relaxation
pathway to the trans state is open to the S2 state only due to its additional excitation energy.
In building off of this recent understanding, we aim to uncover the minimal ingredients that
describe the photoisomerization process through a the development of a descriptive model.

While the gas-phase dynamics are becoming clearer, the generic understanding of azoben-
zene photoisomerization in condensed phases is still a mystery in which the photoisomeriza-
tion yield obtains a strong dependence on the details of the environment in addition to the
excitation wavelength. The solvent polarity induces an apparent linear increase in the quan-
tum yield for S1 excitation, but has no effect on excitation to the S2 state.[174] The solvent
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viscosity, however, has little to no effect on the yield in either case, which is in strong contrast
to stillbene photoisomerization, which is entirely rotational.[83, 240] Experiments performed
on an extreme case of confinement in which rotation is almost entirely restricted showed
this same behavior for stillbene, but the yield for azobenzene remarkably increased.[186]
In this case of confinement, it was argued that the inversion pathway available to azoben-
zene became favored, which highlights the need to understand the favorability of reaction
mechanisms in the condensed phase. The generic understanding behind these phenomena
is, however, lacking and an understanding of the mechanistic changes in condensed phases
is needed.

Furthermore, condensed phase environments are the home to applications of azoben-
zene photoisomerization. Azobenzene derivatives have been demonstrated as useful optical
switches that can be used for optical storage,[112] solar thermal fuels for energy storage,[99,
136, 155] and can drive peptide and protein folding.[29, 205, 242] In each of these contexts,
the photoisomerization is embedded in some condensed phase framework or is used to perform
work on its broader environment and its dynamics will thus be influenced by the interactions
with these surroundings and understanding these influences can aid in advancements of such
technologies.

It is in describing these condensed phase phenomena of azobenzene photoisomerization
that a minimal model will shine. Understanding the quantum dynamics of condensed phases
are particularly challenging due to the computational workload—despite recent successes
[156]—as well as the difficulty with understanding reaction coordinates in an expanded co-
ordinate space. Having a minimal model in which the effects from the condensed phase
can be incorporated we suspect will make great stride in understanding the general physics
associated with azobenzene photoisomerization in these systems and applications.

In this chapter, we apply a recently developed hybrid quantum master equation frame-
work[221] to develop a minimal model of azobenzene photoisomerization. The utility of this
framework is in its significant reduction of the relevant degrees-of-freedom through system-
atic comparison of the relevant system energy scales as well as its straightforward extension
to condensed phase environments through quantum master equations approaches. The chap-
ter is organized in five remaining sections. In Section 5.2, we outline the hybrid framework
as it applies to azobenzene photoisomerization. In Section 5.3 we discuss the computa-
tional approaches we use to develop the model and the model itself is introduced in Section
5.4. Photoisomerization dynamics simulations using the model are discuessed in Section 5.5.
Some concluding remarks are offered in Section 5.6

5.2 Hybrid Framework for Azobenzene Hamiltonian

We herin apply the hybrid framework of Chapter 4 to azobenzene photoisomerization in the
gas phase. To this end we use the Hamiltonian, H, in the diabatic picture as our starting
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point

H =
∑
ij

|i〉 [Tδij + V (ΘS, {qk})] 〈j|, (5.1)

where the set {|i〉} are the diabatic electronic states, T is the kinetic energy, which is diagonal
with respect to the electronic states in this picture, and V is the potential energy, which
we take to be a function of the nuclear degrees-of-freedom. We distinguish the nuclear
degrees-of-freedom as a set of system coordinates, ΘS and a set of bath modes, qk. The
system coordinates are internal coordinates of the molecule that strongly couple to the
electronic states and/or undergo large amplitude motion in the chemical process in which
we are describing. The external coordinates are the set of remaining internal coordinates
that have been orthogonalized with respect to one another, but not with respect to the
system coordinates, and undergo small amplitude motion. The potential can be written as
an expansion about some reference geometry, which we take to be the zero of our potential,

V (ΘS, {qk}) =
∞∑
n=1

1

n!
∇n
SV (ΘS, {qk})δΘn

S +
∑
k

1

2
mkω

2
kqk

+
∑
k

qk
∂

∂qk

(
V (ΘS, {qk}) +

∞∑
n=1

1

n!
∇n
SV (ΘS, {qk})δΘn

S

)
, (5.2)

where we have identified the frequencies, ω2
k, as the values of the diagonal part of the Hessian

with respect to the bath modes. Here we have explicitly truncated the expansion in the bath
modes to first order, but have left all orders of the expansion for the system coordinates due
to strong coupling.

The first term in Eq. 5.2, which includes all ordered derivatives of the potential with
respect to the system coordinates, can be considered as the potential of system modes and
can take on a complicated functional form, VS(ΘS). This identification then makes clear the
separation in the third term as a sum of the electron-nuclear coupling of the bath modes,

VeB({qk}) =
∑
k

qk
∂

∂qk
V (ΘS, {qk}), (5.3)

which is evaluated at the reference geometry, and the mode-mode coupling between the
system coordinates and the bath modes,

VSB(ΘS, {qk}) =
∑
k

qk
∂

∂qk
VS(ΘS), (5.4)

which is evaluated across the entire system coordinate space. The former of these terms is
directly related to the spectral density taken from linear absorption measurements via the
Huang-Rhys factor, that is, defining the value of the derivative as

ck =
∂

∂qk
V (ΘS, {qk}), (5.5)
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the spectral density can be expressed as

J(ω) =
π

2

∑
k

c2
k

mkωk
δ(ω − ωk), (5.6)

and the Huang-Rhys factors are

Sk =
c2
kmkωk

2~
. (5.7)

The system-bath mode couplings, which are related to the gradients of the system potential
in Eq. 5.2 evaluated at each point in the system coordinate space, can then be taken as some
nonlinear function in the system coordinates linear coupled to the bath coordinates, that is,

VSB(ΘS, {qk}) =
∑
k

qkgk(ΘS), (5.8)

where

gk(ΘS) =
∂

∂qk
VS(ΘS). (5.9)

The cutoff for partitioning the system coordinates and the bath coordinates is then made
by comparing the relative magnitude of these gradient terms and their associated timescales
(see the discussion in Chapter 4).

The dependence of these potential terms on the electronic states, enters in as an inner
product, e.g.,

V
(ij)
S (ΘS) ≡ 〈i|VS(ΘS)|j〉, (5.10)

is the potential of the system coordinates for diabatic states |i〉 and |j〉. Terms with gradients
are then related, via a spatially-dependent unitary transformation, to the derivative couplings
and energy gradients of the adiabatic electronic states, which are readily available in standard
quantum chemistry packages. These gradients (and Hessians) are typically given in Cartesian
coordinates, which are transformed to internal coordinate gradients through a procedure
described in Appendix C.

5.3 Electronic Structure of Azobenzene

In this section we describe all aspects of the electronic structure calculations performed in
developing the reduced model. These calculations include the optimization of various criti-
cal point geometries, benchmark comparisons of more computationally efficient approaches
to high-level multireference methods, and the specific calculations that were performed to
evaluate the potential energy surface and additional couplings. Unless otherwise specified
we have utilized the spin-flip time-dependent density functional theory (SF-TDDFT)[231]
method, which has been shown to provide quantitatively accurate results,[51, 100, 171, 283]
to compute the energies and nonadiabatic couplings used in the development of a diabatic
potential for the three lowest singlet states, S0, S1, and S2. All SF-TDDFT calculations
were performed using the BHHLYP functional with a 6-31G** basis as implemented in the
Q-Chem software.[232]
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Benchmarking of Approximate Methods

To accurately describe the electronic structure of azobenzene it has been widely found that
methods that incorporate much static and dynamical correlation are required.[4, 39, 40, 80,
114, 291, 292] This requirement necessitates calculations using active space methods, such as
the Complete Active Space Self-Consistent Field (CASSCF) method,[212] with exceedingly
large active spaces and incorporation of dynamic correlation through perturbation theory
such as CASPT2[8] with various flavors of including multiple states such as state averaging
(SA)[278] or extended multistate methods (XMS).[94, 237] Such calculations have historically
been restricted to a small number of critical point geometries or one-dimensional studies along
judiciously chosen reaction coordinates and even then calculation of nonadiabatic coupling
vectors are prohibitively expensive. Subsequent approximations to CASSCF that restrict
the configurations in the active space used in the SCF cycles to reduce the overall computa-
tional cost, such as RASSCF and RASPT2 and multistate extensions, have been shown to
quantitatively represent the multidimensional potential energy surface.[4] Analytical nona-
diabatic couplings are, however, not generically available, which prohibits the generation of
a diabatic model as the energies and nonadiabatic couplings are required at all geometries.
Recent work has shown that approximate methods based on the linear response formalism
of time-dependent density functional theory (TDDFT) with initial wavefunctions that dif-
fer from the signlet ground state, namely the hole-hole Tamm-Dancoff approximated DFT
(hh-TDA) and SF-TDDFT, can accurately describe the electronic structure of azobenzene
throughout the photoisomerization process as based on on-the-fly dynamics simulations,[291,
292, 293] which motivates their use in this study.

To assess the accuracy of SF-TDDFT for the development of a diabatic model we have
performed a number of benchmark calculations. These first included optimizing the config-
uration of a variety of important critical point geometries and computing the lowest three
adiabatic energies. The optimized geometries, depicted in Fig. 5.1, and energies are listed in
Table 5.1. The ground state minima and the two S0/S1 conical intersections are optimized
without constraint while the S1 and S2 minima are optimized with the CNNC dihedral
angle constrained to 180◦. The geometries and energies found are in largely excellent agree-
ment with previous calculations as well as experiment.[292] Critical points of the S2 state
are difficult to generically optimize as SF-TDDFT suffers from spin contamination in the
Franck-Condon regions of trans and cis azobenzene, which is resolved in the twisted region
(50◦-130◦). We later show that this spin contamination, while likely important in the describ-
ing the precise details of the electronic structure has a negligible effect on the coarse-grained
dynamical observables with which we are concerned.

As a more direct comparison to higher-level methods we have compared electronic struc-
ture calculations of the S0, S1, and S2 states at geometries along one-dimensional coordi-
nates. In Fig. 5.2 a, we compare SF-TDDFT calculations at the geometries along a relaxed
scan of the CNNC dihedral developed in Ref. [39] with the resulting energies from hh-
TDA.[291, 292] As can be seen SF-TDDFT gives a quantitatively accurate description of
the vertical excitation energies as well as the shape of the potential energy surfaces across a
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trans minimum cis minimum S0/S1 twisted conical intersection

S1 trans minimum S2 trans minimum S0/S1 planar conical intersection

Figure 5.1: Optimized geometries used for benchmark comparisons. Geometries were opti-
mized at the SFTDDFT level of theory with BHHLYP functional in a 6-31G** basis.

Critical Point θ (deg) ϕ1 ϕ2 rNN (Å) ES0 (eV) ES1 ES2

trans minimum 180 115 115 1.24 0.00 3.04 3.92
cis minimum 7 124 124 1.23 0.69 3.53 3.93
S1 trans minimum 180 129 129 1.24 0.72 2.49 4.39
S2 trans minimum 180 113 113 1.31 0.40 2.49 3.92
S0/S1 twisted conical intersection 92 119 138 1.25 2.34 2.34 3.49
S0/S1 planar conical intersection 179 151 151 1.20 3.14 3.14 4.32

Table 5.1: Relevant internal coordinates and energies of critical points optimized and com-
puted at SF-TDDFT level of theory as described in the text.
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Figure 5.2: Comparison of adiabatic energies from various electronic structure methods.
Energies computed along ground state reaction pathways are shown in a) and b) and an
excited pathway is shown in c). The reaction coordinate in b) starts in the cis configureation
(left, -1) and goes to the trans configuration (right, 1).

variety of geometries. We have also generated a one-dimensional reaction pathway in both
the ground singlet state and first singlet excited state for comparison of SF-TDDFT with
SA-CASSCF, and XMS-CASPT2. We note that these reaction pathways are not used to
infer the importance of particular degrees-of-freedom in the photoisomerization process, but
due to the procedures through which they are generated they represent typical configurations
that are visited by a wavepacket in ground- and excited-state simulations and thus represent
an appropriate test set for benchmarking the approximate methods used here.

The ground-state reaction pathway was generated using CASSCF with an active space
consisting of 6 electrons and 6 orbitals. An initial transition state optimization was performed
with a seed geometry near the θ = 90◦ . Once the transition state geometry intermediate be-
tween the trans and cis ground state minimua was reached the reaction path was constructed
by perturbing the transition state geometry along the positive and negative direction of the
negative frequency mode and then gradients were followed down to the ground-state minima
with geometries generated along the path from the small changes along the gradients. The
energies were then computed with SA-CASSCF with equal weighting on the lowest three
singlet states with a (14e,12o) active space, XMS-CASPT2 with a (10e,8o) active space for
only the S0 and S1 states, and SF-TDDFT. The multiconfigurational wavefunctional calcu-
lations were performed using the MOLPRO[277, 279] and BAGEL software.[236] Since this
calculation does not account for changes to the potential in the excited state the pathway is
mostly rotational, with some small changes in the geometries along other degrees-of-freedom.
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The resulting energies along the ground state pathway are shown in Fig. 5.2 b. SF-TDDFT
exhibits qualitative accuracy for the S0 and S1 states compared to the multiconfigurational
methods and is nearly quantitatively accurate (< 1 mHa) for the ground state at all geome-
tries. Clearly dynamical correlation serves to lower the energy of the S1 state and somewhat
change the shape at geometries near θ = 90◦ , which is flatter in the SA-CASSCF and SF-
TDDFT calculations. Interestingly, SF-TDDFT and CASSCF qualitatively deviate in the
S2 energies in the trans configuration—SF-TDDFT shows an increase in energy along the
rotational path from trans to cis, but SA-CASSCF shows a decrease. We suspect that the
SF-TDDFT calculations are more trustworthy—due to the agreement in Fig. 5.2a—in this
region due to the potential inclusion of, albeit not systematic, dynamic correlation in the
choice of functional.

The excited-state reaction pathway was generated by choosing, from the set of configura-
tions calculated through constrained geometry optimizations as outlined in the next section,
the lowest S1 energy configuration at a particular value of the CNNC dihedral angle, θ, and
the optimized conical intersection geometry. This pathway thus constitutes a representative
set of configurations that are visited along the minimum energy pathway upon excitation
to the S1 excited state, but is not a smooth pathway, which is the origin of the jagged
potentials. The resulting energies are shown in Figure 5.2c. Despite the significant deviation
from the symmetrically constrained reaction pathway, SF-TDDFT still retains quantitative
accuracy in all three electronic states computed here.

Generation of the Potential Energy Surface

To generate the diabatic potential energy surface used in the simulations we first computed
the adiabatic energies of and nonadiabatic couplings between the S0, S1, and S2 states at
enumerated values of the internal coordinates, which are taken to be the CNNC dihedral
angle, θ, and the two CNN bending angles, ϕ1 and ϕ2, for which the latter two are represented
by their symmetric, ϕ = 1

2
(ϕ1 + ϕ2), and antisymmetric, ϕ̂ = 1

2
(ϕ1 − ϕ2), components. The

geometries at the trans and cis minima exhibit stark differences in the CCNN dihedral
angles owing to the degree of steric hindrance between the benzene rings at their respective
θ configurations. Rather than fixing all other degrees-of-freedom and smoothly transforming
between each value of the internal coordinates, we relax the geometries by performing a
series of ground state geometry optimizations constrained at particular values of θ, ϕ, and
ϕ̂. This procedure, while not strictly guaranteeing a smooth surface, avoids artificial barriers
and potentially large discontinuities from the use of different starting geometries.

The constrained geometry optimizations were performed using ground state DFT with the
B3LYP[243] functional and a 6-31G** basis. A one-dimensional path along the dihedral angle
from 180◦ to 0◦ in 5◦ increments was found through this procedure. From these geometries
further constrained geometry optimizations were performed along ϕ with fixed θ and ϕ̂ fixed
at 0◦ from 105◦ to 175◦ in 5◦ increments. Finally these symmetric geometries were then used
to scan ϕ̂ from 0◦ to a maximum ϕ̂ such that ϕ + ϕ̂ ≤ 175 with increments of 2.5◦. This
grid extends over the relevant physical space that is seen by a wavepacket from previous
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Figure 5.3: Ab initio potential energy surfaces in the adiabatic picture—a), b), and d)—
and diabatic picture, c), from propagation diabatization. Potential energy surfaces on the
symmetric (ϕ̂ = 0◦ ) surface are shown in a)-c) and the antisymmetric surface at θ = 90◦ is
shown in d).

numerical simulations. Due to the choice of electronic structure method, there are select
geometries with which the constrained geometry optimizations fail to converge, however the
number of geometries for which this failure is present is small relative to the density of the
grid. At each of the optimized geometries SF-TDDFT calculations are performed. The S0,
S1, and S2 states are taken to be the lowest three singlet states with a total spin cutoff of
〈S2〉 < 1.2. This generally picks out three singlet states with 〈S2〉 < 0.4, but as previously
mentioned takes a S2 state that contains some degree of spin contamination, which appears
only in the Franck-Condon regions at the trans and cis ground state minima.

A depiction of the adiabatic potential energy surface along the symmetrically constrained
(ϕ̂ = 0◦ ) is shown in Fig. 5.3 a and b. The S0 surface is characterized by two deep potential
wells in the trans and cis configurations that are separated by a barrier (relative to the
trans minimum) of ∼2 eV, which is in agreement with previous calculations. The S1 state
has a diffuse landscape along the trans to cis rotational pathway, but has a much steeper
force along the cis to trans rotational pathway, which is likely the origin of the substantially
reduced excited-state lifetime in the cis to trans photoisomerization process.[218, 219, 247]
Along the symmetric bending coordinate in the trans configuration, the S1 and S0 states
come quite close in energy, but never quite form a conical intersection on the symmetric
bending surface from these geometries. In the S2 state there are two relative minima, one
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near the twisted conical intersection at θ = 90◦ and one in the Franck-Condon region of the
trans configuration. The latter of these is encapsulated by a ∼ 1 eV barrier that restricts
rotation. Instead the local minimum is somewhat constricted along ϕ, which brings the S1
and S2 states near in energy and forms a supposed conical intersection,[180, 292] the details
of which are not perfectly characterized by SF-TDDFT due to spin contamination.

The role of the antisymmetric bending coordinate is then to couple the S0 and S1 states,
which have different symmetry. The adiabatic potential energy surface along ϕ and ϕ̂ at a
fixed value of θ = 90◦ is shown in Fig. 5.3 d. While the S2 state remains somewhat higher in
energy, the S0 and S1 states meet forming a conical intersection. Specifically, at the conical
intersection the S0 state exhibits an unstable critical point with a corresponding stable
critical point in S1 that are extremely close in energy, which become degenerate (within
numerical convergence) due to small perturbations to the conical intersection geometry shown
in Fig. 5.1.

As was previously noted, along ϕ in the trans configuration the S0 and S1 energies do
trend closer together, but do not quite meet to form a conical intersection. The role of
such a conical intersection—or conical seam as was found in Ref. [4]—has been recently
elucidated as a major source of the observed Kasha’s rule violation in azobenzene photoi-
somerization.[180, 292] As was shown in Ref. [292], geometry optimization with respect to
the S1 state is important for capturing this feature in the potential energy surface. We have
thus performed additional constrained geometry optimization calculations of the S1 state at
θ = 180◦ and ϕ̂ = 0◦ along ϕ using SF-TDDFT. A more detailed discussion of the results is,
however, saved for a later section.

With this database, in which we also include the critical points mentioned above, of
energies and nonadiabatic couplings on a fixed grid of the system internal coordinates we
constructed the diabatic states. For this construction we utilized the propagation diabati-
zation method,[208] which is a generic method that can transform the adiabatic states to
diabatic states with the minimal information from which we have obtained. We used the
cis ground state minimum geometry as our starting geometry, which we found much more
closely preserves the symmetry between the adiabatic states. This symmetry connects only
the S0 and S2 states along the symmetric surface (ϕ̂ = 0) and thus gives a diabatic state
which largely mimics the S1 adiabatic state and two diabatic states that interpolate between
the S0 and S2 states along a one-dimensional cut of θ.

Coupling to Additional Degrees-of-Freedom

Additional terms beyond the system coordinates chosen may be potentially needed in the
Hamiltonian to observe the correct quantitative trend in the trans-to-cis quantum yield.
While not used in the present set of calculations, we show how additional degrees-of-freedom
may be included as explicit modes in the Hamiltonian or through a system-bath interaction
with a high-frequency environment.

The coupling term used in the Hamiltonian requires a costly evaluation of a gradient
of a Hessian, which necessitates the use of analytical Hessians to avoid overhead. These
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Figure 5.4: Spectral density calculations from TDDFT with ωB97X-D. Full electronic spec-
tral density is shown in a). Normal modes for the main peaks are shown in b) for the S1
(left) and S2 (right) states. Projected electronic spectral density is given in c). Vibrational
spectral density is shown in d) for the trans (blue) and cis (red) configurations.

are unavailable with SF-TDDFT so we utilize DFT with the ω-B97X-D functional[42] with
a 6-31G** basis. This method is known to give reasonable values for excitation energies
and vibrational frequencies and thus gives a healthy balance between cost and accuracy in
computing these gradients. Nevertheless we have computed the electronic spectral density
for the S1 and S2 states at the trans minimum geometry to compare with experimental
and literature values for the frequencies and energy gradients. We first performed a ground
vibrational frequency calculation from which we can extract the normal modes and then
computed the energy gradient in the S1 and S2 excited states. This cartesian gradient was
then projected onto the normal modes (see Appendix C) to give energy gradients along the
normal modes. This quantity can be related to the spectral density by

J(ω) =
π

2

∑
k

c2
k

mkωk
δ(ω − ωk), (5.11)

where J(ω) is the spectral density, mk and ωk are the reduced mass and frequency of the kth



CHAPTER 5. AZOBENZENE PHOTOISOMERIZATION 96

normal mode, and ck is the energy gradient with respect to the normal mode. In practice
we broaden the spectral density using a Lorentzian broadening

J(ω) =
1

2γ

∑
k

c2
k

mkωk

1

(ω − ωk)2 + γ2
(5.12)

with a broadening factor of γ = 0.001 eV. The broadened spectral densities are shown in
Fig. 5.4 a and the normal modes of the dominant peaks for the S1 and S2 states are
shown in Fig. 5.4 b. These peaks and the associated modes are consistent with both
experiment and other literature quantities[180] suggesting that the method chosen for this
procedure will give accurate results. In this calculation, we have scaled the frequencies by a
factor such that the dominant peak in the S2 spectral density, associated with a NN stretch
mode is equal to a previously found value of 1397 cm−1.[67, 78, 180] To avoid overcounting
energy gradients of the incorporated system coordinates, we projected out the components
of the normal mode gradients along the cartesian vector of the system coordinates (see
Appendix C), which are shown in Fig. 5.4 c. The dramatic change in the S1 spectral
density suggests that the reorganization energy in S1 is predominantly accounted for by
the chosen system coordinates—specifically ϕ—while the dominant peak in the S2 spectral
density is unaccounted and could be included to improve the overall model.

The complete calculation to incorporate the additional couplings between the system
coordinates and the bath modes is performed by taking a numerical gradient of the ground
state Hessian with respect to the normal modes. The numerical gradient is taken by use
of a central difference, that is, the reference geometry is displaced half forward and half
backward along the mass- and frequency-weighted normal mode at which the analytical
Hessian is computed. This finite difference gradient Hessian is then projected onto the
internal coordinates θ, ϕ, and ϕ̂, which gives the coupling term for, e.g., θ, as

gk,θ ≡
1

3!

(
∂Hθ

∂qk

)
0

≈ 1

3!
[Hθ(δqk/2)−Hθ(−δqk/2)] , (5.13)

where Hθ(δqk/2) denotes the Hessian projected onto the θ coordinate (see Appendix C for
details of this projection) evaluated at a geometry positively displace by half the kth normal
mode. These coefficients can then be used to construct a spectral density as in Eq. 5.11 but
replacing ck with gk. This calculation is performed using both the trans and cis ground state
geometries to get local spectral densities and we assume that this coupling acts identically
to the electronic states, which can be verified through the use of numerical Hessians in the
excited states. This vibrational spectral density is shown in Fig. 5.4 d and is only shown for
coupling to θ as the other coordinates have negligible couplings. As can be seen from the
scale of the spectral density, these couplings are sizeable relative to the electronic spectral
density and its inclusion may be needed to induce additional vibrational relaxation in the
reduced system.
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5.4 Developing a Minimal Model

In this section, we discuss the methods we use in developing models to be used in the
dynamics simulations. We focus on two particular strategies—one which attempts to directly
fit the potential energy surface and one that emphasizes model simplicity for ease of numerical
simulations and subsequent analysis. Recognizing the limitations—discontinuities from the
geometry optimizations and high-frequency oscillations in the diabatization to name a few—
of the procedure through which we generate the potential energy further warrants the use of
our procedures for direct fitting and model building.

Numerical Fit of the Diabatic Potential

To directly fit the resulting diabatic potential energy surface we utilize the POTFIT method,
[117] which provides a Tucker decomposition or Higher-Order Singular Value Decomposition
of the potential energy tensor on a grid.[189] Each potential energy element (diagonal and
off-diagonal) can be fit using this method, however, given the data we have obtained from
quantum chemistry we have to perform a few manipulations. First, the resulting potential
energies from the geometry optimizations and propagation diabatization are not perfectly
smooth, which can induce artificial behavior in the quantum dynamics. To avoid this scenario
we have used a fourth-power Shepherd interpolation to obtain a smoothed potential energy
surface for each diabatic state and coupling as well as to provide energies at configurations
where the quantum chemistry failed.

The second manipulation is an extrapolation of the potentials to a wider grid in the
bending angle coordinates. This extrapolation is required to give a potential energy elements
on the grid for convergence of the dynamics. For the diabatic potentials we extrapolate the
nearest energy in the coordinate space with and exponential rise in the distance from the
nearest coordinate on the quantum chemistry grid. This extrapolation also ensures that
the potential is bounded within the defined grid. Extrapolation of the diabatic couplings is
achieved through Shephered interpolation, which essentially flattens out the surface to the
potential of the nearest geometry.

POTFIT is performed on the resulting data, which was extrapolated to give a grid of
ϕ ∈ [90, 180] and ϕ̂ ∈ [−50, 50] with 2.5◦ intervals while the θ grid was unchanged due
to its periodicity. The potential was expanded in a natural potential basis of 3 terms for
the ϕ̂ coordinate and 7 terms for the ϕ coordinate while the θ coordinate was used for
contraction. Further interpolation to the fine grid used in dynamics was performed via cubic
spline interpolation. All calculations were performed using the Heidelberg MCTDH code.[17]

Parametrization of a Model Diabatic Potential

As an initial attempt for developing a simplified model, we have imposed a phenomenological
ansatz for the form of the potential based on qualitative observations of the electronic struc-
ture calculations. The ansatz we have chosen assumes that the system degrees-of-freedom are
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uncoupled and thus have a separable potential for both the diabatic potentials and couplings,
that is,

V
(ij)
S (ΘS) = V

(ij)
S,θ (θ) + V

(ij)
S,ϕ (ϕ) + V

(ij)
S,ϕ̂ (ϕ̂), (5.14)

where, e.g., V
(ij)
S,θ (θ) is the ij diabatic potential (coupling if i 6= j) for θ. Supposing that this

ansatz is close to the true potential it is straightforward to systematically improve by adding
mode-mode coupling terms, also phenomenologically.

To fit the diabatic potentials we utilize only the adiabatic energies obtained from the
S0-optimized geometries as we impose potentials that only require information from the
adiabatic limits of the diabatic potentials. The diabatic potentials for θ are expanded in a
cosine series, which imposes the even symmetry of the molecule with θ. For the |0〉 and |2〉
diabatic states, we limit this series to first order obtaining the form, similar to that of Ref.
[15, 98, 229],

V
(00)
S,θ (θ) = E0 +

1

2
(W0 − E0)(1− cos θ) (5.15)

V
(22)
S,θ (θ) = E2 +

1

2
(W2 − E2)(1 + cos θ) (5.16)

where E0(2) is the energy minimum for the |0〉 (|2〉) state, and W0(2) is the energy taken in
the opposite configuration (trans or cis) at the same value of ϕ and ϕ̂ = 0◦ . The parameters
E0(2) are thus the adiabatic energies in the trans (cis) minima and W0(2) are the adiabatic
energies at the cis (trans) configurations in the opposite adiabatic limit of E0(2). The form
of this potential has a smooth variation over θ which is qualitatively ill-suited to describe
the flat landscape of the |1〉 diabatic state along θ. We thus fit a more general sixth-order
cosine expansion

V
(11)
S,θ (θ) = E1 +

6∑
n=1

W1,n cosnθ, (5.17)

to the potential with fixed ϕ = 130◦ and ϕ̂ = 0◦ , which corresponds to the |1〉 minimum
in the trans confiugration. The resulting diabatic potentials are compared with the diabatic
potential from the diabatization procedure in Fig. 5.5a. The |1〉 state is in near perfect
agreement due to the order of cosine expansion in the fit. Despite the minimal information
taken from the adiabatic states, the |0〉 and |2〉 states are also qualitatively well fit in the
region of their minima, however, the Franck-Condon region of the |2〉 state is qualitatively
incorrect. This discrepancy is likely due to the cross-over in the character of the adiabatic
states along rotation from a n → π∗ state to a n2 → π∗2 state,[80] which would require an
additional state in the diabatic representation to fully characterize.

To describe the potential for ϕ we used a Morse potential

V
(ii)
S,ϕ (ϕ) = Di(1− e−αi(ϕ−ϕi,0))2, (5.18)

where ϕii,0 is the value of ϕ at the energy minimum along the torsional path taken in the
fit (ϕ0,0 = 115◦ , ϕ1,0 = 130◦ , ϕ2,0 = 125◦ ), and Di and αi are the usual parameters of
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Figure 5.5: Diabatic model fits compared to the ab initio potentials. Comparison between
the model potential (solid curves) along the dihedral angle, θ, compared to the diabatic
potential from propagation diabatization (solid circles) is shown in a) for the |0〉 (blue), |1〉
(red), and |2〉 (black) states. In b), a comparison between the adiabatic potentials (solid
circles) of the S0 trans (blue), S1 trans (red), and S0 cis (black) states and the diabatic
potentials (solid curves) of the |0〉 trans (blue), |1〉 trans (red), and |2〉 cis (black) states is
shown along the symmetric bending angle, ϕ. Open circles are adiabatic energies obtained
from S1-optimized geometries compared to the diabatic model fit with a dashed curve.

the Morse potential. This form of potential ensures that no additional energy is added at
the minimum points taken in the torsional fit. The |0〉 and |2〉 energies are taken from the
adiabatic database in which geometries were optimized with respect to the S0 state. For the
|1〉 state, we have fit parameters using both this S0 database, but also energies that were
obtained by performing constrained geometry optimizations with respect to the S1 state.
Comparison of these fits to the adiabatic energies are shown in Fig. 5.5b. Optimization
on the S1 state tends to lower the energy with respect to S0 optimization. This energy
relaxation may serve to bring the S1 and S0 states closer in energy to truly form a conical
intersection.

The antisymmetric bending potential is taken for simplicity to be a harmonic potential

V
(ii)
S,ϕ̂ (ϕ̂) = ω2

i,ϕ̂ϕ̂
2, (5.19)

where ωi,ϕ̂ is the frequency of this coordinate found by fitting the ϕ̂ dependence at the re-
spective minima as described above. While the adiabatic potential energy surface suggests
dynamics along this coordinate will be important, we expect this only to come about because
of the diabatic coupling due to variation ϕ̂ that couples electronic states of different sym-
metries. This reasoning follows from previous attempts at modeling photoisomerization in
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which the linear vibronic framework was used with tuning and coupling coordinates distinct
from the isomerization coordinate were imposed by considering symmetries of the electronic
states and harmonic modes.[15, 98, 229]

We now turn our attention to the form of the diabatic couplings. As has been noted else-
where[180] and found in the diabatization, the symmetry of the electronic states determines,
to a large degree, the form of the diabatic coupling. The S0 and S2 states, having the same
symmetry, can thus be coupled along symmetric, ϕ̂ = 0◦ , coordinates. For simplicity we
suppose the form of the diabatic coupling between the |0〉 and |2〉 states is given by

V
(02)
S,θ (θ) =

λθ
2

(1− cos 2θ), (5.20)

which qualitatively mimics the resulting diabatic coupling obtained from propagation dia-
batization. The parameter λθ is taken as the value of the diabatic coupling between the |0〉
and |2〉 states at θ = 90◦ , ϕ = 130◦ , and ϕ̂ = 0◦ . The diabatic coupling between the |1〉
state and the |0〉 and |2〉 states must then be through antisymmetric coordinates due to the
different symmetry of the S1 state

V
(01)
S,θ (ϕ̂) = V

(12)
S,θ (ϕ̂) = λϕ̂|ϕ̂|, (5.21)

where λϕ̂ is taken as the slope of the diabatic coupling along ϕ̂ at fixed θ = 90◦ and
ϕ = 130◦ between the |1〉 and |0〉/|2〉 states, which encompasses the conical intersection
geometry. The absolute value ensures both that the symmetry of the adiabatic potential
about ϕ̂ is preserved and that the correct topology of a conical intersection is obtained.
The simplicity with which we have chosen this coupling arises from the lack of qualita-
tively large amplitude motion in this degree-of-freedom outside of the symmetry breaking
associated with the twisted S0/S1 conical intersection.[180, 292, 293] We thus expect the
linear vibronic coupling framework, as imposed here, to capture the relevant features of the
adiabatic potential to replicate the nonadiabatic dynamics.

The parameters used for the diabatic model are listed in Table 5.2. The adiabatic and
diabatic potentials along the symmetric and a set of antisymmetric coordinates are shown
in Fig. 5.6. We have proposed a simple form for the diabatic potential and we thus do not
expect the adiabatic potential to be quantitatively reproduced by the model. There are,
however, a number of features that are qualitatively inaccurate that are worth mentioning.
Due to symmetry there should not be a conical intersection along the symmetric surface,
though there is an apparent crossing point near θ = 90◦ and ϕ = 110◦ as can be seen in
Fig. 5.6a. Additionally, there is a sharp barrier along θ at large ϕ (ϕ ≥ 140◦ ), which
is not present in the calculated adiabatic potential of Fig. 5.3a and b. We also note that
the S0/S1 conical intersection topology is not faithfully reproduced. While the adiabatic
potentials displayed in Fig. 5.6d come near in energy they do not touch to form a degeneracy.
Moreover, the S0 state does not exhibit a saddle point topology nor does the S1 state
show a local minimum at ϕ̂ 6= 0◦ . Despite the limitations with the model here, we see a
qualitatively accurate potential for the |1〉 state on which a majority of the dynamics are
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Parameter Value (eV)

E0 0
E1 2.7944
E2 0.6905
W0 5.4186
W1,1 0.3729
W1,2 0.1561
W1,3 0.05999
W1,4 0.04429
W1,5 0.01958
W1,6 0.005224
W2 3.4484
D0 5.7086
D1 9.8480
D1 4.8625 (S1 opt)
D2 10.3943
α0 0.03211 (dimensionless)
α1 0.01212 (dimensionless)
α1 0.02056 (S1 opt, dimensionless)
α2 0.01727 (dimensionless)
ω0,ϕ̂ 0.003520
ω1,ϕ̂ 0.001355
ω2,ϕ̂ 0.002153
λθ 0.4
λϕ̂ -0.024

Table 5.2: Parameters for the diabatic model outlined in the text. The parameters with the
designation “S1 opt” are fit to energies obtained from S1-optimized geometries.

run. This state has a flat landscape along θ at its minimum in ϕ = 130◦ . These features will
dominate the short-time dynamics, which have been shown to contain the key aspects that
determine the Kasha’s rule violations.[180, 292] While not explicitly done in the current
study, an extension of the proposed model that incorporates additional terms such mode
couplings between the symmetric degrees-of-freedom is straightforward and we expect such
an extension to achieve marked improvement in the representation of the adiabatic potential
and subsequent dynamics. For example, incorporating these mode couplings would flatten
the diabatic potentials at large ϕ and bring the adiabatic potentials close to quantitative
accuracy. This improvement combined with the addition of mode couplings for the diabatic
potential V

(02)
S may resolve the anomalous conical intersection on the symmetric surface. We

reserve implementation of these improvements to a future study.
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Figure 5.6: Same as Fig. 5.3, but with energies generated from the model functions and
parameters. The parameters for V

(11)
S,ϕ are found by fitting to the S1-optimized geometries.

Numerical Kinetic Energy Operator

Up to this point, we have ignored an entire half of the Hamiltonian—the kinetic energy
operator, which in generalized coordinates {Q} has the form

T = −~
2

∑
ij

∂

∂Qi

(
Gij(Q)

∂

∂Qj

)
, (5.22)

where Gij(Q) is the G-tensor characterizing the reduced mass of the generalized coordi-
nates. Specification of a coordinate system and the G-tensor then determines the kinetic
energy operator. Obtaining the exact kinetic energy operator for polyatomic molecules is
generally rather complicated and involves a calculated choice of coordinate system, which
is inconsistent with the coordinate system we have chosen for the potential. To overcome
this complication, we utilize a numerical procedure (described in Appendix C) to obtain
the values of the G-tensor in the chosen coordinate system at all values of the internal
coordinates.

Armed with the numerical values of the G-tensor, we then require a functional represen-
tation so as to efficiently calculate the matrix elements of the kinetic energy operator. We
propose two approaches: one which fixes the values of the G-tensor at a reference geometry
and assumes a diagonal (with respect to the internal coordinates) form of the kinetic energy
operator and one which represents the full G-tensor on the underlying grid of internal co-
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Parameter Value (au)

Gθθ 2.868e-5
Gϕϕ 0.08166
Gϕ̂ϕ̂ 0.01939

Table 5.3: Parameters used for the fixed representation of the G tensor. The parameter for
Gθθ here assumes θ is given in radians, which is naturally used in the Heidelberg MCTDH
code.

ordinates. In the first approach, the G-tensor is calculated at the trans minimum geometry
and the kinetic energy operator has the form

T = −~
2

∑
Q∈(θ,ϕ,ϕ̂)

GQQ
∂2

∂Q2
. (5.23)

The calculated values are listed in Table 5.3.
To retain the computational efficiency of grid-based dynamics methods (see the discussion

on sum-of-product Hamiltonians in Chapter 2) in the second kinetic energy approach, we
assume that the G-tensor elements can be represented by functions having sum-of-products
forms just as the potential counterparts do. These functions were then fit to the calculated
elements of the G-tensor at all geometries in the data set. The diagonal elements of the
G-tensor have the following forms (subscripts denote the corresponding degrees-of-freedom
for the matrix element),

Gθθ = G
(0)
θθ + uθθ cos θ +

(
s

(t)
θθ ft(θ) + s

(c)
θθ fc(θ)

) 1

(ϕ− 180)2
(5.24)

Gxx = G(0)
xx + uxx cos θ +

(
s(t)
xxft(θ) + s(c)

xxfc(θ)
)

(ϕ− 180)2, (5.25)

where x = ϕ, ϕ̂ and ft/c(θ) = 1
2
(1 ∓ cos θ). Each component in these forms are fit to one-

dimensional cuts along the potential, that is, the θ-dependent terms are fit to data at a fixed
ϕ = 115 and ϕ̂ = 0, while the ϕ-dependent terms are fit to data at a fixed θ = 180 (θ = 0)
and ϕ̂ = 0 for the trans (cis) parameters, denoted by the superscript t (c).

The off-diagonal terms have the following form

Gθϕ = g(θ)

(
G

(0)
θϕ +

sθϕ
ϕ− 180

)
(5.26)

Gϕϕ̂ = sϕϕ̂|ϕ̂| (5.27)

where g(θ) = 1
2
(1− cos 2θ) and we have assumed Gθϕ̂ = 0 since those values are consistently

an order of magnitude smaller than Gθϕ or Gϕϕ̂. The coupling between θ and ϕ is fit at a
fixed θ = 90 and ϕ̂ = 0 while the coupling between ϕ̂ and ϕ̂ is fit at fixed θ = 180. We note
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Parameter Value (au)

G
(0)
θθ -2.790e-5

G
(0)
ϕϕ 0.06860

G
(0)
ϕ̂ϕ̂ 0.06812

G
(0)
θϕ 0.00061942

uθθ -3.397e-5
uϕϕ -0.04735
uϕ̂ϕ̂ 0.04634

s
(t)
θθ 0.08836

s
(c)
θθ 0.4726

s
(t)
ϕϕ -8.135e-5

s
(c)
ϕϕ -7.058e-7

s
(t)
ϕ̂ϕ̂ -5.922e-7

s
(c)
ϕ̂ϕ̂ -8.469e-6

sθϕ 0.09986
sϕϕ̂ -0.0003055

Table 5.4: Parameters used for the full representation of the G tensor. The same unit
convention is used as in Table 5.3.

that derivatives of the G matrix elements with respect to θ and ϕ are computed in matrix
form rather than analytically, which preserves boundary conditions of the underlying grid
and guarantees the system’s even symmetry in θ. The derivative with respect to ϕ̂, how-
ever, is treated approximately and analytically to smooth the discontinuity in the derivative
numerically as

∂

∂ϕ̂
|ϕ̂| ≈ tanh(ϕ̂). (5.28)

The specific parameters used in this work are listed in Table 5.4, which not only reasonably
approximate the elements of the G-tensor, but also give strictly positive eigenvalues at all
points on the grid use in the MCTDH simulations.

5.5 Photoisomerization Dynamics

We have simulated the photoisomerization dynamics of azobenzene using the model outlined
in the previous section with the fixed G-tensor approach. Initial wavepackets were prepared
in the excited state positions that mimic the excitations to the S1 and S2 states as observed in
experiments. We utilized a grid-based approach to describe the system degrees-of-freedom,
which provides a numerically exact description of all vibronic effects within the current
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Mode NSPF NPBF PBF min (degrees) PBF max

θ 45 151 0 360
ϕ 40 93 90 180
ϕ̂ 35 87 -40 40

Table 5.5: Parameters used for the MCTDH wavefunction with the simplified model.

Mode NSPF NPBF PBF min (degrees) PBF max

θ 50 151 0 360
ϕ 40 75 95 170
ϕ̂ 35 75 -40 40

Table 5.6: Parameters used for the MCTDH wavefunction with the POTFIT model.

model. The efficiency of such calculations were aided by the use of the MCTDH method to
represent the system degrees-of-freedom.

Details of the MCTDH calculations

The MCTDH wavefunction used here is expanded in a set of electronic states and SPFs for
each system degree-of-freedom

|Ψ(t)〉 =
∑
α

∑
jθ

∑
jϕ

∑
jϕ̂

Aα,jθjϕjϕ̂(t)|φα〉|φθα,jθ(t)〉|φ
ϕ
jα,ϕ

(t)〉|φϕ̂α,jϕ̂(t)〉 (5.29)

The SPFs were expanded in a primitive basis using an exponential or plane-wave grid, which
are further described in Tables 5.5 and 5.6. All dynamics were performed using the Constant
Mean Field integrator with variable step sizes and an accuracy of 10−5. The coefficients were
propagated using the Short Iterated Lanczos algorithm and the SPFs were propagated using
the Bulirsch-Stoer algorithm both with an accuracy of 10−6. All calculations were performed
using the Heidelberg MCTDH code.[17]

Two initial conditions were needed to describe the S1 and S2 excitation dynamics. For
the S1 initial condition, the ground vibrational eigenstates from the model diabatic potential
of the |0〉 state was projected into the |1〉 state, representing a vertical excitation initial
condition into the S1 state due to the adiabatic limit in which the potential was fit. The
initial condition for the S2 dynamics was taken as the same for the S1 initial condition,
except the initial diabatic potential for the |0〉 state was fictitiously taken to have a minimum
ϕ = 108 degrees. This initial condition mimics the wavepacket that rapidly transitions to the
S1 state from the S2 state,[78, 180] but is required within the model due to the limitations
of describing the Franck-Condon region of the S2 state.
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Figure 5.7: Results of the photoisomerization dynamics. Diabatic populations of the |0〉 state
(blue), |1〉 state (red), and |2〉 state (black) are shown in a) for the S1 excitation (solid) and
S2 excitation (dashed). The inset shows the diabatic populations up to 1 ps. Projections of
the wavepacket are shown in b) as given by Eq. 5.32 (top row) and 5.33 (bottom row) for
S1 excitation (left) and S2 excitation (right).

Description of Kasha’s Rule Violation

We simulated the dynamics from S1 and S2 excitation using parameters obtained by fit-
ting parameters to energies obtained from S0-optimized geometries. The dynamics of the
electronic states can be characterized by the diabatic populations

Pd,i(t) =

∫
dθ

∫
dϕ

∫
dϕ̂〈ϕ|〈θ|〈ϕ̂|〈φi||Ψ(t)〉, (5.30)

which are depicted in Fig. 5.7a. In the case of S1 excitation, the population of |1〉 has
a rapid (< 1 ps) population decay, which is transferred to the |0〉 state followed by onset
of population decay at a slower rate, which primarily transfers to the |2〉 state en route to
isomerization. The former of these population relaxation dynamics are qualitatively accurate
albeit much faster than was found previously, but the latter dynamics are unfortunately in
disagreement with previous simulations, which found near 50% population transfer at longer
times associated with the rotational mechanism. This population transfer continues on a
much slower timescale, extending out to beyond 10 ps, which is in agreement with previous
simulations and experiments, but due to the increased relative transfer to the |2〉 state the
quantum yield in the steady-state limit (t→ tSS, where tSS),

Yield(t) =
Pd,2(t)

Pd,0(t) + Pd,2(t)
× 100%, (5.31)
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is too large giving a value at 10 ps of 53.7%.
We have also computed the projection of the wavepacket onto different coordinates in

the diabatic states

P
(ϕ)
d,i (ϕ)(t) =

∫
dθ

∫
dϕ̂〈ϕ|〈θ|〈ϕ̂|〈φi||Ψ(t)〉, (5.32)

P
(θ)
d,i (θ)(t) =

∫
dϕ

∫
dϕ̂〈θ|〈ϕ|〈ϕ̂|〈φi||Ψ(t)〉, (5.33)

which roughly shows the motion of the internal coordinates in the different electronic states
and are shown in Fig. 5.7b. The dynamics along ϕ show oscillations as the wavepacket
begins motion in the |1〉 state that has a different minimum than the vertical excitation
conditions. These oscillations are noticeably faster than apparent motion along θ exhibiting
nearly two full periods before the system begins rotation, which is due to the significantly
smaller moment of inertia of θ compared to the reduced mass of ϕ as well as the flat landscape
of the potential along θ in the |1〉 state.

The dynamics following S2 excitation show similar features—there is a fast population
transfer from |1〉 to |0〉 followed by transfer from |1〉 to |2〉 on a slower timescale. In contrast,
however, there is some additional population transfer to the |2〉 state from the |0〉 state and
the population relaxation from |1〉 occurs on a faster timescale reaching a steady-state by ∼5
ps. The dynamics are notably different in ϕ as shown in Fig. 5.7b. Due to the higher-energy
initial condition—mimicking excitation to the ∼1 eV difference between S2 and S1 states
in the Franck-Condon region—the wavepacket can move to larger ϕ where the S0 and S1
adiabatic states come closer in energy and more population can transfer as is clear from the
inset of Fig. 5.7a. Dynamics in θ do not appear markedly different, which is expected as the
isomerization mechanism is known to still be rotational, but at a lower yield. Unfortunately,
the quantum yield is larger for S2 excitation, 61.9%, than S1 excitation, which is the opposite
result as found in previous simulations and, importantly, experiments.

This incorrect qualitative behavior of the model dynamics is likely a result of two inade-
quacies with the model we have developed. As was noted, the population transfer occurring
on a slower timescale dramatically favors isomerization to the cis configuration (transfer to
the |2〉 state) rather than relaxation back to the trans state in disagreement with previous
simulations. Since this population transfer requires an accurate description of the potential
in the vicinity of the twisted conical intersection, which the model does not qualitatively
represent well, incorporation of additional terms in the potential—such as symmetric mode
couplings as was discussed—are needed to obtain a more faithful representation of this por-
tion of the potential. Specifically, much of the population transfer that results in relaxation
to the trans state occurs at large ϕ near the twisted conical intersection and hence terms
that tend to flatten the |0〉 and |2〉 diabatic potentials rather than favor the adiabatic limits
along ϕ we expect to lead to an improvement.

Finally, the model proposed here ignores much of the vibrational energy redistribution
that can occur to help relax the molecule. Additional vibrational energy redistribution
would be introduced through mode-couplings as well as the expanded kinetic energy oper-
ator, however, there may be a significant effect from the environmental modes that may be
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Figure 5.8: Results of the photoisomerization dynamics obtained from the POTFIT model.
Diabatic populations of the |0〉 state (blue), |1〉 state (red), and |2〉 state (black) are shown
in a) for the S1 excitation (solid) and S2 excitation (dashed). Projections of the wavepacket
are shown in b) as given by Eq. 5.32 (top row) and 5.33 (bottom row) for S1 excitation
(left) and S2 excitation (right).

incorporated through the calculated spectral densities. In particular, this enhanced vibra-
tional relaxation may be needed to distribute the additional energy from S2 excitation to
ensure relaxation to the trans state after transfer to the |0〉 state unlike what was found in
the population dynamics of Fig. 5.7a.

Environmental Effects

We have also performed MCTDH simulations using the aforementioned POTFIT model from
both S1 and S2 excitation initial conditions with and without additional degrees-of-freedom
to test environmental effects. In this model, we also utilized the more complex form of the
kinetic energy operator that includes coordinate-dependence and couplings to the G-tensor.
Due to the flexibility of the POTFIT model for fitting potentials, we have explicitly used
the |2〉 state when considering the S2 excitation initial condition—that is we have projected
the ground (|0〉) vibrational eigenstates into the |2〉 diabatic state—which differs from the
calculations using the simplified model.

The diabatic population dynamics are depicted in Fig. 5.8a for both the S1 and S2
excitations. There are some notable differences between these dynamics and the dynamics
of the simplified model notwithstanding the different initial condition for the S2 excitation.
The population dynamics in both initial conditions have a shortened coherence lifetime
and much faster population relaxation. These features can likely both be explained by
the description of the potential energy surface in the POTFIT model, which gives a much
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Parameter Value (eV)

ω0 0.1670
ω1 0.1564
ω2 0.1640

κ
(t)
0 0.0

κ
(c)
0 0.3203

κ
(t)
1 0.1541

κ
(c)
1 0.1335

κ
(t)
2 0.4092

κ
(c)
2 0.0
NSPF 15
NPBF 40

Table 5.7: Parameters used for the additional mode with electron-phonon coupling. All
parameters are given in units of eV except for the parameters of the basis functions.

more accurate representation of the diabatic potential in the regions where the potential
has not been extrapolated. This description includes additional terms that couple all the
modes together and would thus induce additional vibrational decoherence relative to the
simplified model. This vibrational decoherence is also aided by more terms in the kinetic
energy operator used in this model.

The faster population relaxation can also be attributed to the accuracy of the potential
representation. As was noted in the adiabatic potential resulting from the simplified model
(see Fig. 5.6a), the real adiabatic potential along the symmetric surface does not have a
barrier in the S1 state along the dihedral angle at large symmetric bending angle. This
region is an area where the adiabatic states come close—though not close enough to form a
conical intersection exactly—in energy and where much faster population transfer can occur.
As this region is entirely avoided in the simplified model we would expect a much slower
population transfer such that population transfer along the rotational mechanism only occurs
at or near the conical intersection geometry.

Interestingly, however, the qualitative features of the short-time dynamics are rather sim-
ilar. The projection of the wavepacket onto the θ and ϕ degrees-of-freedom for both initial
conditions with the POTFIT model are shown in Fig. 5.8b. As can be seen, the oscillations
in ϕ are still faster than the rotational motion of θ such that the additional energy in the S2
excitation should take the wavepacket to a region of fast population transfer prior to signif-
icant rotation. Unfortunately, even in this case of a more accurate potential representation
we have still not uncovered the correct Kasha’s rule violation obtaining quantum yields of
30.1% for S1 excitation and 35.3% for S2 excitation.

Having tested the dependence of the quantum yield on the accuracy of the potential
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Figure 5.9: Comparison of the diabatic populations between the POTFIT model without
(dots) and with (solid lines) an additional mode with electron-phonon coupling. Results for
the S1 excitation are shown in a) and for the S2 excitation are shown in b). Colors have the
same correspondence as in Fig. 5.8.

representation, we can now turn our attention to the effect from “environmental” degrees-
of-freedom that are not included in the system potential. We have added an electron-
phonon coupling in the form of Eq. 5.3 parametrized by the spectral density calculations
shown in Fig. 5.4c. As the main peak in the spectral density is due to NN stretch mode
and significantly dominates over the remaining modes we have included only a single mode
(herein refered to as Q), which was obtained by performing a single iteration of the effective
mode transformation of Burghardt and co-workers (see Ref. [107, 108, 273]) on the spectral
densities shown in Fig. 5.4c and a similar spectral density calculated using the cis geometry.
The additional terms are given by

V (Q) + VeB(Q) =
∑
I

|I〉〈I|
(

1

2
ωIQ

2 +
κ

(t)
I

2
(1− cos θ)Q+

κ
(c)
I

2
(1 + cos θ)Q

)
(5.34)

where ωI is the frequency of the mode in the Ith diabatic state, κ
(t)
I (κ

(c)
I ) is the coupling

coefficient due to coupling from the trans (cis) state geometry in the Ith diabatic state, and
we have excluded the mass due to our use of dimensionless harmonic oscillator coordinates
and primitive basis in the simulation. The values of the simulation parameters are listed in
Table 5.7.

The diabatic populations with the electron-phonon coupling included is compared to the
diabatic populations without the extra mode in Fig. 5.9. In the case of the S1 excitation the
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additional mode has negligible effect on the overall dynamics and gives similar yield to the
case without this environmental mode. This result could have been expected as the modes
not included in the original potential have little contribution to the S1 spectral density and
thus the predominant nuclear effects are already included in the system potential. In the
S2 excitation, the short-time (<300 fs) are dramatically different exhibiting a significantly
faster population transfer from the |2〉 to |1〉 state before additional transfer to the |0〉 state.
The NN stretch mode clearly has a significant effect on the dynamics in this regime due to
the large electron-phonon coupling exhibited in Fig. 5.4c. Also contributing to this effect
is the fact that the optimized geometries in the region of the S1/S2 conical intersection
show little change in the NN distance, which clearly contributes to the coupling between
the two states through energy fluctuations. Despite this significant change in the population
dynamics at early times, the yield is nearly unchanged yet again and this effect does not
appear to contribute to the Kasha’s rule violation in azobenzene.

As was noted earlier, additional vibrational relaxation may be necessary to enhance the
population transfer in particular regions of the potential that may contribute to the Kasha’s
rule violation. Another effect from the nuclear degrees-of-freedom may be a nonlinear effect
arising from the geometry optimization procedure used in obtaining the potential energy
surface. If the entire potential were instead optimized with respect to the S1 state at each
constrained geometry faster population transfer may be observed due to the changes in the
relative adiabatic energy differences. An initial investigation into this effect has been shown
in Fig. 5.5b, where it was shown that optimization with respect to the S1 state significantly
lowers the adiabtic energy of this state, but (not shown) leaves the other states’ energies
invariant. As SF-TDDFT is not well-suited for calculations of this type when there is spin
contamination, we expect a different flavor of TDDFT or higher-level method may prove
more fruitful along these lines.

5.6 Conclusion

In this chapter, we have utilized the hybrid formalism of Chapter 4 to develop a reduced
model for azobenzene photoisomerization. This model incorporates the minimal information
needed to characterize the known reaction pathways and was parametrized by ab initio
electronic structure calculations as well direct calculation of the kinetic energy operator. The
dynamics with the model can be simulated with numerically exact wavepacket propagation
methods such as the MCTDH calculations that were performed in this work. The qualitative
behavior of the short-time dynamics were found to be in agreement with previous simulations
noted by fast oscillations in ϕ and an increase of the early population transfer upon S2
excitation compared to the S1 excitation. The quantum yield, however, was found to be
qualitatively incorrect being above 50% for S1 excitation and increasing upon S2 excitation
in disagreement with previous simulations and experimental observations.

We have noted the limitations of the currently proposed model, which when addressed
may improve the results toward quantitative accuracy. Unfortunately directly improving
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the representation of the potential and more accurate fits as well as adding electron-phonon
coupling may not provide the solution, which was shown through MCTDH calculations with
a POTFIT model. As this is the first diabatic potential developed for azobenzene, however,
this work will pave the way for developing a more accurate model and enhancing the descrip-
tion of the reaction mechanism. Future tests of this model may also compare spectroscopic
observables to help describe novel experiments on conical intersetion dynamics.[131] Fur-
thermore, once an accurate diabatic model is achieved, simulations incorporating the effects
from condensed phase environments can begin and the complete picture regarding complex
dynamics of azobenzene photoisomerization can be elucidated through the used of advanced
simulation techniques.[222]
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Chapter 6

Two-Dimensional Electronic
Vibrational Spectroscopy

“There’s always another
secret.”

— Kelsier [216]

6.1 Introduction

Elucidating the mechanisms of quantum mechanical energy transfer has fundamental impli-
cations for the way we understand natural light-harvesting and develop artificial analogs.[224]
Previous experimental studies on natural systems[35, 68, 178] have been unable, however,
to clearly establish the mechanism of energy transfer that leads to quantum efficiencies ap-
proaching unity[25] and have launched long-standing debates obfuscating the role of observed
electronically and/or vibrationally coherent phenomena in the transfer process.[1, 12, 34, 47,
48, 54, 79, 103, 124, 160, 184, 187, 191, 195, 209, 211, 250, 257] It has been postulated that
these coherent processes may not actually serve any purpose in the overall energy trans-
fer mechanism.[37, 75] This ambiguity largely surrounds the lack of consistent treatment
of electronic-vibrational coupling in energy transfer models, which we address through a
simplified heterodimer model in this chapter. It has been shown that explicit details of
the vibronic coupling mechanism can have a large influence on the overall dynamics.[64, 66,
288, 295] Also contributing to the uncertainty is that the distinguishing features between vi-
bronic mixing mechanisms in coupled systems can be subtle in electronic spectroscopies[196,
228, 295]—and are only further obscured in the complex, congested spectra of experimental
realizations.

This chapter is based on work that has been submitted to The Journal of Chemical Physics.[11]
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Recently, two-dimensional electronic-vibrational (2DEV) spectroscopy has emerged as a
candidate experimental technique that can directly observe the correlated motion of elec-
tronic and nuclear degrees-of-freedom and their role in energy transfer.[185] Indeed, initial
studies on photosynthetic complexes, such as light-harvesting complex II (LHCII), showed
promise in utilizing this technique to unravel the dynamics of energy transfer between differ-
ent chromophores owing to the improved spectral resolution and structural details afforded
via probing vibrational modes.[154] Subsequent 2DEV measurements have shown evidence
of vibronic mixing in and its facilitation of ultrafast energy transfer in LHCII.[12] In the
latter, the 2DEV spectra showed rich vibrational structure corresponding to the dominant
electronic excitations which exhibited oscillatory dynamics reminiscent of non-Condon effects
found in previous transient absorption measurements.[126, 196, 290] These oscillations were
also found to be present at slightly higher-energy excitations to vibronically mixed states.
In this case, the clear similarity in the quantum beating patterns between these higher-lying
states and the dominant, more electronically mixed excitations, was speculated to be indica-
tive of rapid energy relaxation due to vibronic mixing. Here we develop a strategy to simulate
these general effects in 2DEV spectra and connect them to vibronic coupling mechanisms
of energy transfer. Further 2DEV studies on LHCII, involving excitation well-beyond the
dominant absorption bands, showed the same rapid energy relaxation, but with a significant
polarization-dependence.[10] With polarization control, the dynamics of vibronic excitations,
exhibiting much more rapid energy transfer, were disentangled from purely electronic exci-
tations with significantly slower energy transfer. Not only does this polarization-dependence
isolate the role of vibronic mixing on the rate of energy transfer, it potentially rules out the
role the protein environment has on enhancing rapid energy transfer and suggests a predom-
inant contribution from intramolecular modes to the underlying energy transfer mechanism.

To date, theoretical work regarding the 2DEV signals of coupled systems, while infor-
mative, has been restricted to systems that have a only have a single vibrational mode per
monomeric unit.[24, 153, 286] An interpretation of the origin of the vibronic coupling ob-
served in these recent findings is, therefore, lacking. Particularly, the relative infancy of
2DEV spectroscopy makes assigning vibronic mixing to direct electron-nuclear coupling or
non-Condon effects in the experiments difficult as this requires the development of multi-
mode models. In this chapter, we bridge this gap between vibronic coupling mechanisms
and analysis of the experimental measurements by directly simulating the 2DEV spectra of
a minimal model vibronically coupled heterodimer while controlling various vibronic cou-
pling mechanisms. By utilizing a model system, we are able to isolate the role that different
vibronic coupling mechanisms have on the structure of the excitonic states that are electron-
ically excited in typical experiments and show how that structure is identifiable in 2DEV
spectroscopy both statically and dynamically. We further compare these signatures to the
population dynamics, which demonstrates the ability to directly link the mechanism of en-
ergy transfer with spectral observables and connects model systems to potential ab initio
simulations for which only simple observables like the populations are available.

The remainder of this chapter is organized as follows. In Section 6.2, we introduce a
model vibronic heterodimer and the formalism we use for computing linear absorption and
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2DEV spectra. We analyze the static and dynamical signatures of vibronic coupling in the
spectra in Sections 6.3 and 6.4, respectively. Concluding remarks and directions for future
work are provided in Section 6.5.

6.2 Theory

In this section, we introduce a minimal vibronically coupled heterodimer model and the
theoretical formalism by which we simulate spectra. We utilize an open quantum system
approach to describe the heterodimer in contact with a thermal bath given by the total
Hamiltonian, H = HS +HB +HSB, where HS is the system Hamiltonian of the heterodimer,
HB is the bath Hamiltonian, and HSB is the system-bath Hamiltonian describing their
interactions. This approach offers an exact description of the most strongly-coupled system
degrees-of-freedom with a simple treatment of relevant environmental effects that induce
dissipation and dephasing in the system.

Model Hamiltonian

The system (depicted in Fig. 6.1a) is comprised of two chromophores (herein referred to
as sites A and B) each consisting of a local ground and excited electronic state and local
intramolecular modes. These chromophores, in the context of natural light-harvesting, could
be considered distinct pigments in a protein or two of the same pigments with different protein
binding properties that statically change the characteristics of the local Hamiltonians. We
restrict the system Hamiltonian to the ground state (G) and singly-excited state manifold,
thus containing three electronic states of the form,

HS = (hgA + hgB)|G〉〈G|+ (heA + hgB + ε)|A〉〈A|
+ (hgA + heB + ∆E + ε)|B〉〈B|+ J(|A〉 〈B|+ h.c.), (6.1)

where we have implied the Kronecker product structure of the A and B local Hamiltonians
applying on their local vibrational subspace. The electronic state |A〉 (|B〉) refers to the
state when site A (B) is excited and site B (A) is in its ground state. Here, the ground
state is uncoupled to and energetically separated from the excited states by an excitation
energy, ε, which may be removed without loss of generality. The excited states comprise a
two-level system in the electronic subspace that has an energy difference denoted by ∆E and
an electronic coupling denoted by J . In this two-level subsystem it is useful to consider the
excitonic gap, which is equivalent to a Rabi frequency given by ~ΩR =

√
∆E2 + 4J2 that

determines the timescale of electronic oscillations between the excited states.
Each site has a ground (g) and excited (e) state where the local Hamiltonians acting on
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Figure 6.1: a) Schematic of the model consisting of two sites, A and B, each with one
electronic degree-of-freedom and one high-frequency vibrational mode. For site A (B), the
high-frequency mode is shown in red (light blue) in the ground state and yellow (dark
blue) in the excited state. Horizontal lines in each harmonic potential indicate vibrational
levels where dashed lines, specifically, indicate one vibrational quantum. Site A includes an
additional low-frequency mode, shown in pink in the ground state and green in the excited
state with line-markings corresponding to different vibrational excited states. b) Simplified
eigenenergy level diagram arising from electronic coupling, J , between the excited state
manifolds of sites A and B for each of the three models considered here. For simplicity, the
ground state manifold has been omitted and only the three lowest excitonic states in the
excited electronic/vibronic manifold as well as the corresponding vibrational levels have been
illustrated. The relative site contributions for these levels are also shown by the length of
each ket, “| 〉”, with site-specific color-coding following a). Dashed lines indicate a vibrational
excitation. Site contributions of < 5% are grouped together and denoted in gray. Shapes on
the left hand side of the energy levels in the electronic/vibrational denote the main excited
state absorption (ESA) transitions while shapes in the vibrational manifold denote the states
to which the main ESA excitations are excited by vibrational pulses.
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the site vibrational subspaces have the form

hiI =
~ωI,i,f

2

(
p2
I,f + (qI,f − δie

√
2Sf )

2
)

+ δIA
~ωI,s

2

(
p2
I,s + (qI,s − δie

√
2S)2

)
(6.2)

where I = A,B denotes the chromophore site, i = g, e denotes the electronic state of the site,
δij denotes the Kronecker delta, and the q and p are the position and momentum operators,
respectively of high-frequency, f , and low-frequency, s, modes. Each site contains one high-
frequency (ωI,i,f/ΩR � 1) local intramolecular modes with a distinct site- and electronic-
state-dependent frequency. These high-frequency modes are slightly displaced in the excited
states and thus have a small, but non-zero Huang-Rhys factor, Sf , which we will consider
fixed throughout this study. Vertical excitations and electronic transitions are, however,
still dominated by transitions that leave the vibrational states of these modes unchanged.
Coupled to site A only is also a low-frequency mode that is nearly-degenerate with the
excitonic gap, ωA,s ≈ ΩR. In practice, this mode could be considered an intramolecular
mode with significant local site electron-phonon coupling. This mode is also shifted in
the excited state of the A chromophore with a non-zero Huang-Rhys factor, S, however
due to the resonance with the excitonic gap, this displacement induces significant vibronic
mixing by coupling different vibrational states in vertical excitations from the ground state or
electronic transitions between the A and B sites. Thus, S can be varied to tune the strength
of the vibronic coupling mechanism through what we herein refer to as Franck-Condon (FC)
activity. We note that in this work, two vibrational levels per high-frequency mode and four
vibrational levels for the low-frequency mode were required for convergence. Additionally,
we have restricted the model to the ground- and singly- excited vibrational state manifold
with respect to the subspace of the high-frequency modes for a total system Hilbert space
dimension of 36.

The electronic coupling is considered to arise from a dipole-dipole interaction between
the excited states of the two chromophores,

J =
κ

r3
µAµB, (6.3)

where µA(B) is the magnitude of the transition dipole moment (TDM) for the A (B) site, r
is the distance between the two chromophores, and κ is a factor accounting for the relative
orientation of the chromophores. We assume here that the distance, relative orientation, and
TDM of the B chromophore are fixed (r = r0, κ = κ0, and µB = µB0, respectively), while
the TDM of the A chromophore depends linearly on the low-frequency mode,

µA(qA,s) = µA0

(
1 +
√

2ηqA,s

)
, (6.4)

where µA0 is the static contribution to the dipole moment. The mode-dependence arises as
a non-Condon effect, that is,

√
2µA0η =

(
∂µA
∂qA,s

)
, (6.5)
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where η is a dimensionless parameter controlling the strength of this effect. We note that
because the electronic states have the same symmetry there is no strict symmetry require-
ment here for the HT active mode.[3] Under this assumption, the electronic coupling obtains
the form

J(qA,s) = J0

(
1 +
√

2ηqA,s

)
, (6.6)

where J0 is the electronic coupling arising from the static contributions of the TDM at a
fixed distance and orientation, J0 = κ0µA0µB0/r

3
0, and the non-Condon effect is given by√

2J0ηqA,s. We consider here a system in the electronically coherent regime (∆E = J0),
which is typical for energy transfer dynamics in these chromophoric systems. Since η is a
dimensionless parameter and it enters directly in the TDM, it can be varied to systematically
study Herzberg-Teller (HT) activity in this system.

The chromophoric system here is assumed to be weakly coupled to a set of environmental
modes that describe the short- and long-range fluctuations of the environment. In particular
we consider two sets of baths, an electronic set and a vibrational set, which are assumed
to be independent due to disparity of the frequency of modes that couple to the separate
electronic or vibrational degrees-of-freedom. The electronic baths independently couple to
the electronically excited states through a dipolar coupling

(HB +HSB)el =
∑
I,n

~ωel
I,n

2

(pel
I,n

)2
+

(
qel
I,n −

gel
I,n√
2
VI

)2
 , (6.7)

where VI (I = A,B) are the dimensionless system dipole operators and the vibrational baths
independently couple to the nuclear modes of the system

(HB +HSB)vib =
∑
I,n

{
~ωfI,n

2

[(
pfI,n

)2

+
(
qfI,n − gfI,nqI,f

)2
]

+ δIA
~ωsI,n

2

[(
psI,n
)2

+
(
qsI,n − gsI,nqI,s

)2
]}

. (6.8)

Here we have included the system-bath couplings as system-dependent shifts in the minima
of the bath oscillators, which ensures translational invariance of the bath with respect to
the system. The g coefficients in the above expressions are the bilinear coupling coefficients
with the form,

gk,n =

√
2ck,n

~ωk,n
, (6.9)

which comprise the spectral density function,

Jm,k(ω) =
π

2

∑
n

c2
k,n

~ωk,n
δ(ω − ωk,n). (6.10)
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Parameter Value (cm−1)

~ωA,g,f 1650
~ωB,g,f 1660
~ωA,e,f 1545
~ωB,e,f 1540
~ωA,s 200
∆E 100
J0 100
λel 35
λvib 17.5
~γel, ~γvib ∼ 106
1/β ∼ 105
Sf 0.005 (dimensionless)
µA0/µB0 -4 (dimensionless)

Table 6.1: Fixed parameters used in the model heterodimer. All parameters are in units of
cm−1 unless otherwise specified.

Here m = el,vib denotes whether the spectral density corresponds to an electronically- or
vibrationally-coupled environment and k serves here as a composite index (k = I for the
electronic bath and k = I, f/s for the vibrational bath) describing the environmental modes
that are coupled to the different system degrees-of-freedom in Eqs. 6.7 and 6.8. The spectral
densities are all assumed to have the Debye form,

Jm,k(ω) = 2λmγmω
1

γ2
m + ω2

, (6.11)

where λm is the reorganization energy and γm is the bath relaxation timescale and each
m, k environment. These parameters are chosen such that the bath represents a weakly-
coupled, Markovian bath so that the use of multilevel Redfield theory is justified in treating
the dynamics of the total system-bath Hamiltonian.[173, 221] We note here that while this
form is consistent with much of the underlying physics of the total system, it is primarily
phenomenologically included to induce weak dissipation and dephasing for ease of numerical
simulations and a further study that considers the effects a more systematically imposed
system-bath coupling is warranted. A detailed list of the model parameters used in this
study can be found in Table 6.1.

Linear Absorption and 2DEV Spectroscopy from Quantum
Master Equations

To calculate spectroscopic observables we utilize the response function formalism, which has
been described elsewhere[176], so we restrict our discussion to the key aspects of our simula-
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tion. In this formalism, linear and nonlinear spectra can be related via Fourier Transforms
of correlation functions. Specifically, for a linear absorption spectrum in the impulsive limit,
the relevant response function is

R(t) =

(
i

~

)
θ(t)Tr

{
µelG(t)µ×elρeq

}
, (6.12)

where µ×· = [µ, ·], Tr {·} is the quantum mechanical trace over the full system plus bath
Hilbert space, θ(t) is the Heaviside step function, and ρeq is the thermal equilibrium density
matrix given by

ρeq =
e−βH

Tr {e−βH} , (6.13)

where β is inverse thermal energy. This response function is a dipole-dipole autocorrelation
function of the electronic dipole given by

µel = µA + µB (6.14)

where

µI = µI0

(
1 + δIA

√
2ηqA,s

)
(|I〉 〈G|+ |G〉 〈I|) . (6.15)

The time-dependence is given by action of the propagator G(t)· = e−iHt/~ · eiHt/~, which
is the unitary evolution in the full Hilbert space. This unitary evolution is prohibitively
expensive, so we utilize the quantum master equation (QME) technique whereby we take a
partial trace over the bath degrees-of-freedom and compute the response function from the
dynamics of the reduced density matrix[72],

TrB
{
G(t)µ×elρeq

}
= G(t)ρµ (6.16)

where ρµ is the reduced density matrix of the system after action of the dipole operator and
G(t) is the reduced propagator defined by our QME. The Redfield theory approach taken
here uses a double perturbation theory in both the light-matter interaction and system-bath
interaction, where the light-matter interaction is assumed to be even weaker than the weak
system-bath coupling.[2, 152] In this representation the response function is,

R(t) =

(
i

~

)
θ(t)TrS {µelG(t)ρµ} . (6.17)

Here we also invoke the rotating wave approximation (RWA), which reduces the terms allowed
in the expansion of the commutators. Denoting the dipole operators as a sum of raising and
lowering dipole operators, respectively,

µ+
el = µ+

A + µ+
B = µA0

(
1 +
√

2ηqA,s

)
|A〉 〈G|+ µB0 |B〉 〈G| (6.18)

µ−el =
(
µ+
el

)†
, (6.19)
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and ignoring the negative frequency contribution, the response function then becomes

R(t) =

(
i

~

)
θ(t)TrS

{
µ−elG(t)ρµ+

}
, (6.20)

where G(t)ρµ+ = TrB
{
G(t)µ+

elρeq
}

. The corresponding linear absorption spectrum is given
by the imaginary part of the Fourier transform

S(ωexc.) = Im

∫
dt eiωexc.tR(t), (6.21)

where ωexc. is the excitation frequency less the excitation energy ε.
2DEV spectroscopy is a cross-peak specific multidimensional spectroscopic technique

where the signal arises from both visible and subsequent infrared light-matter interactions.
Specifically, visible excitation pulses prepare an ensemble of electronic/vibronic states which
evolve as a function of waiting time, T . The evolution of the ensemble is then tracked via
an infrared detection pulse.

Within the same formalism, the response function for 2DEV spectroscopy can be written
as

R3(tdet., T, texc.) =

(
i

~

)3

θ(tdet.)θ(T )θ(texc.)

× Tr
{
µvibG(tdet.)µ

×
vibG(T )µ×elG(texc.)µ

×
elρeq

}
, (6.22)

where texc. denotes the time between the two visible pulses, tdet. denotes the time between
the infrared pulses, and the vibrational dipole operator acting on the high-frequency modes
is given by

µvib = µA,f + µB,f (6.23)

where µI,f =
√

2qI,f |I〉 〈I| and we have ignored the vibrational TDM of the slow mode due to
non-resonance with the infrared probe. We again utilize the QME technique to compute the
response function, which in the weak-coupling (λm → 0) and Markovian (γm → 0) limits we
have chosen here reduces to the expression obtained from the quantum regression theorem[5,
72],

R3(tdet., T, texc.) =

(
i

~

)3

θ(tdet.)θ(T )θ(texc.)

× TrS
{
µvibG(tdet.)µ

×
vibG(T )µ×elG(texc.)ρµ

}
. (6.24)

Working also with the RWA invokes further simplifications, specifically to the number of
pathways[185], giving the response function as a sum of rephasing (RP) and non-rephasing
(NR) pathways

R3(tdet., T, texc.) = RRP
3 (tdet., T, texc.) +RNR

3 (tdet., T, texc.), (6.25)
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where, denoting K = NR,RP,

RK
3 (tdet., T, texc.) = RK

GSB(tdet., T, texc.)−RK
ESA(tdet., T, texc.) (6.26)

where GSB denotes the ground-state bleach pathways given by

RRP
GSB(tdet., T, texc.) =

(
i

~

)3

θ(tdet.)θ(T )θ(texc.)

× TrS
{
µ−vibG(tdet.)µ

+
vibG(T )µ−elG(texc.)ρµ+

}
(6.27)

RNR
GSB(tdet., T, texc.) =

(
i

~

)3

θ(tdet.)θ(T )θ(texc.)

× TrS

{
µ−vibG(tdet.)µ

+
vibG(T )

(
G(texc.)ρ

†
µ+

)
µ+
el

}
(6.28)

and ESA denotes the excited state absorption pathways given by

RRP
ESA(tdet., T, texc.) =

(
i

~

)3

θ(tdet.)θ(T )θ(texc.)

× TrS
{
µ−vibG(tdet.)µ

+
vibG(T ) (G(texc.)ρµ+)µ−el

}
(6.29)

RNR
ESA(tdet., T, texc.) =

(
i

~

)3

θ(tdet.)θ(T )θ(texc.)

× TrS

{
µ−vibG(tdet.)µ

+
vibG(T )µ+

elG(texc.)ρ
†
µ+

}
. (6.30)

Here we have also used the raising and lowering operator representation of the vibrational
dipole operator

µ+
vib = µA,f + µB,f = a†A,f〈A|+〉a†B,f〈B|, 〉 (6.31)

µ−vib =
(
µ+
vib

)†
(6.32)

where a†I,f denotes the bosonic creation operator of the fast mode of chromophore I. The
signal observed experimentally is then the double Fourier transform over the excitation and
detection times,

χ(ωdet., T, ωexc.) = Re
{
χRP(ωdet., T, ωexc.) + χNR(−ωdet., T, ωexc.)

}
, (6.33)

where,

χK(ωdet., T, ωexc.) =

∫
dtdet.

∫
dtexc.e

i(ωdet.tdet.+ωexc.texc.) ×RK
3 (tdet., T, texc.). (6.34)

The visualization of the data is typically best presented in the form of excitation frequency
(ωexc.)-detection frequency (ωdet.) correlation plots of the total absorptive spectrum param-
eterized by T .
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Eigenstate Structure of the Model Hamiltonian

The effects from the distinct vibronic coupling mecahnisms are displayed in the eigenenergy
levels shown in Fig. 6.1b for which we will first focus on the electronic/vibronic manifold.
In the case where there is no vibronic coupling (S = 0, η = 0) we see that the lowest energy
eigenstates in the excited state manifold consist of two electronically mixed states with
respect to the chromophore sites denoted by a square and circle. We note that, throughout
this chapter, we will colloquially refer to excitonic states of particular electronic or vibronic
mixing character in accordance with their assigned shapes in Fig. 6.1b. There is an additional
state, denoted by a star, which is similar in its site character to the lowest-energy (square)
eigenstate, but has a single quantum from the low-frequency mode on the A chromophore.
This state is nearly degenerate with the higher-energy (circle) eigenstate, but is composed of
sites that are virtually uncoupled to the aformentioned eigenstates due to the orthogonality of
the vibrational states on different electronically excited states without any vibronic coupling.

When vibronic mixing is instigated through FC activity (S = 0.1, η = 0), the nearly
degenerate energy eigenstates are strongly coupled and energetically split into the star state,
which is a vibronically mixed state due to the additional character of multiple low-frequency
vibrational states from a single electronically excited state, and the circle state, which is
still primarily electronically coupled, but has additional character of multiple low-frequency
vibrational states from both electronically excited states. We thus refer to the energy eigen-
states denoted by a square and circle as electronically coupled states, while the state denoted
by a star is referred to as a vibronically coupled state.

Although difficult to capture in the energy level diagram, the energetic splitting between
the circle and star states increases in the HT active case (S=0.1, η = −0.15) versus FC active
(S=0.1, η = 0). In either scenario, the vibronic coupling clearly serves to distribute site A
character throughout the excited state manifold, therefore promoting additional possible
relaxation pathways. HT activity, though, specifically results in the distribution of pure
electronic character from site A to the vibronically coupled state (star) in contrast to FC
activity which only distributes vibrational (low-frequency mode) character from site A. In
this way, in the presence of HT activity, the circle state is nearly invariant, retaining its
electronic-coupling character, but the star state gains pure electronic-coupling character,
unlike in the FC active scenario. While not shown in Fig. 6.1b, the next set of excitonic
states in the electronic/vibronic manifold are electronic replicas of the star and circle states
with an additional quantum in each vibrational state of the slow mode. These unpictured
states thus contribute to the intensity borrowing effect of HT activity in the absorption
lineshape.

Currently, the discussion has been restricted to the electronic/vibronic manifold, however,
a comparison of the site character of the excitonic states in the vibrational manifold reveals
striking differences. In fact, the high-frequency excited state vibrational modes are clearly
influenced by changes in relative site contributions, which makes them sensitive reporters of
vibronic mixing mechanisms. The eigenstates in the vibrational manifold are also labelled
by shapes denoting the predominant transitions from the electronic/vibronic manifold due
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to the vibrational transition dipole moment. In this manner, we note that excitonic states
in the vibrational manifold with the same shape as those in the electronic/vibronic manifold
have the same electronic/vibronic character. When S is nonzero, transitions between these
manifolds can change the electronic/vibronic character due to changes in the vibrational
transition dipole moment matrix elements. A focused discussion on the interpretation of
vibronic coupling through a spectroscopic interrogation of the electronic/vibronic manifold
versus both the electronic/vibronic and vibrational manifolds is reserved for Sec. 6.3.

6.3 Static Signatures of Vibronic Coupling

While 2DEV spectroscopy gives a time-dependent spectroscopic signal from which dynam-
ical phenomena can be inferred, it is first useful to uncover the ways in which it can be
utilized to unravel the detailed structure arising from the underlying system Hamiltonian.
In particular, we compare the signal observed from electronic linear absorption spectroscopy
and the signal observed from 2DEV spectroscopy at a waiting time of T = 0 fs. To show
the specific effects arising from FC activity and HT activity we have computed both spectra
with pair values of S and η at (S, η) = (0, 0), (0.1, 0), (0.1,−0.15), which are shown in Fig.
6.2. When both parameters are set to zero, that is, there is neither FC nor HT activity,
we expect to see coupling between the two chromophores that is purely electronic in nature.
Indeed the linear absorption spectra (Fig. 6.2a) shows two peaks that are inhomogeneously
broadened with respect to the stick spectra due to the weak coupling between the system
and bath. These peaks are transitions to the two lowest excitonic states in the excited state
manifold, with zero vibrational quanta in the low-frequency modes, which have an exci-
tonic energy gap of ~ΩR. The 2DEV spectrum gives additional structural information in
both the GSB (positive) or ESA (negative) signals from the quartet structure owing to the
correlation of the excitonic states with the vibrational character of the fast modes for each
chromophore in each electronic state populated. The two excitonic transitions are observable
as bands along the excitation axis with splitting equal to ~ΩR, however, additional cross-
correlation between these bands at various positions along the detection axis is observed (see
Fig. 6.2a in the region spanning 1570∼1595 cm−1) which shows that the excitonic states
are comprised of sites that are electronically coupled. The peaks along each band report
on the population of particular excitonic states in electronic/vibronic manifold. Since the
high-frequency modes are local to each site, there are two vibrational peaks of the same
electronic/vibronic character per band (denoted by the same shapes) that appear through
coupling with excitonic states in the vibrational manifold (see Fig. 6.1b). This locality also
provides some information about the relative populations in each site rather than purely ex-
citonic populations, despite working in the electronically coherent regime. The 2DEV signal,
even in this very simple case, goes well beyond the observable description obtainable by lin-
ear absorption—particularly because both the electronic/vibronic and vibrational manifolds
are directly interrogated spectroscopically in the former. In this way, it is understandable
how vibronic mixing mechanisms could be heavily obscured—even in other multidimensional
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Figure 6.2: (Top row) Electronic linear absorption spectra for the three treatments of vi-
bronic coupling—a) no coupling, b) FC activity, and c) HT activity. Stick spectra are also
shown where yellow (square), green (star), and blue (circle) indicate the three lowest-energy
excitonic transitions, explicitly described in Fig. 6.1, while gray sticks indicate higher-lying
vibronic transitions. (Bottom row) Corresponding 2DEV spectra at T = 0 fs. Positive,
red/yellow features indicate GSBs and negative, blue features indicate ESAs. Contour levels
are drawn in 2% intervals. All spectra have been normalized to the maximum in each data
set. ESA peaks are labeled by shapes according to transitions to the electronic/vibronic
manifold as indicated in Fig. 6.1. The black, dashed box highlights the higher-excitation
frequency portion of the spectra where vibronic transitions appear. In b) and c), the circled
ESA transition at the bottom is assigned to a transition between states of different excitonic
character through a vibrational pulse.
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spectroscopies—that are limited only to interrogations of the electronic/vibronic manifold.
The stark contrast in detectable information between these spectroscopies arises in the

presence of vibronic coupling activity. The linear absorption and 2DEV spectra for the FC
active case (S=0.1, η=0) are shown in Fig. 6.2b. Despite a significant change in the structure
of the excitonic states, the linear absorption spectrum is virtually indistinguishable from the
vibronically inactive spectrum when accounting for broadening. As is shown in the stick
spectrum, the new vibronic excitonic state (star) is excited, however, due to the relative
weakness of the transition and the comparable excitonic gap between the vibronic and the
higher-energy electronic excitonic states (star and circle, respectively) this state is masked
under typical broadening. This excitonic state is, however, clearly shown in the 2DEV
spectrum. As was expected from analysis of the excitonic states (see Sec. 6.2), the lowest-
lying excitonic state remains largely unchanged in its excitation energy and vibrational
structure, however, additional structure in the cross-coupling along the detection axis of this
band is observed since this excitonic state now has site character that couples to the vibronic
(star) state in addition to the higher-energy electronic (circle) state. In essence, detection
via the vibrational manifold serves to disperse the spectroscopic signatures of the excitonic
states along the detection axis where even slight changes due to various couplings can be
readily observed.

The higher-energy excitation band retains this substructure from the additional vibronic
excitonic state, however, it is notable that there is a small, but detectable, energy shift
along this band corresponding to the different excitonic states—the vibronic (star) state
is slightly lower in energy than the electronic (circle) state. An additional subtle feature
arises along the higher-energy excitation band at a lower detection frequency. This feature
is a unique consequence of FC activity and is a signature of the site mixing in both the
vibronic/electronic (star/circle, respectively) states and newly allowed transitions in the
vibrational TDM. Specifically, as a result of the mixing, vibrational transitions with lower
energy difference (electronic circle to vibronic star transitions in Fig. 6.2b) can emerge—a
transition that is expressly disallowed without FC activity due to the orthogonality of the
excitonic states with respect to the low-frequency vibrational states. We also note that
additional broadening in the higher-energy band is exhibited in both the GSB and ESA
signals, which we attribute to coupling between the higher-energy (circle) excitonic state
and other vibronic states, however, this effect is likely not distinguishable in practice.

In the final case, (S = 0.1, η = −0.15), we consider the simultaneous effect of both
FC activity and HT activity on the structure of the spectra. While the vibronic state is
still masked by broadening in the linear absorption spectrum, a new peak appears at an
excitation energy nearly ~ωA,s larger than the higher-energy excitonic (circle) state, which
is due to the intensity borrowing effect of HT activity, i.e. there are even stronger dipole-
allowed transitions to higher-lying excitonic states with additional vibrational quanta in
the low-frequency mode. These additional transitions specifically build on the vibrational
progression of the low-frequency mode in the circle and star states—rather than the square
state—due to the near-resonance condition of the circle and star states in the FC inactive
case. The 2DEV spectra expectedly picks up this feature along the excitation axis in both
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the GSB and ESA signals, however, it is interestingly correlated with IR transitions similar
to the circle state rather than the star state or a combination of the circle and star state.
This correlation is due to the relative intensities that can be borrowed from the circle and
star states, that is, the HT activity induces transitions that are like the circle state plus one
vibrational quantum in the low-frequency mode with a stronger signal than the star state.
This correlation also indicates that 2DEV spectroscopy directly reports on HT activity if the
side-bands exactly replicate, with lower intensity, the lower-energy excitonic states along the
detection axis and if no additional IR transitions emerge at lower detection energies akin to
the circle to star IR transition from FC activity described above.

A final point regarding the HT activity is that the observed signal here—the intensity
borrowing from the dominant excitonic states along the excitation axis—is strictly due to
the form of the non-Condon activity we have chosen, namely that the low-frequency mode
changes the magnitude of the dipole moment and thus changes the electronic TDM directly.
The same effect in the electronic coupling could arise, to first-order, from different modes
that modulate the relative positions of the chromophores, but leave invariant the TDM. Since
the structure of the excitonic states is apparently not influenced as much by HT activity as
FC activity in the electronically coherent regime, this HT activity distinctly shows up as
stronger side-band transitions along the excitation axis, which would not be present in other
forms of mode-dependent electronic coupling terms.

6.4 Dynamical Signatures of Vibronic Coupling

With 2DEV spectroscopy established as a sensitive tool for witnessing vibronic effects, we
turn to an analysis of how these effects manifest in the dynamics from the spectra. Rather
than analyzing the complex dynamical signatures from the spectra in the time-domain, we
convert to the frequency-domain to construct beat maps in the waiting time as a function of
the excitation and detection frequencies. Specifically, these beat maps are formed by first fil-
tering out the high-frequency oscillatory dynamics using a Savitzky-Golay filter[220], which
produces a dynamical map of the excitonic population dynamics. These population dynam-
ics are then subtracted from the total spectra yielding the remaining coherent dynamical
components (denoted by χ̃) from which the power spectrum is calculated as

S(ωdet., ωT , ωexc.) = |Ξ(ωdet., ωT , ωexc.)|2 (6.35)

where

Ξ(ωdet., ωT , ωexc.) =

∫
dTe−iωTT χ̃(ωdet., T, ωexc.). (6.36)

In the following, we will show how these oscillatory components report directly on the in-
terplay between excitonic states. Additionally, the conclusions drawn from this specific type
of beat map analysis can be readily applied to more complex systems where the excitonic
manifold as well as the dynamics are often highly congested.
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Figure 6.3: Beat maps at specific ωT values corresponding to the excitonic energy gaps in the
models where there is a) no vibronic coupling, b) FC activity, and c) HT activity. For each
model, the plots are normalized to the maximum beat frequency amplitude. The colormap
indicates spectral regions that oscillate at the given ωT values with amplitudes ranging from
zero (white) to one (red), the maximum value. Contour lines indicate the 2DEV spectra for
each model at T = 0 fs. The black, dashed box highlights the higher-excitation frequency
portion of the spectra where vibronic transitions appear. The black arrows indicate the
spectral region of ωdet. that is further analyzed in Fig. 6.5.

Population dynamics of the sites can also be inferred from these dynamical beat maps
since 2DEV probes local intramolecular modes.[153] To illustrate this point, we compare the
dynamical beat maps to the population dynamics starting from an initial vertical excitation
to the B site given by,

ρ(0) = µBρeqµ
†
B. (6.37)

This initial condition considers specifically the rapid population transfer from the higher-
energy B site to the lower-energy A site to show the complex dynamical features observed
in this ultrafast process comparable to realistic systems such as LHCII. While this initial
condition is not entirely physically realizable as the chromophores are intrinsically coupled
and cannot be isolated in this way, it is useful to show how the dynamical signatures in 2DEV
spectra are exhibited in more idealistic simulations for drawing connections between future
atomistic simulations for which corresponding spectral simulations are beyond computational
capabilities.
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Figure 6.4: (Top row) Site populations for an initially, vertically excited wavepacket into the
B site where a) S = 0 and b) S = 0.1. Yellow/green indicates the population of site A and
blue indicates the population of site B. (Bottom row) Corresponding exciton populations
where a) S = 0 and b) S = 0.1. Yellow (square), green (star), and blue (circle) indicate the
populations of the three corresponding lowest-energy exciton levels, explicitly described in
Fig. 6.1, while gray indicates the populations of all higher-lying levels. Throughout, solid
lines indicate η = 0 and dashed lines indicate η = −0.15 (i.e. no HT activity versus HT
activity).
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Figure 6.5: Beat maps at a fixed detection frequency, ωdet. (indicated by the black arrows in
Fig. 6.3), for the three models where there is a) no vibronic coupling, b) FC activity, and
c) HT activity. The corresponding colormaps are identical to those in Fig. 6.3. Slices along
the excitation axis at specific beat frequencies, corresponding to the exciton energy gaps in
the model, are shown above each beat map. Also shown in these plots for comparison are
the electronic linear absorption stick spectra as described in Fig. 6.2.

In the beat maps, we observe peaks in the dynamical frequency ωT that correlate with
the excitonic states at particular ωexc. and ωdet.. The correlations between the dynamical
frequency and the excitonic states specifically show the contribution from certain states
to a particular dynamical signature, that is, which states beat at which frequencies. We
have analyzed these beat maps in each parameter set (S, η), which are shown in Fig. 6.3
as overlayed with the T = 0 fs 2DEV spectra for clearer identification. In the case (S =
0, η = 0) we observe a single dynamical frequency corresponding to the bare excitonic gap
~ΩR. This signature is to be expected as there is negligible contribution of FC activity
from the high-frequency modes and no vibronic contribution from the low-frequency mode.
Thus, the state populations oscillate, at times shorter than the onset of thermalization,
in accordance with the dynamics of a two-level system. This beat map is consistent with
the population dynamics, shown in Fig. 6.4a and c, which show the site and excitonic
populations, respectively. In particular, the site populations exhibit beating only at the
excitonic gap between the chromophoric states with subsequent thermal relaxation. This
same beating appears in the excitonic populations where it is convoluted with population
transfer between the excitonic states. We have also computed the population dynamics
considering only the HT activity, (S = 0, η = −0.15), and found that there is little to no
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difference in the site population dynamics. Rather, the difference is in the initial excitation
condition of the excitonic populations due to the aforementioned change in the structure of
the excitonic states to which we are exciting.

With the addition of both cases of vibronic coupling comes an additional dynamical
frequency associated with quantum beating at the excitonic gap between the square and
star state, which is distinct from pure Rabi oscillations. While the Rabi frequency is slightly
modified, this beating frequency is still associated predominantly with the excitonic state
of mostly electronic character (circle), while the additional frequency is associated with
the vibronic state (star). This distinction is emphasized when considering the correlation
between the beat frequency and the excitonic state character as shown in Fig. 6.3b and c,
which show the beat maps for the S = 0.1 and η = 0,−0.15 cases. In both cases, the modified
Rabi frequency is slightly higher due to the additional coupling but in the FC-only active
case, this frequency is specifically correlated with the circle state with a small contribution
from the star state. This correlation is most notable when considering the lower detection
frequency circle to star transition (1530∼1540 cm−1) which has a weak signal at the modified
Rabi frequency but no signal at the new vibronic frequency. The vibronic frequency has much
more participation from the vibronic (star) state than does the modified Rabi frequency. At
this new frequency, there is also notably more activity at higher-lying vibronic states along
the excitation axis suggesting that these higher-lying vibronic states are relaxing mainly to
the star state. These excitation side-band correlations become significantly more prevalent
in the HT active case (S = 0.1, η = −0.15). Noticeably, however, there is enhanced activity
of these higher-lying vibronic states in both frequency components. The main difference is
that HT activity leads to borrowing of pure electronic character from the circle to the star
state (see Fig. 6.1b). This activity, in turn, leads to more equal contributions from both
states at the new vibronic frequency and the (further) modified Rabi frequency facilitating
participation of the higher-lying vibronic states across all beat frequencies.

In both cases, (S, η) = (0.1, 0), (0.1,−0.15), the population dynamics (shown in Fig. 6.4b
and d) are virtually identical and we will thus consider them in unison. The site populations
show a seemingly polychromatic beating pattern with initial electronic oscillations corre-
sponding to the modified Rabi frequency crossing over to beating on the vibronic frequency.
This pattern is also exhibited in the excitonic populations with an initial beat between the
electronic (square and circle) states followed by correlated oscillations in the square and star
states. In this instance, it appears as though population transfer between the chromophores
is assisted by vibronic coupling, specifically FC activity, by protecting the transfer from
back-oscillations. In particular, the crossover from purely electronic oscillations at short
times (about one period of the modified Rabi frequency) to oscillations at the excitonic gap
coupling the star state prohibits further population from transferring back to the B site
after transferring to the A site. We emphasize, however, that this is only a weakly drawn
conclusion with respect to energy transfer in realistic systems and requires further analysis
in which we consider various regimes including the electronically incoherent regime. For
example, the overall transfer between sites A and B in this case is largely dictated by the
electronic coupling which distributes a reasonable amount of site B character in the low-
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est excitonic state—in direct competition with the vibronically-induced distribution of site
A character among the higher-lying states. In the incoherent regime, the lowest excitonic
state will almost completely resemble site A, however, vibronic mixing will still serve to
distribute site A character throughout the higher-lying excitonic states in the same way as
for the models considered here (see Fig. 6.1b). Therefore, we expect that vibronic effects
will manifest more strongly in the incoherent regime where they are the dominant means
for the distribution of site A character—without the competing effects of electronic coupling
distributing site B character in the opposite, undesirable direction. The treatment of this
regime in regards to 2DEV spectral simulations, though, is beyond the perturbative limit of
Redfield theory used in this study. Nevertheless, vibronic coupling has a clear impact on the
population dynamics that emerges in the dynamical signatures of the 2DEV spectra from
these models.

We further note that in both cases of vibronic mixing there are congested signals in
the beat maps. It is thus useful to consider a particular slice of these beat maps along
the detection axis associate with the lowest-lying excitonic state. Since this state is mostly
unchanged by vibronic coupling, it can serve as a sensitive reporter of the changes in the
dynamical beat frequencies through which the effects from vibronic mixing emerge. These
excitonic-state specific beat maps are shown in Fig. 6.5. Along with these two-dimensional
beat maps we consider slices along the observed dynamical frequencies shown relative to
the linear absorption stick spectrum. In the vibronically inactive case, we again observe
a single dynamical frequency associated with the Rabi frequency to which both excitonic
states contribute. This signature clearly identifies the connectivity between these states.[12]
In systems with more complex excited state manifolds, i.e. with vibronic mixing, the im-
plications of these maps are striking. For example, in the FC active case (S = 0.1, η = 0)
(Fig. 6.5b) the additional peaks in the vibronic frequency band illustrate how energy flows
within the excitonic manifold. By looking at slices along ωT at the modified Rabi frequency,
it is apparent that population primarily flows from the circle to square state. However, at
ωT specific to the vibronic frequency, there is an additional peak at the higher-lying vibronic
side-band as well as at the star state. This distinction reveals how FC activity promotes a
“vibronic funnel” whereby excitation flows from the higher-lying states through the circle
and star states down to the lowest excitonic state (square)—clearly demonstrating the ad-
ditional relaxation channel. In the HT active case (S = 0.1, η = −0.15) (Fig. 6.5c), we see
a similar features along the lower ωT frequency, however, in the higher ωT value, there is
amplified contribution from the higher-lying vibronic states as compared to (S = 0.1, η = 0)
(Fig. 6.5b). This feature is perhaps a clearer demonstration of how HT activity results in
additional mixing, i.e. additional vibronically-promoted relaxation pathways through the
modified electronic coupling.
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6.5 Conclusion

In this work, we have introduced a minimal model for an electronically/vibronically coupled
heterodimer for which two distinct mechanisms of vibronic coupling can be systematically
tuned. This model adequately describes the coupling of a low-frequency nuclear mode to
site-exciton states in a multichromophoric system and introduces a set of local high-frequency
modes to report on the vibronic coupling in 2DEV spectroscopy. This low-frequency mode
can induce vibronic coupling through Franck-Condon activity, which couples the nuclear
mode to the site energies, or through Herzberg-Teller activity, which introduces nuclear
dependence of the electronic coupling through the TDM of a single chromophore.

Through the development of these heterodimer models, we have shown how different
mechanisms of vibronic coupling, or lack thereof, manifest in both the composition of the
resulting excitonic states as well as the 2DEV spectra through both static and dynamical
contributions to the overall signal. In the absence of vibronic coupling, the system resembles
that of a two-level model in which the dominant excitonic states are observable in the 2DEV
spectra through excitation bands with vibrational structure of the chromophores and cross-
peaks characterizing the electronic coupling. When the low-frequency mode is coupled to the
electronic manifold, vibronic structure emerges due to an additional vibronically mixed state
in the case of FC activity and an increased signal in the electronic side-band arising specifi-
cally from HT activity rather than mode-dependent electronic coupling. 2DEV spectroscopy
also reports on the population dynamics due to the locality of the vibrational probe and can
thus reveal nature of quantum beating patterns during energy transfer. Without vibronic
coupling, the system beats at a single frequency associated with the electronic coupling while
vibronic coupling introduces a new quantum beat frequency due to additional vibronically
mixed excitonic states. These beat frequencies directly characterize the population dynamics
and show the additional relaxation pathways vibronic coupling affords the energy transfer
dynamics. Ultimately, the insight gained from this work provides a general framework for the
interpretation of the underlying Hamiltonian of vibronically coupled systems. In fact, con-
nections between previous experimental work and the present models, addressed elsewhere,
have uncovered details about the vibronic coupling mechanisms in LHCII.[9]

Various aspects do, however, require further investigation. For example, we have only
considered here the electronically coherent regime where HT activity has little effect on the
overall energy transfer, a feature which we do not expect to generically hold true across all
regimes. With regard still to the nuclear dependence of the electronic coupling, our treat-
ment is specific to that which arises from nuclear dependence of the dipole moment, however,
a similar effect in the electronic coupling due to the spatial/orientational changes from short-
or long-range nuclear fluctuations could be expected. A more systematic understanding of
the effect on the energy transfer and the signature in 2DEV spectroscopy from these separate
coupling mechanisms warrants further study. While generalizations to the model presented
here would be required, the way in which electronic-nuclear coupling mechanistically medi-
ates dynamics through conical intersections[101, 213] or assists in charge transfer[70, 82, 289]
and singlet fission[225] are similarly deserving of explicit theoretical treatment with respect
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to 2DEV spectroscopy.
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Appendix A

Details of the MCTDH Equations of
Motion

For the sake of clarity within this appendix we repeat here the MCTDH wavefunction,

|Ψ(t)〉 =
∑
α

∑
j1,j2,...,jN

Aα,j1,j2,...,jN (t)|ϕα〉
N∏
m=1

|φmα,jm(t)〉, (A.1)

which has the following equation of motion

iȦJ(t) =
∑
K

〈ΦJ(t)|H|ΦK(t)〉AK(t) (A.2)

i|φ̇mα,j(t)〉 = (1− P (m)
α )

∑
β,k,l

(ρ−1
m,α)jk〈H〉(m)

αβ,kl|φmβ,l(t)〉, (A.3)

the former of which is the equation of motion for the coefficients and the latter the equation
of motion for the SPFs. The equation of motion for the SPFs contains a number of complex
terms, which we will discuss in order. The first of these terms is the projector, which ensures
the orthonormality of the SPFs and projects out any of the propagation included in the
propagation of the coefficients. The projector is given by the following equation

P (m)
α (t) =

nm∑
j

|φ(m)
α,j (t)〉〈φ(m)

α,j (t)|. (A.4)

For the latter two terms, it is useful to introduce the single-hole form of the MCTDH
wavefunction, which emphasizes a particular mode

|Ψ(t)〉 =
∑
α

∑
j

|φmα,j(t)〉|Gm
α,j(t)〉, (A.5)

and |Gm
α,j(t)〉 is the single-hole function given by

|Gm
α,j(t)〉 =

∑
jp:p 6=m

Aα,j1,...,jm−1,j,jm+1...,jN (t)|ϕα〉
∏
p 6=m

|φpα,jp(t)〉. (A.6)
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The density matrices can now be defined as

(ρm,α)jk = 〈Gm
α,j(t)|Gm

α,k(t)〉 =
∑

jp:p 6=m

A∗α,j1,...,jm−1,j,jm+1...,jN
Aα,j1,...,jm−1,k,jm+1...,jN . (A.7)

The interpretation of this matrix is comparable (though not the same) as the density matrix
in quantum mechanics in that it describes to some degree the populations of the SPFs for
a particular mode. As SPFs can be unpopulated, typically initially, during a calculation,
this matrix is not generally invertible and is thus regularized in some way, often by adding a
small, positive parameter ε to the diagonal elements. A deeper discussion on regularization
schemes or alternative integrators that avoid inversion of the density matrices can be found
in Ref. [159, 167, 272, 271].

The SPFs undergo action from the Hamiltonian through the mean-field matrices, which
are defined as

〈H〉(m)
αβ,kl = 〈Gm

α,k(t)|H|Gm
β,l(t)〉. (A.8)

Using the sum-of-products form of the Hamiltonian

H =
s∑
r

drh
(el)
r

N∏
m=1

h(m)
r (A.9)

gives the mean-field matrices as

〈H〉(m)
αβ,kl =

s∑
r=1

drH(m,r)
αβ,klh

(m)
r (A.10)

where

H(m,r)
αβ,kl =

∑
kplp:p 6=m

A∗α,k1,...,km−1,k,km+1,...,kN
Aβ,l1,...,lm−1,l,lm+1,...,lN 〈ϕα|h(el)

r |ϕβ〉
∏
p 6=m

〈φpα,kp |h(p)
r |φpβ,lp〉.

(A.11)
The final component of the full equation of motion is the matrix elements for propagating
the coefficients, which are given by—using Eq. A.10 for the Hamiltonian—

〈ΦJ(t)|H|ΦK(t)〉 =
s∑
r=1

dr〈ϕα|h(el)
r |ϕβ〉

N∏
m=1

〈φmα,jm|h(m)
r |φmβ,km〉. (A.12)

For a further discussion on different numerical schemes for propagating the equations of
motion, we refer the reader to Refs. [18]. Since the MCTDH algorithm utilizes the sum-
of-products Hamiltonian and the SPFs are expanded in a DVR basis it is only necessary
to compute the matrix elements (from the perspective of the PBFs) of the kinetic energy
and position operators and the SPF matrix elements are then efficient element-wise prod-
ucts of functions of pre-computed operators. For propagation of the MCTDH wavefunction,
efficient tensor contraction libraries can be utilized, which due to recent development and
computational advances are well suited to parallel supercomputing architectures and special-
ized computing units such as graphical processing units (GPU) and tensor processing units
(TPU).
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Appendix B

Choosing ω∗ for Hybrid Quantum
Master Equations

Here we consider the choice of the parameter ω∗ in the TCL2-FM method for conical inter-
section models. We note that for site-exciton models an efficient choice has been found that
partitions the bath based on the comparison of the Rabi frequencies and the characteristic
frequency of the bath.[173] Our discussion on this choice for conical intersection models will
be ad hoc, in that there will be no rigorously derived equation, but will provide a physically
motivated procedure using the pyrazine model as an example.

Fig. B.1 (a) shows the dynamics of the pyrazine model without the presence of a bath.
Within the first 30 fs, there is significant population transfer from electronic state |2〉 to
state |1〉 followed by electronic beating that is modulated by the vibrational levels. These
observations match those of Krčmár et al, who compute two-dimensional electronic spectra
in the two-mode pyrazine model with phenomenological dephasing.[140] The spectra showed
rapid population transfer between the two electronic states within 50 fs in addition to a
complicated vibronic structure. The complex structure of this beating makes choosing a
characteristic timescale of the system that can delineate between the slow and fast portions
of the bath difficult. Despite this complexity, we infer that this first population transfer
determines the splitting frequency for the bath.

This hypothesis can be numerically tested by varying ω∗ to treat less and less of the bath
with TCL2 and incorporate more of the bath into the frozen modes description. Example
diabatic populations are shown in Fig. B.1 (b) for a range of values of ω∗ compared to
the HEOM result and the TCL2-FM result from Fig. 4.2 (b). For very small values of
ω∗ positivity violations are observed. As ω∗ is increased these positivity violations become
delayed until eventually they are washed out entirely. At values of ω∗ corresponding to the
range [0.0165,0.0329] eV, the numerically exact result is essentially reproduced, however, as
ω∗ is increased to infinity, so that the entire bath is treated as static, the results exhibit
deviations due to the lack of dissipation in the completely static bath limit.
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(b)

Figure B.1: Shown are the population dynamics for the pyrazine model without the presence
of a bath (a). TCL2-FM with different values of ω∗ corresponding to a timescale given in the
colorbar are shown in (b). Also shown in (b) are exact HEOM (solid black) and TCL2-FM
(dashed red) results with ω∗ = 0.0219 eV from the main text. The bath parameters used
were ωc = 0.00397 eV and Er = 0.006571 eV.
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Appendix C

Numerical Gradients of Generalized
Coordinates

C.1 Transformation of Cartesian Gradients to

Internal Coordinate Gradients

Here we derive the relations for transforming Cartesian gradients, which are readily accessible
from quantum chemistry calculations, to gradient with respects to the internal coordinates
used in the representation of the system. We denote the Cartesian coordinates as R, which
are the standard (x, y, z) coordinates for each nuclei, and the Cartesian gradient as

∇R =


∂
∂R1
∂
∂R2
...
∂

∂R3N

 , (C.1)

where the indices run over all 3N Cartesian coordinates for the atoms. For brevity, we
denote the generic ith internal coordinate as Qi. We are interested in obtaining quantities
of the form

∂f(R)

∂Qi

, (C.2)

where f(R) is some function that depends on the nuclear coordinates, e.g., the energy of
an electronic state, 〈i|H|i〉. Naively inserting the chain rule is, however, problematic as the
Jacobian of the Cartesian coordinates with respect to the internal coordinates is not uniquely
defined, that is, we cannot simply use the inverse of the an element of the Cartesian Jacobian
as the internal coordinate Jacobian,

∂Ri

∂Qaj
6=
(
∂Qj

∂Ri

)−1

. (C.3)
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We hence require a specification of the full Jacobian in a set of 3N − 6 internal coordinates
and invert the resulting Jacobian to obtain the correct change-of-variable factor,

∂Qi

∂Rj

=
(
J−1
)
ij
, (C.4)

where J is the Cartesian Jacobian with elements,

Jij =
∂Qi

∂Rj

, (C.5)

which can be easily calculated numerically through finite differences. Now performing the
multivariate chain rule on f(R),

∂f(R)

∂Qi

=
∑
j

∂Rj

∂Qi

∂f(R)

∂Rj

= J−1
i · ∇Rf(R), (C.6)

where J−1
i is the ith column of the inverted Cartesian Jacobian. The internal coordinates are

chosen to be the set of bond lengths, angles, and dihedrals that specify the connectivity of
the molecule in the so-called Z-matrix form and due to the independence of these coordinates
from center-of-mass translations and rotations Eq. C.6 projects out any of these artifacts.

Transforming the Hessian follows a similar procedure, but now includes two instances of
the chain rule. The Hessian using internal coordinates, H int can be related to the Hessian
in Cartesian coordinates, H, as

H int
ij =

∂2V

∂Qi∂Qj

=
∑
kl

∂Rk

∂θi

∂Rl

∂θj
Hij. (C.7)

Using our relations for the Jacobians we see that the Hessian in internal coordinates is given
by

H int = J−THJ−1. (C.8)

We also note that using gradients and Hessians with mass-weighted Cartesian coordinates
and/or center-of-mass translations and rotations projected out give the same results, how-
ever, in the gradient transformation of Eq. C.6 is modified to

∂f(R)

∂Qi

= J−1
i ·M1/2∇R̃f(R), (C.9)

and the Hessian transformation of Eq. C.8 is modified to

H int = J−TM1/2H̃M1/2J−1, (C.10)
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where M is the diagonal mass matrix, ∇R̃ is the gradient of the mass-weighted Cartesian

coordinates R̃, and H̃ is the mass-weighted Hessian with center-of-mass translations and
rotations projected out.

It is sometimes more natural to use the set of normal mode coordiantes, {Q̃k} for the
gradient transformations as is the case with the spectral density, which has a frequency
dependence. These normal mode coordinates, however, can mix contributions from system
and bath coordinates, which would lead us to double counting energy gradient terms in the
potential expansion of Chapter 5. To project out the contributions from specific internal
coordinates we define the following projector of some internal coordinate Q,

PQ = |Q〉〈Q|, (C.11)

where

|Q〉 =
∂Q

∂Q̃
, (C.12)

which is simply a Jacobian vector defining the transformation between normal mode coordi-
nates and the internal coordinate Q. This Jacobian vector is, however, complicated to find
and thus we rely on the Cartesian Jacobian vectors as intermediats

∂Q

∂Q̃
=
∂Q

∂R

∂R

∂Q̃

= JQW, (C.13)

where W is the matrix of normal mode vectors in Cartesian coordinates. The weights of the
spectral density are given by the vector

c =

(
∂H

∂R

)
0

, (C.14)

and the weights with the system internal coordinates projected out are given by

c̃ =

(
1−

∑
Q∈S

PQ

)
c, (C.15)

where Q ∈ S denotes that the coordinates Q are taken from the set of system coordinates.

C.2 Numerical Procedure for Generating the Kinetic

Energy

The kinetic energy operator in Cartesian coordinates has a simple, separable form given by
the mass-weighted Cartesian Laplacian

TR = −~2

2

(
M−1/2∇R

)2
. (C.16)
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We seek here a simple expression for the kinetic energy operator in a set of internal coordi-
nates. The completely specified Jacobian of Eq. C.5 gives a coordinate transformation from
the Cartesian to internal coordinates

Qi =
3N∑
j=1

JijRj, (C.17)

which upon insert into Eq. C.16 gives the kinetic energy operator in internal coordinates[282],

T = −~2

2

3N−6∑
k=1

3N−6∑
l=1

j−1/2 ∂

∂Qk

[
jGkl(Q)

∂

∂Ql

j−1/2

]
, (C.18)

where j = det |J | is the Jacobian determinant and Gkl are the elements of the G-tensor,

Gkl(Q) =
3N∑
i=1

1

Mi

JkiJli. (C.19)

Assuming that the change in j is small [252] we obtain an approximate form for the kinetic
energy operator,

T = −~2

2

∑
kl

∂

∂Qk

[
Gkl(Q)

∂

∂Ql

]
. (C.20)

As the elements of the G-tensor are dependent on the internal coordinates and an analytical
expression is often intractable, these can be computed numerically using the finite difference
procedure described above.

The G-tensor characterizes the reduced masses and the kinetic couplings of all the internal
coordinates, which can be written as

G =

(
Gsystem Gsystem,bath

Gsystem,bath Gbath

)
. (C.21)

If the motion of the bath coordinates is small and there is negeligible couplings between the
system and bath degrees-of-freedom, we can focus solely on the system block of this matrix
for describing the kinetic energy operator of the system.
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