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ABSTRACT OF THE DISSERTATION

Elastic Composites: Part I - Negative Refraction in Phononic Crystals, Part II - Dissipative
Mechanisms in the Evolution of Inhomogeneities

by

Shailendra Pal Veer Singh

Doctor of Philosophy in Engineering Sciences (Applied Mechanics)

University of California San Diego, 2018

Professor Siavouche Nemat-Nasser, Chair

We experimentally demonstrate the presence of negative refraction on acoustic passbands

of two-dimensional phononic crystals for the in-plane and the anti-plane shear waves. We

investigate the phenomenon on two geometrically identical two-phase crystals of different

material properties, i.e., one stiff crystal (Aluminum matrix with PMMA inclusions), and another

a soft crystal (PMMA matrix with Aluminum inclusions). We demonstrate that in the case of

in-plane shear wave, the soft crystal does not show negative refraction in the first passband,

however, the stiff crystal does show negative refraction for the first mode. In the case of the

anti-plane shear wave tests, both crystals show only positive refraction in the first passband.

xv



However, in the soft crystal, negative refraction is present in the second passband. We also

investigate and show that for the longitudinal mode (second acoustic passband), both stiff and

soft crystals, exhibit negative refraction. The experimental results confirm the prediction of our

theoretical model, which allows us to predict the behaviors of phononic crystals as we change the

properties of their constituents.

In the second part of this dissertation, by the application ofNoether’s theorem, conservation

laws in linear elastodynamics are derived by invariance of the Lagrangean functional under

a class of infinitesimal transformations. The work of Gupta and Markesncoff (2012), which

provides a physical meaning to the dynamic J-integral as the variation of the Hamiltonian of the

system due to an infinitesimal translation of the inhomogeneity if linear momentum is conserved

in the domain, is extended here to the dynamic M- and L- integrals in terms of the ‘if’ conditions.

We show that the variation of the Lagrangean is equal to the negative of the variation of the

Hamiltonian under the above transformations for inhomogeneities, and hence provide a physical

meaning to the dynamic J-, L- and M-integrals as dissipative mechanisms in elastodynamics.

We prove that if linear momentum is conserved in the domain, the total energy loss of the system

per unit scaling under the infinitesimal scaling transformation of the inhomogeneity is equal

to the dynamic M-integral. Moreover, if linear and angular momenta are conserved, the total

energy loss of the system per unit rotation under the infinitesimal rotational transformation is

equal to the dynamic L-integral.
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Chapter 1

Introduction

This dissertation consists of two parts. The first part serves to design the elastic phononic

crystals and the experimental demonstration of negative refractions in them. In the second part

we study dissipative mechanisms in the evolution of inhomogeneities in elastic solids.

1.1 Phononic Crystals

Phononic crystals are composite materials consisting of periodically distributed inclusions

in a matrix with high contrast of mass densities and/or elastic moduli, which can exhibit specific

characteristics such as acoustic band structures and negative refraction (Nemat-Nasser, 1972b;

Kushwaha et al., 1993; Liu et al., 2000; Nemat-Nasser et al., 2011; Srivastava, 2015; Sadeghi,

2016). These materials have natural applications in the research areas of clocking, elastic wave

focusing, and noise and vibration control.

The first acoustic composite, ‘sonic crystals’ (Liu et al., 2000), used rubber-coated

lead spheres to create locally resonant and deeply subwavelength structures. Subsequently, Li

and Chan (2004) theoretically showed the double-negative ‘acoustic metamaterials’ in which

both the effective density and bulk modulus are simultaneously negative, and later this result

was experimentally demonstrated by Lee et al. (2010). Several other researchers have done

experiments showing negative refraction of longitudinal waves (Croënne et al., 2011; García-

Chocano et al., 2014; Zhu et al., 2014). Most of the pressure waves experiments have been done in
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fluid media. Morvan et al. (2010) experimentally demonstrated negative refraction of transverse

elastic waves in a two-dimensional phononic crystal made of a square lattice of cylindrical air

cavities in an aluminum matrix. Soon after, Lee et al. (2011) conducted negative refraction

experiments with guided SH waves in a thin phononic crystal plate. Both of them demonstrated

experimental verification of negative refraction for shear waves, only for higher modes. The

objective of the first part of this dissertation is to design and fabricate the phononic crystals to

study in-plane and anti-plane shear wave, and longitudinal wave propagation. Furthermore, with

the guidance of theoretical calculations, we experimentally demonstrate the presence of negative

refraction on the acoustic-branch passbands (lowest two modes).

Figure 1.1. An aluminum matrix contains 10 mm spaced, 4.76 mm diameter circular PMMA
inclusions (Sample 1).

We have prepared two doubly periodic phononic crystals with a thickness of 1.5 inches.

One crystal is made of Aluminum matrix with periodically inserted circular PMMA pins of 4.76

mm diameter. The spacing between the pins in both x and y directions is 10 mm, and we call this

‘Sample 1’. The material properties are following:

E M
1 = E M

2 = 68GPa, νM = 0.33, ρM = 2700 kg/m3;

E I
1 = E I

2 = 3GPa, νI = 0.40, ρI = 1200 kg/m3,

where E1 and E2 are the elastic moduli, and ν, ρ are the Poisson’s ratio and the mass density,
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respectively. The superscripts M and I denote the matrix and the inclusion, respectively.

Figure 1.2. A PMMA matrix contains10 mm spaced, 4.76 mm diameter circular Aluminum
inclusions (Sample 2).

The second crystal is made of PMMAmatrix with periodically inserted circular Aluminum

pins of 4.76 mm diameter. The spacing between pins in both x and y directions is 10 mm, and we

call this ‘Sample 2’. The material properties are following:

E M
1 = E M

2 = 3GPa, νM = 0.40, ρM = 1200 kg/m3

E I
1 = E I

2 = 68GPa, νI = 0.33, ρI = 2700 kg/m3.

Band Structure for 2D Phononic Crystals

In anti-plane shear case, acoustic and optical branch only has one passband in it, whereas

in-plane case has two pass passbands in each branch. In each branch, the lower passband is

in-plane shear wave mode, and the second passband is the longitudinal wave mode (Figure 1.3).
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Figure 1.3. Typical band structures for 2D phononic crystals. (Left) Anti-plane shear case, and
(Right): in-plane case.

1.1.1 Positive and Negative Refraction

Phononic crystals consisting of periodic arrangement of elastic inclusions in an elastic

matrix material exhibit band structure, negative refraction, and effective material properties,

which are frequency dependent. This means that at the same incident angle at one frequency, the

phononic crystal would display positive refraction, and at another certain frequency, it might

display a negative refraction. We also show in later chapters that at the same frequency, but at

different components of the wave vector, the phononic crystal can exhibit positive and/or negative

refraction. In this dissertation we focus on demonstrating lowest passband negative refraction in

phononic crystals. With the help of negative refraction in a phononic crystal, it is possible to

design flat lens for elastic wave focusing (Yang et al., 2004; Zhu et al., 2014), or acoustic beam

shifters (Wei et al., 2015).
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Figure 1.4. A plane wave is incident from a homogeneous half-space x2 < 0 towards the interface
x = 0 at an incidence angle θ. kin and krefl are incident and reflected wave vectors, respectively.
vp and vg show the direction of phase and group velocity in the phononic crystal, respectively.
(Left): A typical positive refraction, and (Right): a typical negative refraction.

Figure 1.5. Sample 1 acoustic-branch equi-frequency contours and energy flux vectors of: (Left):
shear mode, and (Right): longitudinal mode; Q1 = k1a and Q2 = k2a are the normalized x1 and
x2 components of the wave vector.
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Figure 1.6. (Left): Sample 1 acoustic-branch frequency surfaces for shear (lowest) mode, and
longitudinal mode; Q1 = k1a and Q2 = k2a are the normalized x1 and x2 components of the wave
vector. (Right): Frequency variation along the Γ, X , M , Γ lines for shear and longitudinal modes.

The lower modes in the band structure have a higher energy associated with them. That

is why our goal is to investigate and design a phononic crystal, which exhibits negative refraction

in the first passband (acoustic branch). The presence of negative and positive refractions on the

acoustic-branch passband enables focusing and filtering elastic waves at very low frequency. As

the material properties given above for Sample 1, using ‘new quotient’ method (Nemat-Nasser,

1972a,b; Nemat-Nasser et al., 1975) we evaluate the acoustic-branch (Figures 1.5, and 1.6). In

Figure 1.5, we give the equi-frequency contours with the energy flux vectors, as we see the

directions of the energy flux vectors, we notice that both shear and longitudinal modes for Sample

1 display positive and negative refractions. We also show the frequency surfaces for the shear

and the longitudinal modes (Figure 1.6), and the variation of the shear and longitudinal mode

frequency along the Γ, X , M , Γ lines. Figure 1.6 makes it very clear that there is no mode mixing

between first two passbands in Sample 1.
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1.1.2 λN: New Quotient (Mixed-variational Formulation) for Waves in
Elastic Phononic Crystals

Consider a two-dimensional elastic phononic crystal with arbitrarily oriented elliptical

inclusions, with a representative unit cell shown in Figure 1.7. Two edges of the unit cell are

defined by the two vectors Iβ, β = 1,2. Let us denote the region occupied by this unit cell

by Ω, having boundary ∂Ω, and let Σ be the collection of all interior surfaces which separate

different material constituents within the unit cell (Nemat-Nasser et al., 1975; Srivastava and

Nemat-Nasser, 2014).

Figure 1.7. A typical representative unit cell of a two-dimensional elastic phononic crystal.

The mass density ρ(x) and the elasticity tensor with rectangular Cartesian components

Cj kmn(x) are continuous and continuously differentiable functions in the subregions occupied

by each constituent, but in general have a finite discontinuities across Σ, where x is the position

vector with components x j , j = 1,2. The periodicity condition implies:

ρ(x) = ρ(x+m′Iβ); Cj kmn(x) = Cj kmn(x+m′Iβ), (1.1)
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where m′ is an integer. For harmonic waves with frequency ω, all the field quantities are

proportional to e±iωt , where i =
√
−1. Thus the elastodynamics equations of motion, kinematic

relation and constitutive relation at any point x in Ω are given by

σj k,k = −λρu j ; ε j k =
1
2
(u j,k +uk, j) and σj k = Cj kmnum,n, (1.2)

where λ = ω2. For harmonic waves with wave vector q, the boundary condition takes on the

following quasi-periodic form (Bloch boundary conditions),

u j(x+ Iβ) = u j(x)eiqIβ ; t j(x+ Iβ) = t j(x)eiqIβ, x ∈ ∂Ω, (1.3)

where t j = σj knk is the traction vector, which must remain continuous across any interior surface,

in particularly

[
σj k(x+)−σj k(x−)

]
nk = 0, x ∈ Σ , (1.4)

where nk is a unit outward normal vector on a surface.

Nemat-Nasser et al. (1975); Minagawa and Nemat-Nasser (1976) have shown that the

solution to the above problem renders the following function (new quotient) stationary:

λN =
〈σj k, u j,k〉+ 〈u j,k, σj k〉+ 〈D j kmnσj k, σmn〉

〈ρu j, u j〉
, (1.5)

where D j kmn is the elastic compliance tensor and inner product is given by

〈u,v〉 =
∫
Ω

u v∗dΩ, (1.6)

where v∗ is the complex conjugate of v. Now we approximate the stress and displacement field
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as:

ū j =

M∑
α, β=−M

U j
(α, β) f (α, β)(x), σ̄j k =

M∑
α, β=−M

Sj k
(α, β) f (α, β)(x), (1.7)

where an orthogonal sequence of functions, f (α, β)(x), α, β = −M, . . . ,M are continuous and

continuously differentiable, and which satisfy the Bloch boundary conditions (1.3). Substituting

from (1.7) to (1.5) and setting the derivative of λN with respect to the unknown coefficients,

U j
(α, β) and Sj k

(α, β), equal to zero, we arrive at the following set of 9(2M+1)2 linear homogeneous

equations:

〈σ̄j k,k +λN ρū j, f (α, β)〉 = 0 (1.8a)

〈D j kmnσ̄mn− ū j,k, f (α, β)〉 = 0, j, k,m,n = 1,2. (1.8b)

Equations (1.8b), which are 6(2M +1)2 in number, can be solved for Sj k
(α, β) in terms of U j

(α, β),

and the result substituted into equation (1.8a). This leads to a system of 3(2M + 1)2 linear

equations for two-dimensional case. The roots of the determinant of these equations give the

approximate values of the first 3(2M +1)2 eigenfrequencies. The corresponding eigenvectors

are U j
(α, β) from which the displacement field within the unit cell is reconstituted. The stress

variation in the unit cell is then obtained from equation (1.8b).

The above method using new quotient, λN , is extremely efficient for composites in which

the elasticity tensor admits large discontinuities, whereas the traditional Rayleigh quotient,

λR = 〈Cj kmnum,n,u j,k〉/〈ρu j,u j〉 method is not as efficient (Nemat-Nasser et al., 1975).

In Chapter 2, we numerically investigate, and experimentally demonstrate the negative

refraction on acoustic passbands of two-dimensional phononic crystals for in-plane and anti-plane

shear waves.

In Chapter 3, we numerically investigate, and experimentally demonstrate the negative

refraction on acoustic passbands of two-dimensional phononic crystals for longitudinal waves.
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1.2 Dissipative Mechanisms and Conservation Laws

Conservation laws can be expressed as dissipative mechanisms related to the variation of

energy of the system due to infinitesimal configurational variations in inhomogeneities. Eshelby

(1951) used the energy momentum tensor to define the force on an elastic singularity as a

variation of the total energy of the body due to the infinitesimal displacement of the defect.

Furthermore, he provided additional insights by extending this idea in a series of papers (Eshelby,

1956, 1970, 1975) through his ingenious cutting and rewelding thought experiment. Rice (1968)

independently discovered the two-dimensional path independent J-integral for a crack. Günther

(1962) and Knowles and Sternberg (1972) derived two additional nontrivial conservation laws (M-

and L-integrals) by applying Noether’s theorem (Noether, 1918) in linear elastostatics. Rice and

Drucker (1967) calculated the energy changes during the growth of voids and cracks. Budiansky

and Rice (1973) interpreted these new laws as energy release rates associated with the expansion,

and the rotation rates of a cavity, or a crack. Rice (1985) provided further applications of these

integrals to the defects.

Fletcher (1976) extended the application of Noether’s theorem to derive the conservation

laws in linear elastodynamics, and established the completeness of the corresponding conservation

laws under a certain group of infinitesimal transformations. Herrmann (1981, 1982) presented

a unified formulation to recover the conservation laws by employing different vector calculus

operations on the Lagrangean density. Eischen and Herrmann (1987) extended this formulation

to account for material inhomogeneity temperature gradients, anisotropy, and body forces.

Herrmann and Kienzler (1999) represented these balance laws of continuum mechanics by 4×4

matrices.

In Chapter 4, we impose the scaling transformation to derive the M- integral, and for

infinitesimal rotational transformation, we derive the dynamic L-integral. Furthermore, we also

relate the variation of the Lagrangean to the variation of the Hamiltonian for scaling and rotation

of the inhomogeneity.
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In Chapter 5, we calculate the M-integral for cavities, inclusions, and inhomogeneities

under tensile loading, or loading of transformation strains, and we also relate the total M-integral

to the total energy release rate of the system as the defect expands self-similarly.
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Chapter 2

Experimental Demonstration of Negative
Refraction for In-plane and Anti-plane
Shear Waves in 2D Phononic Crystals:
Soft Crystal versus Stiff Crystal

We experimentally demonstrate the presence of negative refraction on acoustic passbands

of two-dimensional phononic crystals for in-plane and anti-plane shear waves. We investigate the

phenomenon on two geometrically identical two-phase crystals with inverse material properties:

one stiff crystal (Sample 1: Aluminum matrix with PMMA inclusions), and another a soft crystal

(Sample 2: PMMA matrix with Aluminum inclusions). We show that in the case of the in-plane

shear wave, the soft crystal does not show negative refraction in the first passband; however,

the stiff crystal does show negative refraction for the first mode. In the case of the anti-plane

shear wave tests, both crystals show only positive refraction in the first passband. But, in the soft

crystal, negative refraction is present in the second passband (optical branch). The experimental

results confirm the prediction of our theoretical model, which allows us to predict the behaviors

of phononic crystals as we change the properties of their constituents.

2.1 Introduction

Recent surge of research in the field of phononic crystals and acoustic metamaterials has

guided the researchers towards the experimental validation of various intriguing phenomena
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such as the negative refraction and the acoustic imaging. Morvan et al. (2010) experimentally

demonstrated negative refraction of transverse elastic waves in a two-dimensional phononic

crystal made of a square lattice of cylindrical air cavities in an aluminum matrix. Soon after, Lee

et al. (2011) conducted negative refraction experiments with guided SH waves in a thin phononic

crystal plate. Both of them demonstrated experimental verification of negative refraction for

shear waves only for higher modes. Nemat-Nasser (2017b) has recently developed a unified

approach to show the negative refraction with positive phase velocity refraction over the first or

any desired passband of simple photonic and phononic crystals. Nemat-Nasser (2017a) shows

the existence of negative refraction on the two lowest acoustic-branch passbands (shear and

longitudinal modes) using a simple two-dimensional phononic crystal.

In this chapter, we examine the dynamic response of two-phase phononic crystal in detail

with a focus on shear wave refraction through the crystals. We investigate the refraction of

in-plane shear and anti-plane shear wave at a plane interface between a homogeneous elastic

wedge and the elastic composite crystal. The theoretical model is based on the new quotient

method by Nemat-Nasser (1972a,b). In this approach, both the displacement and stress fields,

in the phononic crystals are varied independently. The theoretical work (Nemat-Nasser, 1972a,

2017b) provides the range of frequency, and the direction of incident wave vector, where the

negative or the positive refraction can be detected by small variations in the incident phase angle

or in the incident frequency. These calculations provide us the suitable guidance to design the

phononic crystals. The focus of this chapter is on the experimental verification of the negative

refraction in the first passband (for in-plane shear case), and in the second passband (for anti-plane

shear case).

Metamaterials offer an advantage over the natural materials, as they allow the material to

be based on the desired properties. For example, metamaterials can possess various phononic band

structures and energy-flux patterns depending on their material properties and microstructures.

These outcomes are quite sensitive to the micro-architectures of the crystals. Furthermore, the

equi-frequency contours together with the energy flux vectors provide us with deep information
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and understanding about the phononic crystals. Selecting proper materials, we can design various

crystals exhibiting different overall properties including positive and negative refractions for a

range of frequencies. The presence of negative and positive refractions on the acoustic-branch

passbands provides useful capabilities of acoustic wave manipulation, such as focusing (Yang

et al., 2004; Zhang et al., 2009), scattering (Kaina et al., 2015), filtering and acoustic beam

steering. In case of the ultrasonic acoustics, one of the most important applications could be in

the field of medical imaging.

2.2 Experimental Setup and Results

As described in the previous chapter, we use two phononic crystals, Sample 1 and Sample

2, in order to experimentally demonstrate the presence of negative refraction in the lowest

longitudinal mode. Sample 1 is made of Aluminum matrix with periodically inserted circular

PMMA pins of 4.76 mm diameter. The spacing between the pins in both x and y directions is 10

mm, the material properties are following:

E M
1 = E M

2 = 68GPa, νM = 0.33, ρM = 2700 kg/m3;

E I
1 = E I

2 = 3GPa, νI = 0.40, ρI = 1200 kg/m3,

where E1 and E2 are the elastic moduli, and ν, ρ are the Poisson’s ratio and the mass density,

respectively. The superscripts M and I denote the matrix and the inclusion, respectively. Both

matrix and inclusions are made of isotropic materials.

Sample 2 is made of PMMA matrix with periodically inserted circular Aluminum pins of

4.76 mm diameter. The spacing between pins in both x and y directions is 10 mm, the material

14



properties are following:

E M
1 = E M

2 = 3GPa, νM = 0.40, ρM = 1200 kg/m3;

E I
1 = E I

2 = 68GPa, νI = 0.33, ρI = 2700 kg/m3.

The theoretical model presented by Nemat-Nasser (1972a, 2017b) provides the band gaps

in the phononic crystals by giving the working frequency range, and also the appropriate incident

angle of the incidence wave for the crystal. To achieve that, we have machined various triangular

‘incidence wedges’ each of thickness 1.5 inches. We have machined the wedges of different

materials to achieve different wave speeds of the incident shear wave. The reason that we have

made the triangular shaped wedges is to obtain the desired incident angles. We use the normal

incidence shear wave transducers (Olympus Panametrics NDT Transducers: V151, V153), the

input transducer is mounted on a plane-smooth surface, and the wave propagates perpendicular

to that surface. The direction of the polarization of shear wave is nominally in the line with the

right angle connector (Olympus, 2016).

Figure 2.1. Transducer A is a transmitter, and transducer B is working as a receiver. (Left):
Sample 1 with a 40◦ homogeneous Aluminum wedge for in-plane test. (Right): Sample 2
with a 50◦ homogeneous PMMA wedge for anti plane shear test. Notice the orientation of the
transducers.

In the experiment, we send the incident signal by transducer A through one of the
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homogeneous wedge of appropriate incident angle. The signal falls on the interface of the wedge

and the sample at point O. A part of the signal refracts into the sample, we record the refracted

signal with transducer B on the other side of the Sample (Figure 2.1). The refraction angle is

manually measured as the angle of OB from the interface in the counter clockwise direction

from the positive x1 direction. We further study the recorded signals on the Oscilloscope in time

domain as well as in the frequency domain (FFT).

Figure 2.2. Experimental Setup

Figure 2.2 is an actual image of the experimental setup, with the help of a laboratory stand

we rest one of incident wedge such that it’s top surface is horizontal. We apply an appropriate

couplant on the top surface of the wedge and on one of the surface of the phononic crystal. Next

we mount the crystal on the incident wedge with the help of Teflon clamps to secure the setup.

If the incident angle at the interface of the wedge and the sample is θ0, the x1 component

of the wave vector in the homogeneous wedge is given by k1 =
ωcosθ0

c2
, where ω is the angular

frequency of the signal and c2 is the shear wave speed in the homogeneous wedge. Note that the

x1 component of the wave vector must be continuous at the interface, hence the x1 component of

the wave vector in the sample equals to that in the wedge. This fact along with the dispersion
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relation in the sample from the theoretical model provides us the information about the both

components of the wave vector for the refracted signal at each frequency of the desired range.

Using this technique (Table 2.1) the group-velocity and energy-flux directions can be computed

in the desired frequency range, and that result is being compared to the experiment in following

sections (2.2.1) and (2.2.2) .

Table 2.1. Selection Algorithm: Calculating theoretical refraction angle, θref , in Jth mode at
frequency ω̄ for an incident wedge with angle θ0, and wave speed c. vp and vg show the direction
of phase and group velocity in the phononic crystal, respectively.

Step 1:

Step 2:

Step 3:

Step 4:

Continuity at the interface
⇒ Qref

1 = Qin
1 =

ω̄cosθ0
c a1

Evaluate corresponding Qref
2 at the

same frequency ω̄, such that
ωJ(Qref

1 ,Qref
2 ) = ω̄

Calculate theoretical refraction angle
θref at (Qref

1 ,Qref
2 ) in Jth mode

Repeat Steps 1-3 for next frequency in
Jth mode

2.2.1 In-plane Shear Tests Results
Aluminum Matrix-PMMA Pins: Sample 1

In this case, we focus on the first passband (shear mode) for the material properties given

in the previous section for the Sample 1. We evaluate the equi-frequency contours along with the

energy flux vectors to know the direction of the refraction (Figure 2.3). We have also shown the

frequency surface of the first passband. As seen from the figure, we notice for Sample 1, the shear

mode (first passband) displays positive and negative refraction. Using these calculations and

results, we choose two homogeneous wedges of Aluminum, one with incidence angle 40◦, and

other with the angle of 50◦. We choose these two wedges knowing that it can carry the incident

wave within the desired frequency range of the shear mode. It is also the case when, for the
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same incident angle, the positive and the negative refractions are found as we vary the frequency

within it’s range. We show the experimental measurements with respect to the theoretical results

in Figures 2.4 and 2.5 for the wedge with incident angle 40◦ and 50◦, respectively. We note that

the experimental results are in reasonable agreement with the theoretical calculations using the

new quotient.

Figure 2.3. Sample 1 acoustic branch in-plane shear passband. (Left): Frequency surface,
(Right): equi-frequency contour and energy flux vectors of shear mode for Sample 1. We do
observe negative refraction in this case.
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Figure 2.4. In-plane shear wave test of Sample 1. (Left): Group velocity and energy-flux
directions and experimental results using an aluminum wedge with incident angle 40◦, R denotes
the calculations done using Rayleigh quotient. (Right): The plot of equi-frequency contours and
the energy flux vectors of the first (shear mode) passband.

Figure 2.5. In-plane shear wave test of Sample 1. (Left): Group velocity and energy-flux
directions and experimental results using an aluminum wedge with incident angle 50◦, R denotes
the calculations done using Rayleigh quotient. (Right): The plot of equi-frequency contours and
the energy flux vectors of the first (shear mode) passband.
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PMMAMatrix-Aluminum Pins: Sample 2

Figure 2.6. Sample 2 acoustic branch in-plane shear passband. (Left): Frequency surface,
(Right): equi-frequency contour and energy flux vectors of shear mode for Sample 2. Note that
there is no negative refraction in this case.

In this case we focus on the first passband (shear mode), for the material properties given

above for the Sample 2, we evaluate the equi-frequency contours along with the energy flux

vectors to know the direction of the refraction (Figure 2.6). We have also shown the frequency

surface of the first passband. As seen from the Figure we notice for Sample 2 the shear mode

(first passband) only displays positive refraction.

Mode Mixing Investigation

We make sure that we measure truly a shear wave in first mode negative refraction tests in

Sample 1. Using the shear and longitudinal transducers, we record shear and longitudinal signals

at the same location, and notice that the small longitudinal wave does not affect the shape and

magnitude of the transmitted in-plane shear wave signal (Figure 2.7). Our numerical calculations

(Figure 1.6) also show very clearly that the shear and the longitudinal passbands do not cross
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each other.

Figure 2.7. A typical negative refraction in-plane shear wave signal is plotted for a Sample 1
test. The plotted shear signal (in red) is the difference between total transmitted signal and the
recorded longitudinal signal at the same location. We note that the small longitudinal recorded
signal has no effect on the net shear wave signal.

2.2.2 Anti-plane Shear Tests Results

For the case of anti-plane shear, each acoustic, and optical branch has only one passband.

Neither of the two samples exhibits negative refraction in the first mode (acoustic branch

passband). Therefore, for experiments we focus on mode 2 (optical branch passband) to

demonstrate the negative refraction.
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PMMAMatrix-Aluminium Pins: Sample 2

Figure 2.8. Sample 2 anti-plane shear mode 2 (optical branch passband). (Left): Frequency
surface, (Right): equi-frequency contour and energy flux vector of anti-plane shear mode 2
(optical branch passband) for Sample 2. We do observe negative refraction in this case.

In this case we focus on the second passband (anti-shear mode), for the material properties

given above for the Sample 2, we evaluate the equi-frequency contours along with the energy flux

vectors to know the direction of the refraction (Figure 2.8). We have also shown the frequency

surface of the second mode. As seen from the figure, we notice for Sample 2, the second mode

displays positive and negative refractions. Using these calculations and results, we select a

homogeneous wedge of PMMA with the angle of 50◦. We choose this wedge knowing that it can

carry the incident wave within the desired frequency range of the second mode. It is also the

case when, for the same incident angle, the positive and the negative refractions are found as

the frequency varies within its range. We show the experimental measurements with respect to

the theoretical results in Figure 2.9. We have also shown the group velocity trend following the

Rayleigh quotient, which is supposed to provide an upper limit, and rightly, so the experimental

points are in between these two curves.
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Figure 2.9. Optical branch passband anti-plane shear wave test of Sample 2. (Left): Group
velocity and energy-flux directions and experimental results using a PMMA wedge with incident
angle 50◦, R denotes the calculations done using Rayleigh quotient. (Right): Equi-frequency
contours and the energy flux vectors.

It is worth to mention that the theoretical results and trends provide us a tool to design

the experiment in terms of choosing the appropriate incidence wedge as well as selecting the

desired frequency range. Without the guideline of the robust theoretical framework, it would be

almost impossible to carry out such experiments and interpret them in the correct way.

Aluminum Matrix-PMMA Pins: Sample 1

For the anti-plane shear wave calculations with material properties of Sample 1, we

notice that there is some negative refraction for the case of second mode, as seen from frequency

surface and also equi-frequency contours (Figure 2.10), but it’s very weak. It is very hard to

detect negative refraction in experiments (Figure 2.11) due to possible dissipation of the energy;

the theoretical calculation does not take account of the dissipation in the material.
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Figure 2.10. Sample 1 anti-plane shear mode 2 (optical branch passband). (Left): Frequency
surface, (Right): equi-frequency contour and energy flux vector of anti-plane shear mode 2
(optical branch passband) for Sample 1. Note that the negative refraction in this case is very
weak.

Figure 2.11. Optical branch passband anti-plane shear wave test of Sample 1. (Left): Group
velocity and energy-flux directions and experimental results using an aluminum wedge with
incident angle 30◦, R denotes the calculations done using Rayleigh quotient. (Right): Equi-
frequency contours and the energy flux vectors.
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2.3 Theoretical Framework

Theoretical model presented in this section is based on the work done by Nemat-Nasser

(1972a); Srivastava and Nemat-Nasser (2014); Nemat-Nasser (2017b). We present the theoretical

framework including the governing field equations, and the periodic solution for the generic

periodic composite materials or termed as crystals. Consider a two phase doubly periodic elastic

composite with a rectangular unit cell of dimensions a1 and a2. A typical unit cell, Ω1 has

a concentric inclusion, Ω2 of a rectangular or an elliptical shape. To simplify, consider the

coordinate axes, x1 and x2 are parallel to the principal axis of the unit cell, a1 and a2, respectively.

Figure 2.12. A typical unit cellΩ1 of a two-dimensional periodic elastic composite with elliptical
inclusion Ω2.

2.3.1 Governing Equations and Periodic Solution: In-plane Waves

For Bloch-form time harmonic wave of frequencyω, all the field variables are proportional

to e−iωt . Therefore, the field equations can be written from the first variation of λN (1.5) for any

arbitrary small variations of displacement and stress field as it’s corresponding Euler equation:

σl j,l +ω
2ρu j = 0;

1
2
(u j,l +ul, j)−Dl jmnσmn = 0, j, l,m,n = 1,2 (2.1)
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where a comma followed by an index denotes the differentiation with respect to the corresponding

coordinate variable, ρ is the mass density, Dl jmn = Dmnl j is the elastic compliance tensor. Now

we write the displacement and the stress field as following approximate functions


u j

σl j

 =


up
j (x1, x2)

σ
p
l j(x1, x2)

 ei(k1 x1+k2 x2), (2.2)

where the superscript p denotes the periodic part, these functions automatically satisfy Floquet-

Bloch boundary conditions. The geometry, mass density, and the elastic compliance are all

periodic with the periodicity of the unit cell. For two-dimensional plane strain or the plain stress

case, the only non-zero components of the elastic compliance tensor, D, are

D1111 = D11, D1122 = D12 = D21, D2222 = D22, D1212 = D2121 = D33 (2.3)

Furthermore, we can rewrite the above tensor, D as a 3×3 second order tensor as

[D] =
1
µ


κ+1

8
κ−3

8 0
κ−3

8
κ+1

8 0

0 0 1
2


, κ =


3−4ν plane strain,

3−ν
1+ν plane stress

, (2.4)

where ν is the Poisson’s ratio and µ is the shear modulus.

We further express the periodic part of the field variables as:


up

j

σ
p
l j

 =
+M∑

n1,n2=−M


Un1,n2

j

Sn1,n2
l j

 ei2π
(
n1x1
a1
+

n2x2
a2

)
. (2.5)

Now substitute these expressions into equation (2.2), utilize equation (2.1), and multiply each
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side of the equations by e−i2π
(
m1x1
a1
+

m2x2
a2

)
to obtain, after the integration over the typical unit cell:

H1S11+H2S12+Λρω
2U1 = 0

H1S21+H2S22+Λρω
2U2 = 0

,


H1U1

H2U2

H1U2+H2U1


=


ΛD11 S11+ΛD12 S22

ΛD22 S22+ΛD21 S11

ΛDS12


(2.6)

where Sjl = [S
n1,n2
jl ] and U j = [U

n1,n2
j ] are each (2M + 1)2 × (2M + 1)2 matrix. H1, H2 are

(2M + 1)2 × (2M + 1)2 diagonal matrices with the diagonal components i(k1 + 2πn1/a1)δn1m1

and i(k2 + 2πn2/a2)δn2m2 , respectively, where, m1, m2 varies similar to n1, n2, i.e., m1, m2 =

−M,−M +1, · · · ,+M −1,+M . For any material property f , the components of Λ f are defines as

Λ
(n1,n2,m1,m2)
f =

∫
Ω

f (x)ei2π
[
(n1−m1)x1

a1
+
(n2−m2)x2

a2

]
dx1 dx2, (2.7)

and ΛD = ΛD11 +ΛD22 −2ΛD12 . We may further manipulate the above expressions to write


Λ −H

H Ψ



S

U

 = 0, Λ =


ΛD11 ΛD12

ΛD21 ΛD22

 , H =


H1 0

0 H2

 , (2.8)

and

Ψ =


H2Λ

−1
D H2+ω

2Λρ H2Λ
−1
D H1

H1Λ
−1
D H2 H1Λ

−1
D H1+ω

2Λρ

 , S =


S11

S22

 , U =


U1

U2

 . (2.9)

Next, we eliminate the stress, S, in order to write the characteristic equation as

[HΛ−1H + Ψ̂+ω2
ΛρI]U = 0, det |HΛ−1H + Ψ̂+ω2

ΛρI | = 0, (2.10)

where Ψ̂ = Ψ−ω2ΛρI, and I is the identity matrix. The determinant in the above equation

depends parametrically on the wave vector components, Q1 ≡ k1a1 and Q2 ≡ k2a2, where a1 and

27



a2 are the unit cell dimensions, therefore, equation (2.10) provides the frequency bands, ω, as a

function of Q1 and Q2. Furthermore, for each eigenfrequency, the corresponding displacements,

U, can be obtained using equation (2.8), and then the stress components are

S = Λ−1HU, S12 = S21 = Λ
−1
D (H1U2+H2U1). (2.11)

Group Velocity and Energy Flux

Since the eigenfrequencies, ω, are the functions of Q1 and Q2, they form surfaces in

the (Q1,Q2,ω)-space, referred to as the Brillouin zones. The fundamental zone corresponds to

−π ≤ Q1,Q2 ≤ π. We focus on the fundamental zone and examine the dynamic properties of the

doubly periodic elastic composites over the first few frequency bands. On each frequency bands,

the phase and group velocities are given by

v
p
J j =

ωJ k j

k2
1 + k2

2
, v

g
J j =

∂ωJ

∂k j
, j = 1,2, (2.12)

here and below, J = 1,2, . . . denotes the frequency band. The refraction angle, say αJ , is computed

from

αJ = tan−1

(
v
g
J2

v
g
J1

)
. (2.13)

It is known (Brillouin, 1948) that the direction, αJ , is essentially the same as the direction of the

energy-flux for non-dissipative media. Next, we outline the energy-flux calculation.

The x1- and x2- components of the energy-flux, averaged over a unit cell, are

E Jk =
ωJ

2π

2π/ωj∫
0

< Re(σk j J)Re( Ûu j J)
∗) > dt = −

1
2
< σ

p
k j J Ûu

p∗
j J >

=
1
2
iωJ

+N∑
n1,n2=−N

Sn1,n2
k j J Un1,n2

j J , j, k = 1,2. (2.14)
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The direction of the energy-flux vector, say βJ , can be written as

βJ = tan−1

(
E J2

E J1

)
. (2.15)

It turns out that αJ = βJ for the class of problems considered in the present work, which has also

been shown in sections (2.2.1) and (2.2.2). Even the energy-flux velocity can be computed as

dividing the energy-flux by the corresponding average elastic strain energy as

V Jk =
E Jk

1
2 < σ

p
l j Jε

p∗
l j J >

, l, j, k = 1,2. (2.16)

We have verified that the calculated group velocity and the energy-flux velocities are essentially

come out to be same (Figure 2.13). Willis (2016) has also proved that the energy travels with the

group velocity for general plane Floquet-Bloch waves in the periodic elastic composites.

Figure 2.13. In-plane shear wave test of Sample 1. Acoustic-branch shear mode energy-flux and
group velocities as a function of frequency for Q1 = 0, we also have plotted the experimental
values. R denotes the calculations done using Rayleigh quotient.
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Validation of Theoretical Model with COMSOL Multiphysics

In this section we show the validation of theoretical model and it’s implementation

by comparing the band structure calculations with COMSOL Multiphysics results. Figure

1.6 shows acoustic branch passbands for Sample 1 using new quotient, λN calculations. We

performed COMSOL Multiphysics simulations to obtain the same band structure, and we get

very comparable results (Figure 2.14). The frequency range is higher (∼ 8%) in COMSOL

Multiphysics calculations, but the trend is identical. This is excepted because the new quotient

gives a lower bound on eigenfrequencies. Figure 2.14 also shows that there is no mode mixing

between first two passbands of Sample 1.

Figure 2.14. COMSOL Multiphysics band structure calculations for Sample 1. Frequency
variation for the first two passbands along the Γ, X , M , Γ lines is plotted. Γ, X , M , Γ points are
denoted by parametric values of k as 0,1,2,3, respectively.
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2.3.2 Governing Equations and Periodic Solution: Anti-plane Waves

The Bloch-form SH waves of frequency ω involve two shear stress components, τj(x1, x2),

where j = 1,2, and a out of plane displacement, w(x1, x2). The stress and the displacement field

satisfy the following field equations:

τj, j +ω
2ρw = 0, γ j = w, j,

τj = µ j kγk, γ j = D j kτk, j, k = 1,2,
(2.17)

where ρ is the mass density, γ j are shear strain components and µ j k = µk j and D j k = Dk j are

the components of the shear and the compliance moduli, respectively. The repeated indices

are summed, and a comma followed by an index denotes the differentiation with respect to the

corresponding coordinate variable. Since the principal axes of the elasticity tensor, therefore,

µ j k , are in the x1, x2-directions, µ12 = µ21 = 0. Also,


w

τj

 =

wp(x1, x2)

τ
p
j (x1, x2)

 ei(k1 x1+k2 x2), (2.18)

where superscript p denotes the periodic part. The geometry, mass density, and the elastic

compliance are all periodic with the periodicity of the unit cell. We further express the periodic

part of the field variables as:


wp

τ
p
j

 =
+M∑

n1,n2=−M


Wn1,n2

Tn1,n2
j

 ei2π
(
n1x1
a1
+

n2x2
a2

)
. (2.19)

Next we substitute the above expression into equation (2.18), utilize equation (2.17), multiply each

side of the equations by e−i2π
(
m1x1
a1
+

m2x2
a2

)
and integrate over the unit cell to obtain (Nemat-Nasser,
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2015)


H1 H2 ω2Λρ

ΛD11 0 −H1

0 ΛD22 −H2



T1

T2

W


= 0 (2.20)

which can be further expressed as

[Φ−ω2
ΛρI]W = 0, Φ = H1Λ

−1
D11

H1+H2Λ
−1
D22

H2, (2.21)

where D11 = 1/µ11 and D22 = 1/µ22. Therefore for given values of Q1 and Q2, the eigenfrequen-

cies can be determined by the characteristic equation

det |Φ−ω2
ΛρI | = 0. (2.22)

For each eigenfrequency the corresponding displacement, W , can be computed using equation

(2.21), and the stress components becomes

T1 = Λ
−1
D11

H1W, T2 = Λ
−1
D22

H2W . (2.23)

Group Velocity and Energy Flux

With similar calculations as we do for in-plane problem, on each frequency bands, the

phase and group velocities are given by

v
p
J j =

ωJ k j

k2
1 + k2

2
, v

g
J j =

∂ωJ

∂k j
, j = 1,2, (2.24)
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here and below, J = 1,2, . . . denotes the frequency band. The refraction angle, say αJ , is computed

from

αJ = tan−1

(
v
g
J2

v
g
J1

)
. (2.25)

For the expression of evergy-flux, we have

E Jk =
ωJ

2π

2π/ωj∫
0

< Re(τk J)Re( ÛwJ)
∗) > dt = −

1
2
< τ

p
k J Ûw

p∗
J >

=
1
2
iωJ

+N∑
n1,n2=−N

Tn1,n2
k J Wn1,n2

J , k = 1,2. (2.26)

The direction of the energy-flux vector, say βJ , can be written as

βJ = tan−1

(
E J2

E J1

)
. (2.27)

The energy-flux velocity would be

V Jk =
E Jk

1
2 < τ

p
j Jw

p∗
J, j >

, j, k = 1,2. (2.28)

2.4 Conclusion

We have shown that stiff crystal (Sample 1) and soft crystal (Sample 1) exhibit different

behaviors when they are examined for the in-plane or the anti-plane shear waves. For the in-plane

shear wave, in the first (shear mode) passband, the soft crystal does not show the negative

refraction while the stiff crystal does. Our main discovery comprised of designing a ‘stiff crystal’

with a hard matrix and soft inclusions to achieve negative refraction on the lowest acoustic

passband. However, traditionally, researcher have always designed the phononic crystals with a
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soft matrix material and a hard inclusions material.

In the case of anti-plane shear wave tests, both crystals show only positive refraction in

the acoustic branch passband, however, both crystals show negative refraction for some range of

frequencies in the optical branch passband (mode 2).

The work of Chapter 2 has been done with Professor S. Nemat-Nasser. The dissertation

author was the primary investigator of this research work. The work is being prepared for a

publication.
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Chapter 3

Experimental Demonstration of Negative
Refraction for Longitudinal Waves in 2D
Phononic Crystals: Soft Crystal versus
Stiff Crystal

We experimentally demonstrate the presence of negative refraction on acoustic passbands

of two-dimensional phononic crystals for the longitudinal waves (second mode). Similar to

the previous chapter, we investigate the phenomenon on two geometrically identical two-phase

crystals: one stiff crystal (Sample 1: Aluminum matrix with PMMA inclusions), and another a

soft crystal (Sample 2: PMMA matrix with Aluminum inclusions). We validate our experiments

with the theoretical results of the model outlined in the previous chapter.

3.1 Introduction

Several researchers have done experiments showing negative refraction of longitudinal

waves (García-Chocano et al., 2014; Zhu et al., 2014). Most of the pressure waves experiments

have been done in fluid media; mainly water being the matrix material. Phononic crystals of

these types are easier to assemble, however, in that case they can transmit only dilatational

waves. Croënne et al. (2011) designed a two-dimensional phononic crystal made of triangular

arrangement of steel rods embedded in epoxy. They have shown negative refraction of a higher

longitudinal branch for the frequency range of 750 kHz to 860 kHz.
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In this chapter we examine and detect the negative refraction on ‘lowest’ longitudinal

mode. As outlined in the previous chapter, theoretical model is based on the new-quotient

method developed by Nemat-Nasser (Nemat-Nasser, 1972a,b), which is an effective method

for composites where the elastic modulus admits large discontinuity between the matrix and its

inclusions.

3.2 Experimental Setup and Results

Figure 3.1. Transducer A is a transmitter, and transducer B is working as a receiver, for the
longitudinal wave test. (Left): Sample 1 with a 68◦ homogeneous PMMA wedge. (Right):
Sample 2 with a 20◦ homogeneous PMMA wedge.

As described in the previous chapters, we use two phononic crystals, Sample 1 and

Sample 2, to numerically as well as experimentally investigate for the negative refraction in the

lowest longitudinal mode (second acoustic branch). Sample 1 is made of Aluminum matrix

with periodically inserted circular PMMA pins, and Sample 2 is made of PMMA matrix with

periodically inserted circular Aluminum pins. In the experiment, we send the incident signal

by a longitudinal wave transducer A through one of the homogeneous wedge of an appropriate

incident angle. The signal falls on the interface of the wedge and the sample at point O. A part

of the signal refracts into the sample, we record the refracted signal with transducer B on the

other side of the sample (Figure 3.1). For both incident and receiving signal, we use standard

contact longitudinal wave transducers (Olympus Panametrics NDT Transducer: V103). The
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refraction angle is manually measured as the angle of OB from the interface in the counter

clockwise direction from the positive x1 direction. We further study the recorded signals on the

Oscilloscope in time domain as well as in the frequency domain (FFT).

If the incident angle at the interface of the wedge and the sample is θ0, the x1 component

of the wave vector in the homogeneous wedge is given by k1 =
ωcosθ0

c1
, where ω is the angular

frequency of the signal, and c1 is the longitudinal wave speed in the homogeneous wedge. Note

that the x1 component of the wave vector must be continuous at the interface, hence the x1

component of the wave vector in the sample equals to that in the wedge. This fact along with the

dispersion relation in the sample from the theoretical model provides us the information about

both components of the wave vector for the refracted signal at each frequency of the desired

range (Table 2.1). That is why we have manufactured the triangular wedges of various incident

angles. Using this technique the group-velocity and energy-flux directions can be computed in

the desired frequency range, and that result is being compared to the experiment in following

sections.

3.2.1 Aluminum Matrix-PMMA Pins: Sample 1

In this chapter the focus of our study is on the second passband (longitudinal mode). We

evaluate the equi-frequency contours along with the energy flux vectors to know the direction

of the refraction for Sample 1 (Figure 3.2). We have also shown the frequency surface of the

longitudinal mode. From Figure 3.2, we notice that the longitudinal mode displays positive

as well as negative refraction for Sample 1. Using these calculations and results, we choose a

homogeneous wedge of PMMA with the incidence angle 68◦. We have selected this particular

wedge because it can carry the incident wave within the desired frequency range of the longitudinal

mode, and we would detect positive and negative refraction as the frequency of incident wave is

varied. We show the experimental measurements with respect to the theoretical results in Figure

3.3. We note that in this example, the experimental results are in a better agreement with the

theoretical calculations done at an average Q1 = k1a = 2.2.
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Figure 3.2. Sample 1 acoustic branch longitudinal mode passband. (Left): Frequency surface,
(Right): equi-frequency contour and energy flux vectors of longitudinal mode for Sample 1. We
do observe negative refraction in this case.

Figure 3.3. Longitudinal wave test of Sample 1. (Left): Group velocity and energy-flux
directions and experimental results using a PMMA wedge with incident angle 68◦, R denotes the
calculations done using Rayleigh quotient. We also plot the theoretical results at a fixed Q1 = 2.2
to show a better agreement with the experiments. (Right): The plot of equi-frequency contours
and the energy flux vectors of the second (longitudinal mode) passband.
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3.2.2 PMMAMatrix-Aluminum Pins: Sample 2

For the second passband (longitudinal mode) of Sample 2, we evaluate the equi-frequency

contours along with the energy flux vectors to know the direction of the refraction for Sample

2 (Figure 3.4). We have also shown the frequency surface of the longitudinal mode. From

Figure 3.4 we notice that the longitudinal mode displays positive as well as negative refraction

for Sample 2. Using these calculations and results, we choose a homogeneous wedge of PMMA

with the incidence angle 20◦. We have selected this particular wedge because it can carry the

incident wave within the desired frequency range of the longitudinal mode, and we would detect

positive and negative refraction as the frequency of incident wave is varied. We have shown the

experimental measurements with respect to the theoretical results in Figure 3.5.

Figure 3.4. Sample 2 acoustic branch longitudinal mode passband. (Left): Frequency surface,
(Right): equi-frequency contour and energy flux vectors of longitudinal mode for Sample 2. We
do observe negative refraction in this case.
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Figure 3.5. Longitudinal wave test of Sample 2. (Left): Group velocity and energy-flux
directions and experimental results using a PMMA wedge with incident angle 20◦, R denotes the
calculations done using Rayleigh quotient. (Right): The plot of equi-frequency contours and the
energy flux vectors of the second (longitudinal mode) passband.

3.3 Conclusion

We have shown that both phononic crystals, Sample 1 (stiff crystal) and Sample 2 (soft

crystal), exhibit negative refraction on the lowest longitudinal mode (second acoustic passband).

Although, as discussed in Chapter 2, only Sample 1 displays negative refraction for the in-plane

shear mode (first acoustic passband).

The work of Chapter 3 has been done with Professor S. Nemat-Nasser. The dissertation

author was the primary investigator of this research work. The work is being prepared for a

publication.
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Chapter 4

Dynamic Conservation Integrals as Dis-
sipative Mechanisms in the Evolution of
Inhomogeneities

By the application of Noether’s theorem, conservation laws in linear elastodynamics are

derived by invariance of the Lagrangean functional under a class of infinitesimal transformations.

The work of Gupta and Markesncoff (2012), which provides a physical meaning to the dynamic

J-integral as the variation of the Hamiltonian of the system due to an infinitesimal translation

of the inhomogeneity if linear momentum is conserved in the domain, is extended here to the

dynamic M- and L- integrals in terms of the ‘if’ conditions. We show that the variation of

the Lagrangean is equal to the negative of the variation of the Hamiltonian under the above

transformations for inhomogeneities, and hence provide a physical meaning to the dynamic

J-, L- and M-integrals as dissipative mechanisms in elastodynamics. We prove that if linear

momentum is conserved in the domain, the total energy loss of the system per unit scaling under

the infinitesimal scaling transformation of the inhomogeneity is equal to the dynamic M-integral.

Moreover, if linear and angular momenta are conserved, the total energy loss of the system per

unit rotation under the infinitesimal rotational transformation is equal to the dynamic L-integral.
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4.1 Introduction

Figure 4.1. A typical growth of a crack from length a to a+ δa.

A defect, for example, cavity, crack, inlcusion, or inhomogeneity, needs some external

energy to move from one configuration to another. The change in energy is related to the

conservation integrals. In Figure 4.1 there is a crack of length a, and it grows to length a+ δa.

There must be some difference in energy between these to configurations. The energy difference

is equal to the energy, which is released when the crack grows. This energy released is related to

the well-known J-integral. In the case of the translation of the defect, the change in energy is

related to the J-integral, for self-similar scaling it is provided by the M-integral, and in case of

the rotation of the defect the change in total energy is related by the L-integral.

Markenscoff (2006) expressed the conservation integrals as a variation of the total energy

of the system by extending Eshelby’s thought experiment (Eshelby, 1951, 1957) to elastodynamics.

In elastostatics, Gupta and Markenscoff (2008) showed that the total energy dissipation due to

material translation of the inhomogeneity equals the configurational force (J-integral) times the

infinitesimal displacement of the inhomogeneity, if and only if equilibrium is preserved in the

domain. They extended the proof to elastodynamics (Gupta and Markenscoff, 2012), where the
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variation of the Lagrangean or the Hamiltonian is equal to the dynamic J-integral, if and only if

linear momentum is conserved in the domain.

In elastodynamics, Fletcher (1976) proved that the Lagrangean functional was invariant

under a certain group of infinitesimal transformations; Kienzler and Herrmann (2000, p 66)

also have a detailed proof for elastostatics, which we extend to elastodynamics. We impose the

scaling transformation to derive the M- integral, and for infinitesimal rotational transformation,

we derive the dynamic L-integral. Furthermore, we also relate the variation of the Lagrangean to

the variation of the Hamiltonian for scaling and rotation of the inhomogeneity. This allows us to

give an energy dissipative meaning to the above ‘if’ statements and to the dynamic J-, L-, and

M-integrals as dissipated energy by mechanisms not considered in elasticity theory (Eshelby,

1951, p 108).

4.2 Mathematical Framework

We briefly present the mathematical framework of the derivation of the conservation

integrals from Noether’s theorem in linear elastodynamics.

Consider the Lagrangean functional (Gelfand et al., 2000; Fletcher, 1976)

Π
L =

∫
R

L(xα,ui,uixα )dx1dx2dx3dx4 (i = 1,2,3), (α = 1,2,3,4), (4.1)

where R is the region of integration. In elastodynamics, the independent variables are the

material coordinates x1, x2, x3 and x4 is the time variable, and the dependent variable ui is the

displacement field. For the infinitesimal transformations on the independent and the dependent

variables,

x∗α = xα + εφα(xβ,ui,ui,β)+O(ε2) (i = 1,2,3), (α, β = 1,2,3,4) (4.2a)

u∗j = u j + εψ j(xβ,ui,ui,β)+O(ε2) (i, j = 1,2,3), (β = 1,2,3,4), (4.2b)
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where ε is the infinitesimal transformation parameter. The variation of the functional (4.1) is

written as

δΠL =

∫
R∗

L(x∗α,u
∗
i ,u
∗
ix∗α
)dx∗1dx∗2dx∗3dx∗4 −

∫
R

L(xα,ui,uixα )dx1dx2dx3dx4, (4.3)

where R∗ is a new region of integration. In view of equations (4.2a) and (4.2b), equation (4.3)

can be further written as (Gelfand et al., 2000, p 176)

δΠL =

∫
R

{
∂L

∂u j
−

∂

∂xα

∂L

∂u j,α

}
δu j dx1dx2dx3dx4+

∫
R

∂

∂xα

{
∂L

∂u j,α
δu j +L δxα

}
dx1dx2dx3dx4,

(4.4)

where (see also, figure 10, page 171 in Gelfand et al. (2000))

δu j = u∗j (x
∗
α)−u j(xα) = {u∗j (x

∗
α)−u∗j (xα)}+ {u

∗
j (xα)−u j(xα)}

≈
∂u∗j
∂xα

δxα + δu j ≈
∂u j

∂xα
δxα + δu j (4.5)

or

δu j = δu j −u j,αδxα. (4.6)

Furthermore, in terms of the transformations φα and ψ j , equation (4.4) becomes

δΠL = ε

∫
R

{
∂L

∂u j
−

∂

∂xα

∂L

∂u j,α

}
ψ j dx1dx2dx3dx4+ ε

∫
R

∂

∂xα

{
∂L

∂u j,α
ψ j +Lφα

}
dx1dx2dx3dx4,

(4.7)
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where, from relation (4.6),

ψ j = ψ j −u j,αφα. (4.8)

Note that above, and in the sequel, the partial derivatives with respect to xi and t, for any

A(x j,u j, Ûu j,u j,k) are defined as

∂(A)
∂xi
=
∂(A)
∂xi

����
exp
+
∂(A)
∂ul

ul,i +
∂(A)
∂ Ûul
Ûul,i +

∂(A)
∂ul,m

ul,mi (4.9a)

and
∂(A)
∂t
=
∂(A)
∂t

����
exp
+
∂(A)
∂ul
Ûul +

∂(A)
∂ Ûul
Üul +

∂(A)
∂ul,m

Ûul,m. (4.9b)

Under the infinitesimal transformations (4.2a) and (4.2b) the functional ΠL is said to be

invariant at u if

δΠL = 0. (4.10)

Furthermore, if u satisfies the Euler-Lagrange equations (Gelfand et al., 2000)

∂L

∂u j
−

∂

∂xα

∂L

∂u j,α
= 0, (4.11)

then the first term in equation (4.7) vanishes, and it yields

∫
R

∂

∂xα

{
∂L

∂u j,α
ψ j +Lφα

}
dx1dx2dx3dx4 = 0. (4.12)

Let Ω be a region in three-dimensional space occupied by a linearly elastic solid, under-

going small deformations and containing an inhomogeneity which is a surface of discontinuity

in the strain and velocity. Let u j(xi, t) denote the displacement, εi j are the small strains, Ci j kl

the components of the elasticity tensor, ρ the density — which in linear elasticity is assumed
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constant, independent of time — and (·) the time derivative, and denote the Cauchy stress by

σi j = Ci j klεkl . The Lagrange density is defined as

L = T −W (4.13)

where the strain energy density is

W =
1
2

Ci j klεi jεkl =
1
2

Ci j kl ui, juk,l, (4.14)

and the specific kinetic energy is

T =
1
2
ρ Ûui Ûui . (4.15)

We write the total Lagrangean functional for Ω ⊂ R3 and [0, t] ⊂ R, and assume further

L ∈ C∞, so that L posses continuous partial derivatives of all orders with respect to the element

of its matrix arguments on its domain of definition:

Π
L(ui, j, Ûui) =

t∫
0

∫
Ω

L(ui, j, Ûui)dV dt =

t∫
0

∫
Ω

{T( Ûui)−W(ui, j)} dV dt . (4.16)

For L = T −W , the Euler-Lagrange equations (4.11) give

∂σi j

∂xi
−
∂(ρ Ûu j)

∂t
= 0, (4.17)

which represents the conservation of the linear momentum. If the Euler-Lagrange equations

(4.11) are satisfied then equation (4.12) should be satisfied in order for the Lagrangean functional

ΠL to be invariant under the transformation (4.2a) and (4.2b). This will give the equations to

derive the families φα and ψ j of the infinitesimal transformations.
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Equation (4.12) is expanded in space and time variables as

t∫
0

∫
Ω

[
∂

∂xi

{
∂L

∂u j,i
ψ j +Lφi

}
+
∂

∂t

{
∂L

∂ Ûu j
ψ j +Lφ4

}]
dV dt = 0. (4.18)

Using equation (4.13), equation (4.18) is written

t∫
0

∫
Ω

[
∂

∂xi

{
−σi jψ j +Lφi

}
+
∂

∂t
{
ρ Ûu jψ j +Lφ4

}]
dV dt = 0. (4.19)

The above relation applied to infinitesimal transformations given by equations (4.2a) and

(4.2b) provides the corresponding conservation laws for translation, scaling and rotation of the

inhomogeneities (under which the Lagrangean remains invariant), which are additional field

equations and are derived in the following section.

4.3 Family of Infinitesimal Transformations and Dynamic
Conservation Laws

In this sectionwe extend thework ofKienzler andHerrmann (2000, p 66) to elastodynamics

in order to obtain the family of infinite transformations under which the Lagrangean remains

invariant. In this section, for the sake of notational simplicity we define and use

d
dxi
≡

∂

∂xi
(4.20a)

d
dt
≡
∂

∂t
, (4.20b)

where the partial derivative with respect to xi and t are taken as in equations (4.9a) and (4.9b),

respectively.

Equation (4.19) is true for any arbitrary volume Ω and any arbitrary time interval, so we
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can write

d
dxi

{
−σi jψ j +Lφi

}
+

d
dt

{
ρ Ûu jψ j +Lφ4

}
= 0. (4.21)

Next, using ψ j from equation (4.8), expanded in space and time variables ψ j = ψ j −u j,lφl − Ûu jφ4

we rewrite equation (4.21) as

d
dxi

{
−σi j(ψ j −u j,lφl − Ûu jφ4)+Lφi

}
+

d
dt

{
ρ Ûu j(ψ j −u j,lφl − Ûu jφ4)+Lφ4

}
= 0, (4.22)

and we employ linear momentum balance to obtain

−σi j
d

dxi
(ψ j −u j,lφl − Ûu jφ4)+

d
dxi
(Lφl)δil + ρ Ûu j

d
dt
(ψ j −u j,lφl − Ûu jφ4)+

d
dt
(Lφ4) = 0. (4.23)

Differentiating explicitly the terms on the left-hand side of equation (4.23) with the derivatives

dL
dxi
=
∂L

∂xi
+
∂L

∂uk, j

∂uk, j

∂xi
+
∂L

∂ Ûuk

∂ Ûuk

∂xi
= −σj kuk, ji + ρ Ûuk Ûuk,i, (4.24a)

dL
dt
=
∂L

∂t
+
∂L

∂uk, j

∂uk, j

∂t
+
∂L

∂ Ûuk

∂ Ûuk

∂t
= −σj k Ûuk, j + ρ Ûuk Üuk, (4.24b)

dφ j

dxi
=
∂φ j

∂xi
+
∂φ j

∂uk
uk,i,

dφ4
dxi
=
∂φ4
∂xi
+
∂φ4
∂uk

uk,i, (4.24c)

dφ j

dt
=
∂φ j

∂t
+
∂φ j

∂uk
Ûuk,

dφ4
dt
=
∂φ4
∂t
+
∂φ4
∂uk
Ûuk, (4.24d)

dψ j

dxi
=
∂ψ j

∂xi
+
∂ψ j

∂uk
uk,i,

dψ j

dt
=
∂ψ j

∂t
+
∂ψ j

∂uk
Ûuk . (4.24e)
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Therefore, equation (4.23) becomes

−σi j

(
∂ψ j

∂xi
+
∂ψ j

∂uk
uk,i

)
+σi ju j,l

(
∂φl

∂xi
+
∂φl

∂uk
uk,i

)
+φlσi ju j,li +σi j Ûu j

(
∂φ4
∂xi
+
∂φ4
∂uk

uk,i

)
+φ4σi j Ûu j,i +L

(
∂φl

∂xi
+
∂φl

∂uk
uk,i

)
δil +φlδil(−σj kuk, ji + ρ Ûuk Ûuk,i)+ ρ Ûu j

(
∂ψ j

∂t
+
∂ψ j

∂uk
Ûuk

)
− ρ Ûu ju j,l

(
∂φl

∂t
+
∂φl

∂uk
Ûuk

)
−φlρ Ûu j Ûu j,l − ρ Ûu j Ûu j

(
∂φ4
∂t
+
∂φ4
∂uk
Ûuk

)
−φ4ρ Ûu j Üu j

+L

(
∂φ4
∂t
+
∂φ4
∂uk
Ûuk

)
+φ4(−σj k Ûuk, j + ρ Ûuk Üuk) = 0. (4.25)

Rearranging this equation as in Kienzler and Herrmann (2000, p 64) leads to

0 =
∂φl

∂uk
[σi ju j,luk,l −Wuk,iδil]

[
∼ u3

i,l

]
(4.26a)

+
∂φl

∂uk
[Tuk,iδil − ρ Ûu j Ûuku j,l]

[
∼ u j,l Ûu2

k

]
(4.26b)

+
∂φ4
∂uk
[σi j Ûu juk,l −W Ûuk]

[
∼ u2

i, j Ûuk

]
(4.26c)

+
∂φ4
∂uk
[T Ûuk − ρ Ûu j Ûu j Ûuk]

[
∼ Ûu3

k

]
(4.26d)

+
∂ψ j

∂uk
[−uk,iσi j]+

∂φl

∂xi
[σi ju j,l −Wδil]+

∂φ4
∂t
[−W]

[
∼ u2

j,k

]
(4.26e)

+
∂ψ j

∂uk
[ρ Ûu j Ûuk]+

∂φl

∂xi
[Tδil]+

∂φ4
∂t
[−ρ Ûu j Ûu j +T]

[
∼ Ûu2

k

]
(4.26f)

+
∂φl

∂t
[−ρ Ûu ju j,l]+

∂φ4
∂xi
[σi j Ûu j]

[
∼ u j,l Ûu j

]
(4.26g)

+
∂ψ j

∂xi
[σi j]

[
∼ ui, j

]
(4.26h)

+
∂ψ j

∂t
[−ρ Ûu j].

[
∼ Ûu j

]
(4.26i)

Setting all the coefficients equal to zero leads to the requirement that the functions φl , φ4 and ψ j

satisfy an over-determined system of linear differential equations.

From (4.26a) it follows that φl must not be a function of u j . Thus,

φl = φl(xk, t), (4.27)
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with this, part (4.26b) is also satisfied. From (4.26c) it follows that φ4 must not be a function of

uk . Thus,

φ4 = φ4(xk, t), (4.28)

with this, part (4.26d) is also satisfied. From (4.26i) it follows that ψ j must not be a function of t.

Thus,

ψ j = ψ j(xk,ul). (4.29)

Using relations (4.27)–(4.29), from (4.26e) or (4.26f) it follows

∂ψ j/∂uk = h j k(xl), (4.30)

that is,

ψ j = h j k(xl)uk +g j(xl). (4.31)

From (4.26h) it follows that the functions h j k(xl) are actually constants, and due to the symmetry

of the stress tensor, the terms ∂g j/∂xi form a skew symmetric constant matrix. Thus,

ψ j = α j kuk +Ωkεkil xi + r j . (4.32)

Because ∂ψ j/∂uk is matrix of constant coefficients, from (4.26e) or (4.26f), we further conclude

that φl must not be a function of t as well, thus,

φl = φl(xk), (4.33)
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furthermore, φ4 must not be a function of xi as well, thus,

φ4 = φ4(t). (4.34)

With this, (4.26g) is also satisfied. Therefore, we can write

ψ j = α j kuk +Ωkεkil xi + r j, (4.35a)

φ j = β j k xk + a j, (4.35b)

φ4 = l0 t + t0. (4.35c)

Now we split the constant matrices αi j and βi j into symmetric and antisymmetric parts and,

further, the symmetric parts into spherical and deviatoric parts as follows

β ji = l δi j + β
′
ji +mnεni j, (4.36a)

α j k = l γ δk j +α
′
j k +ωnεnk j (4.36b)

with l, γ, mn,ωn, β′ji, α
′
j k being constant parameters or matrices of constant coefficients, satisfying

β′ji = β
′
i j α′j k = α

′
k j β′j j = α

′
j j = 0.

With this, using (4.26e) and (4.26f) we obtain

(l γ δk j +α
′
j k +ωnεnk j)[−uk,iσi j + ρ Ûu j Ûuk]+ (4.37)

(l δil + β
′
li +mn εnil)[σi ju j,l +Lδil]+ l0[−ρ Ûu j Ûu j +L] = 0 (4.38)
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after rearranging, we can write

l(−γ δk juk,iσi j +γ δk j ρ Ûu j Ûuk + δilσi ju j,l + δilLδil)+ l0(−2T +L)+ (4.39a)

ωnεnk j(−uk,iσi j + ρ Ûu j Ûuk)+mnεnil(σi ju j,l +Lδil)+ (4.39b)

α′j k(−uk,iσi j + ρ Ûu j Ûuk)+ β
′
il(σi ju j,l +Lδil) = 0, (4.39c)

and we further simplify to write

l[−γ 2W +γ 2T +2W +n(T −W)]+ l0(−2T +L)+ (4.40a)

εnpqσip(ωnuq,i +mnui,q)+ (4.40b)

(β′ilσi ju j,l −α
′
j kuk,iσi j)+α

′
j k ρ Ûu j Ûuk = 0, (4.40c)

where n = δii is the number of space dimensions. If l0 = l then for the first term (4.40a) to vanish

we have

−2γW +2γT +2W +n(T −W)−2T +T −W = 0 =⇒ γ =
1−n

2
, (4.41)

and the second term (4.40b) vanishes if

mn = ωn, (4.42)

provided that the material is isotropic, i.e., εnpqσip[uq,i +ui,q] = 0 (Eshelby, 1975). The third

term (4.40c) vanishes only if α′j k = β
′
il = 0, which means that

β ji = l δi j +ωnεni j, αji = l
1−n

2
δi j +ωnεni j and φ4 = l t + t0. (4.43)
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Hence, we state the suitable infinitesimal transformations

φ j = ωnεni j xi + l x j + a j (4.44a)

φ4 = l t + t0 (4.44b)

ψ j = ωnεni jui + l
1−n

2
u j +Ωnεni j xi + r j (4.44c)

or

x∗j = x j + ε
(
ωnεni j xi + l x j + a j

)
(4.45a)

t∗ = t + ε (l t + t0) (4.45b)

u∗j = u j + ε

(
ωnεni jui + l

1−n
2

u j +Ωnεni j xi + r j

)
, (4.45c)

where l, t0 are constant parameters and ωn,a j,Ωn,r j are vectors with constant components. The

vectors r j and Ωn describe a rigid body translation and rotation, respectively, while a j and ωn

describe material translation (coordinate translation) and material rotation (coordinate rotation),

respectively, and the parameter l represents the scaling. The above family of transformations

agrees with Fletcher (1976) in three dimensions (n = 3). Applying the transformations indicated

by equations (4.45a), (4.45b) and (4.45c) for the material translation, scaling and rotation

separately to equation (4.19), the conservation laws for elastodynamics are derived in the

following subsections.

4.3.1 Invariance of the Lagrangean under Translation

For the infinitesimal translation of the material, we utilize the transformation (Fletcher,

1976) such that the new coordinates are x∗i = xi + εai and the new time and displacement field

remain invariant (t∗ = t, u∗i = ui), where εai is the infinitesimal translation. After comparing the
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transformation with equations (4.45) and (4.44), we have

φi = ai, φ4 = 0, and ψ j = 0, (4.46)

therefore, from equation (4.8)

ψ j = −u j,kak . (4.47)

Inserting the above transformation in equation (4.19) to obtain the conservation law for translation,

we obtain

t∫
0

∫
Ω

[
∂

∂xi

{
(Lδik +σi ju j,k)ak

}
−
∂

∂t
{
ρ Ûu ju j,kak

}]
dV dt = 0. (4.48)

The relation is true for any ak ; therefore, we get

t∫
0

∫
Ω

[
∂

∂xi

{
Lδik +σi ju j,k

}
−
∂

∂t
{
ρ Ûu ju j,k

}]
dV dt = 0. (4.49)

Equation (4.49) holds true for any arbitrary volume Ω and any arbitrary time interval, so we have

∂

∂xi

{
Lδik +σi ju j,k

}
−
∂

∂t
{
ρ Ûu ju j,k

}
= 0, (4.50)

which is in agreement with Fletcher (1976, eq 3.4). Equation (4.50) is an additional field equation

valid anywhere in the domain of analyticity. Ni and Markenscoff (2009) have used equation

(4.50) as a field equation to obtain the logarithmic singularity of the near field of an accelerating

(generally moving) dislocations rather than by singular asymptotics of the full solution (Callias

and Markenscoff, 1988).

Analogously to statics, for linear elastodynamics we define the dynamic J-integral as
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(Bui, 1977; Maugin, 1993; Markenscoff, 2006)

J dyn
k ≡ −

∫
Ω

[
∂

∂xi

{
Lδik +σi ju j,k

}
−
∂

∂t
{
ρ Ûu ju j,k

}]
dV . (4.51)

The dynamic J- integral would be zero if the region Ω excludes the inhomogeneity, but it would

be non-zero if the volume Ω includes it. The above expression for the dynamic J integral agrees

in the static case with Eshelby (1959); Günther (1962); Rice (1968); Knowles and Sternberg

(1972).

Relation of J dyn
k with the Energy Release Rate

If Ω is a region of analyticity excluding the inhomogeneity, from equation (4.50) using

relation (4.13) we can write

∫
Ω

[
∂

∂xi

{
(T −W)δik +σi ju j,k

}
−
∂

∂t
{
ρ Ûu ju j,k

}]
dV = 0, (4.52)

which, equivalently is written as

∫
Ω

[
∂

∂xi

{
(W +T)δik −σi ju j,k

}
−2

∂T
∂xk
+
∂

∂t
{
ρ Ûu ju j,k

}]
dV = 0. (4.53)

We may write the above equation in a form similar to the one in Gupta and Markenscoff (2012,

eq 10), as

∫
Ω

∂

∂xi

{
(W +T)δik −σi ju j,k

}
dV +

∫
Ω

[
ρ Üu ju j,k − ρ Ûui Ûui,k

]
dV = 0. (4.54)

By considering the region of analyticity Ω as Ω = Ω2−Ω1, i.e., as the difference between two

regions, Ω2 and Ω1 (with Ω1 ⊂ Ω1) that include the inhomogeneity then, and by using the
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divergence theorem to convert the first volume integral into a surface integral we have

∫
S1+S2

{
(W +T)nk −σi ju j,kni

}
dS+

∫
Ω2−Ω1

[
ρ Üu ju j,k − ρ Ûui Ûui,k

]
dV = 0, (4.55)

where ni is the outward unit normal vector to the surface S1+ S2. It follows that∫
S1

{
(W +T)nk −σi ju j,kni

}
dS+

∫
Ω1

[
ρ Üu ju j,k − ρ Ûui Ûui,k

]
dV =∫

S2

{
(W +T)nk −σi ju j,kni

}
dS+

∫
Ω2

[
ρ Üu ju j,k − ρ Ûui Ûui,k

]
dV = J dyn

k . (4.56)

We now consider the volume Ω1 to shrink to zero as the contour S1 shrinks onto the moving

inhomogeneity and moves with it. As the volume Ω1 shrinks to zero, in view of the fact

that “the elastic field in the immediate vicinity of the moving inhomogeneity at any instant is

indistinguishable from the local field of an appropriate steady state moving inhomogeneity, for

which ∂/∂t = −v ∂/∂x (Freund, 1972)”, the volume integral in the region Ω1 vanishes, so that

equation (4.56) yields the expression for J dyn
k as

J dyn
k = lim

S1→0

∫
S1

{
(W +T)nk −σi ju j,kni

}
dS, (4.57)

where S1 is an arbitrary surface surrounding the inhomogeneity, moving with it and shrinking

upon it. The above relation of J dyn
k agrees with Freund (1990, p 269) and Markenscoff (2006, eq

14). This expression will relate J dyn
k to the energy release rate for the moving inhomogeneity, as

treated in Section 4.5.1 (see equation (4.116)).

4.3.2 Invariance of the Lagrangean under Scaling

For the self-similar expansion of the material, consider the smooth scaling such that the

new coordinates and time are x∗i = xi+ε l xi and t∗ = t+ε lt, respectively, and the new displacement
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field is u∗i = ui + (1− n)ε lui/2, where l is the scaling parameter and n is the number of space

dimensions. After comparing the transformation with equations (4.45) and (4.44), we have

φi = l xi, φ4 = lt, and ψ j =
1−n

2
lu j, (4.58)

therefore, from equation (4.8)

ψ j = l
(
1−n

2
u j −u j,k xk − t Ûu j

)
. (4.59)

Substituting the above transformation in equation (4.19) to obtain the conservation law for scaling,

we write

t∫
0

∫
Ω

[
∂

∂xi

{
−σi j l

(
1−n

2
u j −u j,k xk − t Ûu j

)
+L l xi

}
+
∂

∂t

{
ρ Ûu j l

(
1−n

2
u j −u j,k xk − t Ûu j

)
+L l t

}]
dV dt = 0. (4.60)

The relation is true for any scaling parameter l, therefore, we get

t∫
0

∫
Ω

[
∂

∂xi

{
Lxi +σi j

(
n−1

2
u j +u j,k xk + t Ûu j

)}
+
∂

∂t

{
tL− ρ Ûu j

(
n−1

2
u j +u j,k xk + t Ûu j

)}]
dV dt = 0. (4.61)

Equation (4.61) holds true for any arbitrary volume Ω and any arbitrary time interval, so we have

∂

∂xi

{
Lxi +σi j

(
n−1

2
u j +u j,k xk + t Ûu j

)}
+
∂

∂t

{
tL− ρ Ûu j

(
n−1

2
u j +u j,k xk + t Ûu j

)}
= 0. (4.62)

Equation (4.62) is compared to Fletcher (1976, eq 3.5) for a three dimensional case (n = 3) and it

is an additional field equation valid anywhere in the domain of analyticity.
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Analogously to statics, for linear elastodynamics we define the dynamic M-integral as

M dyn ≡ −

∫
Ω

[
∂

∂xi

{
Lxi +σi j

(
n−1

2
u j +u j,k xk + t Ûu j

)}
+
∂

∂t

{
tL− ρ Ûu j

(
n−1

2
u j +u j,k xk + t Ûu j

)}]
dV . (4.63)

The dynamic M- integral would be zero if the region Ω excludes the inhomogeneity, but it would

be nonzero if the volume Ω includes the inhomogeneity. The above expression for the dynamic

M- integral agrees in the static case with Günther (1962); Knowles and Sternberg (1972). After

further rearrangements, we may write the dynamic M-integral as

M dyn = −

∫
Ω

xα

[
∂

∂xi

{
Lδiα +σi ju j,α

}
−
∂

∂t
{
ρ Ûu ju j,α

}]
dV, (4.64)

where xi are the material coordinates for i = 1,2,3, and x4 = t(time variable).

4.3.3 Invariance of the Lagrangean under Rotation

From the family of transformations we have two types of rotation: one is rigid-body

rotation (Ωn) and other is material rotation (ωn). By choosing nonzero physical rotation in

equations (4.45) and (4.44) we obtain the angular momentum balance law, and by choosing

nonzero material rotation we obtain the expression for the dynamic L-integral.

Rigid-Body Rotation Ωn , 0, ωn = 0

In the case of a rigid-body rotation of the material, consider the smooth transformation

in xi and ui such that coordinates and time variable remain unchanged (x∗i = xi, t∗ = t), and the

new displacement field is u∗i = ui + εilmεΩmxl , where εΩm is the infinitesimal physical rotation.

After comparing the transformation with equations (4.45) and (4.44), we have

φi = 0, φ4 = 0, and ψ j = ε jlmΩmxl, (4.65)
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therefore, from equation (4.8)

ψ j =Ωmε jlmxl . (4.66)

Inserting the above transformation in equation (4.19) to obtain the conservation law for rotation,

we obtain

t∫
0

∫
Ω

[
∂

∂t
{
ρ Ûu jΩmε jlmxl

}
+

∂

∂xi

{
−σi jΩmε jlmxl

}]
dV dt = 0. (4.67)

The relation is true for any Ωm; therefore, the expression for the conservation of the angular

momentum is

ε jlm

t∫
0

∫
Ω

[
∂

∂t
(ρ Ûu j xl)−

∂

∂xi
(σi j xl)

]
dV dt = 0. (4.68)

The above equation holds true for any arbitrary volume Ω and arbitrary time interval, so we have

∂

∂t
(ε jlmρ Ûu j xl)−

∂

∂xi
(ε jlmσi j xl) = 0, (4.69)

which is the field equation for the angular momentum balance.

Material or Coordinate Rotation Ωn = 0, ωn , 0

In case of the material or coordinate rotation of an isotropicmaterial, consider the smooth

transformation in xi and ui such that the new coordinates are x∗i = xi + εilmε ωmxl , new time

remains unchanged (t∗ = t), and the new displacement field is u∗i = ui +εilmε ωmul , where ε ωm is

the infinitesimal material rotation. After comparing the transformation with equations (4.45) and

(4.44), we have

φi = εilmωmxl, φ4 = 0, and ψ j = ε jlmωmul, (4.70)
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therefore, from equation (4.8)

ψ j = ωm(ε jlmul − εklmu j,k xl). (4.71)

Inserting the above transformation in equation (4.19) to obtain the conservation law for rotation,

we obtain

t∫
0

∫
Ω

[
∂

∂t
{
ρ Ûu jωm(ε jlmul − εklmu j,k xl)

}
+
∂

∂xi

{
−σi jωm(ε jlmul − εklmu j,k xl)+Lεilmωmxl

}]
dV dt = 0. (4.72)

The relation is true for any ωm; therefore, we get

t∫
0

∫
Ω

[
∂

∂xi
(εml julσi j + εmkl xlu j,kσi j − εmli xlL)+

∂

∂t
(ρεmjlul Ûu j + ρεmlk xl Ûu ju j,k)

]
dV dt = 0.

(4.73)

Equation (4.73) holds true for any arbitrary volume Ω and any arbitrary time interval, so we have

∂

∂xi
(εml julσi j + εmkl xlu j,kσi j − εmli xlL)+

∂

∂t
(ρεmjlul Ûu j + ρεmlk xl Ûu ju j,k) = 0. (4.74)

Equation (4.74) is compared to Fletcher (1976, eq 3.6); however Fletcher’s expression has a

negative sign in front of the second term of the first integrand on the left-hand side. In addition

to equations (4.50) and (4.62), (4.74) is an additional field equation of elastodynamics valid

anywhere in the domain of analyticity.
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Analogously to statics, for linear elastodynamics we define the dynamic L- integral as

L dyn
m ≡ −

∫
Ω

[
∂

∂xi
(εml julσi j + εmkl xlu j,kσi j − εmli xlL)+

∂

∂t
(ρεmjlul Ûu j + ρεmlk xl Ûu ju j,k)

]
dV .

(4.75)

The dynamic L-integral would be zero if the region Ω excludes the inhomogeneity, but it would

be nonzero if the volume Ω includes the inhomogeneity. The above expression for the dynamic

L-integral agrees in the static case with Günther (1962); Knowles and Sternberg (1972). After

further rearrangements, for an isotropic material, we may write the dynamic L-integral as

L dyn
m = −

∫
Ω

εmkl xl

[
∂

∂xi

{
Lδik +σi ju j,k

}
−
∂

∂t
{
ρ Ûu ju j,k

}]
dV . (4.76)

In the next section, we present these conservation laws as dissipative mechanisms

for the corresponding infinitesimal transformations of translation, scaling and rotation of the

inhomogeneities.

4.4 Conservation Integrals as Dissipative Mechanisms

With the objective of relating the conservation integrals J, M and L to the corresponding

energy loss of the system, in this section we express the variation of the Lagrangean in terms of

balance laws of linear and angular momenta and the “conserved” integrals. Subsequently, the

variation of the Lagrangean will be related to the variation of the Hamiltonian, which, in term,

will be related to the total energy loss of the system.
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Equation (4.7) is written after expanding in space and time variables

δΠL =ε

t∫
0

∫
Ω

{
∂L

∂u j
−

∂

∂xi

∂L

∂u j,i
−
∂

∂t
∂L

∂ Ûu j

}
ψ j dV dt + ε

t∫
0

∫
Ω

[
∂

∂xi

{
∂L

∂u j,i
ψ j +Lφi

}
+
∂

∂t

{
∂L

∂ Ûu j
ψ j +Lφ4

}]
dV dt, (4.77)

In view of equations (4.13)–(4.15) the term ∂L/∂u j vanishes, ∂L/∂u j,i = −σi j , and ∂L/∂ Ûu j =

ρ Ûu j ; therefore, equation (4.77) can be written as

δΠL =ε

t∫
0

∫
Ω

{
∂σi j

∂xi
−
∂(ρ Ûu j)

∂t

}
ψ j dV dt + ε

t∫
0

∫
Ω

[
∂

∂xi

{
−σi jψ j +Lφi

}
+
∂

∂t
{
ρ Ûu jψ j +Lφ4

}]
dV dt . (4.78)

Next, equation (4.78) is applied to the infinitesimal transformations φ and ψ corresponding to

translation, scaling and rotation of the inhomogeneities.

4.4.1 Translation of the Inhomogeneity

For translation of the inhomogeneity, we utilize the transformation (Fletcher, 1976) such

that the new coordinates are x∗i = xi+εai and the new time and displacement field remain invariant

(u∗i = ui), where εai is the infinitesimal translation of the inhomogeneity. After comparing the

transformation with equations (4.45) and (4.44), we have

φi = ai, φ4 = 0, and ψ j = 0, (4.79)

therefore, from equation (4.8)

ψ j =ψ j −u j,αφα = −u j,kak . (4.80)
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Substituting the above transformation in equation (4.78) gives (Gupta and Markenscoff, 2012)

δΠL =ε

t∫
0

∫
Ω

{
∂σi j

∂xi
−
∂(ρ Ûu j)

∂t

}
(−u j,kak)dV dt + ε

t∫
0

∫
Ω

[
∂

∂xi

{
(Lδik +σi ju j,k)ak

}
+
∂

∂t
{
−ρ Ûu ju j,kak

}]
dV dt . (4.81)

Taking the translation vector ak out of the second integral of the right hand side, we write

δΠL =− ε

t∫
0

∫
Ω

{
∂σi j

∂xi
−
∂(ρ Ûu j)

∂t

}
u j,kak dV dt

+ εak

t∫
0

∫
Ω

[
∂

∂xi

{
Lδik +σi ju j,k

}
−
∂

∂t
{
ρ Ûu ju j,k

}]
dV dt . (4.82)

Taking the time derivative of the above equation, we obtain

ÛδΠL =− ε

∫
Ω

{
∂σi j

∂xi
−
∂(ρ Ûu j)

∂t

}
u j,kak dV + εak

∫
Ω

[
∂

∂xi

{
Lδik +σi ju j,k

}
−
∂

∂t
{
ρ Ûu ju j,k

}]
dV .

(4.83)

From equation (4.51), the integral in the second term of the right-hand side of (4.83) is −J dyn
k , so

we can rewrite equation (4.83) as

ÛδΠL =−

∫
Ω

{
∂σi j

∂xi
−
∂(ρ Ûu j)

∂t

}
u j,kak dV − εak J dyn

k . (4.84)

In equation (4.84), the term in the curly brackets in the integrand is the linear momentum balance

expression (equation (4.17)) which vanishes by the Euler-Lagrange equations applied to the

Lagrangean.
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4.4.2 Scaling of the Inhomogeneity

For the self-similar expansion, consider the smooth scaling such that the new coordinates

and time are x∗i = xi + ε l xi and t∗ = t + ε lt, respectively, and the new displacement field is

u∗i = ui + (1−n)ε lui/2, where l is the scaling parameter and n is the number of space dimensions.

After comparing the transformation with equations (4.45) and (4.44), we have

φi = l xi, φ4 = lt, and ψ j =
1−n

2
lu j, (4.85)

therefore, from equation (4.8), we have

ψ j = ψ j −u j,αφα = l
(
1−n

2
u j −u j,k xk − t Ûu j

)
. (4.86)

Substituting the above transformation in equation (4.78) to obtain the variation of the Lagrangean

for scaling of the inhomogeneity, we write

δΠL =ε

t∫
0

∫
Ω

{
∂σi j

∂xi
−
∂(ρ Ûu j)

∂t

}
ψ j dV dt + ε

t∫
0

∫
Ω

[
∂

∂xi

{
−σi j l

(
1−n

2
u j −u j,k xk − t Ûu j

)
+L l xi

}
+
∂

∂t

{
ρ Ûu j l

(
1−n

2
u j −u j,k xk − t Ûu j

)
+L l t

}]
dV dt . (4.87)

Taking the scaling parameter l out of the second integral on the right-hand side, we write

δΠL =ε

t∫
0

∫
Ω

{
∂σi j

∂xi
−
∂(ρ Ûu j)

∂t

}
ψ j dV dt + ε l

t∫
0

∫
Ω

[
∂

∂xi

{
Lxi +σi j

(
n−1

2
u j +u j,k xk + t Ûu j

)}
+
∂

∂t

{
tL− ρ Ûu j

(
n−1

2
u j +u j,k xk + t Ûu j

)}]
dV dt . (4.88)
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Taking the time derivative of the above equation, we write

ÛδΠL =ε

∫
Ω

{
∂σi j

∂xi
−
∂(ρ Ûu j)

∂t

}
ψ j dV + ε l

∫
Ω

[
∂

∂xi

{
Lxi +σi j

(
n−1

2
u j +u j,k xk + t Ûu j

)}
+
∂

∂t

{
tL− ρ Ûu j

(
n−1

2
u j +u j,k xk + t Ûu j

)}]
dV . (4.89)

From equation (4.63), the integral in the second term of the right-hand side of (5.3) is −M dyn, so

we can rewrite equation (5.3) as

ÛδΠL =

∫
Ω

{
∂σi j

∂xi
−
∂(ρ Ûu j)

∂t

}
ψ j dV − ε l M dyn. (4.90)

In equation (4.90), the term in the curly brackets in the integrand is the linear momentum balance

expression (equation (4.17)) which vanishes by the Euler-Lagrange equations applied to the

Lagrangean.

4.4.3 Rotation of the Inhomogeneity

Following the lever arm (ul + xl) described by Eshelby (1956, p 106), and taking Ωn = ωn

in equation (4.45) for the rotation of the inhomogeneity in an isotropic material, we consider the

smooth transformation in xi and ui such that the new coordinates are x∗i = xi + εilmε ωmxl , new

time remains unchanged (t∗ = t), and the new displacement field is u∗i = ui + εilmε ωm(ul + xl),

where ωm is the rotation vector. After comparing the transformation with equations (4.45) and

(4.44), we have

φi = εilmωmxl, φ4 = 0, and ψ j = ε jlmωm(ul + xl), (4.91)

therefore, from equation (4.8), we have

ψ j = ψ j −u j,kφk = ωm(ε jlm(ul + xl)− εklmu j,k xl). (4.92)
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Substituting the above transformation into equation (4.78) to obtain the variation of the Lagrangean

for rotation of the inhomogeneity, we write

δΠL =ε

t∫
0

∫
Ω

{
∂σi j

dxi
−
∂(ρ Ûu j)

∂t

}
ψ j dV dt + ε

t∫
0

∫
Ω

[
∂

∂t
{
ρ Ûu jωm(ε jlm(ul + xl)− εklmu j,k xl)

}
+
∂

∂xi

{
−σi jωm(ε jlm(ul + xl)− εklmu j,k xl)+Lεilmωmxl

}]
dV dt . (4.93)

Collecting the angular momentum balance terms gives

δΠL = ε

t∫
0

∫
Ω

{
∂σi j

∂xi
−
∂(ρ Ûu j)

∂t

}
ψ j dV dt − ε ωm

t∫
0

∫
Ω

[
∂

∂xi
(ε jlmxlσi j)−

∂

∂t
(ρε jlmxl Ûu j)

]
dV dt

+ ε ωm

t∫
0

∫
Ω

[
∂

∂xi
(−ε jlmulσi j + εklmxlu j,kσi j + εilmxlL)+

∂

∂t
(ρε jlmul Ûu j − ρεklmxl Ûu ju j,k)

]
dV dt,

(4.94)

after further rearrangements we obtain

δΠL = ε

t∫
0

∫
Ω

{
∂σi j

∂xi
−
∂(ρ Ûu j)

∂t

}
ψ j dV dt − ε ωm

t∫
0

∫
Ω

[
∂

∂t
(ρεml j xl Ûu j)−

∂

∂xi
(εml j xlσi j)

]
dV dt

+ ε ωm

t∫
0

∫
Ω

[
∂

∂xi
(εml julσi j + εmkl xlu j,kσi j − εmli xlL)+

∂

∂t
(ρεmjlul Ûu j + ρεmlk xl Ûu ju j,k)

]
dV dt .

(4.95)

66



Taking the time derivative of the above equation, we write

ÛδΠL = ε

∫
Ω

{
∂σi j

∂xi
−
∂(ρ Ûu j)

∂t

}
ψ j dV − ε ωm

∫
Ω

[
∂

∂t
(ρεml j xl Ûu j)−

∂

∂xi
(εml j xlσi j)

]
dV

+ ε ωm

∫
Ω

[
∂

∂xi
(εml julσi j + εmkl xlu j,kσi j − εmli xlL)+

∂

∂t
(ρεmjlul Ûu j + ρεmlk xl Ûu ju j,k)

]
dV .

(4.96)

From equation (4.75), the integral in the third term of the right-hand side of (4.96) is −L dyn
m , so

we can rewrite equation (4.96) as

ÛδΠL =ε

∫
Ω

{
∂σi j

∂xi
−
∂(ρ Ûu j)

∂t

}
ψ j dV − ε ωm

∫
Ω

[
∂

∂t
(ρεml j xl Ûu j)−

∂

∂xi
(εml j xlσi j)

]
dV

− ε ωm L dyn
m . (4.97)

In equation (4.97), the term in the curly brackets in the first integrand is the linear momentum

balance expression (equation (4.17)) and the second integrand on the right hand side is the

angular momentum expression (equation (4.69)).

It may be noted that we obtain both the expression for the angular moment balance and

the dynamic L-integral from the variation of the Lagrangian functional because the rigid-body

rotation (equation (4.65)) and the material rotation (equation (4.70)) are both considered. The

transformation of rigid-body rotation (section 3.3.1) by itself leads to the expression for the

angular momentum balance (Fletcher, 1976, eq 3.3) and the transformation of material rotation

(section 3.3.2) leads to the expression for the dynamic L-integral (Fletcher, 1976, eq 3.6). By

using both together we are able to obtain the dissipative statement (equation (4.97)) as further

discussed in the following sections.
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4.5 Relation of the Variations of the Lagrangean and Hamil-
tonian under the Transformations of Translation, Scal-
ing and Rotation of Inhomogeneities

In the previous sections Noether’s theorem was applied to the Lagrangean functional of

the system from which the conservation of linear momentum is derived as the Euler-Lagrange

equations (4.11). In this section we relate the variation of the Lagrangean to the variation of

the Hamiltonian under translation, scaling and rotation of the inhomogeneities so that we can

explicitly relate the conservation integrals with energy release rates (Gupta and Markenscoff

(2012); and private communication with Gupta).

The Hamiltonian density is defined as

H = T +W, (4.98)

where the strain energy density is W = 1
2Ci j klεi jεkl =

1
2Ci j kl ui, juk,l and the specific kinetic energy

is T = 1
2 ρ Ûui Ûui. We consider the total Hamiltonian functional for Ω ⊂ R3 and [0, t] ⊂ R,

Π
H (ui, j, Ûui) =

t∫
0

∫
Ω

H(ui, j, Ûui)dV dt =

t∫
0

∫
Ω

{T( Ûui)+W(ui, j)} dV dt . (4.99)

The functional (4.99) represents the total mechanical energy stored in an arbitrary part Ω of

the body during the time interval [0, t]. Applying equation (4.7) to the Hamiltonian (equation

(4.98)) and expanding in space and time variables, we write (similarly to equation (4.77) for the

Lagrangean L = T −W) the variation of the Hamiltonian functional (4.99) under the infinitesimal
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transformation (4.2a)–(4.2b) as

δΠH =ε

t∫
0

∫
Ω

{
∂H

∂u j
−

∂

∂xi

∂H

∂u j,i
−
∂

∂t
∂H

∂ Ûu j

}
ψ j dV dt + ε

t∫
0

∫
Ω

∂

∂xi

{
∂H

∂u j,i
ψ j +Hφi

}
dV dt

+ ε

t∫
0

∫
Ω

∂

∂t

{
∂H

∂ Ûu j
ψ j +Hφ4

}
dV dt . (4.100)

In view of equations (4.98), (4.14) and (4.15) the term ∂H/∂u j vanishes and ∂H/∂u j,i = σi j ,

and ∂H/∂ Ûu j = ρ Ûu j ; therefore, above equation can be written as

δΠH =ε

t∫
0

∫
Ω

{
−
∂σi j

∂xi
−
∂(ρ Ûu j)

∂t

}
ψ j dV dt + ε

t∫
0

∫
Ω

∂

∂xi

{
σi jψ j + (W +T)φi

}
dV dt

+ ε

t∫
0

∫
Ω

∂

∂t
{
ρ Ûu jψ j + (W +T)φ4

}
dV dt . (4.101)

Note that the first term on the right hand side of the above equation is not same as the first term

of the variation of the Lagrangean (equation (4.78)), which is the linear momentum balance term.

Next, we rearrange the terms as to produce the linear momentum balance expression in the first

integrand and make a connection to the variation of the Lagrangean

δΠH =ε

t∫
0

∫
Ω

{
−
∂σi j

∂xi
+
∂(ρ Ûu j)

∂t

}
ψ j dV dt + ε

t∫
0

∫
Ω

∂

∂xi

{
σi jψ j + (W +T)φi

}
dV dt

+ ε

t∫
0

∫
Ω

{
−ψ j

∂

∂t
(ρ Ûu j)+ ρ Ûu j

∂

∂t
ψ j +

∂

∂t
[
(W +T)φ4

]}
dV dt, (4.102)

we further rearrange as to produce terms with (W −T) in the remaining terms on the right hand
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side

δΠH =ε

t∫
0

∫
Ω

{
−
∂σi j

∂xi
+
∂(ρ Ûu j)

∂t

}
ψ j dV dt + ε

t∫
0

∫
Ω

∂

∂xi

{
σi jψ j + (W −T)φi

}
dV dt

+ ε

t∫
0

∫
Ω

{
−ψ j

∂

∂t
(ρ Ûu j)− ρ Ûu j

∂

∂t
ψ j +

∂

∂t
[
(W −T)φ4

]}
dV dt

+2ε
t∫

0

∫
Ω

{
∂

∂xi
(Tφi)+

∂

∂t
(Tφ4)+ ρ Ûu j

∂

∂t
ψ j

}
dV dt . (4.103)

We further rewrite the expression using equation (4.13), so that the expression in the variation of

the Hamiltonian involves the Lagrangean

δΠH =ε

t∫
0

∫
Ω

{
−
∂σi j

∂xi
+
∂(ρ Ûu j)

∂∂t

}
ψ j dV dt + ε

t∫
0

∫
Ω

∂

∂xi

{
σi jψ j −Lφi

}
dV dt

+ ε

t∫
0

∫
Ω

d
dt

{
−ρ Ûu jψ j −Lφ4

}
dV dt +2ε

t∫
0

∫
Ω

{
∂

∂xi
(Tφi)+

∂

∂t
(Tφ4)+ ρ Ûu j

∂

∂t
ψ j

}
dV dt .

(4.104)

Using (4.78) which is the expression for the variation of the Lagrangean we have

δΠH = −δΠL +2ε
t∫

0

∫
Ω

{
∂

∂xi
(Tφi)+

∂

∂t
(Tφ4)+ ρ Ûu j

∂

∂t
ψ j

}
dV dt, (4.105)

which can be written, using equation (4.8), as

δΠH = −δΠL +2ε
t∫

0

∫
Ω

{
∂

∂xi
(Tφi)+

∂

∂t
(Tφ4)+ ρ Ûu j

∂

∂t
(ψ j −u j,iφi − Ûu jφ4)

}
dV dt . (4.106)

Now we employ relation (4.106) of the variations of the Lagrangean and Hamiltonian to

the corresponding infinitesimal transformations of translation, rotation, and scaling of the
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inhomogeneity.

4.5.1 Translation of the Inhomogeneity

In this case we use the transformation such that φi = ai, φ4 = 0 and ψ j = 0, i.e., translation

of the inhomogeneity. Inserting it in equation (4.106) gives

δΠH =− δΠL +2ε
t∫

0

∫
Ω

{
∂

∂xi
(Tai)+ ρ Ûu j

∂

∂t
(−u j,iai)

}
dV dt

=− δΠL +2ε
t∫

0

∫
Ω

{
ρ Ûuk Ûuk,iai − ρ Ûu j Ûu j,iai

}
dV dt

=− δΠL, (4.107)

Thus, under an infinitesimal translation of the inhomogeneity, the variation of the Lagrangean

is equal to the negative variation of the Hamiltonian, which was already shown by Gupta and

Markenscoff (2012). Taking the time derivative of equation (4.107) we can write

ÛδΠH = − ÛδΠL, (4.108)

which, using equation (4.84) can be written as

ÛδΠH = − ÛδΠL = ε

∫
Ω

{
∂σi j

∂xi
−
∂(ρ Ûu j)

∂t

}
u j,kak dV + εak J dyn

k , (4.109)

where J dyn
k is defined by equation (4.51). Considering the definition of the Hamiltonian

ΠH (ui, j, Ûui) according to equation (4.99), we define δEtot as

δEtot ≡ ÛδΠH, (4.110)
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where δEtot is the change of the total energy in the volumeΩ under the infinitesimal transformations

of equation (4.45) evaluated at time t. The external forces are assumed to be absent. Now, from

equations (4.110) and (4.109) we can write

δEtot = ε

∫
Ω

{
∂σi j

∂xi
−
∂(ρ Ûu j)

∂t

}
u j,kak dV + εak J dyn

k , (4.111)

In equation (4.111), the term in the curly brackets in the integrand is the linear momentum

balance expression (equation (4.17)), which will vanish due to conservation of linear momentum.

So, if linear momentum is conserved in the whole domain then equation (4.111) can be written as

δEtot = εak J dyn
k . (4.112)

Moreover, as shown in Gupta and Markenscoff (2012), if δEtot = εak J dyn
k then the first term

on the right hand side of equation (4.111) will vanish and if u j,k is invertible, then the term in

the curly brackets (linear momentum balance expression) will vanish since the integral is valid

for any arbitrary volume Ω. Therefore, equation (4.111) can be stated as the proposition that

under an infinitesimal translation of the inhomogeneity (transformation (4.79)), the change of the

total energy of the system per unit infinitesimal translation of the inhomogeneity is equal to the

dynamic J integral if and only if linear momentum is conserved in the whole domain (Gupta and

Markenscoff, 2012), provided that u j,k is invertible.

If the inhomogeneity is moving with the velocity Ûεak ≡ vk , then we can write the rate of

the total energy change ÛδEtot as

ÛδEtot = vk J dyn
k . (4.113)

The above equation agrees in the static case with Budiansky and Rice (1973); Lubarda and

Markenscoff (2007). With the expression for J dyn
k given in equation (4.57), equation (4.113)
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yields

ÛδEtot = lim
Sd→0

∫
Sd

{
(W +T)nkvk −σi ju j,knivk

}
dS, (4.114)

where Sd is an arbitrary surface surrounds the inhomogeneity, moving with it and shrinking

on it, and nk are the components of the unit outward normal n to the surface Sd . Furthermore,

near the core of the moving inhomogeneity, leading-order terms of the fields satisfy the relation

∂/∂t = −vk∂/∂xk (Freund, 1972), so we can write u j,kvk = − Ûu j in equation (4.114) to obtain

ÛδEtot = lim
Sd→0

∫
Sd

{
(W +T)vn+σi j Ûu jni

}
dS, (4.115)

where vn is the component of the velocity of the inhomogeneity in the direction of the outward

normal n to the surface Sd . In agreement with the expression for the energy release rate into

the core of the moving inhomogeneity as given by Eshelby (1970, eq 78) we define the energy

release rate G by

vG ≡ ÛδEtot = lim
Sd→0

∫
Sd

{
(W +T)vn+σi j Ûu jni

}
dS, (4.116)

which represents rate of energy loss of the system flowing into the inhomogeneity under translation.

Equation (4.116) is in agreement with the energy release for moving crack by Atkinson and

Eshelby (1968, eq 9); Freund (1972, eq 13); Freund (1990, p 262), for dislocations (Clifton

and Markenscoff, 1981) and moving phase boundaries (Markenscoff and Ni, 2010; Ni and

Markenscoff, 2015). As proven in Freund (1972) the above expression is path independent for a

crack, and will also be now for an inhomogeneity, since it is a weaker singularity.
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4.5.2 Scaling of the Inhomogeneity

In this case we use the transformation such that φi = l xi, φ4 = l t and ψ j = (1−n)l u j/2,

i.e., scaling of the inhomogeneity. Inserting it in equation (4.106) gives

δΠH =− δΠL +2ε
t∫

0

∫
Ω

{
∂

∂xi
(Tlxi)+

∂

∂t
(Tlt)+ ρ Ûu j

∂

∂t

(
1−n

2
l u j −u j,il xi − Ûu j lt

)}
dV dt

=− δΠL +2ε
t∫

0

∫
Ω

{
l xiρ Ûuk Ûuk,i +nlT + ltρ Ûuk Üuk +Tl +

1−n
2

lρ Ûu j Ûu j − l xiρ Ûu j Ûu j,i

− ltρ Ûu j Üu j − lρ Ûu j Ûu j

}
dV dt

=− δΠL +2ε
t∫

0

∫
Ω

{nTl +Tl + (1−n)Tl −2Tl} dV dt

=− δΠL, (4.117)

where n is equal to number of spatial dimensions.

Thus, under an infinitesimal scaling of the inhomogeneity, the variation of the Lagrangean

is equal to the negative variation of the Hamiltonian. Taking the time derivative of equation

(4.117), we can write

ÛδΠH = − ÛδΠL, (4.118)

which, using equation (4.90), can be written as

ÛδΠH = − ÛδΠL = −ε

∫
Ω

{
∂σi j

∂xi
−
∂(ρ Ûu j)

∂t

}
ψ j dV + ε l M dyn, (4.119)
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where M dyn is defined by (4.63). Now from (4.99) and (4.119), we can define

δEtot ≡ ÛδΠH = −ε

∫
Ω

{
∂σi j

∂xi
−
∂(ρ Ûu j)

∂t

}
ψ j dV + ε l M dyn, (4.120)

where δEtot is the change of the total energy in the volume Ω due to the scaling of the

inhomogeneity evaluated at time t. In equation (4.120), the term in the curly brackets in the

integrand is the linear momentum balance expression (equation (4.17)). Therefore, equation

(4.120) can be stated as the proposition that if linear momentum is conserved in the whole

domain, then the change of the total energy of the system per unit infinitesimal scaling ε l, under

the scaling transformation (4.85), is equal to the dynamic M-integral.

4.5.3 Rotation of the Inhomogeneity

In this casewe use the transformation such that φi = εilmωmxl , φ4 = 0 andψ j = ε jlmωm(ul+

xl), i.e., rotation of the inhomogeneity. Inserting it in equation (4.106) gives

δΠH =− δΠL +2ε
t∫

0

∫
Ω

{
∂

∂xi
(Tεilmωmxl)+ ρ Ûu j

∂

∂t
(ε jlmωm(ul + xl)−u j,iεilmωmxl)

}
dV dt

=− δΠL +2ε
t∫

0

∫
Ω

{
εilmωmxlρ Ûuk Ûuk,i +Tεilmωmδil + ρ Ûu jε jlmωm Ûul − ρ Ûu j Ûu j,iεilmωmxl

}
dV dt .

(4.121)

The first term of the integrand on right-hand side cancels with the fourth term, the second term is

zero because δil is symmetric in i and l but εilm is skew-symmetric in i and l, and similarly the

third term is also zero because Ûu j Ûul is symmetric in j and l but ε jlm is skew-symmetric in j and l.

Hence, we obtain

δΠH = −δΠL . (4.122)
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Thus, under an infinitesimal rotation of the inhomogeneity, for an isotropic material the variation

of the Lagrangean is equal to the negative variation of the Hamiltonian. Taking the time derivative

of equation (4.122) we can write

ÛδΠH = − ÛδΠL, (4.123)

which, using equation (4.97), can be written as

ÛδΠH = − ÛδΠL =− ε

∫
Ω

{
∂σi j

∂xi
−
∂(ρ Ûu j)

∂t

}
ψ j dV + ε ωm

∫
Ω

[
∂

∂t
(ρεml j xl Ûu j)−

∂

∂xi
(εml j xlσi j)

]
dV

+ ε ωm L dyn
m , (4.124)

where L dyn
m is defined by (4.75). Now, from (4.99) and (4.124), we can define

δEtot ≡ ÛδΠH =− ε

∫
Ω

{
∂σi j

∂xi
−
∂(ρ Ûu j)

∂t

}
ψ j dV + ε ωm

∫
Ω

[
∂

∂t
(ρεml j xl Ûu j)−

∂

∂xi
(εml j xlσi j)

]
dV

+ ε ωm L dyn
m , (4.125)

where δEtot is the change of the total energy in the volume Ω due to the rotation of the

inhomogeneity evaluated at time t. In the above equation (4.125), the term in the curly brackets

in the first integrand is the linear momentum balance expression (equation (4.17)) and the second

integrand on the right hand side is the angular momentum expression (equation (4.69)). Therefore,

equation (4.125) can be stated as the proposition that for an isotropic material if linear and

angular momenta are conserved in the whole domain, then the change of the total energy of the

system per unit infinitesimal rotation ε ωm, under the rotation transformation (4.91) with ‘lever

arm xi +ui’, is equal to the dynamic L integral.
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4.6 Dissipative Propositions

4.6.1 Translation of the Inhomogeneity

From relation (4.111) we state the following proposition:

Proposition 1. (Gupta and Markenscoff, 2012) Under the translation transformation of equation

(4.79) the total energy loss of the system per unit infinitesimal translation is equal to the dynamic

J-integral if and only if linear momentum is conserved in the domain provided that ui, j is

invertible.

This proposition extends the earlier proposition for the static J-integral (Gupta and

Markenscoff, 2008) to the elastodynamics.

4.6.2 Scaling of the Inhomogeneity

From relation (4.120) we state the following proposition:

Proposition 2. If linear momentum is conserved in the domain, under the scaling transformation

of equation (4.85) the total energy loss of the system per unit infinitesimal scaling parameter is

equal to the dynamic M-integral.

This proposition is immediately extended to elastostatics for the static M-integral. We

show this via various calculations in Chapter 5.

4.6.3 Rotation of the Inhomogeneity

From relation (4.125) we state the following proposition:

Proposition 3. If linear and angular momenta are conserved in the domain, for an isotropic

material under the rotation transformation of equation (4.91) the total energy loss of the system

per unit infinitesimal rotation is equal to the dynamic L-integral.

This proposition is immediately extended to elastostatics for the static L-integral.
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These propositions express the fact that when analyticity is lost due to the inhomogeneity

(inhomogeneities create discontinuities in the stress), the classical energy conservation of elasticity

theory is not valid any longer. Extending Eshelby’s famous result (force on an elastic singularity)

to the other transformations, we may quote here Eshelby, in “The Force on an Elastic Singularity”

(Eshelby, 1951, p 108) stating “When all sources of internal stress and inhomogeneity within

Σ are given a small displacement δξl , the energy Flδξl is available for conversion into kinetic

energy or dissipation by some process not considered in the elastic theory”.

4.7 Conclusion

By applying Noether’s theorem we derived the group of infinitesimal transformations

of translation, scaling and rotation in elastodynamics under which the Lagrangean functional

remains invariant and obtained the corresponding conservation laws. For inhomogeneities, we

demonstrated that, under these transformations, the variation of the Lagrangean is equal to

the negative of the variation of the Hamiltonian, and this provide the relations between the

conservation integrals and the total energy loss of the system due to these transformations. This

leads to propositions that under scaling of the inhomogeneity, if linear momentum is conserved

in the domain, then the total energy loss of the system per unit infinitesimal scaling is equal to

the dynamic M integral, and under rotation, if linear and angular momenta are conserved in the

domain, then the total energy loss of the system per unit infinitesimal rotation is equal to the

dynamic L integral. Thus, the propositions are interpreted physically as dissipative mechanisms

for the loss of the Hamiltonian-energy due to translation, scaling or rotation of the inhomogeneity;

these propositions extend the static counterparts (Budiansky and Rice, 1973) to elastodynamics.

Chapter 4, in part, is reprint of the material as it appears in "Markenscoff, X., and

Singh, S. (2015). Dynamic conservation integrals as dissipative mechanisms in the evolution

of inhomogeneities. Journal of Mechanics of Materials and Structures, 10(3), 331-353". The

dissertation author was the primary investigator of this paper.
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Chapter 5

Calculation of M-integrals for Self Sim-
ilarly Growing Cavities, Inclusions and
Inhomogeneities in Elastostatics

5.1 Introduction

In this chapter, we calculate the M-integral for cavities, inclusions, and inhomogeneities

under tensile loading, or under the loading of transformation strains. We further relate the total

M-integral to the total energy release rate of the system as the defect expands self-similarly

(Markenscoff and Singh, 2015).

Static M-integral (Kienzler and Herrmann, 2000) is written after omitting the dynamic

terms from expression (4.63) of the previous chapter, as

M =
∫
Ω

∂

∂xi

(
x j Ei j +

2−n
2

u jσi j

)
dV

=

∫
Ω

∂

∂xi

[
x j(Wδi j −σikuk, j)+

2−n
2

u jσi j

]
dV

=

∫
Ω

∂

∂xi

[
W xi − x jσikuk, j +

2−n
2

u jσi j

]
dV, (5.1)

where n is the number of space dimensions. So, in the case of three-dimensions, we can write

M =
∫
Ω

∂

∂xi

[
W xi − x jσikuk, j −

1
2

u jσi j

]
dV . (5.2)
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In case of the radial loading in the spherical coordinates, the above expression can be written as

M(r) =

2π∫
0

π∫
0

(
Wr − rσrr

∂ur

∂r
−

urσrr

2

)
r2 sinθ dθ dφ, (5.3)

where M(r) is the net M-integral on the surface that encloses a spherical region of radius r.

Next, we evaluate the M-integral for a cavity in an infinite material under hydrostatic stresses at

infinity. Before we start the calculations, we must understand that, in case of cavity, or inclusions;

the ‘defect’ is the boundary. Therefore the net non-zero integral around the defect would be

computed a surface surrounding the boundary.

Figure 5.1. Path-independent M-integral surface contour around a boundary defect.

Consider a surface contour surrounding the defect boundary of a spherical cavity, or

inclusion of radius a, as shown in Figure 5.1. The spherical surfaces S1 and S2 are just outside

and inside the sphere of radius a. The two vertical surface of this contour on top of the inclusion

are infinitesimal distance apart and their outward normal are in opposite direction, so the net

surface integral of those two infinitesimal surfaces would be zero. Therefore, total M integral for

the above surface contour (Figure 5.1) would be over the surfaces S1 and S2, but the outward

normal of surface S2 is pointing inside. In such case we can write
∫

S1+S2
=

∫
S1
−
∫

S2
, and the net

M-integral around the spherical boundary defect becomes equal to
[
M(a+)−M(a−)

]
.
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5.2 Growing Cavities

5.2.1 Cavity in an Infinite Matrix under Loading at Infinity

Figure 5.2. A spherical cavity of radius a in an infinite matrix under triaxial-loading T at infinity.

There is a spherical cavity of radius a in an infinite matrix under triaxial-tension T at

infinity. Stress field (Lubliner, 2008):

σrr =


0, if x ≤ a

T
(
1− a3

r3

)
, otherwise

(5.4)

and

σθθ = σφφ =


0, if x ≤ a

T
(
1+ a3

2r3

)
, otherwise

(5.5)
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Now we can write the strain field for r > a as

εrr =
1
E
[σrr −2νσθθ] =

1
2µ(1+ ν)

[σrr −2νσθθ]

=
T
2µ

[
1−2ν
1+ ν

−
a3

r3

]
, (5.6)

and

εθθ = εφφ =
1
E
[(1− ν)σθθ − νσrr] =

1
2µ(1+ ν)

[(1− ν)σθθ − νσrr]

=
T
4µ

[
2(1−2ν)

1+ ν
+

a3

r3

]
. (5.7)

Only nonzero component of displacement is

ur = rεθθ =
T
4µ

[
2(1−2ν)

1+ ν
r +

a3

r2

]
. (5.8)

The expression for the strain energy density function is

W =
1
2
σi jεi j =

1
2
(σrrεrr +σθθεθθ +σφφεφφ)

=
1

2E
(σrr

2+2(1− ν)σθθ2−4νσrrσθθ)

=
3T2

4µ

[
1−2ν
1+ ν

+
a6

2r6

]
. (5.9)

Now we substitute the expression for strain energy, stress and displacement into equation (5.3) to

get the expression for the M-integral outside of the cavity (inside for r ≤ 0, the M-integral is

zero) as

M(r) =
9πa3(1− ν)T2

2µ(1+ ν)
. (5.10)

Next, we relate the M-integral to the energy release rate as the cavity expands. The total
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energy of the system under external loading F is given by

Etot =W elastic −

∫
S

Fi(ui +uo
i )dS

=

R∫
a

W4πr2dr −Tur4πR2

=

R∫
a

3T2

4µ

[
1−2ν
1+ ν

+
a6

2r6

]
4πr2dr −

T
4µ

[
2(1−2ν)

1+ ν
R+

a3

R2

]
4πR2

=
3T2π

µ


(
1−2ν
1+ ν

)
r3

3

�����R
a

−
a6

6r3

�����R
a

 −
Tπ
µ

[
2(1−2ν)

1+ ν
R3+ a3

]
=

T2π

µ

[(
1−2ν
1+ ν

)
(R3− a3)−

a6

2R3 +
a3

2

]
−

Tπ
µ

[
2(1−2ν)

1+ ν
R3+ a3

]
. (5.11)

Taking the derivative with respect to a to obtain

∂Etot

∂a
=

3T2π

µ

[
−3a2 1−2ν

1+ ν
−

3a5

r3 +
3a2

2

]
−

T2π

µ
3a2, (5.12)

now we take limit R goes to∞ for the infinite matrix

lim
R→∞

∂Etot

∂a
= −

9πa2(1− ν)T2

2µ(1+ ν)
. (5.13)

For an infinitesimal scaling parameter l;

dEtot

dl
=

(
∂Etot

∂a

)
da
dl
=

(
∂Etot

∂a

)
a = −

9πa3(1− ν)T2

2µ(1+ ν)
, (5.14)

and we obtain

[
M(a+)−M(a−)

]
= −dEtot/dl . (5.15)

Therefore, we conclude that the total energy release rate of the system per unit scaling parameter
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l is equal to the total M-integral when cavity expands self-similarly (Markenscoff and Singh,

2015).

5.2.2 Spherical Annulus under External Loading

Figure 5.3. A spherical annulus of internal radius a and external radius b under triaxial loading
T at the outer surface.

In the region a < r < b, the radial and circumferential components of the stress field are

σrr =
T
2
+

Tb3

2(b3− a3)

[
1+

(a
b

)3
−2

(a
r

)3
]
, (5.16)

and

σθθ = σφφ =
T
2
+

Tb3

2(b3− a3)

[
1+

(a
b

)3
+

(a
r

)3
]
. (5.17)

Using Maple, we obtain the expression for the strain energy density as

W =
3T2

8µ(1+ ν)(b3− a3)2

[
2−4ν+ (1+ ν)

a6

r6

]
. (5.18)

84



The total energy the system under external loading F can be written as

Etot =W elastic −

∫
S

Fi(ui +uo
i )dS

=

b∫
a

W4πr2dr −Tur4πb2

= −
πT3b2

2µ(1+ ν)(b3− a3)
[a3(1+ ν)+ (2−4ν)b3]. (5.19)

We can next write, for case of an infinite matrix

lim
b→∞

∂Etot

∂a
= −

9πa2(1− ν)T2

2µ(1+ ν)
. (5.20)

By doing symbolic algebraic calculations with Maple as b→∞, the expression for the M-integral

outside of the cavity is

M =
9πa3(1− ν)T2

2µ(1+ ν)
, (5.21)

inside the cavity, for r ≤ 0, the M-integrals is zero. Hence, from this general approach also, for a

cavity inside an infinite material under triaxial tension, we obtain

[
M(a+)−M(a−)

]
= −dEtot/dl, (5.22)

where l is the scaling parameter, we also used the fact dEtot/dl = (∂Etot/∂a)da/dl = (∂Etot∂a)a.
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5.3 Inclusions: Eigenstrains and Inhomogeneities
Simple Inclusion and Eshelby’s Solution

Figure 5.4. Simple ellipsoidal inclusion Ω in an infinity matrix D−Ω.

A simple inclusion is defined as a subdomain Ω in domain D, where eigenstrain εp
i j is

prescribed in Ω and is identically equal to zero in D−Ω. The elastic moduli in Ω and D−Ω are

assumed to be the same (material "1"). The remaining domain D−Ω is called the matrix (Figure

5.4). Note that there will be jump in hoop stresses at the boundary of the inclusion.

Eshelby’s Solution: Consider an ellipsoidal inclusion Ω (Figure 5.4) with a constant

eigenstrain εp
i j in an isotropic matrix D−Ω . The strain field inside the inclusion is εc

i j = Si j klε
p
kl ,

and stress field inside the inclusion is σi j = C(1)i j kl(ε
c
i j − ε

p
i j), where C(1)i j kl are the elastic moduli of

material "1", and Si j kl is called Eshelby’s tensor (Mura, 1987, chap. 2). Eshelby’s tensor Si j kl

is constant for ellipsoidal inclusions, depends only on the axes ratio and Poisson’s ratio of the

material (Eshelby, 1961). Mura (1987, chap. 2) has provided methods to evaluate the elastic

field at exterior points.
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Ellipsoidal Inhomogeneity and Equivalent Inclusion Method

Figure 5.5. Ellipsoidal inhomogeneity Ω in an infinity matrix D−Ω.

When the elastic moduli of an ellipsoidal subdomainΩ of a material (material "2") differs

from those of the matrix (material "1"), the subdomain Ω is called an ellipsoidal inhomogeneity

(Figure 5.5). A material containing inhomogeneities is free from any stress field unless a load

is applied. On the other hand, a material containing inclusions is subjected to an internal

stress (eigenstress) field even if it is free from any external loading (Mura, 1987, chap. 4). An

uniform applied stress (σ0
i j in Figure 5.5) at infinity is not uniform in the neighborhood of the

inhomogeneity.

Equivalent Inclusion Method: Eshelby (1957) pointed out that the disturbance in an

applied stress due to the presence of an inhomogeneity can be simulated by eigenstresses caused

by an inclusion when the eigenstrain is chosen properly, this is called equivalent inclusion

method. Therefore, we say that an inhomogeneity is same as a simple inclusion with ‘equivalent

eigenstrain’, ε∗i j .

Let σ0
i j be applied stress at infinity, and the corresponding strain is ε

0
i j , and σi j and εi j are

disturbance stress and strain fields, respectively. From Hooke’s law the stress field inside the
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subdomain Ω is given by

σ0
i j +σi j = C(2)i j kl(ε

0
kl + εkl) = C(1)i j kl(ε

0
kl + εkl − ε

∗
kl)

=⇒ C(2)i j kl(ε
0
kl + εkl) = C(1)i j kl(ε

0
kl + εkl − ε

∗
kl), (5.23)

where C(1)i j kl and C(2)i j kl are the elastic moduli of material "1" and material "2", respectively.

Substituting the disturbance strain field εkl = Sklmnε
∗
mn in equation (5.23) leads to

C(2)i j kl(ε
0
kl + Sklmnε

∗
mn) = C(1)i j kl(ε

0
kl + Sklmnε

∗
mn− ε

∗
kl). (5.24)

From the above equation the six unknowns, ε∗i j , are determined.

Inhomogeneous Inclusion

If the inhomogeneity carries its own eigenstrain, then it is called the inhomogeneous

inclusion. This means a subdomain Ω, which has different elastic constants (material "2") from

those of the matrix (material "1"), also have a given eigenstrain εp
i j . The inhomogeneous inclusion

is simulated by an inclusion in the homogeneous material with eigenstrain εp
i j , plus equivalent

eigenstrain ε∗i j due to the material mismatch in the inclusion and that in the matrix (Mura, 1987,

chap. 4). The disturbance strain inside the inclusion is εkl = Sklmnε
∗∗
mn, where ε∗∗i j = ε

p
i j + ε

∗
i j , and

Si j kl is Eshelby’s tensor. Therefore, the inhomogeneous inclusion is same as a simple inclusion

with eigenstrain ε∗∗i j .
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5.3.1 Spherical Inclusion with Eigenstrain

Figure 5.6. Spherical inclusion of radius a in an infinity matrix with an eigenstrain εp
i j = epδi j .

Interior Fields

The stress field components inside the inclusion (r < a) are (Mura, 1987, chap. 2)

σrr = σθθ = σφφ = −
4µ
3

(
1+ ν1
1− ν1

)
ep, (5.25)

and strain field components are

εrr = εθθ = εφφ =
1
3

(
1+ ν1
1− ν1

)
ep. (5.26)

The radial displacement is

ur = rεθθ =
r
3

(
1+ ν1
1− ν1

)
ep. (5.27)
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The strain density inside the inclusion is

W =
3
2
σrr(εrr − ep) =

4µ(1+ ν1)(1−2ν1)ep2

3(1− ν1)2
. (5.28)

Now, from equation (5.3), we can evaluate the M-integral inside the inclusion as

M(r) =
8µπ(1+ ν1)ep2r3

1− ν1
, (5.29)

and we can get

M(a−) =
8µπ(1+ ν1)ep2a3

1− ν1
. (5.30)

Exterior Fields

The stress field components outside the inclusion (r > a) are (Mura, 1987, chap. 2)

σrr = −
4µ
3

(
1+ ν1
1− ν1

)
a3

r3 ep, and σθθ = σφφ =
2µ
3

(
1+ ν1
1− ν1

)
a3

r3 ep. (5.31)

The strain field components are

εrr = −
2
3

(
1+ ν1
1− ν1

)
a3

r3 ep, and εθθ = εφφ =
1
3

(
1+ ν1
1− ν1

)
a3

r3 ep. (5.32)

The radial displacement is

ur = rεθθ =
1
3

(
1+ ν1
1− ν1

)
a3

r2 ep. (5.33)

The strain density inside the inclusion is

W =
1
2
σrrεrr +

2
2
σθθεθθ =

2µ
3

(
1+ ν1
1− ν1

)2 a6

r6 ep2. (5.34)

90



Now, from equation (5.3), we can evaluate the M-integral inside the inclusion as

M(r) = 0. (5.35)

Which means

M(a+) = 0. (5.36)

Total Energy of the System

For the case of a simple inclusion, the total energy is given by equation (25.19) in Mura

(1987) as

Etot = −
1
2

∫
Ω

σi jε
p
i j dV =

8µπ(1+ ν1)ep2a3

3(1− ν1)
, (5.37)

whereΩ is region with eigenstrain (inclusion). Now, we differentiate the total energy with respect

to the radius of the inclusion a to obtain

∂Etot

∂a
=

8µπ(1+ ν1)ep2a2

1− ν1
(5.38)

Since dEtot/dl = (∂Etot/∂a)da/dl = (∂Etot∂a)a, from equation (5.30), (5.36) and (5.38) we

obtain

[
M(a+)−M(a−)

]
= −dEtot/dl . (5.39)

Therefore, we conclude that, the total energy release rate of the system per unit scaling parameter

l is equal to the total M-integral when the inclusion expands self-similarly (Markenscoff and

Singh, 2015).
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5.3.2 Spherical Inhomogeneity under Loading at infinity

Figure 5.7. Spherical inhomogeneity of radius a with material “2” in an infinite matrix of
material “1” under triaxial loading T at infinity.

To solve the stress and strain fields for this problem, we evaluate the equivalent eigenstrain

due to the inhomogeneity, and this problem becomes equivalent to an inclusion with an ‘equivalent

eigenstrain’ inside an infinite matrix of same material. As given by equation (22.25) in Mura

(1987), the equivalent eigenstrain would be ε∗i j = e∗δi j , where

e∗ =
T(1− ν1)(K1−K2)

(1+ ν1)K1K2+2(1−2ν1)K2
1
, (5.40)

where K1 and K2 are the bulk moduli of the matrix and inhomogeneity, respectively.

Interior Fields

The stress field components inside the inhomogeneity (r < a) are (Mura, 1987, chap. 4)

σrr = σθθ = σφφ = −
4µ
3

(
1+ ν1
1− ν1

)
e∗+T, (5.41)
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and the strain field components are

εrr = εθθ = εφφ =
1
3

(
1+ ν1
1− ν1

)
e∗+

T(1−2ν1)

2µ1(1+ ν1)
. (5.42)

The radial displacement is

ur = rεθθ =
r
3

(
1+ ν1
1− ν1

)
e∗+

T(1−2ν1)

2µ1(1+ ν1)
r, (5.43)

The strain density inside the inhomogeneity is

W =
3
2
σrrεrr (5.44)

Now, from equation (5.3), we can evaluate the M-integral inside the inhomogeneity as

M(r) = 0. (5.45)

Which means

M(a−) = 0. (5.46)

Exterior Fields

The stress field components outside the inhomogeneity (r > a) are (Mura, 1987, chap. 4)

σrr = −
4µ
3

(
1+ ν1
1− ν1

)
a3

r3 e∗+T, and σθθ = σφφ =
2µ
3

(
1+ ν1
1− ν1

)
a3

r3 e∗+T . (5.47)

The strain field components are

εrr = −
2
3

(
1+ ν1
1− ν1

)
a3

r3 e∗+
T(1−2ν1)

2µ1(1+ ν1)
(5.48)
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and

εθθ = εφφ =
1
3

(
1+ ν1
1− ν1

)
a3

r3 e∗+
T(1−2ν1)

2µ1(1+ ν1)
. (5.49)

The radial displacement is

ur = rεθθ =
1
3

(
1+ ν1
1− ν1

)
a3

r2 e∗+
T(1−2ν1)

2µ1(1+ ν1)
r . (5.50)

The strain density inside the inhomogeneity is

W =
1
2
σrrεrr +

2
2
σθθεθθ . (5.51)

Now, from equation (5.3), we can evaluate the M-integral inside the inhomogeneity

M(r) = 6πTe∗a3. (5.52)

Which means

M(a+) = 6πTe∗a3. (5.53)

Total Energy of the System

For the case of an inhomogeneity in an infinite matrix, the total energy is given by

equation (25.19) in Mura (1987) as

Etot =W −
1
2

∫
Ω

σo
i jε
∗
i j dV =W −2Tπe∗a3, (5.54)

where Ω is region with inhomogeneity, σo
i j is stress at infinity and W is function of homogeneous

loading (T) which does not depend on size or magnitude of inhomogeneity. Now, we differentiate

94



the total energy with respect to the radius of the inclusion a to obtain

∂Etot

∂a
= −6Tπe∗a2. (5.55)

Since dEtot/dl = (∂Etot/∂a)da/dl = (∂Etot∂a)a, from equation (5.46), (5.53) and (5.55), we

can obtain

[
M(a+)−M(a−)

]
= −dEtot/dl . (5.56)

Therefore, we conclude that, the total energy release rate of the system per unit scaling parameter

l is equal to the total M-integral when the inhomogeneity expands self-similarly (Markenscoff

and Singh, 2015).

5.3.3 Spherical Inhomogeneous Inclusion under Loading at infinity

Figure 5.8. Spherical inhomogeneity of radius a with material “2” and also with an eigenstrain
ε

p
i j = epδi j in an infinite matrix of material “1” under triaxial-loading T at infinity.

To solve the stress and strain filed for this problem, we evaluate the combined equivalent
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eigenstrain due to the inhomogeneity and the given eigenstrain. Now this problem becomes equal

to an inclusion with equivalent eigenstrain inside an infinite matrix of same material. As given

by equation (22.25) in Mura (1987), the equivalent eigenstrain is ε∗∗i j = e∗∗δi j , and

e∗∗ = ep+ e∗ =
{(K1−K2)ε

0
ii −3K2ep}(1− ν1)

(1+ ν1)K2+2(1−2ν1)K1
, (5.57)

where ε0
ii = 3T(1−2ν1)/{2µ1(1+ ν1)}, e∗ is the eigenstrain due to the inhomogeneity, and K1

and K2 are the bulk moduli of the matrix and inhomogeneity, respectively.

Interior Fields

The stress field components inside the inclusion (r < a) are (Mura, 1987, chap. 4)

σrr = σθθ = σφφ = −
4µ
3

(
1+ ν1
1− ν1

)
e∗∗+T, (5.58)

and the strain field components are

εrr = εθθ = εφφ =
1
3

(
1+ ν1
1− ν1

)
e∗∗+

T(1−2ν1)

2µ1(1+ ν1)
. (5.59)

The radial displacement is

ur = rεθθ =
r
3

(
1+ ν1
1− ν1

)
e∗∗+

T(1−2ν1)

2µ1(1+ ν1)
r, (5.60)

The strain density inside the inclusion is

W =
3
2
σrr(εrr − ep) (5.61)
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Now, from equation (5.3), we can evaluate the M-integral inside the inclusion

M(r) =
8µπ(1+ ν1)epe∗∗r3

1− ν1
−6Tπr3ep. (5.62)

Which means

M(a−) =
8µπ(1+ ν1)epe∗∗a3

1− ν1
−6Tπa3ep. (5.63)

Exterior Fields

The stress field components outside the inclusion (r > a) are (Mura, 1987, chap. 4)

σrr = −
4µ
3

(
1+ ν1
1− ν1

)
a3

r3 e∗∗+T, and σθθ = σφφ =
2µ
3

(
1+ ν1
1− ν1

)
a3

r3 e∗∗+T . (5.64)

The strain field components are

εrr = −
2
3

(
1+ ν1
1− ν1

)
a3

r3 e∗∗+
T(1−2ν1)

2µ1(1+ ν1)
(5.65)

and

εθθ = εφφ =
1
3

(
1+ ν1
1− ν1

)
a3

r3 e∗∗+
T(1−2ν1)

2µ1(1+ ν1)
. (5.66)

The radial displacement is

ur = rεθθ =
1
3

(
1+ ν1
1− ν1

)
a3

r2 e∗∗+
T(1−2ν1)

2µ1(1+ ν1)
r . (5.67)

The strain density inside the inclusion is

W =
1
2
σrrεrr +

2
2
σθθεθθ . (5.68)
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Now, from equation (5.3), we can evaluate the M-integral inside the inclusion

M(r) = 6πTe∗∗a3. (5.69)

Which means

M(a+) = 6πTe∗∗a3. (5.70)

Total Energy of the System

For the case of an inhomogeneity in an infinite matrix, the total energy is given by

equation (25.19) in Mura (1987) as

Etot =W −
1
2

∫
Ω

σo
i jε
∗
i j dV −

1
2

∫
Ω

σi jε
p
i j dV −

∫
Ω

σo
i jε

p
i j dV

=W −2Tπe∗a3−4Tπepa3+
8µπ(1+ ν1)e∗∗epa3

3(1− ν1)
, (5.71)

where Ω is region with inhomogeneity, σo
i j is stress at infinity and W is function of homogeneous

loading (T) which does not depend on size or magnitude of inhomogeneity. Now, we differentiate

the total energy with respect to the radius of the inclusion a to obtain

∂Etot

∂a
= −6Tπe∗a2−12Tπepa2+

8µπ(1+ ν1)e∗∗epa2

1− ν1

= −6Tπe∗∗a2−6Tπepa2+
8µπ(1+ ν1)e∗∗epa2

1− ν1
(5.72)

Since dEtot/dl = (∂Etot/∂a)da/dl = (∂Etot∂a)a, from equation (5.63), (5.70) and (5.72), we

can state that

[
M(a+)−M(a−)

]
= −dEtot/dl . (5.73)
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Therefore, we conclude that the total energy release rate of the system per unit scaling parameter

l is equal to the total M-integral when the inhomogeneous inclusion expands self-similarly

(Markenscoff and Singh, 2015).

5.4 Conclusion

We conclude that the total energy release rate of the system per unit scaling parameter l is

equal to the total M-integral when cavities, inclusions, or inhomogeneities expand self-similarly

(Markenscoff and Singh, 2015). These calculations are useful to understand the mechanism

of nucleation in a material by knowing the critical value of the M- integral required for the

nucleation to start.

The work of Chapter 5 has been done with Professor X. Markenscoff. The dissertation

author was the primary investigator of this research work. The work is being prepared for a

publication.
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Appendix A

Dynamic M-integral in Terms of Jumps
for Expanding Plane Boundary

Here we derive the expression for the dynamic M-integral in terms of the ‘jumps’,

which can be applied to calculate the M-integral for expanding inhomogeneities. We start with

expression (4.63) from Chapter 4 for the dynamic M-integrals (Markenscoff and Singh, 2015)

M dyn =

∫
Ω

[
∂

∂xi

{
(T −W)xi +

n−1
2

σi ju j +σi ju j,k xk + tσi j Ûu j

}
+
∂

∂t

{
t(T −W)−

n−1
2

ρ Ûu ju j − ρ Ûu ju j,k xk − tρ Ûu j Ûu j

}]
dV, (A.1)

where the strain energy density isW = 1
2Ci j klεi jεkl =

1
2Ci j kl ui, juk,l, and the specific kinetic energy

is T = 1
2 ρ Ûui Ûui. We can further write the above expression as

M dyn =

∫
Ω

∂

∂xi

{
(T −W)xi +

n−1
2

σi ju j +σi ju j,k xk + tσi j Ûu j

}
dV

−

∫
Ω

∂

∂t

{
t(T +W)+

n−1
2

ρ Ûu ju j + ρ Ûu ju j,k xk

}
dV . (A.2)
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Now using the ‘rigid transport’ assumption Eshelby (1970), we can write

M dyn =

∫
Ω

d
dxi

{
(T −W)xi +

n−1
2

σi ju j +σi ju j,k xk + tσi j Ûu j

}
dV

+ vi

∫
∂Ω

{
t(T +W)+

n−1
2

ρ Ûu ju j + ρ Ûu ju j,k xk

}
ni dS, (A.3)

where vi is the rate of self-similar expansion of the inhomogeneity. Using the divergence theorem

we convert the remaining volume integral to the surface integrals to obtain

M dyn =

∫
∂Ω

{
(T −W)ni xi +

n−1
2

σi ju jni +σi ju j,k xkni + tσi j Ûu jni

+vit(T +W)ni +
n−1

2
viρ Ûu ju jni + viρ Ûu ju j,k xkni

}
dS, (A.4)

or it can be written as

M dyn =

∫
∂Ω

{
(T −W)ni xi +

n−1
2

σi ju jni +σi ju j,k xkni + tσi j Ûu jni

+vnt(T +W)+
n−1

2
vnρ Ûu ju j + vnρ Ûu ju j,k xk

}
dS. (A.5)

For the moving plane boundary {(x1, x2, x3)|x1 = R0+ l(t)}, the integral surface ∂Ω ≡ Sε enclosing

the boundary consists of the planes {(x1, x2, x3)|x1 = R0+ l(t)± ε} on either side of the moving

boundary for an infinitesimal number ε > 0 (plus the areas at lateral boundaries at infinity, which
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give negligible contribution), so we can write

M dyn = lim
ε→0

∫
Sε

{
(T −W)ni xi +

n−1
2

σi ju jni +σi ju j,k xkni + tσi j Ûu jni

+vnt(T +W)+
n−1

2
vnρ Ûu ju j + vnρ Ûu ju j,k xk

}
dS

=

∞∫
−∞

∞∫
−∞

{
xiniJT −WK+

n−1
2

niJσi ju jK+ xkniJσi ju j,kK+ tniJσi j Ûu jK

+ÛlntJT +WK+
n−1

2
ÛlnJρ Ûu ju jK+ ÛlnxkJρ Ûu ju j,kK

}
dx2 dx3, (A.6)

note that in this case vn becomes equal to Ûln. Next, we use well-known Hadamard jump conditions

n jJσi jK = −ÛlnρJ ÛuiK (A.7)

and

J ÛuiK = −ÛlnJ∂ui/∂nK (A.8)

across the interface, and also the relation J∂ui/∂nKn j = J∂ui/∂x jK . We furthere employ the fact

niJσi ju jK = ni 〈σi j〉Ju jK+niJσi jK〈u j〉 = ni 〈σi j〉Ju jK− ÛlnρJ Ûu jK〈u j〉 and ÛlnJρ Ûu ju jK = Ûlnρ〈 Ûu j〉Ju jK+

ÛlnρJ Ûu jK〈u j〉. Also Ju jK = 0, we get niJσi ju jK+ ÛlnJρ Ûu ju jK = 0. Now equation (A.6) can be written

as

M dyn =

∞∫
−∞

∞∫
−∞

{
xiniJT −WK+ xkniJσi ju j,kK+ tniJσi j Ûu jK

+ÛlntJT +WK+ ÛlnxkJρ Ûu ju j,kK
}

dx2 dx3. (A.9)

Since xiniJTK = xiniρ〈 Ûu j〉J Ûu jK = −Ûlnxiniρ〈 Ûu j〉J∂u j/∂nK = −Ûlnxiρ〈 Ûu j〉Ju j,iK and ÛlnxkJρ Ûu ju j,kK =

Ûlnxk ρ〈 Ûu j〉Ju j,kK+ Ûlnxk ρJ Ûu jK〈u j,k〉, we get ÛlnxkJρ Ûu ju j,kK+ xiniJTK = Ûlnxk ρJ Ûu jK〈u j,k〉. So the above
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equation can be written as

M dyn =

∞∫
−∞

∞∫
−∞

{
−xiniJWK+ Ûlnxk ρJ Ûu jK〈u j,k〉+ xkniJσi ju j,kK

+tniJσi j Ûu jK+ ÛlntJT +WK
}

dx2 dx3. (A.10)

Since xkniJσi ju j,kK= xkniJσi jK〈u j,k〉+ xkni 〈σi j〉Ju j,kK=−xk ÛlnρJ Ûu jK〈u j,k〉+ xkni 〈σi j〉Ju j,kK, now

substituting it back into the above equation and simplifying provides

M dyn =

∞∫
−∞

∞∫
−∞

{
−xiniJWK+ xkni 〈σi j〉Ju j,kK+ tniJσi j Ûu jK+ ÛlntJT +WK

}
dx2 dx3. (A.11)

We know that t niJσi j Ûu jK = t ni 〈σi j〉J Ûu jK+ t niJσi jK〈 Ûu j〉 = −Ûlnt ni 〈σi j〉J∂u j/∂nK− tρÛlnJ Ûu jK〈 Ûu j〉 =

−Ûlnt〈σi j〉Ju j,iK− ÛlntJTK. Substituting it back into the above equation and simplifying provides

M dyn =

∞∫
−∞

∞∫
−∞

{
−xiniJWK+ xkni 〈σi j〉Ju j,kK+ ÛlntJWK− Ûlnt〈σi j〉Ju j,iK

}
dx2 dx3. (A.12)

In view of relation J∂ui/∂x jK = J∂ui/∂nKn j , we can rewrite the above equations as

M dyn =

∞∫
−∞

∞∫
−∞

{
−xiniJWK+ xknink 〈σi j〉J∂u j/∂nK+ ÛlntJWK− Ûlnt〈σi j〉Ju j,iK

}
dx2 dx3. (A.13)

Or

M dyn =

∞∫
−∞

∞∫
−∞

{
−xiniJWK+ xknk 〈σi j〉Ju j,iK+ ÛlntJWK− Ûlnt〈σi j〉Ju j,iK

}
dx2 dx3. (A.14)
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Since σi j = σji, we can write

M dyn =

∞∫
−∞

∞∫
−∞

{
−xknkJWK+ xknk 〈σi j〉Jui, jK+ ÛlntJWK− Ûlnt〈σi j〉Jui, jK

}
dx2 dx3. (A.15)

A further simplification provides a compact form of expression for the dynamic M-integral for

expanding plane inhomogeneities

M dyn = −

∞∫
−∞

∞∫
−∞

(xknk − Ûlnt)
(
JWK− 〈σi j〉Jui, jK

)
dx2 dx3. (A.16)

The mathematical derivations in Appendix have been done with Professor X. Markenscoff.

The dissertation author was the primary investigator of this research work. The work is being

prepared for a publication.
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