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Spin-Peierls Transition in CuGeO3: Critical, Tricritical or Mean Field?

R. J. Birgeneau, V. Kiryukhin, and Y. J. Wang
Department of Physics, and Center for Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge,

MA 02139

(February 7, 2017)

The spin-Peierls phase transition in CuGeO3 has been extensively studied utilizing a variety of
experimental techniques. Interpretations of the phase transition behavior vary from tricritical to
mean field to Ising critical to XY critical. We show that the behavior in the vicinity of the phase
transition of each of the order parameter, the magnetic energy gap and the heat capacity can
be quantitatively fitted with few adjustable parameters with a mean field model incorporating a
tricritical to mean field critical crossover in the transition region.

PACS numbers: 75.40.Cx, 75.40.-s, 75.30.Kz, 64.60.Fr

I. INTRODUCTION

The spin-Peierls transition corresponds to the dimer-
ization of a one-dimensional S = 1

2
antiferromagnetic

chain coupled to a three dimensional elastic medium [1]-
[6]. Until relatively recently, spin-Peierls transitions had
only been observed in organic charge transfer compounds
such as copper bisdithiolene (TTF-CuBDT) [5]- [8]. Ex-
perimental information obtainable in such systems has
been limited both by the size of available single crystals
and by the sensitivity of these materials to damage by
x-rays or electrons. Nevertheless, some important infor-
mation on the spin-Peierls phase transition has been ob-
tained in a number of different organic materials. Inter-
estingly, in most, if not all cases, the data are consistent
with a simple BCS-type mean field transition [5]- [8].
Much more complete experimental work on the spin-

Peierls transition has been made possible by the discov-
ery that a structurally simple, inorganic chain compound
copper germanate (CuGeO3) undergoes a spin-Peierls
transition at a transition temperature around 14K [9].
The crystal structure of CuGeO3 is orthorhombic, space
group Pbmm, with a unit cell of dimensions a = 4.81 Å,
b = 8.47 Å and c = 2.94 Å at room temperature [10].
The Cu2+ ion carries a spin S = 1

2
and forms a (CuO2)

chain with the neighboring Cu2+ ions along the c-axis
direction. The successive Cu2+ S = 1

2
spins are antifer-

romagnetically coupled through the superexchange inter-
actions via the bridging oxygen atoms. Below the spin-
Peierls transition temperature, TSP , the dimerization of
Cu-Cu pairs along the c-axis direction, accompanied by
shifts of the bridging oxygen atoms in the ab plane, gives
rise to superlattice reflections at the (h

2
, k, l

2
) (h, l: odd

and k: integer) reciprocal-lattice positions [11]. These
have been observed in electron diffraction [12], x-ray [13],
and elastic neutron scattering [11] experiments. Using
coarse resolution x-ray diffraction techniques, Pouget et
al. [13] have measured the pretransitional thermal lattice
fluctuations whose correlation lengths diverge anisotropi-

cally with decreasing temperature in a manner consistent
with mean field theory. These same fluctuations have
been studied at high resolution using synchrotron x-ray
diffraction techniques by Harris et al. [14]. These lat-
ter authors observe within about 1K of TSP large length
scale fluctuations with characteristic length scales about
an order of magnitude longer than those characterizing
the bulk critical fluctuations.
In spite of this large amount of work, it is still not

agreed whether the observed transition behavior reflects
mean field or critical behavior. Extant models include:
a) tricritical to 3D Ising crossover behavior [14,15]; b)
mean field behavior [15]; c) 3D XY with corrections to
scaling [16], and, most exotically, d) a 2D XY to 3D XY
crossover as TSP is approached [17]. Harris et al. [14]
first argued that because of the one-component nature
of the dimerization order parameter for a spin-Peierls
phase transition, asymptotically the transition must be
in the 3D Ising universality class. They argued fur-
ther, that because of the coupling to the elastic strains,
the precritical behavior should be tricritical-like. Sim-
ilar conclusions, albeit based on different physical rea-
soning, were arrived at later by Werner and Gros [15].
Proponents of 3D XY behavior typically argue that the
copper and oxygen displacements are independent thence
yielding a two-component order parameter [18]. Implic-
itly, Harris et al. [14] assume that all of the atomic dis-
placements accompanying the spin-Peierls transition are
linearly coupled thence reducing the system to a one-
component order parameter. The 3D critical behavior
models seem to be supported by measurements of the
order parameter [14,16,17] which for reduced tempera-
tures ∼ 2 × 10−3 < 1 − T/TSP

<
∼ 5 × 10−2 exhibits

power law behavior (1 − T/TSP )
β with β = 0.33± 0.02,

in good agreement with both 3D Ising and XY values of
β = 0.325 and 0.345 respectively [19]. The heat capacity
data are equally well described by a 3D critical behav-
ior model (Ising or XY) and by a mean field model with
Gaussian fluctuations [20].
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In this paper we present an alternative model for
CuGeO3, namely a Landau-Ginzburg model incorporat-
ing a tricritical to mean field crossover. As we shall show,
this model describes all available data very well with few
adjustable parameters. The format of this paper is as fol-
lows. In Section II we introduce the model including its
genesis in studies of critical phenomena in thermotropic
liquid crystals systems. Section III presents an analysis
of the available data for CuGeO3 using this model. Fi-
nally, in Section IV we give a summary, our conclusions
and suggestions for future experiments.

II. THE MODEL

The conundrum described above for CuGeO3 is remi-
niscent of a similar divergence of views which occurred in
the interpretation of experiments on smectic A - smectic
C phase transitions in thermotropic liquid crystal sys-
tems [21]- [23]. In particular, in that case, measure-
ments of the tilt order parameter [21,23] typically reveal
power law behavior φ ∼ (1 − T/TAC)

β over the temper-
ature range 5 × 10−5 < (1 − T/TAC) < 5 × 10−3 with
β = 0.36 ± 0.02. However, this divergence of views was
resolved by Huang and Viner [22] and Birgeneau et al.

[23] who showed that all of the data including the heat
capacity, order parameter, and tilt susceptibility, were
consistent with the predictions of a simple Landau model
with an anomalously large 6th order term. Clearly, it is
of interest to carry out a similar analysis for the available
data for the spin-Peierls transition in CuGeO3.
For the Landau-Ginzburg model the free energy is

given by

F = aτφ2 + bφ4 + cφ6....+
1

2mα
|∇αφ|

2 (1)

where τ = T/Tc − 1.
With τ0 = b2/ac, standard calculations yield for the

order parameter, φ, the specific heat, C, the susceptibil-
ity, χ, and the correlation length, ξα,:

φ = (b/3c)1/2[(1− 3τ/τ0)
1/2 − 1]1/2 τ < 0 (2)

C =

{

0 τ > 0

(a2T/2bT 2
c )(1− 3τ/τ0)

−1/2 τ < 0
(3)

χ = 1/2aτ τ > 0 (4)

ξα = (2amατ)
−1/2 τ > 0 (5)

with similar expressions for τ < 0 for χ and ξ. Eq. (2)
and (3) are conveniently rewritten in the form

φ = φ0

[

(

1 + 3 TSP−T
TSP−TCR

)1/2

− 1

]1/2

τ < 0 (6)

C =

{

0 τ > 0

C T
(

1 + 3 TSP−T
TSP−TCR

)

−1/2

τ < 0
(7)

where TCR is the crossover temperature from tricritical
to mean field behavior. We note that in the above expres-
sions the exponents are fixed and only the amplitudes and
the two temperatures, TSP and TCR, are variable. A log-
log plot of Eq. (6) reveals that for the order parameter φ
the effective exponent β crosses over gradually from 1

4
to

1

2
as T varies from less than to greater than TCR. In the

smectic A - smectic C case the measurements span TCR

and accordingly intermediate exponents, β ≃ 0.36, are
found even though the actual transition is mean-field-
like for temperatures in the immediate vicinity of TAC

[23].

III. ANALYSIS

We now apply this tricritical–mean field crossover
model to CuGeO3. The first test is TSP itself or, more
precisely, the ratio of the spin gap, ∆, to TSP . In the
mean field theory of Pytte [24], the spin-Peierls tran-
sition is BCS-like so that in the weak coupling limit
2∆/TSP = 3.5. In the charge transfer salts TTF -
CuBDT [4,6], TTF - AuBDT [5], MEM - (TCNQ)2
[7], and SBTTF - TCNQCl2 [8] this ratio is found to
be 3.5, 3.7, 3.1 and ≤ 3.5 respectively, in good agree-
ment with the BCS value. Critical fluctuations, either
Ising or XY in character, would act to increase this ra-
tio. For CuGeO3, ∆ = 24.5K and TSP ≃ 14K implying
2∆/TSP = 3.5, consistent with a BCS mean field the-
ory description [9,25]. At the minimum, this value for
2∆/TSP argues against any quantitatively important ef-
fect of critical fluctuations on TSP in CuGeO3.
The behavior of the order parameter in CuGeO3 is

of particular importance since this observable appears
to provide the strongest evidence for true critical rather
than mean field or tricritical behavior. A number of
groups have reported measurements of the temperature
dependence of the order parameter in CuGeO3 [14,16,17].
The measured phase transition temperature TSP varies
between 13.3K and 14.6K in different samples. Never-
theless, near-universal behavior is observed for the order
parameter provided that it is plotted as a function of
the reduced temperature T/TSP . As noted above, fits
of the order parameter φ(T/TSP ) for 1 − T/TSP < 0.05
to a single power law φ ∼ (1 − T/TSP )

β all yield val-
ues of β = 0.33 ± 0.02. As discussed by Gaulin and
co-workers [16], inclusion of a correction-to-scaling mul-
tiplicative factor (1+B|τ |δ) in the expression for φ both
improves the goodness of fit and, not surprisingly, ex-
tends the range of validity of the fit.
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FIG. 1. (3/2, 1, 3/2) superlattice peak intensity mea-
sured with synchrotron x-ray diffraction techniques. The
peak intensity is proportional to the order parameter squared,
φ2. The dashed line is the result of a fit of the data for
τ = 1− T

TSP
< 0.04 to a single power law φ2

∼ φ2

0(1−
T

TSP
)2β

with β = 0.314 ± 0.01. The solid line is the result of a fit to
Eq. (6) with τCR = 0.006.

We show in Fig. 1 our own measurements of the
order parameter squared in a sample of CuGeO3 with
TSP = 14.6K. These data are consistent with those mea-
sured by both ourselves and other groups in a variety of
samples [14,16,17]. Fits to a single power law for τ < 0.04
yield β = 0.314 ± 0.01. However, as noted by Harris et

al. [14] and as may be seen in Fig. 1, the data fall sig-
nificantly below the power law curve for τ > 0.04. We
show, in addition, in Fig. 1 the results of a fit to the
tricritical to mean field crossover form, Eq. (6). This
fit has only three adjustable parameters, φ2

0, TCR and
TSP . This is the same number of parameters as those
in the single power law fits discussed above and two less
than the number of adjustable parameters in fits to a
power law with corrections-to-scaling with both B and δ
varied. (We note that Lumsden et al. [16] fix δ = 1/2
whereas Lorenzo et al. allow δ to vary; the latter group
find an optimum fit for δ ≃ 1). It is evident that Eq.
(6) describes the order parameter data extremely well
over the complete range of temperatures. The fit yields
τCR = 1 − TCR/TSP = 0.006 ± 0.001 implying that the
crossover from tricritical to mean field behavior occurs
at a quite small reduced temperature.
We now discuss the energy gap ∆. Using a simple

scaling ansatz, Cross and Fisher [3] argue that ∆ ∼ φ2/3.
We show in Fig. 2 the data of Lorenzo et al. [17] for the
magnetic energy gap for T < TSP in a sample of CuGeO3

with TSP = 14.4K. In part because of the apparent jump
of ∆(T ) at TSP , Lorenzo et al. [17] interpret these data as
indicating a 2D XY Kosterlitz-Thouless transition [26].
In fact, these data are readily explained using the model

of Cross and Fisher [3] together with the tricritical-mean
field crossover form for φ, Eq. (6). In this case we hold
TSP fixed at TSP = 14.4K and set τCR = 0.006 as deter-
mined above so that there is only one adjustable param-
eter, the overall amplitude ∆(0). The result so-obtained
is shown in Fig. 2. It is evident that the tricritical-mean
field model with ∆(T ) ∼ φ2/3 describes the measured gap
energy ∆(T ) extremely well over a wide range of temper-
atures with only one adjustable parameter. Indeed, this
is by far the best test to-date of the Cross-Fisher model.
We should note that this model cannot explain the in-
ferred pseudogap above TSP [17]. However, the “pseu-
dogap” is deduced using a heuristic line-shape analysis
which lacks a firm theoretical basis.

FIG. 2. Magnetic energy gap in CuGeO3. These data are
from Ref. 17. The solid line is the result of a fit to the form
∆(T ) = ∆(0)φ2/3 where φ is given by Eq. (6) with τCR held
fixed at 0.006.

The specific heat in CuGeO3 has proven to be the
most difficult thermodynamic quantity to interpret un-
ambiguously [20]. This is, in part, because of the extreme
sensitivity of the specific heat near TSP to sample inho-
mogeneities and, in part, because of the inevitable large
number of adjustable parameters required to describe the
critical specific heat in any physically relevant model.
Fig. 3 shows high resolution magnetic specific heat (CM )
data for a sample of CuGeO3 with TSP = 14.24K from
Lasjaunias and coworkers [20]. Hegman et al. [20] have
carried out an extensive analysis of these data using both
a mean field “BCS plus Gaussian fluctuation” model and
a critical behavior model. They find that both mod-
els describe CM quite well in the immediate vicinity of
TSP , albeit at the cost of a rather large number of ad-
justable parameters. The critical behavior model fits give
a value for the specific heat exponent, α, near 0. On
the other hand, the Gaussian fluctuation analysis implies
that the true critical behavior is confined to the region
|τ | < 0.0006.
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FIG. 3. Magnetic specific heat in CuGeO3. These data are
from Ref. 20. The solid line is the result of a fit to Eq. (8)
with τCR held fixed at 0.006.

Given the uncertainties connected with the fits de-
scribed above, the best one can hope for is to determine
whether or not the tricritical-mean field crossover model
is consistent with the experimental results for CM shown
in Fig. 3. First, it is evident that Eq. (7) will be inade-
quate since one must, at the minimum, include Gaussian
fluctuations above TSP . We therefore include the fluctua-
tions above TSP in the simplest way possible by replacing
Eq. (7) by

CM =











C+

MT
(

1 + 3 T−TSP

TSP−TCR

)

−1/2

+ γT τ > 0

C−

MT
(

1 + 3 TSP−T
TSP−TCR

)

−1/2

+B τ < 0

(8)

where γT is the regular linear term for a 1D Heisenberg
antiferromagnet and B is the background term below
TSP . The background B

−
should, in general, be tem-

perature dependent; however, given the narrow range of
temperatures we consider, a constant background is ade-
quate. Eq. (8) is closely similar to the BCS plus Gaussian
fluctuation model considered by Hegman et al. [20] since
the Gaussian fluctuations give rise to a |τ |−1/2 contribu-
tion to CM both above and below TSP . The solid lines
in Fig. 3 correspond to fits to Eq. (8) with τCR fixed
at 0.006 and C+

M , C−

M ,γ, B and TSP varied. Clearly
Eq. (8) describes CM quite well; indeed the fit appears
to be better than those for either of the models tested
by Hegman et al. [20]. The fit shown in Fig. 3 gives
C+

M/C−

M = 1.1 ± 0.13; this ratio is expected to be non-
universal so it cannot be simply interpreted. We con-
clude, therefore, that the tricritical-mean field crossover
model describes CM well although not uniquely so.
Finally, we discuss the correlation length and the stag-

gered susceptibility. Pouget et al. [13] have found that
the correlation length over a wide temperature range fol-
lows the behavior ξ ∼ (T/TSP − 1)−1/2, consistent with

mean field theory; however, the number of data points in
their experiment near TSP is sufficiently small that their
results do not meaningfully differentiate between various
theoretical models. Harris et al. [14] have reported a high
resolution synchrotron x-ray study of the critical fluctu-
ations above TSP in CuGeO3. They find pretransitional
lattice fluctuations within 1K above TSP whose length
scale is about an order of magnitude longer than those
characterizing the bulk thermal fluctuations. The line-
shape of the large length scale fluctuations is consistent
with a Lorentzian-squared form. The measured critical
exponents are ν = 0.56±0.09 and γ̄ = 2.0±0.3 where γ̄ is
the exponent characterizing the divergence of the discon-
nected staggered susceptibility [27]. The mean field pre-
dictions for these exponents are ν = 1/2 and γ̄ = 2γ = 2
whereas for 3D Ising (XY) critical behavior one expects
ν = 0.63 (0.67) and γ̄ = 2.5(2.64). Thus the Harris et

al. [14] data favor the tricritical-mean field model but
3D Ising or XY critical models are not excluded. Precise
measurements of the bulk staggered susceptibility using
neutrons should yield accurate values for ν and γ̄ and
this, in turn, would definitively choose between the mod-
els.

IV. DISCUSSION

In summary, each of the order parameter, magnetic
energy gap, specific heat, correlation length and discon-
nected staggered susceptibility are well-described by a
simple Landau-Ginzburg model exhibiting a tricritical-
mean field crossover near TSP . Further, the ratio of
the energy gap to TSP is consistent with the value for a
BCS mean-field transition. We conclude, therefore, that
CuGeO3, in common with the organic change transfer
salts, exhibits a mean field spin-Peierls transition for re-
duced temperatures |τ | > 0.001.
The principal remaining issue is the microscopic ori-

gin of the tricritical behavior. Harris et al. [14] argue
that this is caused by a diminution in the effective fourth
order term in Eq. (1), bφ4, because of coupling to the
macroscopic strain. It also seems possible that compet-
ing nearest and next-nearest neighbor exchange interac-
tions along the chain could generate the tricritical insta-
bility [15,28]. Specifically, Castilla et al. [28] argue that
the ratio of the next nearest neighbor to nearest neigh-
bor exchange interaction along the chain is close to the
critical value for spontaneous formation of a magnetic
gap independent of coupling to the lattice. Heuristically,
it seems that this could generate tricritical behavior in
the phase diagram. Another possible source of tricriti-
cal behavior is competition between the Néel state and
the spin-Peierls state, that is, competition between the
coupling of the S = 1/2 chain to the lattice and the in-
terchain exchange coupling. Clearly, a multidimensional
theoretical analysis of the spin-Peierls phase diagram in-
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cluding magnetostriction, competing intrachain exchange
interactions together with the interchain magnetic and
elastic coupling is required.
Of course, the mean field behavior itself in all of these

spin-Peierls systems is not yet well understood. In TTF-
CuBDT there is evidence for a soft phonon at very high
temperatures [6] and Cross and Fisher [3] speculate that
the precursive soft mode accounts for the large length
scale underlying the mean field behavior. In CuGeO3,
no soft phonon at all has yet been seen. Thus, the micro-
scopic origin of the large length scale in CuGeO3 remains
to be elucidated.
Finally, it would be very interesting to see if the puta-

tive nearby tricritical point could be accessed by changing
some variable such as pressure, uniaxial stress or doping.
Masuda et al. [29] have shown that replacement of Cu by
Mg both depresses TSP and appears to drive the spin-
Peierls transition first order. The concomitant tricriti-
cal point could well account for the observed tricritical-
mean field crossover in pure CuGeO3. We note, however,
that the actual physics of magnetic dilution in CuGeO3

is quite complex since dilution introduces frustration of
the interchain elastic interaction [30]. Replacement of
Cu2+ by Cd2+ (Ref. [31]) or Ge4+ by Ga4+ (ref. [32])
both lead to mean field behavior over quite wide tem-
perature ranges; that is, doping with these ions moves
CuGeO3 away from the tricritical point into the pure
mean field regime. Again, further research, both experi-
mental and theoretical, is required to elucidate these ef-
fects more completely.
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