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ABCG2 regulatory single-nucleotide polymorphisms alter
in vivo enhancer activity and expression
Rachel J. Eclova, Mee J. Kima,b, Aparna Chhibbera, Robin P. Smitha,b,
Nadav Ahituva,b and Deanna L. Kroetza,b

Objectives The expression and activity of the breast
cancer resistance protein (ABCG2) contributes toward the
pharmacokinetics of endogenous and xenobiotic
substrates. The effect of genetic variation on the activity of
cis-regulatory elements and nuclear response elements in
the ABCG2 locus and their contribution toward ABCG2
expression have not been investigated systematically. In
this study, the effect of genetic variation on the in vitro and
in vivo enhancer activity of six previously identified liver
enhancers in the ABCG2 locus was examined.

Methods Reference and variant liver enhancers were
tested for their ability to alter luciferase activity in vitro in
HepG2 and HEK293T cell lines and in vivo using a
hydrodynamic tail vein assay. Positive in vivo single-
nucleotide polymorphisms (SNPs) were tested for
association with gene expression and for altered protein
binding in electrophoretic mobility shift assays.

Results Multiple SNPs were found to alter enhancer
activity in vitro. Four of these variants (rs9999111,
rs12508471, ABCG2RE1*2, and rs149713212) decreased
and one (rs2725263) increased enhancer activity in vivo. In
addition, rs9999111 and rs12508471 were associated with
ABCG2 expression in lymphoblastoid cell lines,
lymphocytes, and T cells, and showed increased HepG2
nuclear protein binding.

Conclusion This study identifies SNPs within regulatory
regions of the ABCG2 locus that alter enhancer activity
in vitro and in vivo. Several of these SNPs correlate with
tissue-specific ABCG2 expression and alter DNA/protein
binding. These SNPs could contribute toward reported
tissue-specific variability in ABCG2 expression and may
influence the correlation between ABCG2 expression and
disease risk or the pharmacokinetics and
pharmacodynamics of breast cancer resistance protein
substrates. Pharmacogenetics and Genomics 27:454–463
Copyright © 2017 Wolters Kluwer Health, Inc. All rights
reserved.

Pharmacogenetics and Genomics 2017, 27:454–463

Keywords: ABCG2, ATP-binding cassette transporter,
breast cancer resistance protein, enhancer, pharmacogenomics,
polymorphism, transcriptional regulation

aDepartment of Bioengineering and Therapeutic Sciences and bInstitute for
Human Genetics, University of California San Francisco, San Francisco,
California, USA

Correspondence to Deanna L. Kroetz, PhD, 1550, 4th Street RH584E,
San Francisco, CA 94158-2911, USA
Tel: + 1 415 476 1159; fax: + 1 415 514 4361; e-mail: deanna.kroetz@ucsf.edu

Received 5 August 2016 Accepted 8 August 2017

Introduction
The breast cancer resistance protein (BCRP), encoded by

ABCG2, is a member of the ATP-binding cassette (ABC)

membrane transporter family and is responsible for

transport of its substrates across intestinal epithelial cells

into the intestinal lumen, from the hepatocyte into the

bile, into milk, away from the placenta and the brain, and

into the lumen of the renal proximal tubule [1]. Reduced

expression and function of MXR are associated with a

variety of adverse events, such as pheophorbide-induced

phototoxicity [2], urate-induced gout [3], gefitinib-

induced diarrhea [4], as well as reduced chemotherapy

response and increased susceptibility to cancer [5–8].

Although reduced function coding variants of BCRP exist

[9], variability in ABCG2 expression and BCRP substrate

pharmacokinetics cannot be accounted for solely by these

nonsynonymous variants. Even in individuals without

these variants, there is a wide range of ABCG2 expres-

sion [10]. Identification of regulatory regions of ABCG2
and functional single-nucleotide polymorphisms (SNPs)

within these regions may provide information on the

mechanisms of genetic regulation of ABCG2 expression.

BCRP is one of many transporters important in drug

absorption, distribution, metabolism, and excretion (ADME).

Recently, the transcriptional regulation of ADME genes has

been linked to cis-regulatory elements and alterations in

ADME gene expression because of variants in these reg-

ulatory elements are becoming more evident [11,12]. In

addition, expression quantitative trait loci (eQTL) studies of

human genes have implicated proximal regulatory variation

as a prevalent cause of population variation in gene expres-

sion [13,14]. cis-Regulatory elements include enhancers,

suppressors, promoters, insulators, and locus control regions
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that work to regulate the transcriptional activity of the basal

transcription machinery. These genomic regions provide

binding sites for transcription factors, either ubiquitous or

tissue specific, that work through complex interactions with

histones, RNA polymerase, and other transcription factors to

determine gene transcription. In previous studies, we utilized

comparative genomics along with in vitro and in vivo assays to
identify six liver enhancers in the ABCG2 gene locus [15].

In this study, the hypothesis that SNPs in regulatory

regions of the ABCG2 locus contribute to the variation in

ABCG2 expression was tested. Variants in liver enhancer

regions reported in publicly available databases were stu-

died in vitro in kidney and liver cell lines, and variants with

altered function were tested in vivo using a hydrodynamic

tail vein assay. SNPs that significantly altered in vivo liver
enhancer activity were then tested for association with

ABCG2 expression in the human liver, kidney, placenta,

breast, lymphocytes, T cells, and fibroblasts. On the basis

of supporting ENCODE data indicating transcriptional

activity for five of six of these enhancer regions, electro-

phoretic mobility shift assays (EMSAs) were used to

confirm changes in protein/DNA binding for SNPs that

correlate with gene expression. The findings from this

study provide insights into how noncoding genetic variants

may lead to altered exposure to BCRP substrates.

Methods
Genetic analysis of enhancer regions

SNPs in each of the ABCG2 in vivo enhancer regions

were retrieved for all available ethnic populations from

publicly available databases, including 1000 Genomes

20120214 phase 1 release [16], dbSNP build 135, and

HapMap release 28 [17]. SNPs in linkage disequilibrium

with rs12508471, rs72873421, rs149713212, rs9999111,

and rs2725263 (r2 threshold≥ 0.8) were extracted from

1000 Genomes pilot 1 genotype data using the Broad

Institute SNP annotation and proxy search (SNAP),

version 2.2 [18], for each population (CEU, YRI, and

CHB+ JBT) separately and a linkage analysis was carried

out using the Haploview program, version 4.2 (Broad

Institute, Cambridge, Massachusetts, USA)[19].

Variant enhancer plasmid construction

Reference enhancer plasmids in the pGL4.23 vector

were described previously [15]. Site-directed mutagen-

esis on plasmids was performed using specific primers

(Supplementary Table 1, Supplemental digital content 1,

http://links.lww.com/FPC/B278) and Phusion High-Fidelity

DNA Polymerase following the manufacturer’s protocol.

PCR reaction conditions are available in the Supplementary

Materials and Methods (Supplemental digital content 1,

http://links.lww.com/FPC/B278). Primers and PCR conditions

for the deletion SNP rs36105707 were designed according

to a large deletion protocol [20]. Endotoxin-free DNA

for all vectors were isolated using the GenElute HP

Endotoxin-Free Maxiprep Kit (Sigma Aldrich, St. Louis,

Missouri, USA) following the manufacturer’s protocol.

Cell culture and transfections

HEK293T/17 and HepG2 cell lines were cultured and

transfected for in vitro luciferase assays with lipofectamine

2000 following the manufacturer’s protocol as described

previously [15]. Cells were lysed 18–24 h after transfection

and measured for firefly and Renilla luciferase activity using

the Dual-Luciferase Reporter Assay System in a GloMax 96

microplate Dual Injector Luminometer (Promega, Madison,

Wisconsin, USA) following the manufacturer’s protocol.

Each experiment also included the empty pGL4.23 vector

and the ApoE-pGL4.23 [21] or pGL4.13 plasmids. Enhancer

activity was expressed as the ratio of the plasmid firefly to

Renilla luciferase activity; the activity of each variant plasmid

was then normalized relative to the reference plasmid, set-

ting the reference activity to 1 (100%).

Hydrodynamic tail vein assay

Selected positive in vitro variant enhancer elements were

screened for their effect on in vivo liver enhancer activity

using the hydrodynamic tail vein injection adapted for

enhancer activity screening [22,23]. Each variant enhancer,

along with their reference enhancer plasmid, the ApoE [21]

positive control liver enhancer, and an empty pGL4.23

vector, was injected individually into the tail vein of 4–11

mice and hepatic luciferase activity was measured after

24 h as described previously [15]. Each plasmid’s firefly

activity was normalized to Renilla luciferase activity and

expressed as fold activity relative to the negative control,

empty pGL4.23. All mouse work was carried out following

a protocol approved by the University of California San

Francisco Institutional Animal Care and Use Committee.

Liver and kidney tissues

Kidney (n= 60) and liver (n= 60) samples were procured

by the PMT research group at the University of California

San Francisco (San Francisco, California, USA) [24] from

Asterand (Detroit, Michigan, USA), Capital Biosciences

(Rockville, Maryland, USA), and SRI International (Menlo

Park, California, USA). DNA was extracted and purified

from the tissues using a Qiagen AllPrep DNA/RNA

Mini Kit (Valencia, California, USA) and a QIAquick PCR

Purification Kit (Valencia, California, USA) following

the manufacturer’s protocols. RNA was extracted from

the tissues following the protocol for Trizol reagent and

cleaned up using the Qiagen RNeasy MinElute Cleanup

Kit (Valencia, California, USA) following the manu-

facturer’s protocol. High-quality RNA was isolated from 58

kidney and 60 liver samples and those with 260/280> 1.7,

260/230> 1.8, and RNA integrity number from Bioanalyzer

of 3–8 were used to correlate the SNP genotype with

the total ABCG2 mRNA expression. RNA was reverse

transcribed to cDNA using the High Capacity cDNA

Reverse Transcription Kit (Applied Biosystems, Foster

City, California, USA).
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ABCG2 mRNA expression and genotype in PMT liver and

kidney tissues

ABCG2 gene expression was evaluated in 58 kidney and

60 liver samples using the Biotrove Open Array qPCR

platform (Life Technologies, Carlsbad, California, USA)

according to the manufacturer’s protocol. ABCG2 mRNA

expression was normalized to a geometric mean of the

expression of glyceraldehyde 3-phosphate dehydrogenase,

β2 microglobin, and β-actin and expressed as 2�DDCt per

gene for each sample. AllΔCt values for a given tissue type

were quantile normalized across samples using the open-

source R preprocess Core package [25,26]. Expression

data were quality controlled using principal component

analysis to identify outliers. Of these samples, 58 kidney

and 34 liver samples were genotyped successfully on the

Affymetrix Axiom genotyping platform using the Axiom

Genome-Wide CEU 1 Array Plate (Affymetrix Inc., Santa

Clara, California, USA). The samples were tested for

quality control using sex check, identity by descent and

call rate tests, of which six kidney samples failed and were

excluded from further analysis. After the initial quality

control, 52 kidney samples and 34 liver samples were

included in subsequent analyses.

Association of single-nucleotide polymorphisms with

gene expression

Genotype and expression data from PMT liver and kidney

tissue, 195 samples from Schadt et al. [27] liver tissue, and
62 samples from The Cancer Genome Atlas for breast

tissue [28] were analyzed for associations between enhan-

cer variants and ABCG2 expression levels. Genotypes were

imputed using 1000 Genomes data and then tested for

correlations between the expression of ABCG2, PPM1K,

and PKD2 and genotype using a linear regression and the

Affymetrix Genotyping Console (Santa Clara, California,

USA). The PMT liver and kidney linear regression were

performed after adjusting for sex.

A database for integrated analysis and visualization of

SNP–gene associations in eQTL studies, Genevar [29],

includes data from several sequence and gene expression

profiling studies: the MuTHER study [30,31] with

data from female twins in adipose (166 samples), skin

(160 samples) and lymphoblastoid cell lines (LCLs, 156

samples), the Stranger study [32–35] with data from 726

HapMap LCL samples, and the GenCord study [36] with

data from 85 human umbilical fibroblasts, LCLs, and

T-cell samples. The expression of ABCG2, and the

neighboring 5′ (PPM1K) and 3′ (PKD2) genes was cor-

related to the ABCG2 locus SNPs that altered enhancer

activity in vivo or with SNPs in linkage disequilibrium

(LD) (r2> 0.8, as determined above) with these SNPs.

Using the GeneVar 3.2.0 eQTL analysis program, Spearman

rank correlation coefficients (ρ) for 10 000 permutations per

SNP between reference, heterozygous, and variant alleles

were calculated.

Electrophoretic mobility shift assay

EMSA were performed using the Odyssey EMSA buffer kit

(Lincoln, Nebraska, USA) following the manufacturer’s

protocol. EMSA probe sequences are available in the

Supplementary Materials and Methods (Supplemental digi-

tal content 1, http://links.lww.com/FPC/B278). Competition

assays were performed by adding 40-fold molar excess of

unlabeled reference or SNP oligonucleotide. DNA/protein

complexes were separated from free probe by gel electro-

phoresis and imaged using the Licor system (Odyssey,

Lincoln, Nebraska, USA).

Statistical analysis

Normalized polymorphic enhancer activities were com-

pared with the reference enhancer per transfection

(3–8 wells/plasmid) using an analysis of variance analysis,

followed by a Bonferroni’s multiple-comparison t-test,
with a P value less than 0.05 considered significant.

Polymorphic enhancer constructs identified for in vivo
testing showed either a two-fold increase or decrease in

activity and a P value less than 0.0001 in both cell lines.

Results from the hydrodynamic tail vein injection were

analyzed using an unpaired Student’s t-test between the

reference and the variant enhancer (for only one variant)

or an analysis of variance analysis, followed by a Bonferroni’s

multiple-comparison t-test (for two or more variants); a

P value less than 0.05 was considered significant for both

tests. All statistics were run using the GraphPad Prism

5 software program (GraphPad Software Inc., San Diego,

California, USA).

Results
Genetic variation in the ABCG2 locus enhancer regions

A total of 53 SNPs and three haplotypes in the six

in vivo enhancer regions were obtained from publicly

available databases (Table 1). There are three SNPs

in ABCG2RE14, 10 in ABCG2RE26, and eight in

ABCG2RE6. None of these SNPs are in LD with each

other, and only rs9999111 and rs2725268 had a minor allele

frequency (MAF) of at least 5% in at least one population.

There are six SNPs in the ABCG2RE1 region. In addition,

ABCG2RE1 has one haplotype (ABCG2RE1*2), which is

a combination of the SNPs rs72873421, rs12500008, and

rs12508471. These three SNPs have MAFs ranging from

8.4 to 38% and are in near-perfect LD (r2= 0.96–0.98).

There are 12 SNPs in ABCG2RE8 and one haplotype,

ABCG2RE8*2, which is a combination of the two most

frequent SNPs rs2725263 and rs2725264. These two SNPs

have MAFs ranging from 8 to 87% depending on the

ethnic population and the ABCG2RE8*2 haplotype has a

frequency similar to the individual SNPs (7–79%), with an

r2 equal to 0.46 between the SNPs. There are 14 SNPs and

one haplotype in ABCG2RE9. The ABCG2RE9*2
(rs41282399 and rs2622628) haplotype has a frequency

ranging from 1.7 to 3.7%, with an r2= 0.13 between SNPs.
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Effect of single-nucleotide polymorphisms on
in vitro enhancer activity
All 53 SNPs in the six enhancer regions, along with the

ABCG2RE1*2, ABCG2RE8*2 and ABCG2RE9*2 hap-

lotypes, were tested for differential regulatory activity in

HepG2 (Fig. 1) and HEK293T (Fig. 2) cell lines

(Supplementary Table 2, Supplemental digital content 1,

http://links.lww.com/FPC/B278). Activity of the variant and

reference enhancers was determined by their ability to

drive the expression of luciferase. Six ABCG2RE26

Table 1 Variants in ABCG2 locus enhancer elements

MAF%b

Region SNP ID Locationa ΔNTc Conservedc AA EUR AS

ABCG2RE1 rs72873421 chr4:88 923 906 G>A Yes 21.1 8.4 38.1
rs117741074 chr4:88`924 002 G>A Yes 0.0 0.0 1.7
rs12500008 chr4:88 924 176 C>A Yes 21.1 8.4 38.3
rs2728131 chr4:88 924 344 C> T Yes 1.2 8.4 2.8
rs12508471 chr4:88 924 371 A>G Yes 21.1 8.4 38.3
rs78901673 chr4:88 924 356 A>G Yes NR NR NR

ABCG2RE1*2d – – – 21.1 8.4 37.2
ABCG2RE6 rs45510401 chr4:89 011 422 A>G No 4.5 0.0 0.0

rs2725268 chr4:89 010 983 A>G Yes 7.5 47.4 24.0
rs57351915 chr4:89 011 141 A>– Yes NR NR NR
rs58830217 chr4:89 011 309 –>A No NR NR NR
rs186188962 chr4:89 011 051 G>A No 0.0 0.5 0.0
rs144180103 chr4:89 011 129 A>– No NR NR NR
rs190754327 chr4:89 011 173 C>G Yes NR NR NR
rs183322988 chr4:89 011 437 T>C No 0.0 0.3 0.3

ABCG2RE8 rs139101431 chr4:89 026 007 A>G No 1.6 0.0 0.0
rs144062279 chr4:89 026 087 G>A No 0.4 0.0 0.0
rs2725264 chr4:89 026 109 C> T Yes 83.7 8.2 21.5
rs4148156 chr4:89 026 242 C> T Yes NR NR NR

rs145932752 chr4:89 026 407 A>G No 1.6 0.0 0.0
rs6831395 chr4:89 026 420 G>A Yes 2.2 0.0 0.0
rs2725263 chr4:89 026 428 A>C Yes 87.0 48.4 40.0

rs192562676 chr4:89 026 490 C> T No 0.0 0.0 1.0
rs182159263 chr4:89 026 493 C>G No 0.0 0.7 0.0
rs187527722 chr4:89 026 537 A>G No 0.0 0.0 0.2
rs192781547 chr4:89 026 630 A>G No 0.0 0.0 0.3
rs184709106 chr4:89 026 642 C> T No 0.0 0.0 0.3
ABCG2RE8*2d – – – 78.8 7.3 21.5

ABCG2RE9 rs2231148 chr4:89 028 478 T>A Yes 4.3 40.2 18.5
rs190738974 chr4:89 028 490 A>G No 0.0 0.0 0.2
rs117761897 chr4:89 028 542 C> T Yes 0.0 0.0 0.2
rs41282399 chr4:89 028 544 A>C Yes 4.1 1.7 3.3
rs113647079 chr4:89 028 578 C>G Yes NR NR NR
rs2054576 chr4:89 028 775 A>G Yes 1.2 7.9 25.0

rs151266026 chr4:89 028 935 T>C No 0.0 0.0 0.7
rs183315559 chr4:89 028 979 G>A No 0.0 0.0 0.3
rs189214307 chr4:89 029 111 C> T No 0.0 0.0 0.3
rs2622628 chr4:89 029 252 A>C Yes 45.5 4.4 20.8
rs36105707 chr4:89 029 304 –> TTAAT Yes NR NR NR
rs141635727 chr4:89 029 335 A>G No 0.4 0.0 0.0
rs190767980 chr4:89 029 361 C> T No 0.0 0.0 0.0
rs147070185 chr4:89 029 364 G>A No 0.0 0.0 0.2
ABCG2RE9*2d – – – 3.7 1.7 3.1

ABCG2RE14 rs9999111 chr4:89 073 197 A>C Yes 4.7 7.3 0.0
rs138867860 chr4:89 073 397 C>A No 0.0 0.0 0.0
rs114916387 chr4:89 073 289 T>C Yes 2.0 0.0 0.5

ABCG2RE26 rs137884075 chr4:89 189 556 C> T No 0.0 0.0 0.2
rs142621223 chr4:89 189 557 G>A No 0.0 0.0 0.3
rs139553964 chr4:89 189 571 G>A No 0.0 0.0 1.2
rs149713212 chr4:89 189 602 G>A No 1.6 0.0 0.2
rs144565932 chr4:89 189 634 G>A No 0.0 0.0 1.2
rs62309980 chr4:89 189 655 C> T Yes 0.0 0.1 0.0
rs76888829 chr4:89 190 325 T>C Yes 4.3 1.3 1.2
rs9998634 chr4:89 190 395 G>C Yes 0.4 0.0 0.0
rs77538297 chr4:89 189 971 C> T Yes 0.2 0.0 0.0
rs35696062 chr4:89 190 022 G>– Yes NR NR NR

NR, not reported; SNP, single-nucleotide polymorphism.
aGenomic location obtained from University of California Santa Cruz (UCSC) genome browser's hg19 build.
bMinor allele frequency (MAF) for African American (AA), European (EUR), and Asian (AS) populations as obtained from publically available databases or haplotype
frequency as a percentage of all haplotypes.
cNucleotide change and conservation of the reference allele to the variant allele as obtained from the UCSC genome browser.
drs72873421/rs12500008/rs12508471 (ABCG2RE1*2); rs2725264/rs2725263 (ABCG2RE8*2); rs41282399/rs2622628 (ABCG2RE9*2).
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SNPs and two ABCG2RE14 SNPs increased enhancer

activity in both cell lines (P< 0.001). The ABCG2RE14

rs9999111 and ABCG2RE26 rs149713212 SNPs caused a

reduction in activity in both cell lines to only 6–20% of

the activity with the corresponding reference sequences

(P< 0.001). Three ABCG2RE6 SNPs caused decreases

in enhancer activity to levels that were 50–80% of the

control in both cell lines (P< 0.05). The only ABCG2RE6

SNP to increase enhancer activity (∼1.5-fold, P< 0.001) in

both cell lines was rs183322988. ABCG2RE1 rs72873421

caused a greater than two-fold increase in enhancer

activity and rs12508471 resulted in an almost complete

loss of activity in both cell lines (P< 0.001). The

ABCG2RE1*2 (rs72873421, rs12500008 and rs12508471)

haplotype did not have a significant effect in HepG2

cells, but reduced enhancer activity (P< 0.001) in the

HEK293T cell line. The ABCG2RE8 SNPs rs2725263

and rs2725264 and the ABCG2RE9 SNP rs190738974

increased enhancer activity in the hepatic and renal cell

lines 1.35- to 1.68-fold; ABCG2RE9 rs36105707 was the

most potent enhancer in HepG2 cells (3.39-fold above

control; P< 0.001) and one of the most potent enhancers

in HEK293 cells (2.01-fold above control; P< 0.001).

Although both ABCG2RE8 SNPs rs2725263 and

rs2725264 caused a modest increase in enhancer activity

(1.36- to 1.64-fold; P< 0.05), the combination of these

SNPs as the ABCG2RE8*2 haplotype did not affect

enhancer activity.

For subsequent in vivo validation, SNPs were selected

from among the most significant for each of the enhancer

regions. The ABCG2RE14 rs9999111 and ABCG2RE26

rs149713212 SNPs were chosen because they reduced

in vitro activity to less than 20% of the control (P< 0.001).

Of the four SNPs that significantly altered the

ABCG2RE1 enhancer activity in both cell lines,

two of them, rs72873421 and rs12508471, and the

ABCG2RE1*2 haplotype, were chosen. As ABCG2RE6

is a weak in vivo enhancer (∼ two-fold) [15], only

rs183322988 was chosen for in vivo validation because it

increased enhancer activity in vitro (P< 0.001). The

ABCG2RE8 rs2725263 SNP was chosen because it had a

more consistent increase in enhancer function in vitro
compared with rs2725264. Finally, the ABCG2RE9

rs190738974 SNP was chosen for in vivo follow-up over

the rs36105707 SNP on the basis of predicted changes in

TFBS (data not shown).

Fig. 1

Effect of enhancer variants in HepG2 cells. The luciferase activities of reference and variant (a) ABCG2RE14, (b) ABCG2RE26, (c) ABCG2RE6,
(d) ABCG2RE1, (e) ABCG2RE8, and (f) ABCG2RE9 enhancer regions were measured in a transiently transfected liver cell line. Enhancer activity is
expressed as the ratio of firefly to Renilla luciferase activity normalized to the reference vector activity (reference is set to 1). Single-nucleotide
polymorphisms are shown respective to their genomic orientation. Data are expressed as the mean ±SEM from a representative experiment with three
to six wells per sequence. Differences between reference and variant enhancers were tested by an analysis of variance, followed by a post-hoc
Bonferroni’s multiple-comparison t-test; *P<0.05, **P<0.001, ***P<0.0001.
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Effect of single-nucleotide polymorphisms on
enhancer activity in vivo
Seven SNPs and one haplotype were screened for their

effect on in vivo liver enhancer activity using the

hydrodynamic tail vein injection assay [22]. The ApoE
liver-specific enhancer [21] showed a 50-fold activity and

the six reference enhancers had a range of 2- to 50-fold

activity relative to pGL4.23 (Fig. 3). Three of the variants

resulted in decreased in vivo enhancer activity compared

with their respective reference enhancers (Fig. 3,

P< 0.05), Supplementary Table 2 (Supplemental digital

content 1, http://links.lww.com/FPC/B278). Enhancer

activity for ABCG2RE14 rs9999111 was only 30% of the

reference sequence (P< 0.05). Enhancer activity for

ABCG2RE1*2 was almost completely absent (6% of

control) in vivo (P< 0.001). ABCG2RE1 rs12508471 and

ABCG2RE26 rs149713212 SNPs also both resulted in an

almost complete loss of enhancer activity (P< 0.001).

The only SNP to increase enhancer activity in vivo was

the ABCG2RE8 SNP rs2725263, which increased

enhancer activity by 1.5-fold (P< 0.05). ABCG2RE6

rs183322988, ABCG2RE1 rs72873421, and ABCG2RE9

rs190738974 SNPs had no effect on enhancer activity

in vivo. All SNPs that significantly altered activity in vivo
were consistent with their effect on activity in vitro.

Associations of single-nucleotide
polymorphisms with mRNA expression levels
SNPs that showed an effect on in vivo liver enhancer

activity were tested for their association with expression

levels of ABCG2 in selected tissues as described in the

Methods section. The ABCG2RE14 SNP rs9999111 was

associated significantly with lower ABCG2 expression in

human umbilical cord LCLs and T cells from GenCord

[36] tissues (P< 0.05; ρ=−0.24, Fig. 4). However,

rs9999111 had no association with ABCG2 expression in

the PMT liver and kidney samples (Supplementary

Fig. 1, Supplemental digital content 1, http://links.lww.
com/FPC/B278). ABCG2 expression was also not corre-

lated with rs9999111 in liver tissues in the study by

Schadt et al. [27] (data not shown).

The ABCG2RE1 SNP rs12500008, which occurs only as

the ABCG2RE1*2 haplotype and is in perfect LD with

rs12508471, was associated with lower ABCG2 expres-

sion in LCLs of Chinese individuals (ρ=− 0.251,

P= 0.025; Fig. 5a) and trended toward significance with

Fig. 2

Effect of enhancer variants in HEK293T cells. The luciferase activities of reference and variant (a) ABCG2RE14, (b) ABCG2RE26, (c) ABCG2RE6,
(d) ABCG2RE1, (e) ABCG2RE8, and (f) ABCG2RE9 enhancer regions were measured in a transiently transfected kidney cell line. Enhancer activity
is expressed as the ratio of firefly to Renilla luciferase activity normalized to the reference vector activity (reference is set to 1). Single-nucleotide
polymorphisms are shown respective to their genomic orientation. Data are expressed as the mean ±SEM from a representative experiment with three
to six wells per sequence. Differences between reference and variant enhancers were tested by an analysis of variance, followed by a post-hoc
Bonferroni’s multiple-comparison t-test; *P<0.05, **P<0.001, ***P<0.0001.
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ABCG2 expression in the Kenyan population

(ρ=− 0.181, P= 0.1; Fig. 5b). ABCG2RE1*2 was asso-

ciated with lower PPM1K expression in adipose and skin

(ρ=−0.26, P=0.015 and ρ=−0.32, P=0.005 respectively;

Supplementary Fig. 2, Supplemental digital content 1, http://
links.lww.com/FPC/B278). ABCG2RE1*2 was also associated
with lower PPM1K expression in LCLs using two probes

for PPM1K mRNA (ρ=−0.22, P=0.06 and ρ=−0.22,

P=0.047; Supplementary Fig. 2, Supplemental digital

content 1, http://links.lww.com/FPC/B278). All ABCG2RE1*2
associations with PPM1K and ABCG2 had similar effect

sizes (ρ∼−0.25).

Effect of genetic variants on binding of DNA to
nuclear proteins
The ABCG2RE1 rs12508471 and ABCG2RE14

rs9999111 reference and variant DNA were tested for

their ability to alter DNA binding to protein in an EMSA.

ABCG2RE1 and ABCG2RE14 reference probes showed

binding to HepG2 nuclear proteins, with specific DNA/

protein interactions being susceptible to competition by

unlabeled oligonucleotides (Fig. 6). Both rs12508471 and

rs9999111 probes showed increased HepG2 nuclear

Fig. 3

Effect of enhancer variants in vivo. The luciferase activity in mouse liver
homogenates was measured 24 h after plasmid injection. Enhancer
activity is expressed as the ratio of firefly to Renilla luciferase activity
normalized to the empty vector (pGL4.23) activity. An enhancer for
ApoE was used as the positive control [21]. Data are expressed as the
mean±SEM for 4–11 mice. Differences between reference and variant
enhancer elements were tested using an unpaired Student’s t-test (one
variant) or an analysis of variance, followed by a Bonferroni’s multiple-
comparison t-test (for two or more variants); *P<0.05, **P<0.001,
***P<0.0001.

Fig. 4

Association of rs9999111 with ABCG2 expression. Association of the
ABCG2RE14 SNP rs9999111 with ABCG2 mRNA expression in 85
human umbilical cord (a) lymphocytes and (b) T cells from the GenCord
study [36]. Analysis was carried out using the GeneVar [29] program
with a linear regression and is shown as gene expression versus
rs9999111 genotype with ρ (correlation coefficient), P value (P), and
empirical P value (Pemp) indicated.

Fig. 5

Association of rs12500008 with ABCG2 expression. Association of the
ABCG2RE1 SNP rs12500008, which is in complete linkage
disequilibrium with rs12508471 and part of the ABCG2RE1*2
haplotype, with ABCG2 mRNA expression in HapMap LCLs of (a) 80
Han Chinese and (b) 82 Kenyans from the Stranger study [35]. Analysis
was carried out using the GeneVar [29] program with a linear regression
and is shown as gene expression versus the rs12500008 genotype with
ρ (correlation coefficient), P value (P), and empirical P value (Pemp)
indicated.
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protein binding compared with their reference sequence

(Fig. 6). Proteins binding to the variant probes were less

susceptible to competition by unlabeled reference oli-

gonucleotides than they were to the unlabeled variant

probe (Fig. 6).

Discussion
Although noncoding SNPs in the ABCG2 gene locus have

been correlated with drug response [37] and disease pro-

gression [38], relatively few have been correlated with gene

expression [10,37] and none have confirmed mechanisms

of action. Recent studies on other ADME genes, including

transporters, have identified SNPs in cis-regulatory regions

that are responsible for altering gene expression and con-

tributing toward adverse drug effects [11,23,39,40]. To

identify noncoding SNPs that correlate with ABCG2

expression, this study investigated the in vitro effect of 53
SNPs and three haplotypes on the activity of six previously

identified ABCG2 locus enhancer elements [15]. The SNP

from each region with the largest in vitro effect was fol-

lowed up in vivo; in the case of ABCG2RE1, two SNPs and

the ABCG2RE1*2 haplotype were followed up in vivo.

ABCG2RE14 SNP rs9999111, which is located in intron

1 of ABCG2, significantly decreased the activity of the

ABCG2RE14 enhancer sequence in vivo to levels that

were only 30% of the reference. However, rs9999111 was

not associated with liver or kidney expression of ABCG2

in the present study or with liver or intestinal expression

of ABCG2 in a previous study [10]. The discordance

between these findings could be the result of the com-

bination of the low activity that ABCG2RE14 has as an

in vivo liver enhancer and a change in the binding of a

tissue-specific transcription factor or nuclear receptor that

is not critical for the constitutive expression of ABCG2.

Despite a small sample size (n= 85), the rs9999111 SNP

associated with decreased ABCG2 expression in human

umbilical cord LCLs and T cells. The β coefficient of

rs9999111 in the umbilical cord (− 0.24) and the relatively

low frequency of rs9999111 (MAF= 0–7.3%) indicate

that this SNP contributes modestly toward variation in

ABCG2 expression. Using the transcription factor data-

base (TRANSFAC) Match program, rs9999111 is pre-

dicted to reduce the binding of immune-related

transcription factors (nuclear factor κB, Gfi, and FOXD3)

and ADME-related transcription factors (vitamin D

receptor and hepatic nuclear factor-3β), and increase

binding of aryl hydrocarbon receptor (data not shown).

EMSA analysis of rs9999111 with the HepG2 nuclear

protein extract confirmed increased DNA/protein inter-

action compared with the reference sequence. Although

we can speculate that the EMSA reflects increased

Fig. 6

Effect of rs12508471 and rs9999111 on DNA-protein binding. Representative electrophoretic mobility shift assay using HepG2 nuclear extracts
incubated with IRDye 700-labeled probes for (a) ABCG2RE1 reference or rs12508471 and (b) ABCG2RE14 reference or rs9999111 sequences.
Competition assays were performed with 40-fold excess of unlabeled reference or variant oligonucleotides; specific DNA/protein bands are indicated
by arrows. Reference and variant DNA sequences surrounding each single-nucleotide polymorphism (SNP) (±6 bp) are shown below their
respective gel.

In vivo ABCG2 regulatory SNPs Eclov et al. 461

Copyright r 2017 Wolters Kluwer Health, Inc. All rights reserved.



binding to a transcriptional repressor, consistent with the

reduced in vivo enhancer activity, additional studies are

needed to clearly define this interaction. BCRP is a part

of the placental barrier important for protection of the

fetus and reduction of BCRP function has the potential

to increase fetal exposure to toxic compounds such as

bile acids, topotecan, and PhIP [41–43]. The role of

rs9999111 in placental regulation of ABCG2 should be

investigated further as it could affect fetal exposure to

BCRP substrates. Follow-up studies in a cohort with

more tissues could help clarify the association of this SNP

with ABCG2 expression in the placenta.

ABCG2RE1*2 is a common haplotype with a frequency

of 8.4% in Caucasians, 21% in African Americans, and

38% in Asians; it is made up of rs12508471, rs72873421,

and rs12500008. The rs12508471 and rs72873421 SNPs

affected ABCG2RE1 enhancer activity in vitro, but only
the rs12508471 eliminated ABCG2RE1 enhancer activity

both in vitro and in vivo. The rs72873421 showed

increased activity in vitro, which could limit the decrease

in activity by rs12508471 when these SNPs occur toge-

ther in the ABCG2RE1*2 haplotype. However, the

ABCG2RE1*2 construct still showed a significant

decrease in enhancer activity in HEK293T cells and an

even greater loss of hepatic enhancer activity in vivo.
Dexamethasone, a ligand for the glucocorticoid receptor

(GR), is capable of decreasing ABCG2 expression through

GR-dependent, progesterone receptor-dependent, and

pregnane X-receptor-dependent mechanisms [44]. Using

the transcription factor database (TRANSFAC) Match

program, rs12508471 gains predicted binding sites for

nuclear response element binding, including pregnane

X-receptor, peroxisome proliferator-activated receptor, GR,

p300, and vitamin D receptor (data not shown). EMSA

analysis of the rs12508471 sequence confirmed increased

DNA/protein binding compared with the reference

sequence. However, oligonucleotide with a GR consensus

sequence could not compete with the rs12508471 probe

(data not shown), and additional studies will be needed to

identify the specific transcription factor(s) whose binding is

altered by this SNP. ABCG2RE1*2 was not associated

with ABCG2 mRNA levels in liver and kidney tissue sets.

However, these were composed primarily of Caucasians, a

population that has a low frequency of ABCG2RE1*2.
Utilizing publically available African and Asian LCL data-

sets with higher ABCG2RE1*2 frequency, we found that

ABCG2RE1*2 was associated with decreased expression of

ABCG2 and PPM1K in several tissues, indicating that this

haplotype may modestly influence the variability of

ABCG2 and PPM1K expression. ABCG2RE1 is situated

just upstream of the PKD2 promoter, but it did not corre-

late with PKD2 expression in any of the tissue sets (data

not shown). Enhancers can work as locus control regions to

regulate the expression of neighboring genes and even

modulate the tissue-specific expression of multiple genes

[45]. Therefore, ABCG2RE1 regulates both ABCG2 and

PPM1K expression, and the ABCG2RE1*2 haplotype

contributes toward altered expression of these genes, with

more effect in populations with a higher frequency of the

ABCG2RE1*2 haplotype.

Of the eight variants tested in vivo, five significantly

altered in vivo liver enhancer activity and two of these

(rs9999111 and ABCG2RE1*2) were correlated with

decreased ABCG2 gene expression in human tissues.

Only one of four SNPs expected to increase enhancer

activity was confirmed in vivo, but all four of the variants

that decreased enhancer activity in vitro also did so

in vivo, suggesting that SNPs decreasing enhancer

activity in vitro might have a more consistent effect

in vivo. Although there was some correlation between

ABCG2 locus enhancer SNPs and gene expression, fur-

ther association studies in more diverse cohorts and in

additional tissues are needed to validate these findings.

In addition, follow-up is warranted on SNPs that correlate

with ABCG2 expression in cohorts of patients receiving

treatment with BCRP substrates.

Conclusion

Liver enhancers identified in the ABCG2 gene locus have

many genetic polymorphisms that alter their activity in vitro.
Several of these SNPs, including rs9999111, rs12508471,

rs72873421, rs2725263, and rs149713212, alter enhancer

activity in vivo. The rs9999111 SNP and ABCG2RE1*2
haplotype were correlated with ABCG2 expression in a

tissue-specific manner, with both the rs9999111 and

rs12508471 SNPs showing increased binding to nuclear

proteins. Taken together, these SNPs could account for

some of the reported variability in ABCG2 expression in

various tissues and may influence the correlation between

ABCG2 and disease risk for cancers or gout. These novel

regulatory SNPs may also influence the pharmacokinetics

and pharmacodynamics of BCRP substrates. An estimate of

the magnitude of this contribution toward variability in

ABCG2 expression and function warrants further study.
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