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Abstract—We present the design and evaluation of a dis-
tributed matrix-assembly abstraction for large-scale inverse
problems in HPC environments: namely, physics-based Hessian
estimation in full-waveform seismic inversion at the scale of the
entire globe. Our solution to this data-assimilation problem
relies on UPC++, a new PGAS extension to the C++ language,
to implement one-sided asynchronous updates to distributed
matrix elements, and allows us to tackle inverse problems well
beyond our previous capabilities.

Our evaluation includes scaling results for Hessian esti-
mation on up to 12,288 cores, typical of current production
scientific runs and next-generation inversions. We also present
comparisons with an alternative implementation based on MPI-
3 remote memory access (RMA) operations, focusing on perfor-
mance and code complexity. Interoperability between UPC++
and other parallel programming tools (e.g. MPI, OpenMP) al-
lowed for incremental adoption of the PGAS model where most
beneficial. Further, we note that this model of asynchronous
assembly can generalize to other data-assimilation applications
that accumulate updates into shared global state.

I. INTRODUCTION

High-quality models of the earth’s interior properties, as

seen by seismic waves, have a diverse range of applications,

including basic science, geophysical exploration, environ-

mental monitoring, and nuclear-test-ban treaty verification.

Full-waveform seismic inversion techniques produce such

models by minimizing the misfit between complete record-

ings (seismograms) of earthquakes or controlled sources and

those predicted by numerical simulations, thereby fully ex-

ploiting the information content of the wavefield. However,

such inversions remain computationally expensive, chiefly

due to the large number of numerical simulations required.

One way to reduce the number of simulations is to use a

rapidly converging Newton-like scheme to optimize the seis-

mic model. While matrix-free Newton schemes are valuable

in the limit of very large problems, direct Gauss-Newton is

attractive when Hessian factorization is significantly cheaper

than numerical simulation [1]–[3]. However, if the Hessian

no longer fits in memory and thus must be distributed,

assembly thereof from asynchronous parallel computations

may require complex data-dependent communications pat-

terns. This caveat reflects a common motif among scien-

tific applications that assimilate observational data while

updating shared global state, where spatially and temporally

irregular access patterns can increase software complexity

and impede performance if not carefully implemented using

one-sided communications.

Here, we present the design of a scalable abstraction

for distributed matrix assembly in HPC environments and

its integration into an existing scientific application. Our

solution uses UPC++ [4], a partitioned global address space

(PGAS) extension to C++ that incorporates and builds on

many popular features from other PGAS languages, enabling

fully concurrent communication and computation while min-

imizing synchronization. Support for one-sided bulk commu-

nication and remote memory management, along with asyn-

chronous remote task execution for custom matrix-update

logic, proved fundamental to achieving high performance.

Interoperability of UPC++ with other parallel programming

models, as required by OpenMP and MPI-based application

components (Hessian computation and parallel IO), allowed

for incremental adoption of the PGAS model as needed.

The remainder of this paper is structured as follows:

In Section II, we discuss our technique for global-scale

full-waveform inversion, presenting the underlying problem

and motivating our solution. In Section III, we focus on

the design of our distributed matrix abstraction. Evaluation

follows in Section IV, including scaling analyses for present-

and next-generation scales of seismic inversion, as well as

comparisons to an alternative MPI-based implementation.

Finally, we present scientific results obtained using these

techniques in Section V, and conclude in Section VI, where

we summarize our contribution and discuss future directions.

II. COMPUTATIONAL PROBLEM

Waveform inversion has long been a popular technique in

the field of global seismology [5], [6], although historically

limited to computationally light approximate treatments of

wave propagation. As HPC resources have grown more

powerful, the spectral element method (SEM) has emerged

as a key tool for realistic numerical wavefield simulation

from sub-km to planetary scale [7], [8]. Recently, adjoint

methods, long popular in exploration seismology [9], have

gained wider adoption and been used to implement SEM-

based seismic inversion at regional to continental scales

[10], [11]. However, adjoint inversions typically employ only

first-order (gradient-based) optimization schemes, which

converge slowly and require large numbers of wavefield



simulations, precluding their use at the global scale where

simulation is more expensive. Further, while popular in ex-

ploration for their enhanced convergence properties, matrix-

free Newton schemes based on second-order adjoint methods

[12], [13] and quasi-Newton schemes for first-order adjoint

[14] have not yet been able to render global-scale adjoint

inversion tractable. Instead, we employ a “hybrid” approach,

combining SEM-based wavefield simulation with an efficient

physics-based Hessian (and gradient) estimation method, to

render global-scale full-waveform inversion tractable [1]–

[3]. Here, we provide a detailed overview of our approach,

introducing the underlying problem (distributed Hessian

assembly) and motivating our solution.

A. Hybrid full-waveform inversion

Waveform inversion is an optimization problem: we seek

a model m of Earth’s interior properties that minimizes the

misfit between observations of the wavefield (seismograms)

and predictions given m. We adopt the generalized least-

squares criterion [15] and define a misfit function χ(m) as:

2χ(m) = ‖d− g(m)‖2
C

−1

d

+ ‖m−mp‖2
C

−1

m

(1)

where d are the observed data, g(·) is the SEM-based for-

ward operator which predicts d given m, Cd reflects uncer-

tainty in the data, and mp and Cm characterize an assumed

prior distribution in the model space (m ∼ N (mp,Cm)).
Because g(m) is non-linear in m, χ(m) must be mini-

mized with either stochastic sampling or iterative optimiza-

tion. Due to the expense of evaluating g(m), an iterative

technique is invariably chosen. This may be achieved using

the Gauss-Newton scheme following naturally from eq 1:

mi+1 = mi+
(

CmGTC−1
d

G+ I
)

−1

(

CmGTC−1
d

[

d− g(mi)
]

−mi +mp
)

(2)

where G is the wavefield Jacobian, that of the forward

operator with respect to the model: Gij = ∂gi(m)/∂mj .

The Gauss-Newton approximation arises due to the

linearization of g(m), yielding the Hessian estimate

GTC−1
d

G. An advantage of Newton-like schemes over

gradient methods (e.g. non-linear CG) is rapid convergence,

cutting down on the number of iterations of eq 2 and expen-

sive computations of g(m). The Gauss-Newton scheme is

especially appropriate when: (a) the total iteration count is

too small for quasi-Newton methods to build up an accurate

inverse-Hessian estimate; and (b) the Jacobian G, or a

sufficiently accurate estimate, may be calculated cheaply.

We refer to our approach as hybrid, because it combines

expensive but highly accurate numerical simulations for the

forward computation g(m) and light-weight physics-based

estimates of the Jacobian G to obtain the Gauss-Newton

Hessian GTC−1
d

G (as well as the (negative) misfit gradient

GTC−1
d

[

d− g(mi)
]

).

B. Estimation of the Hessian

1) NACT: To derive an estimate of the Jacobian, we

use non-linear asymptotic coupling theory (NACT) [6], a

formalism based on perturbation theory of Earth’s normal

modes: the eigensolutions of the equations governing seis-

mic wave propagation. To first order in small perturbations

away from a reference spherically symmetric state, the

governing equations may be linearized, and an expression

for the wavefield in a perturbed earth derived. The result

of this perturbation is couping between pairs of modes, the

effect of which may be computed with a computationally

heavy integration over the volume of the whole earth.

NACT provides a way to estimate both the perturbed-earth

wavefield and the partial derivatives thereof with respect to

m, in a manner that is both accurate (albeit not as accurate

as the SEM) and computationally light. Thus, NACT may

be used to provide an estimate of ∂g(m)/∂m, i.e. the

elements of the wavefield Jacobian. Owing to the accuracy

of the method, Jacobian estimates from NACT depend non-

linearly on m and must be re-calculated as the iterative

inversion proceeds and m evolves. Therefore, NACT takes

additional steps to reduce cost by collapsing the coupling

integration over the entire earth onto the great-circle plane

joining each earthquake source and seismic receiver. Thus,

the main computational kernel of Jacobian estimation is

path integration: one for each choice of source-receiver path

and mode pair. The cost scales as O
(

Nmr

√

Nmθφ
NSRf

4
)

where Nmr
and Nmθφ

correspond to the radial (depth)

and lateral (latitude-longitude) dimensions of m (dimm is

Nm = Nmr
Nmθφ

), NSR is the number of source-receiver

paths, and f is the maximum wavefield frequency (the

number of mode pairs grows as f4). A detailed review of

mode perturbation theory and NACT may be found in [16].

2) Practical considerations: For realistically large num-

bers of data dimd = Nd, where Nd ≫ Nm, the Jacobian G

is too large to form explicitly. Instead, we form the Nm×Nm

Hessian estimate GTG and (negative) misfit gradient vector

GT [d− g(m)] directly (we absorb C
−1/2
d

into G and

d − g(m) for notational convenience). For each datum i,
a particular source-receiver path and recorded seismogram,

NACT yields a column-strided panel of G, denoted G(i).

This irregular striding pattern arises from path integration,

which limits non-zero elements of G to model parameters

along the source-receiver great circle, and thus depends on

the data (via the path geometry). For each datum i of size k
(number of time samples), G(i) is k × n, where n is often

much smaller than Nm (n ∝ Nmr

√

Nmθφ
), while k varies

independently from n and is ≥ 100 in practice. Thus, for

each i, there is an n × n symmetric update GT
(i)G(i) that

must be merged into the full GTG. The merge operation is

the additive “augmented assignment” operator +=, and the

mapping between elements is given by an indexed slicing

operation: GtG[ix,ix] += GtG_i[:,:] where ix is an



+=

Never explicitly

formed

BLAS

GEMM

GtG[ix,ix] += GtG_i[:,:];

Pseudocode:

Figure 1. An illustration of the indexed strided-slice update, where G(i)

and GT
(i)

G(i) are stored in “compressed” form (without zeros).

indexing array (Fig. 1). Updates to the misfit gradient vector

from datum i follow a similar pattern (in one dimension).

But why form the Hessian? In theory, one could cache the

set of panels {G(i)} and solve eq 2 with a Krylov method,

requiring only matrix-vector products. However, relative size

of the Hessian (even with {G(i)} “compressed” as in Fig. 1),

makes it significantly more practical for our use-case, which

typically involves a posteriori analysis of the Hessian and

repeated solution of eq 2 to test new formulations of Cm.

Further, while Krylov methods are clearly attractive when

direct factorization of the operator in eq 2 is not feasible,

this is not the case for present-day problem sizes, where

the former is orders of magnitude cheaper than the SEM

simulations that evaluate g(m) (Section II-C).

3) Parallel implementation with replication: The NACT

calculation for each datum is independent of every other.

Thus, NACT-based Hessian and gradient estimation is data-

parallel and proceeds in two phases: (1) a map operation over

the waveform data d and corresponding predictions from

SEM simulations g(m), yielding per-datum Hessian and

gradient contributions; and (2) a parallel reduction operation,

yielding a single estimate of the full Hessian and gradient.

Our implementation adopts a mixed MPI/OpenMP program-

ming model. The outermost level of parallelism corresponds

to MPI tasks, typically distributed among available compute

resources one-to-one with NUMA domains (and ensuring

local memory affinity). All MPI tasks are equivalent, with

the exception that a root task spawns a Pthread responsible

for work distribution (assigning data to MPI tasks).

Work is assigned to MPI tasks in data-subsets (more

than one datum) that reflect locality of the seismic ob-

servation data and simulation output on disk. Subsets are

distributed dynamically due to the data-dependent cost of

NACT computations (via the frequency dependence). Each

subset is processed in parallel by the OpenMP thread team

associated with the MPI task (one thread per datum). Up to

the limit that the full Hessian estimate can fit in memory,

we adopt a replicated approach to reduction of updates,

since the merge operation (addition) can be considered

associative and commutative for our purposes. At the first

reduction level, each MPI task maintains its own copy of the

Hessian and gradient, to which the OpenMP thread team

applies per-datum updates (Fig. 1). Once all subsets have

been processed, the second level of reduction proceeds by

summing all replicated Hessian and gradient copies across

MPI tasks. Thereafter, the results are saved to disk, either by

a single root task or a collective write via MPI-IO if large

enough to warrant it.

C. Production hybrid inversion

In our recent global-scale imaging efforts [1]–[3], the

dataset is composed of tens of thousands of time-discretized

seismograms from hundreds of earthquakes distributed

around the globe, yielding an Nd of O(107). The model m

characterizes 3D variations of seismic shear-wave velocity

in Earth’s mantle, which is expressed in a spline basis of

O(104−105) free parameters (see [1]–[3] for details). Given

an iterative model estimate mi, we first use a the SEM

to compute g(mi), after which we compute the Gauss-

Newton Hessian and solve eq 2 for mi+1 (see Fig. 2). As

noted in Section II-A, the use of a Newton-like optimization

scheme means that this procedure is repeated for only a

few iterations: often ≤ 10. While small, occupying 200-

300 CPU cores, the SEM simulations yielding g(m) are

numerous: requiring one simulation per earthquake, per

inversion iteration. In contrast, the data assimilation and

Hessian computation described in Section II-B is cheap,

run once per iteration, and scales extremely well (it is data-

parallel). Further, for a single iteration leading to the results

featured in Section V and [3], factorization of the Hessian

term in eq 2 requires a mere 2300 CPU hours, while SEM

simulation requires over 700K hours – clearly demonstrating

that factorization is much cheaper than simulation at present-

day problem sizes (over two orders of magnitude).

Because we construct the Hessian estimate directly, the

space complexity of the replicated approach described in

Section II-B3 is independent of the number of data. Instead,

this approach requires O(N2
m
) space per replica, where Nm

is in turn dictated by the resolution of the model. In our re-

cent work, where Nm ≃ 2.2×105, the Hessian now exceeds

90GB in size, even when storing only the upper triangular

part at single precision. As such, the Hessian now exceeds

available DRAM on a typical shared-memory compute node,

rendering the replicated approach in Section II-B3 infeasible

(though not for the gradient, which requires O(Nm) space

per replica). Further, in next-generation global-scale inver-

sions currently in the planning stage, Nm is expected to

grow by approximately a factor of 4, chiefly due to doubling

model resolution in the lateral dimensions. This will yield an

Nm exceeding 8.2× 105, requiring over 1.3TB to store the

Hessian. Thus, both our present-day and future needs clearly

motivate the development of a scalable distributed dense

matrix assembly abstraction tailored to this application.
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Figure 2. An overview of the iterative waveform inversion procedure.
Spectral element (SEM) simulations are used to predict waveforms for
the current model estimate m

i, which are in turned compared to the
corresponding observed data. If the waveforms agree sufficiently well, the
model is considered to have converged with respect to the chosen dataset.
Otherwise, the model is updated by solving eq 2 and the process repeats.

III. ABSTRACTION DESIGN

A. Requirements

We carefully considered both the requirements intrinsic to

our application, as well as those desirable from a usability

or scalability perspective. Namely, the resulting abstraction

should: (1) support distribution schemes common in parallel

dense linear algebra (e.g. block-cyclic); (2) support updates

on indexed slices of the distributed matrix, parameterized

by associative-commutative operations; (3) provide clear

consistency guarantees for updates: namely, that each update

should take place atomically with respect to all others; (4)

attain scalability through overlapped communication and

computation with minimal synchronization; (5) provide a

collective, barrier-like “commit” operation, guaranteeing that

all preceding asynchronous updates have been applied; and

(6) readily interoperate with existing OpenMP/MPI codes.

While many of these requirements are constrained by the

structure of our application (e.g. interoperation with MPI

and OpenMP), others are based on anticipated needs. For

example, the distribution scheme requirement reflects a

desire to perform in situ parallel linear algebra operations on

the resulting Hessian, such as with the ScaLAPACK [17].

B. Implementation

1) UPC++: To enable one-sided updates of distributed

matrix elements, PGAS seemed to be an appropriate choice

of programming model. Interoperability with existing MPI /

OpenMP code made UPC [18], UPC++ [4], and Global Ar-

rays (GA) [19] attractive options. While GA offers one-sided

atomic updates of indexed matrix slices, we determined early

on that we desired more direct control over how the latter are

implemented. Further, UPC++ in particular offers specific

features that led us to select it over UPC: (1) UPC++ com-

bines one-sided remote memory management and one-sided

bulk copies: convenient building blocks for synchronization-

free transfer of update data when buffer size is known only

on the initiating process; and (2) asynchronous remote tasks

in UPC++ provide a powerful strategy for encapsulating bulk

updates of remote matrix elements in a manner that can be

serialized and executed in isolation on the target process

(although serialization is not required by UPC++). Like GA,

the desired functionality could also be achieved with MPI

RMA (for example, MPI_Accumulate and MPI_SUM over

indexed types), but again the generality of UPC++ stands in

stark contrast. UPC++ permits the application programmer

to explicitly control bulk data movement and custom update

logic, and then offload the latter for execution on the target

(ensuring consistency guarantees, maximizing data locality,

taking advantage of known optimizations, etc.). We will

return to this in Section IV-B.

2) Structure: Our abstraction is implemented as a C++

class, with one instance per UPC++ process, referred to as

ConvergentMatrix (for the ability to “converge” to its

final state asynchronously). Typical configurations associate

a UPC++ process with a set of OpenMP threads (e.g.

in a NUMA domain) that compute matrix updates, which

ConvergentMatrix then applies. The matrix distribution

scheme is modeled on the PBLAS, and parameters thereof

(block size, process grid dimensions, etc.) are passed in as

template parameters (as is the matrix data type, typically

float or double). The ConvergentMatrix constructor

takes as arguments the global dimensions of the distributed

matrix, allowing the latter to be determined at run time.

Further, the constructor is a collective operation, where

local storage arrays are initialized and processes exchange

configuration data needed in later asynchronous updates.

The abstraction’s public interface consists primarily of

three methods: update, commit, and get_local_data. In

essence, update consumes indexed update slices (Fig. 1),

bins the update elements by “owner” under the configured

distribution, and enqueues their application (+=) on the

target owners via UPC++ asynchronous tasks while also

preparing for required data movement (see Section III-B3).

The commit method is a blocking collective that ensures all

preceding asynchronous updates have been applied. Thus,

updates invoked with update are merged into the distributed

matrix asynchronously and atomically at some point after

their invocation and before a subsequent commit returns. Fi-

nally, get_local_data returns a pointer to matrix storage

on the calling UPC++ process, for use with parallel linear

algebra libraries or MPI-IO via a suitable darray type.

3) Data movement: How update data is moved to target

processes deserves careful thought, as it will have a signif-

icant impact on execution time of the asynchronous update

tasks. Two illustrative scenarios are described below: both

employ the same functionality for data transfer, but differ

in how remote memory is managed. UPC++ supports bulk

one-sided RDMA transfers via upcxx::copy, which takes



source and destination memory references as arguments

(upcxx::global_ptr objects). This call is blocking, and

successful return implies completion. UPC++ also provides

upcxx::allocate and upcxx::deallocate for remote

management of globally accessible memory. Both are block-

ing and one-sided, but unlike upcxx::copy, require runtime

logic on the target side. With these semantics in mind, the

two example scenarios are:

• Push: The initiating process could “push” the data

to the destination process, before enqueuing the update

task, through successive calls to upcxx::allocate and

upcxx::copy. When the latter returns, buffers containing

update data on the initiating side may be freed or reused.

Here, upcxx::global_ptr references to the transferred

data must be passed as arguments to the asynchronous task.

• Pull: The initiating process could store the update data

to local (but remotely addressable) buffers and pass associ-

ated upcxx::global_ptr objects to the update task. The

latter must then “pull” (via upcxx::copy) the update data

at execution onto the target. Importantly, the asynchronous

task is responsible for calling upcxx::deallocate in

order to free the buffers on the initiating process.

Two key metrics to assess the proposed data movement

schemes are: (a) safety guarantees for memory usage and (b)

“weight” of the update task. Before discussing these points,

it is valuable to draw the distinction between truly one-sided

operations in UPC++ and those based on active messages

(AM). UPC++ uses both the RDMA capabilities provided by

GASNet [20], as well as GASNet’s AM API to implement

polling-based triggers for operations that require target-

side logic (implemented via callback handlers). For exam-

ple, upcxx::copy is based on the one-sided gasnet_put

and gasnet_get primitives, while upcxx::allocate or

upcxx::deallocate require AM-based handlers (to ex-

ecute target memory management operations), as does

upcxx::async (to enqueue tasks for later execution on

the target). With this distinction in mind, a more detailed

discussion of the proposed update implementations follows.

First, while the pull procedure requires no remote mem-

ory management operations within the update call on

the initiating process, the push procedure will block in

upcxx::allocate until the associated active-messages

(AM) handler runs on the target and returns a reference

to the receiving buffer. Either approach requires at least

one immediate duplication of the storage associated with

the binned updates: either a copy retained on the initiating

process for asynchronous retrieval by the update task (pull),

or a copy performed over the network (push). Due to the

one-sided nature of upcxx::copy, there is no risk in the

push case that a pause in AM handler progress on the

target will prevent the next step completing: namely the

binned-update buffer being freed or reused. Conversely,

in pull, the upcxx::deallocate call is remote (freeing

memory on the initiating side), and must be serviced by

AM. Thus, the window during which multiple copies of the

update data can consume memory in push is determined

only by the throughput of upcxx::copy, while in pull this

window could potentially be much larger (if AM handler

execution is delayed). Second, to more easily reason about

progress in executing the enqueued asynchronous update

tasks (Section III-B2), the latter should be as light-weight as

possible. This requirement is clearly satisfied more closely

in the push case, where no communication occurs within

the update task. Thus, the update method was designed to

follow the push procedure.

Finally, it is important to note that UPC++ grants the

programmer not only fine control over update logic, but also

when and how resources (e.g. memory) are used. This stands

in contrast, for example, to MPI, where these considerations

are often internal to the runtime. This also highlights why

PGAS (and UPC++ in particular) is a good fit for our

problem, where communication patterns (buffer size, target

process, timing) are known only on the initiating side.

4) Integration: In Fig. 3, we illustrate our distributed

Hessian assembly implementation (in contrast to the repli-

cated approach; Section II-B3). Previously, Jacobian panels

produced by each OpenMP thread team were consumed by a

collocated MPI process, responsible for applying the result-

ing updates to the local Hessian (or gradient) replica. This

MPI-based consumer has now been replaced with a UPC++

process, responsible for managing a ConvergentMatrix

object to which updates from the OpenMP thread team are

applied (replication is still used for the gradient). As before,

MPI is used for distribution of work partitions, as well as

for high-performance parallel IO. This latter functionality

has become increasingly important as the distributed Hessian

estimate has grown (soon exceeding 1TB, see Section IV).

Further, we note that MPI may also be used indirectly

through subsequent calls to the PBLAS / ScaLAPACK, in

which case it may be possible to avoid IO before attempting

to solve eq 2 (this approach is not currently used, however).

C. Challenges

Here, we discuss two challenges that arose during the

development and deployment of ConvergentMatrix, along

with the particular solutions we adopted.

1) Reasoning about progress: One of the more fun-

damental challenges we encountered was reasoning about

progress: in terms of both execution of the asynchronous

update tasks and remote memory management.

As noted above, asynchronous task invocation and re-

mote memory management UPC++ require GASNet to

poll the network for new messages on the target side

and run the associated AM handlers. GASNet implicitly

calls gasnet_AMPoll (which services the network) dur-

ing message-sending operations [20], but reasoning about

where, when, and if, additional calls to gasnet_AMPoll

are necessary is non-trivial (in addition to those internal to
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Figure 3. A schematic illustration of how the ConvergentMatrix abstraction is used in our production application, focused on the path taken by
a single Hessian update and highlighting the roles of different coexisting parallel programming models / tools (UPC++, OpenMP, and MPI).

UPC++). Further, even when AM handlers for asynchronous

tasks are run on the target process, UPC++ only enqueues

these tasks for execution: each process must periodically en-

sure enqueued tasks execute (by calling upcxx::advance,

which calls gasnet_AMPoll and services the queue).

Pausing to make progress on the enqueued update

tasks has important implications for memory overhead, as

the tasks are responsible for freeing their own receive

buffers (see Section III-B3). Failure to do so can cause

upcxx::allocate to fail due to memory exhaustion on

the target process, halting (at least temporarily, if a wait-

retry pattern is used) the movement of update data. While

additional upcxx::advance calls may be invoked while

a UPC++ process waits for new Hessian updates from the

OpenMP thread team, there are other operations where such

calls cannot easily be interleaved. To this end, we introduced

an always-on “progress” thread, responsible for periodically

invoking upcxx::advance. While this solution requires

locks to prevent concurrent calls to UPC++ routines that alter

the task queue, this critical region of calls within the update

method is compact, and the additional code complexity is

minimal (less than 30 SLOC). We found this approach to

be effective at ensuring progress despite the asynchronous

nature of update operations, thereby enabling both high

update throughput (rapid execution of update tasks) and

efficient memory management (requiring a smaller reserved

fast segment for GASNet, as well as less chance of memory

exhaustion due to other operations using the heap).

2) Network hotspots: Another challenge was only en-

countered during benchmarks (Section IV) at high levels

of concurrency: network congestion due to simultaneous

updates (namely, upcxx::copy) against the same target.

This can arise when update load and rate are near perfectly

balanced, as in the synthetic benchmarks below. Such tests

establish a lower bound on performance by constructing a

worst-case scenario, where the asynchronous patterns of up-

dates distributed across the application become synchronous

(more like all-to-all operations). An effective strategy to

mitigate this issue is randomized target ordering, ensuring

that (with high probability) no two ConvergentMatrix

instances will initiate updates on the same set of targets

in the same order. An analogous approach has been used to

optimize PGAS-based parallel FFT [21], [22].

IV. EVALUATION

A. Scaling

Here, we present scaling results for present-day and antic-

ipated next-generation problem sizes, obtained using a syn-

thetic benchmark modeled closely after the real application.

This tool is a drop-in replacement for the OpenMP thread

team in Fig. 3, yielding streams of artificial updates with

realistic sizes, access patterns (indexing into the Hessian),

and production rates. As noted in Section III-C2, we config-

ure the benchmark to produce updates at a nearly uniform

rate, thus inducing worst-case simultaneous communication

volume and placing a lower-bound on performance.

These benchmarks are performed on Edison, a Cray

XC30 at the National Energy Research Scientific Computing

Center and our primary production platform. Each Edison

compute node has 64 GB of memory among two NUMA

domains, each associated with a 12-core Intel “Ivy Bridge”

processor. There are 5,576 compute nodes in total, linked

via a Cray Aries high-speed interconnect, yielding a peak

performance of 2.57 PFLOPS. In our scaling experiments,

we mimic the layout of processes / threads seen in the real

application: one UPC++ process (and ConvergentMatrix

instance) per NUMA domain and 8 OpenMP threads per-

forming simulated work (in practice, separate work distri-
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Figure 4. Strong (A) and weak (B) scaling results for the test runs discussed in the text. The UPC++ line in (B) is flat due to near-total overlap of
computation and communication. Per-process aggregate walltime breakdowns (C) for the 64 update calls in (B), focusing on the three major internal
operations (binning, remote allocation, and copying).

bution or IO tasks occupying the remaining cores). Similar

to our production application, we use the GNU Compilers

(4.8.2) in all of our tests (-O3). We store all matrix data in

32-bit float, again like the production application (limited

by the precision of the seismic data, stored as float for

compact representation on disk).

1) Strong Scaling: We examine three fixed problem sizes:

two from recent inversions (Nm = 1.1× 105 and 2.2× 105)

and one from a planned next-generation inversion (8.2×105)

analogous to doubling the lateral resolution of the former

two. These runs use a 2D block-cyclic distribution scheme

(64×64 block size), occupying P UPC++ processes for P ∈
{22, 42, 82, 162, 322}, analogous to production calculations

on up 1024 NUMA domains, or 12,288 cores. We quantify

strong scaling in terms of relative parallel efficiency:

ER(P ) =
T (Pmin) · Pmin

T (P ) · P

where T (P ) is the time to solution using P processes

(elapsed time from thread-team start to when commit()

returns) and Pmin corresponds to the reference run: the

smallest P in the set above at which the problem size

considered can be solved (due to memory limitations). We

hold the total number of updates Nup initiated across all

processes fixed at Nup ∈ {4096, 32768, 65536}, reflecting

present-day and anticipated future inversions and allowing

us to measure ER across three orders of magnitude in core

counts by extrapolation. Namely, T scales quasi-linearly

with the number of updates initiated by each process, which

allows us, for example, to infer T (P = 4, Nup = 32768)
from Nup = 4096 (the former takes too long to measure).

To elaborate, our application is partially pipelined: the

thread team produces updates in parallel, which are buffered

and consumed by ConvergentMatrix. There is a non-zero

spin-up time at the beginning of each run while the thread

team is working but has not yet produced updates. For small

P and fixed Nup (many updates per instance), the fraction of

T spent in spin-up is smaller than for larger P (fewer updates

per instance). For example, the T (P,Nup) ratio R(P ) =

Table I
STRONG SCALING FOR A RANGE OF Nm ON UP TO 12,288 CORES OF A

CRAY XC30. GREEN VALUES: EXTRAPOLATED WITH

R(P = 64) = 7.88; BLUE VALUES: R(P = 64) = 7.80 (SEE TEXT).

Nm = 1.1× 105 Nup = 4096 Nup = 32768
P / Cores T (P ) s ER(P ) T (P ) s ER(P )

4 / 48 5070.59 100.0% 39948.20 100.0%
16 / 192 1271.40 99.7% 10016.61 99.7%
64 / 768 322.24 98.3% 2538.74 98.3%

256 / 3072 - - 640.96 97.4%
1024 / 12288 - - 171.68 90.9%

Nm = 2.2× 105 Nup = 4096 Nup = 32768
P / Cores T (P ) s ER(P ) T (P ) s ER(P )

16 / 192 2318.57 100.0% 18079.84 100.0%
64 / 768 592.80 97.8% 4622.56 97.8%

256 / 3072 - - 1173.27 96.3%
1024 / 12288 - - 321.92 87.7%

Nm = 8.2× 105 Nup = 32768 Nup = 65536
P / Cores T (P ) s ER(P ) T (P ) s ER(P )
256 / 3072 2399.96 100.0% 4703.16 100.0%

1024 / 12288 703.72 85.3% 1279.66 91.9%

T (P, 32768)/T (P, 4096) will be ≃ 8 for P = 4, but less

for P = 64 (due to the larger spin-up fraction). Here, we can

use R(P = 64) to extrapolate a lower bound on T (4, 32768)
from T (4, 4096), which may in turn be used as the reference

to establish a lower bound on ER for larger P and Nup.

In Table I and Fig. 4A, we show T and ER for the

test runs described above. For all Nm and P considered,

we observe impressive relative speedup and find that ER

remains consistently above 85% – indicative of nearly com-

plete overlap of computation and communication. In our ap-

plication, Nm is constrained a priori by the physics of wave

propagation (namely, the attainable resolution) and held

fixed for multiple inversion iterations. Thus, strong scaling is

an important axis of evaluation for our application. Further,

these tests clearly demonstrate that ConvergentMatrix

readily scales to anticipated next-generation problem sizes.

2) Weak scaling: For our application, it is difficult to

define a meaningful notion of weak scaling, tied to a nominal



Table II
WEAK SCALING FOR Nm = 2.2× 105 ON UP TO 12,288 CORES OF A

CRAY XC30: UPC++ AND MPI-BASED IMPLEMENTATIONS.

UPC++ MPI

P Cores Nup T (P ) s T (P ) s

16 192 1024 591.18 fail
64 768 4096 592.50 1064.50

256 3072 16384 597.24 1345.66
1024 12288 65536 609.96 3467.65

fixed problem size per process while scaling global problem

size by enlarging the number of processes. Two natural axes

to scale global problem size are matrix dimension Nm and

total quantity of data Nup. Growing Nm while retaining a

fixed-size partition of the distributed matrix per process does

not retain a fixed per-process problem size, as the dimension

of each update must grow accordingly (Section II-B2). Hold-

ing Nm fixed while scaling Nup (adding processes, each

performing a fixed number of updates), does not maintain

the same matrix partition size, but does maintain the same

update dimension and per-update communication volume.

Among these two options, we believe the second (scaling

Nup) may be more informative. Importantly, though the per-

update problem size is fixed, the total volume of concurrent

communication increases with P , as does the cost of the

binning operation. Further, unlike the fixed total Nup runs

used in assessing strong scaling, these experiments are com-

paratively insensitive to the effect of spin-up time fraction

(which is the same for all P ). Thus, these runs should yield a

more informative notion of problem size for evaluating the

communication model. In Table II and Fig. 4B, we show

weak scaling for an Nm of 2.2 × 105 in terms of time to

solution T , for a range of P and fixed number of updates

per-process (64). We find that T stays nearly constant

over a wide range of core- (192–12288) and corresponding

update-counts (1024–65535), gaining only 3% at the largest

P (and problem size), indicative of near-total overlap of

computation and communication. This is confirmed when

we examine Fig. 4C, showing per-process time breakdowns

for calls to the update method: the totals are considerably

below computation time for the test case considered (64

updates will be computed by the OpenMP threads in ∼ 570
s for this Nm). Further, increases in aggregate update time

are mostly driven by matrix-element binning, not the UPC++

update-movement operations.

B. Comparison with MPI-3 RMA

For comparison, we designed a second implementation,

based on MPI-3 remote memory access (RMA) operations.

While the shortcomings of MPI-2 for emulating PGAS-like

functionality are well known [23], MPI-3 largely addresses

these issues. The particular semantics of MPI_Accumulate

fit well with our requirements: concurrent, element-wise

atomic updates to remote memory using predefined commu-

tative merge operations (e.g. MPI_SUM). These are weaker

atomicity guarantees than the UPC++ version (which applies

the entire update atomically), that we hoped could lead to

performance advantages when using MPI-3 RMA.

In our re-implementation of ConvergentMatrix, we use

a single global MPI window object to manage distributed-

matrix storage arrays with minimal runtime overhead. Ac-

cess is managed with the passive MPI_Win_lock / unlock

pattern, requiring minimal synchronization and no target-

side intervention. Exclusive locks are acquired for each accu-

mulate call, after initial tests found performance advantages

over shared locks, possibly due to implicit coordination

between concurrent updates and poor locally when updates

from distinct origins are interleaved. We also tried a single

passive access epoch with shared-mode locks, opened by the

first update and closed by commit, in conjunction with per-

accumulate MPI_Win_flush_local calls, but found per-

formance poorer than the exclusive-lock approach. Finally,

because individual binned updates are arbitrarily structured,

we define per-update MPI indexed derived types.

As noted in Section IV-A2, our weak-scaling tests are

particularly sensitive to the volume of concurrent communi-

cation, and thus provide a useful framework for assessing

different communication models. We repeated these tests

for the MPI-based abstraction, using the same compiler

configuration and Cray MPICH 7.0.3 (based on a heavily

optimized MPICH 3.0.3). These partial results are shown

in Table II and Fig. 4B. MPI’s use of a 32-bit int for

window indexing severely limits window size, placing a

lower bound on P for a given Nm (here, P = 16 leads to

overflow), while element indices may use any integer type

in the UPC++ version (default: long). We find that time

to solution for the MPI-based abstraction is significantly

larger than for the UPC++-based one and weak scaling

is comparatively poor, with 26% performance degradation

between P = 64 and 256, and degradation by 226% of

the P = 64 case at P = 1024 (possibly due to an error

seen in the low-level communication library at the largest

P , causing the pure-RDMA backend to be disabled in favor

of a partially RDMA-based protocol). We believe the perfor-

mance difference might be resolved with further tuning of

the MPI implementation for our use case. However, there are

semantic differences between the one-sided model in UPC++

and MPI-3, and we currently take advantage of UPC++-

specific remote memory allocation and asynchronous tasks.

In terms of code complexity, UPC++ and MPI require

analogous initialization steps (exchanging memory refer-

ences vs. window creation), and similar quantites of code

to implement one-sided updates (92 vs. 75 SLOC, respec-

tively). Further, while UPC++ required additional care in

reasoning about progress (Section III-C), it was easier to

reason about performance (vs. MPI, where details relevant

to debugging performance are hidden in the runtime). For

example, in the MPI_Accumulate implementation in foMPI

[24], a high-performance RDMA-aware MPI-3 RMA im-
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Figure 5. Full-waveform images of shear-wave velocity (VS ) structure
in the earth’s mantle. Our previous model SEMum2 [2] revealed finger-
like low VS anomalies in the upper mantle, accompanied by conduit-like
structures extending below (A). Enabled by the matrix assembly abstraction
described here, our preliminary whole-mantle model (B) sheds further light
on the origins of these structures, and more broadly the interactions between
different scales of convective phenomena – linking surface expression of
these processes (hotspot volcanic islands like Hawaii), to the well known
large low shear-wave velocity provinces (LLSVPs) in the deep mantle.

plementation, the style of bulk floating-point accumulate

that we require involves multiple phases of data-movement

(target-window lock, RDMA-get, origin-side accumulate,

RDMA-put, unlock), in contrast to our explicit single phase.

Indeed, this limitation may have its roots in design of

the API itself, which encourages a truly passive target

(e.g. avoiding extensive target-side buffering in the runtime,

which can lead to memory contention). Thus, for certain

types of accumulate-like operations (such as our one-sided

matrix updates), the parallel programming model exposed by

UPC++ has additional advantages owing to its generality.

V. SCIENTIFIC RESULTS

Our new abstraction for scalable distributed matrix assem-

bly has enabled us to solve problems not possible with our

previous implementation (Section II-B3). In our earlier work

[2], we focused on imaging seismic shear-wave velocity

structure of the earth’s upper mantle and transition zone (≤

800 km below the surface) – the limits of feasibility under

the replicated approach. Our inversion technique revealed

never before seen “fingers” of low seismic velocities in the

upper-mantle beneath the world’s ocean basins (Fig. 5a).

While the images suggested a connection between these

structures and columnar low-velocity features extending into

the lower mantle, the depth range of our inversion was

limited. To more fully examine the interactions between

different scales of convective phenomena in the upper and

lower mantle, with implications for the dynamics of the

system as a whole, we have now moved on to whole-

mantle imaging (to the core-mantle boundary at 2891 km

depth). This most recent work has required three iterations

(eq 2) at the whole-mantle scale (Nm = 2.2 × 105) using

an enlarged dataset of higher-frequency seismic waveforms

to attain better resolution [3]. The inversion completed

quickly, owing to the rapid convergence of our Newton-

like model optimization scheme, which is in turn enabled by

the ConvergentMatrix abstraction. Our results are already

yielding intriguing new images of coupling between different

scales of convection in the earth’s upper and lower mantle,

as illustrated in Fig. 5b, and encourage us to explore next-

generation, higher-resolution imaging characterized by the

largest problem sizes discussed in Section IV-A1.

VI. CONCLUSIONS

Here, we presented the design and implementation of

a distributed matrix abstraction for physics-based Hessian

estimation that not only allows us to tackle previously

intractable current-generation inversions, but also scales

to anticipated next-generation problems. Our solution was

enabled by the specific combination of PGAS features pro-

vided by UPC++, particularly remote memory management

and asynchronous task execution, while still presenting a

familiar language (C++) and allowing interoperation with

MPI/OpenMP components of our code. We observed im-

pressive scaling behavior based on synthetic benchmark

experiments under scientifically meaningful configurations.

We found that UPC++ was a natural fit for our one-sided

assembly problem, where communication patterns (buffer

size, timing, etc.) are known only on the origin side (and

only at execution), and that UPC++ outperforms our MPI-

3 RMA implementation. Further, this particular approach is

quite general, and should be applicable to a broad range of

data-assimilation problems arising in HPC applications.

In the near future, we will extend our whole-mantle

imaging to higher-resolution inversions, similar in scale

to the largest experiments discussed above. We also plan

to explore usability improvements and optimizations to

ConvergentMatrix as our use-case evolves. For example,

update bins are currently implemented as append-only

indexed arrays, while pre-communication sort / compaction

may reduce communication volume if repeated hits to the

same elements become more common in our workloads.



The UPC++ and MPI implementations are available from

https://github.com/swfrench/convergent-matrix

and convergent-matrix-mpi (commits 16c28d1 and

3338240 were used in our benchmarks, respectively).
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