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Adaptive Projection Subspace Dimension for

the Thick-Restart Lanczos Method∗

I. Yamazaki†‡, Z. Bai‡, H. Simon†, L.-W. Wang†, and K. Wu†

October 3, 2008

Abstract

The Thick-Restart Lanczos (TRLan) method is an effective method for solving large-scale
Hermitian eigenvalue problems. However, its performance strongly depends on the dimension
of the projection subspace. In this paper, we propose an objective function to quantify the
effectiveness of a chosen subspace dimension, and then introduce an adaptive scheme to dy-
namically adjust the dimension at each restart. An open-source software package, ν–TRLan,
which implements the TRLan method with this adaptive projection subspace dimension is
available in the public domain. The numerical results of synthetic eigenvalue problems are
presented to demonstrate that ν–TRLan achieves speedups of between 0.9 and 5.1 over the
static method using a default subspace dimension. To demonstrate the effectiveness of ν–
TRLan in a real application, we apply it to the electronic structure calculations of quantum
dots. We show that ν–TRLan can achieve speedups of greater than 1.69 over the state-of-the-
art eigensolver for this application, which is based on the Conjugate Gradient method with a
powerful preconditioner.

Keywords: Adaptive subspace dimension; Eigenvalue; Lanczos; Thick-restart; Electronic
structure calculation.

1 Introduction

The Lanczos method [7] for solving large-scale Hermitian eigenvalue problems computes a new
orthonormal basis vector of a projection subspace at each iteration. Computational and memory
costs increase rapidly as the iteration proceeds. To reduce the costs, the method is restarted
after a fixed number of basis vectors are computed. The performance of such a restarted Lanczos
method [8, 24] strongly depends on the user-specified basis size. If the basis size is too small, the
method suffers from slow convergence. If it is too large, the computational and memory costs

∗This document was prepared as an account of work sponsored by the United States Government. While this
document is believed to contain correct information, neither the United States Government nor any agency thereof,
nor The Regents of the University of California, nor any of their employees, makes any warranty, express or implied,
or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference
herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or
otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United
States Government or any agency thereof, or The Regents of the University of California. The views and opinions
of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency
thereof or The Regents of the University of California.
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Figure 1: Performance of TRLan with different basis sizes

become expensive. To achieve an optimal performance, it is necessary to select a proper basis
size that balances the costs and convergence rate. To demonstrate this delicate task of selecting
an appropriate basis size, let us examine the performance of the Thick-Restart Lanczos (TRLan)
method [22, 24]. Figure 1 shows the numbers of matrix operations and CPU times in minutes,
which are required by TRLan with different basis sizes to compute the smallest 100 eigenvalues
of the 10, 000 × 10, 000 diagonal matrix A = diag(1, 23, 33, . . . , 100003).1 As we can see, a larger
basis size improves the convergence rate as indicated by a smaller number of matrix operations.
However, when the basis size is too large, it becomes expensive to compute the large projection
subspace, and the total CPU time starts to increase.

To free users from this difficult task of selecting an appropriate basis size, we propose an
adaptive scheme to adjust the dimension of the projection subspace such that optimal performance
of the restarted Lanczos method is automatically obtained. We first distinguish between the user-
specified maximum basis size and the dimension of the projection subspace used at each restart.
We then introduce an objective function that quantifies the effectiveness of a subspace dimension
to balance the cost and convergence rate for solving the eigenvalue problem at hand. The subspace
dimension is then dynamically adjusted to optimize the objective function.

To demonstrate the effectiveness of this adaptive scheme, we define and implement an objective
function for TRLan in this paper. TRLan with this adaptive scheme is referred to as ν–TRLan.
The original TRLan software package [23, 24] was implemented in Fortran 90 to solve symmetric
eigenvalue problems using a static projection dimension. We have developed a software package in
C, which implements both TRLan and ν–TRLan, and have extended it to solve Hermitian eigen-
value problems. Similarly to the original implementation, the message passing interface (MPI) is
used to solve eigenvalue problems on distributed memory systems. We present numerical results
of synthetic eigenvalue problems to demonstrate that ν–TRLan not only automates the selection
of the subspace dimension, but also improves the performance of TRLan that uses an optimal
fixed subspace dimension. The open source ν–TRLan software package is publicly available [25].

To show the effectiveness of ν-TRLan in a real application, we integrate it into the Parallel En-
ergy Scan (PESCAN) code, which is used to calculate the electronic structures for semiconductor
quantum dots [2, 20] and other applications [9, 14]. The state-of-the-art eigensolver for PESCAN

1Additional descriptions of the experiments will be given in Section 4.
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is based on the Conjugate Gradient method with a powerful preconditioner [6, 12]. Numerical
results show that ν–TRLan can perform significantly better than this state-of-the-art solver with
speedups of greater than 1.69.

The rest of this paper is organized as follows: First, we review TRLan in Section 2 and
introduce ν–TRLan in Section 3. Then, in Section 4, we present numerical results of synthetic
test problems and PESCAN to demonstrate the effectiveness of ν–TRLan. Finally, in Section 5,
we conclude with final remarks.

2 Thick-Restart Lanczos method

The Lanczos method [7] is effective for computing a few exterior eigenvalues λ and their corre-
sponding eigenvectors v of a Hermitian matrix A:

Av = λv. (1)

Given a properly chosen starting vector q, the Lanczos method first computes orthonormal basis
vectors q1, q2, . . . , qi+1 of the Krylov subspace

Ki+1(q, A) ≡ span{q, Aq, A2q, . . . , Aiq}.

These basis vectors satisfy the relation

AQi = QiTi + βiqi+1e
T
i , (2)

where Qi = [q1, q2, . . . , qi], βi = qT
i+1Aqi, ei is the ith column of the i-dimensional identity matrix,

and Ti = QT
i AQi is an i × i Rayleigh-Ritz projection of A onto Ki(A, q). Then, an approximate

eigenpair (θ, x) of A is computed from an eigenpair (θ, y) of Ti, where

x = Qiy. (3)

The approximate eigenvalue θ and eigenvector x are referred to as a Ritz value and a Ritz vector,
respectively. The accuracy of this Ritz pair (θ, x) to approximate an eigenpair (λ, v) of A is
measured by its residual norm

‖r‖2 = ‖Ax − θx‖2 = ‖(AQi − QiTi)y‖2 = βi‖qi+1e
T
i y‖2 = βi|y(i)|. (4)

When the residual norm (4) is less than a prescribed threshold, the Ritz pair (θ, x) is said to be
converged. It is well known that Ritz values converge to exterior eigenvalues of A with a subspace
dimension i + 1 that is much smaller than the dimension n of A [11, 13].

The key feature that distinguishes the Lanczos method from other subspace methods is that
Ti of (2) is symmetric tridiagonal and of the form

Ti =





α1 β1

β1 α2 β2

. . .
. . .

. . .

βi−2 αi−1 βi−1

βi−1 αi




. (5)

Hence, by comparing the ith columns on both sides of (2), we obtain

βiqi+1 = Aqi − αiqi − βi−1qi−1. (6)
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As a result, in exact arithmetic, the new basis vector qi+1 can be computed from two preceding
basis vectors, qi−1 and qi. In other words, Aqi does not have to be orthogonalized against the
basis vectors q1, q2, . . . , qi−2. This feature is commonly known as the three-term recurrence.

However, in practice, when the new basis vector qi+1 is computed by (6) on a finite precision
machine, orthogonality among the basis vectors is lost even after a small number of iterations. To
explicitly maintain orthogonality among the basis vectors, the new basis vector qi+1 is reorthogo-
nalized against all the previous vectors q1, q2, . . . , qi. This reorthogonalization process is typically
carried out using a variation of the Gram-Schmidt procedure [13], and it becomes computationally
expensive as the subspace dimension i + 1 grows. Furthermore, to carry out reorthogonalization
and to compute the Ritz vectors x of (3), all the basis vectors Qi need to be explicitly stored in
memory.

To reduce the costs of computing a large subspace, the iteration is restarted after a fixed num-
ber of basis vectors are computed. Since the Ritz values first converge to the exterior eigenvalues
of A, TRLan selects two indices ℓ and u to indicate which Ritz values are kept at both ends of
spectrum, as shown in Figure 2, where m denotes the basis size at restart.

θmθ2θ1 θuθ

keep keepdiscard

l

Figure 2: Ritz values to be kept at restart.

The corresponding Ritz vectors to be kept are denoted by

Q̂k = [q̂1, q̂2, . . . , q̂k] = QmYk, (7)

where
k = ℓ + m − u + 1, (8)

Yk = [y1, y2, . . . , yℓ, yu, yu+1, . . . , ym], (9)

and yi is the eigenvector of Tm+1 corresponding to θi. Then, TRLan sets these Ritz vectors Q̂k

as the first k basis vectors for the proceeding iterations after the restart.2 Furthermore, the
Ritz vector qm+1 is set to be the (k + 1)th basis vector q̂k+1. To compute the (k + 2)th basis
vector q̂k+2, TRLan computes Aq̂k+1 and explicitly orthonormalizes it against all the previous k+1
basis vectors, namely,

β̂k+1q̂k+2 = Aq̂k+1 − Q̂k(Q̂
T
k Aq̂k+1) − q̂k+1(q̂

T
k+1Aq̂k+1). (10)

Note that AQ̂k in the second term on the right-hand side of (10) satisfies the relation:

AQ̂k = Q̂kDk + βmq̂k+1s
T ,

where Dk is the k × k diagonal matrix whose diagonal elements are the kept Ritz values, and
s = Y T

k em. Thus, the coefficients Q̂T
k Aq̂k+1 in (10) can be computed efficiently:

Q̂T
k Aq̂k+1 = (AQ̂k)

T q̂k+1 = (Q̂kDk + βmq̂k+1s
T )T q̂k+1

= DkY
T
k (QT

mqm+1) + βms(q̂T
k+1q̂k+1) = βms.
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set q1 = q/‖q‖2, k = 0, and m = m1.
for j = 1, 2, 3, . . .

1. Initialization.
b. p = Aqk+1

c. αk+1 = qT
k+1p

d. p = p − αk+1qk+1 −
∑k

i=1 βiqi

e. βk+1 = ‖p‖2

f. qk+2 = p/βk+1

2. The j-th restart-loop.
a. for i = k + 2, k + 3, . . . , m
b. p = Aqi

c. αi = qT
i p

d. p = p − αiqi − βi−1qi−1

e. reorthogonalize p if necessary.3

f. βi = ‖p‖2

g. qi+1 = p/βi

h. end for

3. The j-th restart.
a. compute all θi and yi(mj) of Tmj

and compute (4).
b. if stopping criteria is satisfied then

c. compute desired Ritz vectors and exit.
d. else restart:
e. select (ℓj+1, uj+1, mj+1) and compute kj+1 of (8).
f. set k = kj+1 and m = mj+1

g. compute eigenvectors Yk of (9).

h. compute Ritz vectors Q̂k of (7).

i. set {q1, q2, . . . , qk} = Q̂k and qk+1 = qm+1.
j. set αi = θπi

and βi = βmyπi
(m), for i = 1, . . . , k,

where π1, π2, . . . , πk = 1, 2, . . . , ℓ, u, u + 1, . . . , m.
k. end if

end for

Figure 3: Pseudocode of TRLan algorithm.

This is the only iteration of TRLan that does not follow the three-term recurrence (6). Hence, at
the ith iteration after the restart, the new basis vector q̂k+i+1 satisfies the relation:

AQ̂k+i = Q̂k+iT̂k+i + β̂k+iq̂k+i+1e
T
k+i,

2To distinguish the basis vectors computed after the restart from those computed before the restart, we put a
hat over the basis vectors computed after the restart.

3Perturbation of p may be needed when p is in the invariant space of A, and p ≈ 0.
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where T̂k+i = Q̂T
k+iAQ̂k+i is of the form

T̂k+i =





Dk βms

βmst α̂k+1 β̂k+1

β̂k+1 α̂k+2 β̂k+2

. . .
. . .

. . .

β̂k+i−2 α̂k+i−1 β̂k+i−1

β̂k+i−1 α̂k+i





.

Figure 3 shows the pseudocode of the TRLan algorithm with the initial projection subspace
dimension m1. A more detailed description of TRLan can be found in [22].

Note that some approaches were proposed to relax the requirement for orthogonality among the
basis vectors Qi, such as the Lanczos method without reorthogonalization [4], the Lanczos method
with partial reorthogonalization [15, 19], and the Conjugate Gradient (CG) method [12]. However,
they all have their own difficulties. Without reorthogonalization, the Lanczos method computes
spurious eigenvalues and requires a careful examination to identify them in the final solution.
With partial reorthogonalization, the Lanczos method can produce inaccurate eigenvectors. The
CG method for eigenvalue problems typically requires a good preconditioner, which may not be
easily available. For these reasons, methods that explicitly maintain orthogonality among the
basis vectors are more commonly used.

Besides TRLan, there are several other restarting schemes. One can restart the iteration
with a new starting vector, such as a linear combination of the current approximate eigenvectors.
Unfortunately, this simple approach loses a lot of useful information at restart and results in slow
convergence. To preserve more information, other schemes have been proposed that keep more
than one vector at restart. For example, the implicitly restart Lanczos method [1] keeps a fixed
number of vectors at restart that approximately span a space containing the desired Ritz vectors
by filtering out the unwanted ones. TRLan similarly keeps multiple vectors at restart, but allows
more explicit control over which Ritz vectors are kept.

3 Adaptive scheme for adjusting subspace dimension

At Step 3.e of the TRLan pseudocode in Figure 3, a triplet (ℓj+1, uj+1, mj+1) is selected to
indicate the kept Ritz vectors and dimension of the next projection subspace. In the original
implementation of TRLan [23, 24], the kept Ritz vectors are selected to maximize the rate of the
solution convergence over the next restart-loop, while the projection subspace dimension mj+1

is fixed to be the user-specified maximum basis size mmax for all j. As discussed in Section 1,
this requires users to carefully select the basis size in order to achieve a good performance of
TRLan for each eigenvalue problem at hand. To free users from this difficult task of selecting an
appropriate basis size, in this section, we propose an adaptive scheme for adjusting the dimension
of the projection subspace at each restart. This is based on the definition of an objective function
of a triplet (ℓ, u, m):

f(ℓ, u, m),

which quantifies the effectiveness of the triplet to achieve optimal performance. This objective
function is defined based on the careful examination of the computational cost (Sections 3.1)
and solution convergence rate (Section 3.2) over the (j + 1)-th restart-loop. In Section 3.3, we
propose a specific objective function that measures the effectiveness of the triplet to balance the
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costs and convergence rate. We also discuss practical issues to implement this adaptive scheme
in Sections 3.4 and 3.5.

3.1 Computational cost

The dominant computational costs of ν–TRLan are:

1. Reorthogonalization (Step 2.e in Figure 3). When a new basis vector qi+1 is reorthogonal-
ized against all the previous basis vectors using the Gram-Schmidt procedure, it requires
approximately 4ni floating-point operations (flops) [6]. For simplicity, we consider the full
reorthogonalization.4 The aggregated cost of all reorthogonalizations is approximately given
by

m−1∑

i=k

4ni = 2n(m − k)(k + m − 1) flops. (11)

2. Ritz vector computation (Step 3.h in Figure 3). The computation of the Ritz vectors

Q̂k = QmYk

that are kept at the j-th restart requires approximately

2nmk flops, (12)

where Qm and Yk are an n × mj and an mj × k matrix, respectively.

Besides these costs, the computational cost of a TRLan iteration can be dominated by the matrix-
vector multiplication. However, the cost of each matrix-vector multiplication is independent of the
subspace dimension m + 1. As the subspace dimension grows, we expect the computational cost
of the reorthogonalization process to dominate that of the restart-loop. Thus, by summing (11)
and (12), we use the following formula to measure the total cost for the (j + 1)-th restart-loop:5

2n(m − k)(k + m − 1) + 2nmk = 2n((m − k)(m + k − 1) + mk). (13)

3.2 Convergence factor

To be concrete, our discussion here focuses on computing the smallest nd eigenvalues. A similar
discussion can be made for computing the largest eigenvalues.

Let ρj be the reduction factor of the residual norm (4) of the smallest unconvergent Ritz value
at the end of the (j + 1)-th restart-loop, i.e., ‖rj+1‖2 = ρj‖rj‖2, where ‖rj‖2 is the residual norm
at the j-th restart. The factor ρj of the Ritz pair (θ1, x1) has been extensively studied [6, 11, 13].
A key result of the convergence analysis is that after m Lanczos iterations without restart, an
upper-bound of ρj is given by 1

Cm(1+2γ) , where Cm is the Chebyshev polynomial of degree m,

γ = λ2−λ1

λn−λ2
is a gap ratio of eigenvalues λj of A, and λ1 ≤ λ2 ≤ . . . ≤ λn [13]. We focus on the

worst case

ρj =
1

Cm(1 + 2γ)
. (14)

4TRLan and ν–TRLan implement an algorithm similar to the one suggested in [11] to determine when to
apply the reorthogonalization. In practice, we have observed that most of the new basis vectors need to be
reorthogonalized.

5ν–TRLan offers an option for users to include the cost of matrix-vector multiplication in (13).
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To incorporate the effect of restart on the reduction factor ρj of (14), let us assume that
Ritz pairs which are kept at the j-th restart have been converged exactly to the corresponding
eigenpairs of the matrix A. Then, according to the analysis of Morgan [10], the convergent Ritz
vectors deflate the corresponding spectrum of A, and the factor ρj of the smallest unkept Ritz
value over the (j + 1)-th restart-loop is given by

ρj =
1

Cm−k(1 + 2γ)
, (15)

where the gap ratio γ is defined as

γ =
λℓ+2 − λℓ+1

λn−m+u−1 − λℓ+1
. (16)

We compute an approximation of the reduction factor ρj as follows:

ρj =
1

Cm−k(1 + 2γ)
≈ 1

cosh(2(m − k)
√

γ)
, (17)

where following [5, Lemma 5.7], the Chebyshev polynomial Cm−k(1 + 2γ) is approximated by

Cm−k(1 + 2γ) = cosh((m − k)arccosh(1 + 2γ)) ≈ cosh(2(m − k)
√

γ).

We define an additional factor

ωj =
1

ρj
. (18)

Thus, the residue norm is expected to be reduced by the factor ωj over the (j +1)-th restart-loop.

3.3 Objective function

We now define an objective function for a triplet (ℓ, u, m) as the ratio of the reduction factor (18)
over the computational cost (13):

f(ℓ, u, m) =
cosh(2(m − k)

√
γ)

2n((m − k)(m + k − 1) + mk)
. (19)

An optimal triplet (ℓopt, uopt, mopt) maximizes the value of the objective function (19),

(ℓopt, uopt, mopt) = arg max f(ℓ, u, m), (20)

subject to
0 ≤ ℓ ≤ aj , mj − bj + 1 ≤ u ≤ mj + 1, k ≤ m ≤ mmax, (21)

where aj and bj are the numbers of the smallest and largest convergent Ritz values, respectively;
k is the number of the kept Ritz pairs and given by (8); and mmax is a prescribed maximum basis
size. When ℓ = 0 or u = mj +1, the smallest or largest Ritz values, respectively, are not kept. The
solution to the optimization problem (20) maximizes the expected reduction of the residue norm
per flop over the next restart-loop. Hence, it is expected that (ℓopt, uopt, mopt) balances the cost
and solution convergence, and achieves optimal performance for the next restart-loop. Therefore,
for Step 3.e of the pseudocode in Figure 3, ν–TRLan sets (ℓj+1, uj+1, mj+1) to be (ℓopt, uopt, mopt).

The optimization problem (20) is solved by explicitly computing f(ℓ, u, m) for all possible
combinations of triplets (ℓ, u, m). Even though the cost of this approach is O(m3

max), it is expected
to be insignificant to the total computational cost since mmax is typically much smaller than n.
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3.4 Practical objective function

In practice, the exact eigenvalues of A are not available. Hence, we replace the eigenvalues λj

in (16) with the computed Ritz values θj and define an effective gap ratio γe as follows:

γe =
θℓ+1 − θtj

θu−1 − θℓ+1
, (22)

where tj specifies the target Ritz value at the j-th restart, i.e., tj = cj + 1 ≤ ℓ with cj being the
number of the smallest Ritz values that have converged to satisfy a required solution accuracy.

Note that the convergence rate of the target Ritz pair can be improved by keeping the Ritz
pairs around the target even though they have not yet been converged. This is because the kept
Ritz vectors approximately deflate the spectrum of the eigenvectors around the target and increase
the separation between them. Thus, instead of (21), we enforce the following constraints on the
indices ℓ and u for the definition of γe in (22):

cj ≤ ℓ and u ≤ mj + 1. (23)

In addition, since interior Ritz values are slow to converge, we enforce a minimum gap gj between
the indices ℓ and u to avoid keeping the interior Ritz values that have not converged at all:

gj = ν · (mj − cj), (24)

where mj − cj is the maximum possible gap, and ν is a relaxation factor, 0 ≤ ν ≤ 1. In the case
of ν = 1, only the smallest convergent Ritz pairs are kept, namely ℓ = cj and u = mj + 1. As the
value of ν decreases, more Ritz pairs are allowed to be kept. The effect of ν on the performance
of ν–TRLan will be discussed in Section 3.5.

Combining the constraints (23) and (24), we arrive at the following ranges of the indices ℓ
and u:

cj ≤ ℓ ≤ mj + 1 − gj and ℓ + gj ≤ u ≤ mj + 1. (25)

Once both ℓ and u are determined, the valid range of the next projection subspace dimension m
is

k < m ≤ mmax, (26)

where k is given by (8) and mmax is the prescribed maximum basis size.
Since Ritz pairs that have not yet been converged are now used to define the effective gap

ratio γe, the factor (18) does not accurately measure the reduction of the target residual norm.
In particular, the cosh function in (18) grows quickly with respect to γe, and the error in γe to
approximate γ can be greatly amplified. Alternatively, it was found in [22] that the following
formula accurately measures the progress of the target Ritz pair after the (m − k) iterations:

ωj ≈ 2(m − k)
√

γe. (27)

Note that for a typical eigenvalue problem with 0 < γ ≪ 1, the Chebyshev polynomial Cm−k(1 +
2γe) can be approximated by 1

2(1 + 2(m − k)
√

γe) [5, Lemma 5.7].
Thus, for a practical implementation of (19), we use the following objective function:

f(ℓ, u, m) =
(m − k)

√
γe

n((m − k)(m + k − 1) + mk)
, (28)

where the triplet (ℓ, u, m) is subject to the constraints (25) and (26), and the effective gap ration γe

is given by (22).
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Figure 4: Effect of relaxation factor ν on performance of ν–TRLan.

The original implementation of TRLan [24, 23] selects the indices ℓj+1 and uj+1 that maximize
the reduction factor (27), while the dimension of the projection subspace is fixed, i.e., mj+1 =
mmax for all j. Hence, the objective function is given by

g(ℓ, u) = (mmax − k)
√

γe, (29)

where (ℓ, u) is subject to the constraint (25). A similar restart scheme is used for the thick-
restarted Davidson method [18].

We remark that an adaptive scheme to adjust the dimension of the projection subspace of
the Davidson method was previously studied [3]. In their scheme, the iteration is restarted as
soon as the product of the computational cost of a single iteration and the local convergence
rate of the residual norm (i.e., ‖rj‖2/‖rj−1‖2, where ‖rj‖2 is the residual norm at the end of the
jth iteration) grows significantly. Our adaptive scheme, on the other hand, attempts to optimize
the performance over the proceeding restart-loop based on careful examination of the solution
convergence rate.

3.5 Heuristic for the relaxation factor ν

The effectiveness of both objective functions (28) and (29) depends on the relaxation factor ν
of (24). To demonstrate the effects of ν, Figure 4 shows the CPU time for ν–TRLan using
mmax = 500 and different ν to compute the smallest nd = 100 eigenvalues of two 10, 000× 10, 000
diagonal matrices, A2 = diag(1, 22, 32, . . . , 100002) and A3 = diag(1, 23, 33, . . . , 100003). The CPU
times are normalized by that of ν = 0.1. The figure clearly indicates the strong impact of ν on
the performance of ν–TRLan. It also shows that optimal performance of ν–TRLan is achieved
with different ν for A2 and A3; i.e., optimal performance is achieved with ν = 0.9 for A2 and with
ν = 0.7 for A3. In the original TRLan implementation [23, 24], the relaxation factor is fixed at
ν = 0.4.

To eliminate the need to search for an optimal ν for each problem at hand, we design a heuristic
to dynamically adjust ν based on the observed solution convergence rate. Specifically, we select

the relaxation factor νj at the j-th restart by considering the factor
‖rj‖2

‖rj−1‖2
of the (j−1)-th target

Ritz pair (θtj−1
, xtj−1

), where ‖rj‖2 is the residual norm of the target at the j-th restart. Then,
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we define an observed gap ratio γo over the j-th restart-loop as

γo =




arccosh

‖rj−1‖2

‖rj‖2

2(mj − kj)




2

. (30)

Recall that the factor ρj of the target Ritz pair was previously defined by (17) using the gap
ratio γ. At the same time, we found that a desired gap ratio γd which achieves good performance
of ν–TRLan is one which ensures that the target Ritz pair converges within two restart-loops:

τ‖A‖2

‖rj‖2
=

1

cosh(4m̄
√

γd)
,

where τ is a required accuracy for the relative residual norm of the convergent Ritz pairs, ‖A‖2 is
approximated by the largest absolute value of all the convergent Ritz values, and m̄ is the average
projection subspace dimension of the previous restart-loops. Thus, γd is computed as

γd =




arccosh

‖rj−1‖2

τ‖A‖2

4m̄




2

. (31)

When the observed gap ratio γo is smaller than the desired gap ratio γd, it indicates a slow
convergence. In this case, we attempt to improve the solution convergence for the next restart-
loop by selecting a smaller value of νj and allowing more Ritz vectors to be kept. Otherwise,
a larger value of νj is selected to reduce the computational cost. To automatically adjust the
relaxation factor νj according to the observed gap ratio, we introduce the following heuristic:

νj = νℓ + (1 − νℓ)

(
2

π

)
arctan

γo

γd
, (32)

where νℓ is a lower-bound on νj , 0 ≤ νℓ ≤ 1. In Figure 4, ν–TRLan was most effective when ν
was between 0.7 and 1.0. Hence, we set the default lower-bound to be νℓ = 0.7.

We note that when the target residual norm did not decrease after the mj − kj iterations,
namely ‖rj−1‖2 ≥ ‖rj‖2, the observed gap ratio γo of (30) is not defined. In this case, we set to
the default value νj = 0.7. We present the numerical results of the heuristic (32) in Section 4.

4 Numerical experiments

In this section, we present numerical results to demonstrate the effectiveness of ν–TRLan. First, to
compare the performance of ν–TRLan and TRLan, we consider two synthetic diagonal matrices,

1. A1(n) = diag(1, 2, . . . , n), and

2. A2(n) = diag(12, 22, . . . , n2).

These matrices provide good test problems due to the following properties:

1. The matrices have known eigenvalues and eigenvectors.

2. The condition numbers of the matrices can be easily controlled by adjusting the matrix
sizes n.
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Figure 5: Projection subspace dimension mj selected by ν–TRLan at the j-th restart.

3. The matrices are accessed only through the matrix-vector multiplications. Thus, aside from
the cost of the matrix-vector multiplication, the performance of TRLan and ν–TRLan to
compute eigenpairs of the test matrix is identical to that to compute the eigenpairs of any
Hermitian matrix having the same eigenvalue distribution.

For our numerical experiments, we use the test matrices A1(n) and A2(n) of dimension n = 10, 000.
The initial vector to the Lanczos iteration is a vector with all of its entries set to be one. The
iteration is continued until the following relative accuracy is achieved: ‖Ax − θx‖2 ≤ τ‖A‖2,
where τ =

√
ǫ = 2−26 ≈ 1.4901 × 10−8, and ‖A‖2 is approximated by the largest absolute value

of the computed Ritz values. The numerical experiments were conducted on an HP Itanium2
workstation with a 1.5GHz CPU and 2GB of RAM. The codes were complied with the icc

compiler from Intel Math Kernel Library and with the optimization flag -O3.
We first examine the projection subspace dimension mj that is dynamically selected by ν–

TRLan at the j-th restart. Figure 5 shows the selected mj for computing the smallest nd = 100
eigenvalues of A1 and A2. The maximum basis size is set to be mmax = 1, 000. Our implementation
initially sets m1 = min(2nd, mmax), and enforces ℓj+1 ≥ nd and uj+1 ≤ mj −1. The figure clearly
shows that the subspace dimension is adjusted at every restart.

Correspondingly, Table 1 compares the total CPU times required to solve the above eigenvalue
problems with TRLan and ν–TRLan. The basis size for TRLan is fixed to be its default value,
which is twice the number of desired eigenpairs, i.e., mmax = 2nd = 200 [23]. This default basis
size coincidently achieves optimal performance of TRLan for these eigenvalue problems. The
numerical results demonstrate that ν–TRLan can even improve optimal performance of TRLan.

A1 A2

TRLan 13.75 101.03
ν–TRLan 12.53 103.36

Speedup 1.10 0.98

Table 1: CPU time in second to compute 100 eigenpairs with mmax = 1, 000.

Next, we examine the performance of TRLan and ν–TRLan with respect to different maximum
basis sizes mmax. Figure 6 compares the total CPU times required by TRLan and ν–TRLan to
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Figure 6: Performance comparison of TRLan and ν–TRLan with different mmax.

compute the smallest nd = 100 eigenpairs of the matrices A1 and A2 using different mmax. TRLan
always computes mmax basis vectors before restart. The figure shows that the performance of
ν–TRLan is largely independent of mmax, while the performance of TRLan strongly depends on
it. As a result, ν–TRLan significantly improves the performance of TRLan, especially when a
large mmax is used. The speedups gained by ν–TRLan are up to 3.42.

Next, we examine the CPU times spent in reorthogonalization and restart,6 which are used
for designing the total expected cost (13). Table 2 shows the CPU times required to compute
the nd = 100 smallest eigenvalues of A2. Since the test matrix used here is a diagonal matrix,
reorthogonalization and restart indeed dominate the overall CPU time, verifying that (13) is a
good measure of the total cost. We note that as long as the cost of the matrix-vector multiplication
is proportional to the matrix dimension n, the solution of the optimization problem (28) is not
affected even if the cost of the multiplication is included in the total cost (13).

TRLan ν–TRLan

Basis size mmax 200 400 1, 000 200 400 1, 000

Reorth. 57.95 101.15 242.99 55.75 64.18 64.32
Restart 40.13 39.04 44.17 39.18 38.28 38.52
Total 100.03 141.75 291.51 96.72 104.01 104.36

Table 2: CPU time in second to compute 100 eigenpairs of A2.

Finally, to study the performance of ν–TRLan to compute a smaller number of eigenpairs,
we compute the smallest nd = 20 eigenvalues of the test matrix A2. For this eigenvalue problem,
TRLan required about 356 seconds using the default basis size of mmax = 2nd = 40, but the
solution time can be reduced by using a larger basis size and improving the convergence rate.
Optimal performance of both TRLan and ν–TRLan is achieved around mmax = 150. Table 3
shows the CPU times to solve this eigenvalue problem using the basis size around this optimal
basis size. The table also shows the speedup that is gained by ν–TRLan over TRLan for the
prescribed mmax. We see that the performance of ν–TRLan stays at optimal for mmax ≥ 150. As

6The time to restart is dominated by that to compute the Ritz vectors.
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Figure 7: Performance data of ν–TRLan, the convergence time with different mmax (Left) and
projection subspace dimension mj with mmax = 1, 000 (Right), to compute 100 eigenpairs of A3.

a result, the performance advantage of ν–TRLan is maintained for computing the smaller number
of eigenpairs (i.e., ν–TRLan with mmax = 500 achieves the speedup of 5.15 over TRLan with the
default mmax = 40).

Basis size mmax 100 150 200 250 500

Reorth. 44.77 38.55 38.84 39.05 38.68
Restart 30.54 26.93 27.12 27.09 27.11
Total 78.86 68.67 69.22 69.27 69.06

Speedup 0.87 0.96 1.05 1.29 2.31

Table 3: CPU time in second to compute 20 eigenpairs of A2 using ν–TRLan.

Now, to examine the performance of ν–TRLan for solving ill-conditioned eigenvalue problems,
we consider one additional synthetic matrix, A3(n) = diag(13, 23, . . ., n3). We compute the
smallest nd = 100 eigenpairs of A3(10, 000), which provides an extremely ill-conditioned problem.
Since ‖A3(10, 000)‖2 = 1012, the iteration is continued until the relative accuracy τ = 10−13 of
the residual norm is achieved.

For solving this eigenvalue problem with A3, TRLan required about 2, 079 seconds with the de-
fault basis size of mmax = 200, but the convergence time can be improved by using a larger mmax.
The left plot of Figure 7 compares the total CPU times required by TRLan and ν–TRLan with
different mmax around the optimal basis size mmax = 500. The figure shows that the CPU
time required by ν–TRLan increases slightly as the maximum basis size mmax is increased from
the optimal basis size. However, the performance of ν–TRLan is still less dependent on mmax

than TRLan. As a result, ν–TRLan considerably improves the performance of TRLan (i.e., ν–
TRLan with mmax = 1000 achieves a speedup of 1.73 over TRLan using the default basis size
of mmax = 200). The right plot of Figure 7 shows how the projection subspace dimension mj is
adjusted by ν–TRLan at the j-th restart, where the maximum basis size is set to be mmax = 1, 000.

We now study the impact of the heuristic (32) to dynamically adjust the relaxation factor νj

on the performance of TRLan and ν–TRLan. Figure 8 shows the value of νj selected by (32) at
every restart of ν–TRLan to compute the smallest nd = 100 eigenvalues of the matrices A2 and A3.
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Figure 8: Relaxation factor νj selected by the heuristic (32) at the j-th restart.

200 300 400 500 600 700 800 900 1000
0

100

200

300

400

500

600

700

m
max

C
on

ve
rg

en
ce

 ti
m

e 
(s

)

TRLan on A
2
(10,000)

ν=0.4
ν=0.9
heuristic

200 300 400 500 600 700 800 900 1000
0

100

200

300

400

500

600

700

m
max

C
on

ve
rg

en
ce

 ti
m

e 
(s

)

ν−TRLan on A
2
(10,000)

ν=0.4
ν=0.9
heuristic

Figure 9: Performance of the heuristic (32) for computing 100 eigenpairs of A2.

The maximum basis size is set to be mmax = 1, 000. The figure clearly shows that the value of νj

is adjusted at every restart. Furthermore, smaller values of νj are used for ill-conditioned A3 to
improve the solution convergence.

Figure 9 examines the performance of (32) by showing the CPU times required to compute
the smallest nd = 100 eigenvalues of the test matrix A2 using (32) and different maximum basis
size mmax. It also compares the CPU times with those required when a static relaxation factor
is used, νj = ν for all j. We show the performance with ν = 0.4, which is the default value used
in the original implementation of TRLan [23, 24], and with ν = 0.9, which is the optimal for this
problem. The figure clearly indicates that the performance of both TRLan and TRLanν strongly
depends on the static parameter ν. The CPU time with the heuristic (32) is increased from that
with the optimal ν = 0.9 by small factors of less than 1.15 and 1.10 for TRLan and ν–TRLan,
respectively. We note that for the small factor of ν = 0.4, ν–TRLan keeps large numbers of
unconvergent Ritz pairs at restart, which lead to unnecessary large projection subspaces. Hence,
the performance of ν–TRLan is close to that of TRLan.
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Figure 10: Performance of the heuristic (32) for computing 100 eigenpairs of A3.

In Figure 10, we show the CPU time required to compute the smallest nd = 100 eigenvalues
of the test matrix A3 using the heuristic (32) and different values of mmax, and compare it with
the CPU time using a static νj = 0.4, and also with νj = 0.6. We note that νj = 0.4 is the default
value used in the original TRLan implementation, and νj = 0.6 achieved optimal performance
for A3 in Fig 4. The figure shows that the CPU time with (32) is about the same as that with
optimal νj = 0.6 for both TRLan and ν–TRLan. These numerical results indicate that the
heuristic (32) automatically obtains a near-optimal performance of TRLan and ν–TRLan, and
frees users from searching for an appropriate ν for each problem.

As our last example, we demonstrate the effectiveness of ν–TRLan in a real application by
presenting numerical results of Parallel Energy Scan (PESCAN) code, which is used to calculate
the electronic structures for semiconductor quantum dots [2, 20] and other applications [9, 14].
Specifically, we replace the existing eigensolver in PESCAN, which is based on the Preconditioned
Conjugate Gradient (PCG) method [6, 12], with ν–TRLan. PESCAN implements a powerful
preconditioner for PCG by solving the kinetic energy portion of the Hamiltonian operator [21].
This preconditioner significantly improves the PCG convergence rate, and PCG is the state-of-
the-art method for this application.

The eigenvalues of a Hermitian matrix H from PESCAN fall into two distinct groups separated
by a large band gap between them; the group of smaller eigenvalues is known as the valence band,
while the group of larger eigenvalues is called the conduction band. Typically, the eigenvalues of
interests are those near the band gap, and they are used to evaluate the electrical and optical
properties of quantum dot systems [9, 14]. The largest eigenvalues in the valence band are referred
to as the Valence Band Maximum (VBM) while the smallest eigenvalues in the conduction band
are known as the Conduction Band Minimum (CBM). To compare the performance of PCG and
ν–TRLan, we use the folded spectrum method to compute a few eigenpairs in VBM or CBM
by computing the smallest eigenvalues of the matrix A = (H − λrefI)2 with a known reference
value λref .

Table 4 shows the CPU times required to compute different numbers nd of eigenpairs in
VBM and CBM for the quantum dot system consisting of 534 Cadmium atoms and 527 Selenium
atoms.7 The numerical performance data were collected on an IBM SP RS/6000 system at

7In some test cases, additional 5 eigenpairs are computed with ν–TRLan to match the eigenvalues computed
with those from PCG.
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the National Energy Research Scientific Computing Center (NERSC) using one node with 16
processors. The computation uses 141, 625 planwave bases, which results in a Hermitian matrix H
of dimension n = 141, 625. ν–TRLan uses the heuristic (32) to select νj , and the maximum basis
size is set to be mmax = 1, 000. In the table, speedup is that gained by ν–TRLan over PCG. We
see that ν–TRLan performs significantly better than PCG for computing 30 or more eigenpairs.

VBM CBM

nd 10 30 100 10 30 100

PCG 987 3, 679 9, 892 311 2, 026 > 18, 000
ν–TRLan 1, 629 3, 230 7, 441 790 1, 459 5, 343

Speedup 0.61 1.17 1.33 0.40 1.39 −−

Table 4: CPU time in second to compute eigenpairs of Cd534Se527 using PCG and ν–TRLan.

In Table 5, we also show the CPU times required to compute 30 eigenvalues in VBM of two
other Cadmium Selenium quantum dots. The dimension of the Hermitian matrix is denoted by n.
We see that the relative advantage of ν–TRLan is maintained as the matrix size changes.

n PCG ν–TRLan Speedup

Cd83Se81 34,143 459 272 1.69

Cd232Se235 75,645 1, 040 971 1.07

Table 5: CPU time in second to solve eigenvalue problems for PESCAN using PCG and ν–TRLan.

5 Conclusion

The original implementation of the Thick-Restart Lanczos (TRLan) method computes a fixed
number of basis vectors before restarting the iteration. This requires users to carefully select
an appropriate basis size for each problem. In order to free the users from this difficult task of
selecting an appropriate basis size, we proposed an adaptive scheme (ν–TRLan) to dynamically
determine the subspace dimension, which balances the expected computational cost and solution
convergence rate, at every restart. An open source software package that implements both TRLan
and ν–TRLan in C to solve Hermitian eigenvalue problems is available in the public domain.

Numerical results of synthetic problems have shown that ν–TRLan can not only automate the
selection of the subspace dimension, but also improve the performance of TRLan that uses an
optimal fixed basis size. To demonstrate the effectiveness of ν–TRLan in a real application, we
applied it to the electronic structure calculations of quantum dots: namely, we replaced the state-
of-the-art eigensolver in Parallel Energy Scan (PESCAN), which is based on the Preconditioned
Conjugate Gradient (PCG) method, with ν–TRLan. We have demonstrated that when computing
more than 30 eigenpairs, ν–TRLan performs significantly better than PCG.

Even though we have focused on TRLan in this paper, other subspace methods such as
ARPACK [1, 8] and PRIMME [16, 17] also require a user to select an appropriate basis size
for each problem. Our adaptive projection subspace dimension scheme can be applied to such
subspace methods. In particular, the convergence analysis in Section 3.2 is directly applicable to
ARPACK.
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