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Individual differences in pain sensitivity are associated with 
cognitive network functional connectivity following one night of 
experimental sleep disruption

Janelle E. Letzen1, Bethany Remeniuk1, Michael T. Smith1, Michael R. Irwin2, Patrick H. 
Finan1,†, David A. Seminowicz3,†

1Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of 
Medicine, Baltimore, Maryland 2Cousins Center for Psychoneuroimmunology, UCLA Semel 
Institute for Neuroscience and Human Behavior, Los Angeles, California 3Department of Neural 
and Pain Sciences, School of Dentistry, and Center to Advance Chronic Pain Research, 
University of Maryland Baltimore, Baltimore, Maryland

Abstract

Previous work suggests that sleep disruption can contribute to poor pain modulation. Here, we 

used experimental sleep disruption to examine the relationship between sleep disruption-induced 

pain sensitivity and functional connectivity (FC) of cognitive networks contributing to pain 

modulation. Nineteen healthy individuals underwent two counterbalanced experimental sleep 

conditions for one night each: uninterrupted sleep versus sleep disruption. Following each 

condition, participants completed functional MRI including a simple motor task and a noxious 

thermal stimulation task. Pain ratings and stimulus temperatures from the latter task were 

combined to calculate a pain sensitivity change score following sleep disruption. This change 

score was used as a predictor of simple motor task FC changes using bilateral executive control 

networks (RECN, LECN) and the default mode network (DMN) masks as seed regions of interest 

(ROIs). Increased pain sensitivity after sleep disruption was positively associated with increased 

RECN FC to ROIs within the DMN and LECN (F(4,14) = 25.28, pFDR = 0.05). However, this pain 

sensitivity change score did not predict FC changes using LECN and DMN masks as seeds (pFDR 
> 0.05). Given that only RECN FC was associated with sleep loss-induced hyperalgesia, findings 

suggest that cognitive networks only partially contribute to the sleep-pain dyad.
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1 | INTRODUCTION

Evidence consistently shows that sleep disturbance leads to a variety of neurobiological and 

behavioral adaptations (Bosch et al., 2013; Short & Banks, 2014; Verweij et al., 2014). Even 

one night of total sleep deprivation is associated with brain changes, especially in neural 

networks underlying cognitive control, affect, and memory (Krause et al., 2017). However, 

these neurobiological differences are not always linked with detrimental behavioral 

responses. Some individuals actually benefit from acute sleep disturbance (Chuah, 

Venkatraman, Dinges, & Chee, 2006; Sletten, Segal, Flynn-Evans, Lockley, & Rajaratnam, 

2015), begging the question: what mechanisms drive diverging responses to various types of 

sleep loss?

Among aberrant sequelae associated with sleep loss, maladaptive changes in pain perception 

represent one of the largest public health concerns. First, emerging evidence suggests that 

chronic sleep loss predicts new cases of chronic pain and exacerbations of existing pain 

symptoms (see Finan, Goodin, & Smith, 2013 for a review). Second, there is a high 

prevalence and rate of comorbidity between chronic pain and chronic sleep disturbance 

(Alsaadi et al., 2014; Karaman et al., 2014; Koffel et al., 2016; Tang, Wright, & Salkovskis, 

2007). There are many protocols to experimentally alter sleep in order to explore 

mechanisms of the sleep-pain dyad, such as total sleep deprivation (i.e., preventing 

individuals from sleeping at all through >24-hr period), sleep restriction (i.e., limiting sleep 

under 8 hr), and forced awakenings (i.e., interrupting sleep at various intervals throughout 

the night). Because chronic pain patients tend to experience difficulty staying asleep—

characterized by multiple night time awakenings (i.e., sleep maintenance insomnia)—the 

forced awakenings paradigm is a particularly relevant tool for understanding the relationship 

between sleep disruption and pain sensitivity (Rosseland, Pallesen, Nordhus, Matre, & 

Blågestad, 2018).

Pain itself is a complex experience that is influenced by sensory, affective, and cognitive 

processes (Apkarian, Bushnell, Treede, & Zubieta, 2005; Bushnell, Čeko, & Low, 2013; 

Price, 2002). While various networks contribute to this perception, brain regions associated 

with cognitive control are critical for our ability to modulate pain. Notably, cognitive control 

exerts top-down influence over sensory and affective pain components (Seminowicz & 

Ceko, 2015). For this reason, the present study focused on the relationship between sleep 

disruption-induced hyperalgesia and function across networks associated with cognitive 

control.

Two key networks involved in cognitive pain control are the executive control network 

(ECN) and default mode network (DMN). The ECN predominately includes the dorsolateral 

prefrontal cortex (dlPFC) and posterior parietal areas, and the DMN is composed of the 

medial prefrontal cortex (mPFC), posterior cingulate cortex/precuneus, and inferior parietal 

lobules. Functionally, the ECN is linked with attention to relevant information and 
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suppression of irrelevant information (Awh, Vogel, & Oh, 2006; Gazzaley & Nobre, 2012; 

Smith et al., 2018), and the DMN is associated with self-referential thought and focus on 

internal milieu (Andrews-Hanna, Reidler, Sepulcre, Poulin, & Buckner, 2010; Lorenzi et al., 

2011; Raichle, 2015).

Previous work suggests that the functional dynamics of these networks can contribute to the 

detection and inhibition of nociceptive inputs. For example, greater ECN-mPFC functional 

connectivity (FC) was associated with better cognitive modulation of pain among healthy 

individuals (Kong et al., 2013). Commensurate with this finding, another study demonstrated 

greater ECN-DMN FC in individuals who learned and practiced cognitive modulation 

strategies over 21 days compared to participants who completed a treatment control (Kucyi, 

Salomons, & Davis, 2016). These results suggest that ECN-DMN FC is positively associated 

with pain modulation and is responsive to intervention.

Interactions between these networks are susceptible to experimental sleep manipulation. In 

this regard, greater ECN-DMN FC has been documented in healthy individuals after one 

night of experimental sleep deprivation (Bosch et al., 2013). Additional measures reflecting 

increased functional coupling among DMN and ECN nodes, such as a reduction in 

anticorrelation and loss of functional segregation, following sleep deprivation have also been 

reported (De Havas, Parimal, Soon, & Chee, 2012; Ben Simon, Lahav, Shamir, Hendler, & 

Maron-Katz, 2018). Per se, sleep deprivation is associated with the separate phenomena of 

hyperalgesia and greater ECN-DMN coupling; however, it is unclear how sleep disruption 

via forced awakenings might influence the relationship between ECN and DMN.

The present study used one night of forced awakenings to determine the effects on pain 

sensitivity and cognitive networks associated with pain modulation. The limited timeframe 

of the sleep manipulation used in this study may help to identify early brain responses to 

sleep disruption that contribute to sleep loss-related hyperalgesia. Based on the complex 

literature described above, we hypothesize that changes in ECN-DMN FC following sleep 

disruption will be associated with changes in pain sensitivity. However, given that previous 

studies suggest that the association between changes in ECN-DMN FC and pain sensitivity 

could be either positive or negative, the potential direction of this association remains 

unclear.

2 | METHODS

The present analyses were completed on data from an fMRI task that was part of a larger 

neuroimaging protocol used to examine the effects of one night of experimental sleep 

disruption via forced awakenings on the neural correlates of pain sensitivity and affective 

pain modulation in healthy individuals (Seminowicz et al., 2019). The primary data 

examined in the present study include (a) pain ratings and stimuli temperatures from a 

noxious thermal stimulation task (i.e., we did not use fMRI data from this task) and (b) a 

simple motor task (SMT) designed to elicit intrinsic network connectivity without the risk of 

participants falling asleep. Pain ratings and stimuli temperatures were computed in a change 

score (described below) and used as a predictor of individual differences in pain sensitivity 
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following sleep loss. More information about the task used to derive the pain ratings and 

stimuli temperatures is provided in Supporting Information.

The neuroimaging protocol was further nested within a larger study (R01DA032922) that 

included additional nights for each sleep conditions and separate daytime procedures 

conducted on the day following the MRI scan; these data are not examined for the present 

study. All procedures were approved by Institutional Review Boards (IRB) at Johns Hopkins 

University and University of Maryland, Baltimore in conformation to the ethical guidelines 

of the 1975 Declaration of Helsinki. All participants provided written informed consent to 

complete study procedures and were notified of their right to withdraw from study 

procedures at any time without penalty. Figure 1 demonstrates the methods used in the 

present study.

2.1 | Participants

SMT fMRI data were collected from 22 healthy individuals after uninterrupted and 

experimentally disrupted sleep. Participants were eligible if they met the following criteria: 

(a) met Research Diagnostic Criteria for Normal Sleepers, (b) scored <5 on the Pittsburgh 

Sleep Quality Index and <10 on the Epworth Sleepiness scale, (c) had average total sleep 

time between 6.5 and 8.5 hr/night and sleep efficiency >85% as reported on 2 weeks of sleep 

diaries and captured via actigraphy monitoring, (d) showed a stable sleep phase within 21:00 

and 10:00, (e) polysomnography-confirmed apnea-hypopnea index <10, (f) denied a lifetime 

history of pain persisting >6 months or acute pain as measured on the McGill Pain 

Questionnaire and baseline sleep diaries, (g) reported no significant medical or psychiatric 

morbidity within 6 months of study participation and obtained T-scores <64 on the Brief 

Symptom Inventory global scales, (h) no lifetime history of bipolar disorder, psychotic 

disorder, recurrent major depression, posttraumatic stress disorder, substance abuse, reported 

history of traumatic brain injury, or seizures, (i) reported no tobacco/nicotine use and low 

caffeine use (<2 cups per day), (j) had a BMI <35, and (k) no MRI contraindications.

The present analyses were completed on data from 19 individuals (14 women; mean age = 

23.95 years (SD = 4.17)) after two participants were excluded for incomplete fMRI data, and 

one individual was found to be an outlier with influential, extreme values for pain ratings. 

Seven participants identified as White Non-Hispanic, two individuals identified as White 

Hispanic, five participants identified as Black Non-Hispanic, one individual identified as 

Black Hispanic, two participants identified as mixed race, and one individual identified as 

Other Hispanic. Participant demographics and psychosocial function are listed in Table 1.

2.2 | Experimental design and statistical analyses

2.2.1 | Sleep monitoring and manipulation—Participants completed two nights of 

sleep monitoring at the Johns Hopkins Clinical Research Unit (CRU). Neuroimaging data 

analyzed for this study were collected following a night of 8-hr sleep opportunity 

(uninterrupted sleep, US) and following a night of sleep fragmentation via forced 

awakenings (FA). The order of these study visits was counterbalanced among participants to 

control for temporal confounds.

Letzen et al. Page 4

Hum Brain Mapp. Author manuscript; available in PMC 2020 February 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Uninterrupted sleep: For the US condition, participants were given the opportunity for 8 

hours of sleep at the CRU without experimental disruption.

Sleep disruption procedure: The present study used a previously described sleep disruption 

protocol (see Finan et al., 2017, for a complete description). We chose sleep disruption (i.e., 

FA) based on previous work suggesting that this type of paradigm results in greater 

impairment of endogenous pain modulation compared to sleep restriction (Smith, Edwards, 

Mccann, & Haythornthwaite, 2007).

Briefly, the night was divided into eight 1-hr intervals, with one randomly chosen interval in 

which no sleep was allowed. The remaining seven 1-hr intervals were further divided into 

20-min tertiles, so that one tertile per hour interval was randomly selected for a forced 

awakening. CRU staffs were responsible for waking up participants at these randomly 

chosen times and ensuring that participants remained awake throughout the interval. The 

maximum sleep allowed for the FA night was 280 min.

2.2.2 | MRI session—All structural and functional MRI scanning was completed at the 

University of Maryland, Baltimore Magnetic Resonance Research Center between 1 p.m. 

and 5 p.m. Data were acquired using a Siemens 3T Tim Trio scanner with a 32-channel head 

coil. Structural images were collected using a high-resolution T1-weighted MPRAGE 

anatomical scan with the following parameters: 240 slices, TR 2,300 ms, TE 2.98 ms, flip 

angle 9°, FOV 256 mm, matrix 256 × 256 mm, resolution 1.0 × 1.0 mm, slice thickness 1 

mm, no gap. Participants also completed 3 fMRI runs of an experimental pain task, during 

which a noxious thermal stimulus was applied to the left medial forearm (fully described in 

Seminowicz et al. (2019) and Supporting Information). Neuroimaging data from this task 

were not used in the present study, but pain ratings aggregated over 15 stimulation periods 

were used to derive the predictor variable for FC analyses. Please see Supporting 

Information for complete methods related to the noxious thermal stimulation task.

The present study aimed to examine changes in FC as they related to individual differences 

in pain sensitivity before and after sleep disruption. Due to concerns that participants might 

fall asleep in the scanner using a traditional resting-state task, we instead collected data 

using a 10-min SMT, which required participants to respond to the direction of a projected 

arrow (left or right). Arrows were sequentially displayed for 500 ms seconds at a time, with 

a total of 150 trials. Left and right arrows were shown in equal proportion. Interstimulus 

intervals were jittered and ranged from 1s to 4 s each. Task stimuli were programmed and 

run using Presentation (Neurobehavioral Systems, Berkeley, CA) on a desktop computer in 

the scanner suite. Participants used an angled mirror mounted on the MRI head coil to view 

task images via a translucent screen with back-project images. The following instructions 

were provided: During this time, we will help you stay awake by having you engage in a 
simple task that involves using your response box. You will look up and see a screen, and on 
the screen an arrow pointing either left or right will flash periodically. When the right facing 
arrow flashes, you should press 3 (the button farthest to the right). When the left facing 
arrow flashes you should press 1 (the button farthest to the left).
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Previous work has shown minimal FC differences between traditional resting-state tasks 

(i.e., acquired during a steady-state period of non-goal-directed activity) and simple motor 

tasks, such as the one we employed (Baliki, Geha, Apkarian, & Chialvo, 2008; Jurkiewicz, 

Crawley, & Mikulis, 2018). At each visit, the SMT scanning sequence included an 

interleaved T2*-weighted, echo planar imaging (EPI) sequence with the following 

parameters: spin-echo, 658 volumes/run, 66 slices, TR: 907 ms, TE: 30 ms, flip angle 52°, 

FOV 224 mm, matrix size 110 × 102 mm, resolution 2.0 × 2.0 mm, slice thickness 2.0 mm, 

multiband factor 6.

2.2.3 | Pain sensitivity change score—The present study aimed to examine changes 

in FC among cognitive networks as it related to sleep loss-induced hyperalgesia. In order to 

examine this aim, we computed a pain sensitivity change score as a predictor variable. For 

the parent study, participants underwent a quantitative sensory testing session before 

scanning at both study visits to derive participant-tailored temperatures for the fMRI noxious 

stimulation task. Temperatures rated between 5 and 8 out of 10 were selected. During fMRI 

scanning, these tailored temperatures were presented concomitant with music of neutral 

valence. Pain ratings were made following the delivery of each noxious thermal stimulus, 

which ended at the same time the music clip ended. The same procedure was employed at 

each study visit (see Supporting Information for additional details). Due to the aims of the 

parent study, music stimuli were paired with each noxious thermal stimulus. The parent 

study also overlaid positive-valence song clips on noxious thermal stimuli in separate 

blocks, but pain ratings associated with those blocks were not used in the present study 

because they were associated with pain inhibition (Seminowicz et al., 2019).

A pain sensitivity change score was calculated using pain ratings and tailored temperatures. 

Temperatures ranged from 40°C to 50°C, so we subtracted 40 from each temperature 

denominator to make the scales of pain ratings and temperatures equal (0–10). Our approach 

of subtracting 40 from temperature values was intended for scaling purposes only and does 

not assume an association between the temperature value and pain rating value.

Some individuals experienced changes in both temperature and pain ratings (e.g., lowered 

temperatures with higher pain ratings after FA sleep would indicate increased pain 

sensitivity). As such, we calculated a pain sensitivity change score using the following 

equation, with higher values indicating greater pain sensitivity following FA:

pain sensitivity change score = 1 − US pain rating ÷ US temperature‐40
FA pain rating ÷ FA temperature‐40

2.2.4 | Behavioral data analyses—Using SPSS 25 (IBM), we ran paired-samples t 
tests to examine condition-based differences in the following variables: total sleep time 

(TST), stage N1, stage N2, slow wave sleep (SWS), rapid eye movement sleep (REM), 

Stanford Sleepiness Scale (SSS), SMT percent accuracy, pain ratings collected during the 

noxious thermal stimulation task, and thermal stimuli temperatures used during the noxious 

thermal stimulation task. No transformations were applied to these data.
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2.2.5 | Neuroimaging data processing

Functional MRI data preprocessing: SMT data were preprocessed in SPM12 v6906. The 

preprocessing pipeline included realignment (motion correction), coregistration of the T1 

anatomical to the mean functional image, segmentation of the anatomical to six standard 

tissue probability maps in SPM12, normalization of functional images using forward 

deformation fields from anatomical segmentation, and spatial smoothing using a 6 mm full-

width at half maximum (FWHM) kernel. Data were visually inspected for quality control to 

determine motion artifact. Further, the Artifact Detection Tool (ART; www.nitrc.org/

projects/artifact_detect/) was also used to mark potentially confounding outliers in the SMT 

time series for exclusion (i.e., rotation >.02 rad from prior volume, or translation >.4 mm 

from the prior volume (Chai, Ofen, Gabrieli, & Whitfield-Gabrieli, 2014). No condition-

based differences in outlier detection (p = .4) or motion correction (p = .38) were identified.

We used the CONN toolbox (Whitfield-Gabrieli & Nieto-Castanon, 2012) to complete 

denoising procedures and FC analyses. Gray matter, white matter, and CSF masks were 

created via anatomical segmentation and were eroded by one voxel to minimize partial 

volume effects (Whitfield-Gabrieli & Nieto-Castanon, 2012). Physiological confounds, 

including respiratory and cardiac activity, were accounted for by using the white matter and 

CSF masks as nuisance regressors during denoising (Behzadi, Restom, Liau, & Liu, 2007). 

Denoising including scrubbing of excessive motion and outliers detected via ART and 

regression of white matter and CSF masks (% volumes removed: mean = 1.9%, range = 

0.53–5.34%). A stepwise, rather than simultaneous, regression approach was applied to 

maintain adequate degrees of freedom of the resting-state data (Patel & Bullmore, 2016). 

Data were bandpass filtered between .008 and .09 (Aurich, Alves Filho, Marques da Silva, & 

Franco, 2015).

Hybrid independent component analysis-seed-based functional connectivity: We 

conducted hybrid independent component analysis (ICA)-seed-based FC analyses on 

denoised fMRI data in the CONN toolbox. Previous work suggests that hybrid ICA-seed-

based FC analyses result in better reproducibility of fMRI results than either ICA or seed-

based analyses alone (Kelly et al., 2010). First, group ICA is a data-driven technique that 

identifies orthogonal sources of variance within the data (Calhoun, Adali, Pearlson, & Pekar, 

2001), yielding independent components (ICs). Each IC contains brain regions with activity 

co-occurring across a unique time course, thought to represent a neural network (Calhoun, 

Adalı, & Pekar, 2004).

Consistent with steps described by Calhoun et al. (Calhoun et al., 2001), denoised data first 

underwent participant- and condition-level BOLD signal concatenation. We estimated the 

optimum number of ICs within the GIFT toolbox using minimum description length 

criterion (Li, Adali, & Calhoun, 2007), yielding 20 potential ICs. Dimensionality reduction 

was then conducted at the group-level to identify these 20 dimensions/ICs. To estimate IC 

maps at the group-level, the fastICA algorithm was used. Group-level IC maps are then back 

reconstructed on individual-level data via GICA1 backprojection to create individual-level 

IC spatial maps that can be pooled for second-level GLM statistics; however, only the group-

level ICs were used to create seeds for subsequent analyses. Resultant group-level ICs were 
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sorted to freely available spatial templates of RECN, LECN, and the DMN (Shirer, Ryali, 

Rykhlevskaia, Menon, & Greicius, 2012). The IC with the strongest match to each template 

(based on the Dice coefficient) was converted into a binarized map used in subsequent seed-

based analyses (Table 2; Figure 2).

Binarized IC masks were added to the CONN toolbox as a priori regions of interest (ROIs). 

Further, the Power 264-region atlas was used to define 10 mm ROI spheres across the whole 

brain (Power et al., 2011). This whole-brain atlas describes subgraphs of functionally 

integrated nodes as defined by graph theory analyses on resting-state fMRI data, rather than 

structurally defined. First-level analyses were completed in CONN to extract time series data 

within each ROI and compute Fisher’s r-to-Z transformed bivariate correlations among these 

ROIs.

GLM analyses: Contrast images were entered into a second-level seed-to-ROI analysis to 

determine FC differences between US and FA across the sample. The pain sensitivity change 

score described above was inserted as a regressor of interest, and RECN, LECN, and DMN 

masks were defined as seeds. In total, there were six primary sets of GLM tests, including 

three seed-to-ROI tests (i.e., RECN, LECN, and DMN as seeds) and three tests examining 

associations among RECN, LECN, and DMN masks (i.e., RECN-LECN, LECN-DMN, 

RECN-DMN). ROIs in the seed-to-ROI analyses included 264 spheres from the Power 264 

atlas. A conservative analysis-level threshold across seeds was applied as a correction for 

multiple comparisons (pFDR < .05). We used a two-tailed test given the nature of our 

competing directional hypotheses.

2.2.6 | Data availability statement—We have shared the resultant ROI maps from the 

present study in neurovault.org (Gorgolewski et al., 2015), which is a public repository for 

neuroimaging statistical maps. Data are located at the following link: https://neurovault.org/

collections/ALMIXGCQ/

2.2.7 | Validation analyses—Given the small sample size, we attempted to replicate 

findings using a distinct dataset. These analyses were exploratory in nature and not part of 

the primary aim. However, the complex and unique experimental approach used in our study 

limited our ability to test replication in an experimentally matched dataset. Instead, we 

examined whether clinical pain ratings moderated the relationship between sleep quality 

(i.e., Pittsburgh Sleep Quality Inventory scores) and FC values that resulted from our 

primary analyses. This validation sample included 30 individuals with migraine who 

reported poor sleep quality (i.e., PSQI >5). Methods from the study associated with our 

validation sample are reported at the following link: https://clinicaltrials.gov/ct2/show/

NCT02133209.

3 | RESULTS

3.1 | Sleep manipulation check

To examine the efficacy of our sleep disruption manipulation we examined condition-based 

differences in several sleep parameters. As expected, there was a significant decrease in 

minutes of TST, stage N2, SWS, and REM sleep phases, and a significant increase in stage 
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N1 sleep. Participants reported significantly greater sleepiness during the FA compared to 

US condition. Table 3 provides means, SD values, and paired-samples t test results for these 

variables. Combined, these results indicate the efficacy of the experimental manipulation.

3.2 | Pain ratings, thermal stimuli temperatures, and SMT performance

Table 3 lists statistical information about condition-based differences in pain ratings, thermal 

stimuli temperatures, and SMT performance. Neither pain ratings nor thermal stimuli 

temperatures significantly differed between the US and FA conditions. On the SMT, 

participants’ accuracy in identifying arrow directions was better during US compared to FA 

(74.8% and 63.3% accuracy, respectively). The low accuracy scores were due to missed 

trials or incorrect responses.

3.3 | Left and right ECN and DMN functional connectivity

3.3.1 | RECN as a seed—Several ROIs from the Power atlas demonstrated significant 

FC changes with the RECN seed associated with pain sensitivity change scores (omnibus 

model: F(4,14) = 25.28, pFDR = .05; individual ROI statistics reported in Table 4; Figure 4). 

Specifically, there was a positive association between increased pain sensitivity and 

increased RECN FC to left dlPFC (part of the LECN), left medial and inferior frontal gyri 

(MFG, IFG, respectively; part of the DMN), and the right paracingulate gyrus (part of the 

DMN). There was also a positive association between increased pain sensitivity and 

decreased RECN FC to the right lateral occipital cortex (LOC; part of the DMN). Table 4 

provides additional information about these ROIs, and Table 5 provides descriptive statistics 

for FC values based on condition.

3.3.2 | Null results—Although the RECN seed demonstrated significant associations 

between six RECN-ROI pairs and pain sensitivity change scores, the additional five primary 

analyses did not pass our significance threshold corrected for multiple comparisons. 

Specifically, neither the LECN nor DMN seed demonstrated significant seed-to-ROI FC 

associations with pain sensitivity changes (pFDR > .05). Further, FC between ECN and 

DMN seeds did not show significant pairwise associations between FC and pain sensitivity 

change scores (pFDR: RECN-LECN = .06, RECN-DMN = .16, LECN-DMN = .63).

3.4 | Validation analyses

We tested whether clinical pain ratings moderated the relationship between PSQI scores and 

FC values from the six significant RECN-ROI pairs on a separate sample of migraine 

patients who reported poor sleep quality. Among these six ROIs, there was only one 

significant moderation effect of pain on the relationship between RECN-right paracingulate 

gyrus (F(1,29) = 6.4, p = .02). The other RECN-ROI moderation analyses were not significant 

(ps range = .37–.91). Because this was not an ideal validation sample, however, we do not 

further interpret results.

4 | DISCUSSION

The present study examined the association between cognitive network FC and individual 

differences in sleep loss-induced hyperalgesia following one night of sleep disruption. In a 
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healthy sample of normal sleepers, we used an experimental manipulation to produce 

multiple, prolonged FA during one night of sleep. We broadly hypothesized that neural 

systems associated with cognitive pain control would be affected by sleep loss and that these 

changes would be related to changes in pain sensitivity. Overall, we saw variability in the 

magnitude and direction of changes in participants’ pain sensitivity following one night of 

acute sleep loss, with an overall positive association between pain sensitivity changes and 

changes in RECN FC to several brain regions (i.e., dlPFC, MFG, IFG, paracingulate gyrus, 

and LOC). These results, however, are qualified by null findings across five additional a 

priori tests. Taken together, results only partially support our hypothesis of greater ECN-

DMN FC in individuals with higher pain sensitivity following sleep disruption, suggesting 

that cognitive network alterations only partially contribute to sleep loss-induced 

hyperalgesia.

4.1 | Pain sensitivity following forced awakenings

When combining pain ratings and thermal stimuli temperatures, some individuals displayed 

hyperalgesia while others showed decreased pain sensitivity. Even across pain ratings, which 

were obtained following tonic noxious thermal stimuli that were paired with neutral-

valenced music, there were no overall mean changes in pain sensitivity across the sample 

after a single night of FA sleep. Although these findings are somewhat inconsistent with 

previous research demonstrating hyperalgesia following sleep loss, it should be noted that 

most of those studies were conducted over multiple nights of accumulated sleep loss. In fact, 

this study’s parent project recently found that two nights of sleep disruption via FA-induced 

hyperalgesia in a larger sample (n = 79), reducing both heat pain threshold and cold pain 

tolerance. The present study’s design using one night of FA did not induce a ubiquitous 

hyperalgesic response; however, results cautiously show the early changes in RECN FC 

contributes to sleep disruption-induced hyperalgesia.

Further, differences in quantitative sensory testing across studies make comparisons across 

studies challenging. In the present study, we analyzed pain ratings obtained following the 

application of tonic noxious thermal stimuli that were paired with neutral-valenced music, as 

the parent study design did not include noxious thermal stimuli presented alone (see 

Seminowicz et al., 2019). As with many quantitative sensory testing studies, the uniqueness 

of our study design may limit the generalizability of the present results. We encourage future 

replication attempts. Cautiously, these results suggest varied responses to acute sleep loss in 

healthy adults, with some individuals evidencing greater pain vulnerability to sleep loss, 

which may have more significant clinical implications (Lautenbacher, Kundermann, & 

Krieg, 2006).

4.2 | RECN functional connectivity changes following forced awakenings

Our study specifically examined FC of bilateral ECNs and DMN to functionally defined 

ROIs throughout the brain (Power et al., 2011), and FC among bilateral ECN and DMN 

masks. The ECN is a group of brain regions associated with top-down modulation of 

sensory stimuli via goal-directed attentional amplification of relevant information, as well as 

goal-directed suppression of irrelevant information (Awh et al., 2006; Gazzaley & Nobre, 

2012; Smith et al., 2018). Importantly, the ECN is engaged during cognitive pain control in 
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individuals with and without chronic pain (Ceko et al., 2015; Ceko et al., 2015; Kong et al., 

2013; Rainville, 2002; Sevel, Letzen, Staud, & Robinson, 2016; Villemure & Bushnell, 

2002). The DMN, on the other hand, is a group of brain regions associated with self-

referential thought and focus on internal milieu (Andrews-Hanna et al., 2010; Lorenzi et al., 

2011; Raichle, 2015). Its activity is typically anticorrelated with ECN activity during 

cognitive tasks so that better suppression of the DMN is associated with better cognitive 

performance (Fox et al., 2005; Seminowicz & Davis, 2007; Smith, Sip, & Delgado, 2015). 

Because evidence links ECN and DMN interactions with cognitive control of sensory inputs 

that are susceptible to perturbations from sleep disruption, the combined previous findings 

were suggestive of ECN-DMN FC as a putative mechanism for sleep loss-induced 

hyperalgesia.

Among tested networks in the present study, however, changes in pain sensitivity were only 

associated with changes in RECN FC, and we did not observe significant changes in the 

association between pain sensitivity and ECN-DMN FC. Instead, there was a positive 

association between increased pain sensitivity following sleep deprivation and increased 

RECN FC to specific regions within the DMN and LECN as well as decreased RECN FC to 

a primary visual network region as a function of changes in pain sensitivity. These regions 

included the left dlPFC (LECN), left MFG/IFG and right paracingulate gyrus (DMN), and 

right LOC (primary visual network).

The dlPFC is among the brain regions commonly associated with pain vigilance, awareness, 

and attention (Lorenz, Minoshima, & Casey, 2003; Seminowicz et al., 2013; Seminowicz & 

Davis, 2007; Seminowicz & Moayedi, 2017; Valet et al., 2004). Findings from experimental 

sleep research suggest that individual differences in emotional responses following sleep 

loss are associated with changes in attention (Alfarra, Fins, Chayo, & Tartar, 2015). 

Attentional processes are well documented in the context of experimental pain so that pain 

vigilance contributes to exacerbated pain intensity and distraction is associated with lower 

pain report (for a review, see Wiech, Ploner, & Tracey, 2008). Individuals sleeping less than 

6.5 hr per night have also been found to have impaired ability to derive analgesic benefits 

from distraction techniques (playing video games) during an experimental pain task. Further, 

because stronger anticorrelation between DMN-ECN activity is associated with better 

segregation of internally and externally directed awareness (Buckner, 2008; Horovitz et al., 

2009; Larson-Prior et al., 2009), increased RECN-DMN FC—as identified in this study—

potentially suggests poorer ability to modulate attention. The combined findings of increased 

intrinsic, inter-hemispheric dlPFC FC and RECN FC to regions within the DMN might 

represent heightened attention to sensory stimuli, contributing to greater pain sensitivity.

It is not fully clear why we observed lateralization effects of significantly altered RECN, but 

not LECN, FC. Although debated, there is some evidence suggesting a greater propensity of 

right hemisphere activity in relation to pain processing (Coghill, Gilron, & Iadarola, 2001; Ji 

& Neugebauer, 2009; Symonds, Gordon, Bixby, & Mande, 2006). Additionally, a previous 

study examining resting-state attentional networks in individuals with insomnia found 

altered right, but not left, hemisphere FC (Li et al., 2018). Although it is possible that RECN 

FC is one mechanism contributing to sleep loss-induced hyperalgesia, the fact that this was 

the only seed to demonstrate significant findings across all six a priori tests tempers the 
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strength of inference. Future research is encouraged to measure whether other neural 

networks contribute to sleep loss-induced hyperalgesia.

4.3 | Limitations

The present results should be interpreted in the context of several important limitations. 

First, the small sample size used in the present study, coupled with the high number of a 

priori tests, weakens the strength of inference. Second, previous studies using the FA 

protocol over two nights showed it maximally induced hyperalgesia (Iacovides, George, 

Kamerman, & Baker, 2017) and diminished pain inhibition (Finan et al., 2017; Smith et al., 

2007). In the present study, we used a smaller time window (one night) than previously 

reported, which might account for our lack of robust hyperalgesia findings. Our previous 

data suggest that more than one night of FA sleep is beneficial for examining sleep-pain 

responses. Third, although the FA paradigm is thought to have face validity for the type of 

sleep disturbance profile commonly observed in patients with chronic pain (i.e., multiple 

prolonged awakenings with significant concomitant reduction in total sleep time) (Rosseland 

et al., 2018), it may not generalize fully to sleep disruption linked with chronic insomnia, 

which may be due to a variety of clinical factors that influence pain in addition to the 

multiple awakenings themselves. Our results should be extended to include patient 

populations that suffer from sleep loss. Fourth, as mentioned earlier, pain ratings were 

collected from a paradigm using neutral music overlay, so we could not rule out the possible 

influence of distraction on imaging findings. The primary findings should be replicated in a 

design that includes thermal stimuli presented alone. Fifth, we did not assess individuals’ 

cognitive strategies used to control pain. Given that there are individual differences in 

cognitive pain control strategies (Seminowicz, Mikulis, & Davis, 2004), future studies 

should measure how ECN-DMN FC patterns relate to strategy use following sleep 

disturbance.

5 | CONCLUSION

The present findings suggest that healthy individuals have idiographic pain responses to one 

night of sleep disruption and that these responses are partially associated with changes in 

RECN FC to regions within the LECN and DMN. Future prospective studies are needed to 

examine whether additional neural networks further contribute to the sleep-pain dyad and 

whether RECN FC changes might act as one mechanism potentially involved in the 

chronification of pain via sustained sleep disruption.
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FIGURE 1. 
This study is an analysis of a simple motor task collected during fMRI scanning as part of a 

larger protocol. Procedures used in the present study are outlined above. Participants 

underwent two nights of monitored sleep. One night included an 8-hr opportunity for 

uninterrupted sleep. The other night included a sleep disruption protocol, wherein 

participants were awakened during one randomly chosen 1-hr interval and seven 20-min 

tertiles for the remaining hours. Structural and functional MRI scanning was completed 

following each night. Structural MRI and simple motor task fMRI data were used to address 

the study’s aims
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FIGURE 2. 
Independent component analysis (ICA) was conducted on simple motor task fMRI data. 

Resultant independent components (ICs) were spatially sorted to standardized templates to 

identify bilateral executive control networks (blue and green) and the default mode network 

(red). Dice coefficients ranged from 0.26 to 0.39 for goodness of fit. These top fitting ICs 

were masked for use as a region of interest (ROI) in subsequent seed-to-ROI functional 

connectivity analyses
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FIGURE 3. 
Mean pain ratings and temperatures are shown in white (uninterrupted sleep, US) and gray 

(forced awakenings, FA) bars, whereas individual differences in these measures are shown in 

uniquely colored lines. The present study aimed to examine cognitive network FC changes 

as a function of sleep induced-hyperalgesia. To derive a measure of change in pain 

sensitivity following FA during the sleep fragmentation condition compared to US, we 

calculated a pain sensitivity change score accounting for changes in individually tailored 

stimulus temperatures used for a noxious thermal stimulation task and concomitant pain 

ratings. In the “Thermal Stimuli Temperature” panel, some lines overlap and are eclipsed for 

individuals who had identical changes in temperature
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FIGURE 4. 
To examine the relationship between change in pain sensitivity and change in cognitive 

network functional connectivity (FC) following forced awakenings, we conducted seed-to-

region of interest (ROI) FC analyses using the right executive control network (RECN, red), 

left executive control network (LECN), and default mode network (DMN) as a priori seeds 

and a pain sensitivity change score as a predictor of interest. We did not identify significant 

associations between the LECN and DMN as seeds for seed-to-ROI FC analyses. However, 

there was a positive association between pain sensitivity change scores and change in FC 

between the RECN seed and several ROIs located within the LECN, dDMN, and the 

primary visual network (shown as colored spheres; as defined by the Power 264 atlas). 

Numbers represent the associated ROI within the Power 264 atlas (see Table 4 for 

corresponding region names). Scatterplots demonstrate the relationship between FC values 

and pain sensitivity change scores
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TABLE 1

Participant demographic characteristics (n = 19)

Sex Male 6

Female 13

Age 24 (4.3)

Race Black 5

White 10

Asian 2

Other/mixed 2

Ethnicity Hispanic 5

Non-Hispanic 14

Education Current student 5

Some college 5

College graduate 1

Master’s degree 3

Doctoral degree 5

Note: Sex, race, ethnicity, and education are represented as frequencies. Age is represented as mean (SD).
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