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Abstract!

This paper investigates working memory failure in
menu driven Phone-Based Interaction (PBI). We have
used a computational model of Phone-Based Interaction
(PBI USER) to generate predictions about the impact of
three factors on WM failure: PBI features (i.e., menu
structure), individual differences (i.e., WM capacity) and
task characteristics (i.e., task format and number of
tasks). Our computational model is based on the theory
of WM proposed by Just and Carpenter (1992). This
theory stipulates that the storage and the processing of
information generate demands for WM resources. Our
empirical results provide strong evidence for the
importance of storage demands, and moderate evidence
for the importance of processing demands as predictors
of WM failure in PBI. In addition, our results provide
evidence for the importance of individual differences in
WM capacity as a predictor of WM failure in PBI.
Finally, our results indicate that, contrary to general
guidelines for the design of PBI, deep menu hierarchies
(no more than three options per menu) do not reduce
WM error rates in PBI.

Introduction

This paper investigates working memory (WM) failure
in Phone-Based Interaction (PBI). Phone-based
interfaces allow interaction between a human and a
computer by means of a touch-tone telephone. In these
interfaces users must compare their current goal against
the menu options presented by the interface. The
interaction with menu driven phone-based interfaces
places high demands on WM because the comparisons
of goals and menu options are performed in WM.

We have used a computational model of Phone-Based
Interaction (PBI USER) to generate predictions about
the impact of three factors on WM failure: PBI features
(i.e., menu structure), individual differences (i.e., WM
capacity) and task characteristics (i.e., task format and
number of tasks). Our computational model is based on
the theory of WM proposed by Just and Carpenter
(1992). This theory stipulates that the storage and the

1 This work was supported in part by grants from
Bellcore #1-41117 and #1-41239.
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processing of information generate demands for WM
resources. Our empirical results provide strong evidence
for the importance of storage demands, and moderate
evidence for the importance of processing demands as
predictors of WM failure in PBI. In addition, our
results provide evidence for the importance of individual
differences in WM capacity as a predictor of WM failure
in PBI.

Just and Carpenter (1992) have proposed a theory of
WM in which both storage and processing demands
determine WM load and the probability of WM failure.
Just and Carpenter (1992) describe their theory as "... a
computational theory in which both storage and
processing are fueled by the same commodity, namely
activation. In this framework, capacity can be expressed
as the maximum amount of activation available in
working memory to support either of the two
functions". PBI USER is built on top of the
instantiation of this theory (CAPS). PBI USER keeps
track of all the information encoded, maintained and
processed in WM during Phone-Based Interaction. In
this paper we only present the hypotheses generated by
PBI USER and omit most of its architectural details.

As previously mentioned, activation is the general
WM resource consumed by the processing and the
storage of information in WM. Activation is used in
CAPS: 1) for maintaining WM eclements so they are
not forgotten, and 2) for processing WM elements. A
key feature of the architecture is that the total amount of
activation available can be constrained to a preset
amount. Given this constraint, if the total processing
and storage demands for activation exceed the total
amount of activation available, then all activation is
scaled back so that the activation constraint is not
exceeded. This “"scaling back” has the effect of slowing
down processing (since less activation is spread per
cycle, more cycles will now be required to complete the
processing), and the effect of causing a form of
forgetting through displacement (since less activation is
now available for storage, some WM elements may lose
so much activation that they are effectively forgotten).
It is important to note that it is the combined demand of
storage and processing for a given task that determines
whether or not the activation constraint will be
exceeded. Therefore this combined demand determines
the probability of WM failure.


mailto:flOc@andrew.cmu.edu

Phone-Based Interaction

Phone-Based Interaction (PBI) has considerable
advantages as a task domain for building detailed
cognitive models of WM failure and for empirically
investigating error behavior due to WM limitations.
First, PBI is conceptually simple so knowledge of the
task is easy to acquire for the subjects and simple to
represent in the cognitive model. This allows us to
concentrate our effort on how information is encoded,
maintained, and processed by the user. Second, PBI
allows direct experimental manipulation of WM load.
For example, PBI users can be given tasks with or
without numeric modifiers (e.g., in a student
registration system: add class 123 vs. retrieve schedule)
or users can be asked to retain information about two
tasks and to perform them consecutively. Third, PBI
allows only two types of execution errors: a)
information loss errors, that is, users forget
information about the task (e.g., the code of the class to
be added, the name of the object for which information
is to be retrieved), and b) choice errors, that is, users
select the wrong alternative when presented with a set of
choice options.

In terms of the CAPS architecture the first type of
PBI execution error, information loss, involves the
storage of information in WM and is directly caused by
WM capacity being insufficient to satisfy the activation
requirements of the task. When storage and processing
requirements of the task exceed the available WM
capacity, CAPS will “scale back" the amount of
activation used for all storage and processing, resulting
in an increased probability of information being lost
from WM due to an insufficient amount of storage
activation. The second type of execution error, choice
error, involves the processing required to select an
alternative from a set of choices. A choice error can be
caused by: 1) WM capacity being insufficient to satisfy
the activation requirements of the task (again resulting
in a "scaling back” of all activation, leading to an
increased probability of choice error due to an
insufficient amount of processing activation), and/or 2)
lack of knowledge about how the goal (the task to be
accomplished) relates to the current set of choice
alternatives.

Computational Model

We have developed a computational model (PBI USER)
based on the CAPS architecture that simulates the
storage and processing of information in WM in Phone-
Based Interaction. PBI USER has two main
components: the Device Model and the User Model. The
Device Model, written in Lisp, simulates the behavior
of a specific telephone interface. The User Model is a
production system written in CAPS. Once the User
Model has encoded and stored (in WM) a goal task to be
achieved (e.g., "add class 123"), the Device Model
presents to the User Model the menu options of the
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simulated interface. As the options are presented, the
User Model encodes and stores the option information,
processes the available information to determine which
(if any) of the options are appropriate for achieving the
desired goal, and then chooses one option. After the
User Model makes a menu option choice, the Device
Model presents the ncw menu options, and the process
continues until the goal is achieved, or an information
loss or choice error occurs.

We have used PBI USER to generate a set of
hypotheses about the impact of three factors on WM
failure: menu structure, WM capacity and task
characteristics. Menu structure refers to the topology of
the menu hierarchy. We have tested PBI USER with
two menu structures (PBI-DEEP and PBI-BROAD) that
arc identical in functionality but differ in topology.
PBI-DEEP has a 3x3x3x3 structure, while PBI-BROAD
has a 9x9 structure. The use of menu structure allows
us to manipulate the processing requirements of the
PBI task, since the three options at the top level of
PBI-DEEP would be expected to be more ambiguous
and require more processing than the nine options at the
top level of PBI-BROAD.

WM capacity refers to the total activation available
for storage and processing. Through the activation
capacity constraint of the CAPS architecture, we can
directly model the impact of individual differences in
WM capacity on WM failure. We have also
investigated two task characteristics: task format and
number of tasks. These two characteristics address the
amount of information that must be stored during the
performance of a task. All tasks performed by PBI
USER were given in an action/object/modifier format;
for the task "add class 123", the action is "add", the
object is "class”, and the modifier is "123". We
manipulated task format by changing the type of
modifier found in the task. We have investigated three
types of modifiers: 1) absent (e.g., "retrieve transcript”),
2) natural language (e.g., "retrieve events community-
service"), and 3) numeric (e.g., “add class 123").
Number of tasks was manipulated by having PBI USER
perform either one single task or a pair of tasks.
Through these two task characteristics, we are able to
manipulate the storage requirements of PBI tasks.

Hypotheses
Information Loss Errors

The PBI USER architecture suggests that it is not the
number of options per menu that determines the
magnitude of WM load, but rather the amount of
processing and storage required to evaluate the
"goodness" of each individual option. Thus WM load
should rise, peak, and fall during each option
evaluation, and it is the height of each peak relative to
total WM capacity that determines the probability of
information loss. We began with the conservative
assumption that the processing and storage requirements



for each specific option evaluation were the same for
PBI-DEEP and PBI-BROAD. Thus, HI: We
expected menu structure would not have an
impact on information loss error rates.

Even if we make the further restriction that the
options in PBI-DEEP would require morc processing
than those of PBI-BROAD (due to the increased
ambiguity of the optiors from the 3x3x3x3 structure),
H1 would still hold, since we expected WM capacity to
be allocated first to storage requirements (since the user
knows exactly what task information — primarily the
task description — must be remembered), and the
remainder allocated to processing requirements (which
are not known ahead of time). Note that H1 is in
conflict with the widespread guideline that phone-based
interfaces should limit the maximum number of options
per menu to three (Gould & Boies, 1984).

Our model of phone-based interaction predicts WM
errors when the demands for activation (due to
processing and storage) exceed the activation constraint.
Since we know humans have different WM capacities
(Daneman & Carpenter, 1980), we should expect that
users with lower WM capacity should have a greater
probability of having their capacity exceeded by the
activation demands of phone-based interaction, therefore,
H2: We expected subjects with higher WM
capacity would have lower information loss
error rates than subjects with lower WM
capacity.

In terms of WM storage requirements for the three
levels of task format, we expected the absence of a
modifier to create the least demand for storage, followed
by natural language and numeric. We expected numeric
modifiers to require more storage capacity than natural
language modifiers because multiple symbols would be
required to represent a random series of digits, while the
natural language modifiers would be likely to be
represented by a single symbol. Thus, H3a: We
expected increased complexity of tasks
(operationalized by task format moving from
"none" to "natural language" to "numeric")
would increase information loss error rates.

The two levels of number of tasks provide us with a
straightforward means of manipulating the amount of
information that must be held in WM during task
performance: single tasks should require less storage
activation than pairs of tasks. Thus, H3b: We
expected increased complexity of tasks
(operationalized by number of tasks moving
from "single" to "pair") would increase
information loss error rates.

Choice Errors

Our model of phone-based interaction (PBI USER)
depicts menu option choice as the process of comparing
each menu option to a description of the current task,
and then selecting the most appropriate option. This
comparison process should be more error prone when
the menu options are ambiguous than when the options
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are specific (due to insufficient knowledge, not due to
WM constraints), and so we expected more choice errors
when menu options are ambiguous. In our study, the
menu structure PBI-DEEP must categorize all of the
functionality of the final 81 terminal nodes into 3
options at the top level menu, in contrast to the PBI-
BROAD structure which has 9 options at the same
level. Therefore, H4: We expected choice error
rates would be higher for PBI-DEEP than for
PBI-BROAD.

The PBI USER architecture tells us that WM errors
do not occur unless task demands for activation exceed
the activation constraint. We expected that the
processing requirements for choosing options in the
menu structure PBI-DEEP would be greater than for
PBI-BROAD. This increased processing requirement
would be the result of the additional semantic
processing required to disambiguate the option labels in
PBI-DEEP. This disambiguation process requires (in
PBI USER) the retrieval of information from long-term
memory that relates the ambiguous option label to the
current task. This additional processing load should
result in PBI-DEEP users being more likely than PBI-
BROAD users to exceed their WM capacities during the
selection of options. On the other hand, the more
specific options of PBI-BROAD should require less
processing for disambiguation than PBI-DEEP, and
therefore we expected a weaker effect between WM
capacity and choice error rates for the broad menu

structure. HS5: We expected an interaction
effect between WM capacity and menu
structure for choice error rates. For PBI-

DEEP, subjects with higher WM capacity
would have lower choice error rates than
subjects with lower WM capacity. We
expected this effect to be weaker for PBI-
BROAD.

Experiment And Results
The Experiment

The purpose of the experiment is to provide empirical
evidence for the impact of three factors on WM error
rates in a typical PBI task: 1) structure of the menu
hierarchy, 2) individual differences in WM capacity, and
3) WM demands induced by task characteristics.

Subjects. Eighty-seven students were recruited and
paid $10.00 to participate in the experiment. Subjects
were categorized by their dynamic WM capacity into
three groups, based on their scores on the reading span
test (Daneman & Carpenter, 1980): low span (20
subjects with scores of 2.0 2.5), medium span (45
subjects with scores of 3.0 - 3.5), and high span (22
subjects with scores of 4.0 - 6.0).

Materials and Apparatus. We have implemented
two simulated telephone-based student registration



systems (PBI-DEEP and PBI-BROAD) in the NeXT
workstation. The two systems are functionally
equivalent but differ in the topology of their menu
hierarchies. The systems allow the performance of a
variety of student registration tasks, such as
adding/dropping classes, retricving grades, paying fees,
etc.

Experimental Design. In addition to the two menu
structures (PBI-BROAD and PBI-DEEP), the other
experimental factors were WM capacity (low, medium,
and high) and task type (nine levels). The nine levels of
task type result from the crossing of task format (no
modifier, natural language modifier, numeric modifier)
with the three levels of task order (task order is derived
from number of tasks, and has the levels single task,
first task in a pair of tasks, and second task in a pair).
Thus, we have a 2x3x9 design, with menu structure and
WM capacity being between-subjects factors, and task
type being a within-subjects factor. A total of twenty-
seven tasks were presented to each subject, allowing for
three replications of each of the nine task types.

Procedure. Each subject was run in two separate
sessions. In the first session, the reading span test was
administered to each subject on an individual basis,
using the guidelines given in Daneman and Carpenter
(1980). Each span test took approximately ten minutes
to complete. The second session was the main session
of the experiment, in which the subjects interacted with
either PBI-DEEP or PBI-BROAD. For this session,
subjects received all options and feedback pertaining to
the PBI systems through headphones.  All subject
input was made by clicking on a representation of a 12-
key touch-tone telephone keypad on the screen. Task
descriptions were briefly presented on the computer
screen and then erased. After completing a series of
training tasks, each subject performed twenty-seven
tasks. Subjects were allowed to retrieve a single
parameter (a parameter is an action, an object or a
modifier) for each task if needed. All subject actions
(mouse clicks), along with timing data were captured by
the software. The time required to complete this
session was approximately fifty minutes.

Data Analysis. Our theoretical classification of
error types (information loss errors and choice errors)
was operationalized in the following manner.
Information loss was operationalized in two different
ways: 1) rehearsal errors, in which the subject forgot a
parameter of a task such as a modifier (e.g. add class
123) or the object of the task (add class 123), but
after making a request to review this parameter, the
subject completed the task successfully (subjects were
only allowed one such request per task), and 2) task
failure, in which the subject failed to complete the task
correctly (by failing to complete the task, or by
completing the wrong task). Task failure may occur
even after a request for a forgotten parameter has been
made. In our experimental setting, rehearsal errors were
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a recoverable type of information loss, since the subject
was able to complete the task correctly; on the other
hand, we consider lask failure to bc a more severe type
of information loss since we assume subjects have
forgotten more than one task parameter. However,
since both arc forms of information loss, we expected
hypotheses H1-H3b to hold for both rehearsal and task
failure errors. Choice errors werc operationalized as
navigational errors, in which the subject made at least
one incorrect option choice while traversing the menu
structure but completed the task correctly by
backtracking. We expected WM limitations to be an
important factor on the frequency of navigational errors,
and we expected hypotheses H4 and HS5 to hold for
navigational errors.

We have focused on developing statistical models and
analyses from first principles rather than relying on
traditional off-the-shelf statistical methods (Junker et
al,, 1993). These statistical models have been
developed to address many of the features of error
behavior research that make statistical analysis
challenging in our experiment, including categorical
dependent variables and the dependence of categorical
responses within each subject (due to the repeated-
measures design often used in error behavior research).
Overall effects of the experimental factors were assessed
by comparing nested models in GLIM using the
deviance statistic; a model deviance difference is
identical to both the log-likelihood ratio for the two

models and the statistic AG2 (Bishop, Fienberg and
Holland, 1975) often used to compare loglinear models.
This statistic is approximately chi-squared distributed
with degrees of freedom equal to the difference in the
number of parameters of the two models when the
smaller model is correct (See (Junker et al., 1993) for
more details). Some experimental effects were more
easily assessed by performing a one-sided test for the
hypothesis that the rate-predicted-to-be-high minus the
rate-predicted-to-be-low was indeed positive (for these
effects there was insufficient power, given the sample
size, to do more detailed comparisons). The relevant
test statistic can be calculated from the statistical model
using the delta method (Bishop, Fienberg, & Holland,
1975). In the results section, this test will be referred
to as a "high-low contrast".

Results

Overall Results. Table 1 shows the observed rates
for the five response categories. Menu structure had a
significant effect on overall response rates (GLIM
deviance of 52, on 4 degrees of freedom, p<.001).
These results suggest that the impact of menu structure
is mainly on navigational errors (17.23% for PBI-
DEEP, 7.74% for PBI-BROAD).

WM capacity was highly significant (368 on 8 d.f.,
p<.001). As an example of the impact of WM capacity
on response rates, the observed rates for the response
"no errors” were 71.21% for the high WM capacity



subjects, 65.93% for the medium, and 59.81% for the
low (combined for both menu structures).

Finally, task characteristics (task format and number
of tasks) were also significant (167 on 8 d.f. for task
format, p<.001; 200 on 8 d.f. for number of tasks,
p<.001). The impact of task format on response ratcs
is exemplified by the observed rates for the "no errors"”
response (combined for both menu structures): 73.18%
for no modifier, 67.94% for natural language modifier,
and 56.45% for numeric modifier. Number of tasks
resulted in the observed "no errors” rates of 79.44% for
single tasks, and 59.07% for pairs of tasks (again,
combined for both menu structures).

Table 1: Overall Response Rates by Menu

sponse PBI-DEEP PBI-BROAD
no errors 61.41% 70.20%
task failure 10.08% 10.19%
correct w/rehearsal 7.32% 8.25%
correct w/navigational 17.23% 7.74%
correct w/rehearsal & nav. 3.96% 3.62%

Task Failure. No significant differences were found
between the two menu structures in terms of overall
task failure error rates (0.3 on 2 d.f., ns), with PBI-
DEEP and PBI-BROAD having observed task failure
rates of 10.08% and 10.19%, respectively. Since task
failure is a form of information loss, this result
supports H1. The factors of WM level, task format,
and number of tasks all had significant effects on the
frequency of task failure rates for both menu structures
(providing support for hypotheses H2, H3a, and H3b).
For instance, the three levels of Working Memory
capacity (high, medium, and low) resulted in observed
task failure rates (combined for the two menu structures)
of 5.73%, 11.19%, and 12.59% (19 on 2 d.f., p<.001).
Task format (no modifier, natural language modifier,
numeric modifier) resulted in observed task failure rates
(combined for menu structure) of 5.49%, 10.73%, and
14.18% (32 on 2 d.f., p<.001). Finally, number of
tasks (single task, pair of tasks) resulted in observed
task failure rates (combined for menu structure) of
3.83% and 13.28%(56 on 2 d.f., p<.001).

In summary, all hypotheses concerning information
loss were supported by the results of task failure error
rates, that is, there is no difference between menu
structures, a significant difference among WM capacity
groups, and a significant impact of task characteristics.

Rehearsal Errors. No significant differences were
found between the two menu structures in terms of
rehearsal error rates (H1) , with PBI-DEEP and PBI-
BROAD having observed rehearsal error rates of 12.55%
and 13.21%, respectively (high-low contrast z=0.10,
ns). The three levels of WM capacity (high, medium,
and low) resulted in observed rehearsal error rates
(combined for both menu structures) of 11.61%,
12.23%, and 15.89%, but this effect did not reach
statistical significance (high-low contrast z=2.0, ns
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using the conservative Bonferroni correction for
multiple comparisons). The task complexity features of
task format and number of tasks both had significant
cffects on the frequency of rehearsal error rates (H3a and
H3b). Combining rehearsal error rates for the two
menu structures, task format (no modifier, natural
language modifier, numeric modifier) resulted in
observed rehearsal error rates of 4.19%, 12.16%, and
23.21% (high-low contrast z=10.0, p<.001). Number
of tasks (single task vs. pair of tasks) resulted in
observed error rates (combined for both menu structures)
of 3.05% and 18.34% (high-low contrast z=12.5,
p<.001).

In summary, with the exception of H2 all hypotheses
concerning information loss were supported by the
results of rehearsal error rates, that is, there is no
difference between menu structures, and a significant
impact of task characteristics. While the observed
rehearsal error rates did increase as WM capacity
decreased (as hypothesized in H2), this effect was not
statistically significant.

Navigational Errors. Menu structure was
significant in terms of navigational error rates (H4),
with observed error rates of 23.56% for PBI-DEEP, and
12.65% for PBI-BROAD (high-low contrast z=6.6,
p<.001). WM level did not have a significant effect on
the frequency of observed navigational error rates (see
Table 2) for PBI-DEEP (high-low contrast z=2.47, ns
using the Bonferroni correction), or for PBI-BROAD
(high-low contrast z=0.61, ns using the Bonferroni
correction).

In summary, hypothesis H4 was supported by the
results of navigational error rates, but hypothesis HS
was not supported. That is, there is a significant
difference between menu structures, and no significant
interaction between WM capacity and menu structure.

Table 2: Observed Navigational Error Rates
by WM and Menu Structure

Navigational Error Rates
WM PBI-DEEP PBI-BROAD
high 19.93% 12.68%
medium 2221% 11.81%
low 29.44% 14.52%
Discussion

Our hypotheses for information loss errors in PBI were
supported by the results for task failure and rehearsal
error rates, with the one exception of H2 (which
involves the impact of WM capacity on information
loss) for rehearsal errors. These results indicate that
information loss errors are more likely to occur as the
demand for WM storage increases, and that individual
differences in WM capacity have a substantial impact on



the ability of PBI users to maintain information in
WM. Our results strongly indicate that two radically
different menu structures (PBI-DEEP and PBI-BROAD)
had no impact on the probability of information loss.
Menu structure did not have an impact on severe (task
failure) or moderate (rehearsal error) information loss.
This supports our claim that the primary determinant of
information loss in PBI is not the number of options
per menu, but rather the complexity of the evaluation of
each individual option.

Hypothesis H2, which predicted an increase in
information loss error rates as WM level decreased, was
not supported by the results for rehearsal errors. While
observed rehearsal error rates did increase as WM level
decreased, this effect was not strong enough to reach
statistical significance. One explanation of this lack of
significance could be our relatively small sample size,
coupled with the conservative multiple comparison
correction we used, but we offer an additional
explanation. Consider the distribution of WM load over
all the tasks given in the experiment. Figure 1 presents
such a distribution, in which most of the tasks have
low to moderate WM load, and the proportion of tasks

decreases as WM load increases.
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Figure 1: Relationship of WM Capacity
Groups and WM Load to Task Frequency.

In Figure 1 two "bands” of WM capacity are
represented, one extending from “a” to “b” for the low
span subjects, and one extending from “c” to “d” for the
high span. These bands indicate the relationships
between WM capacity, WM load of tasks, and
information loss errors. For instance, the low span
subjects would generate 1) no information loss errors
for tasks with WM load less than "a", 2) rehearsal errors
for tasks with WM load between "a" and "b", and 3)
task failure errors for tasks with load greater than "b".
Similarly, high span subjects would generate 1) no
information loss errors for tasks with WM load less
than "c", 2) rehearsal errors for tasks with WM load
between "c" and "d", and 3) task failure errors for tasks
with WM load greater than "d". Notice that although
the area representing rehearsal errors for the high WM
capacity group is less than that for the low WM
capacity group, the difference is not great. However, if
we consider the area representing task failure for the low
capacity group (all tasks beyond "b"), we note that it is
much greater than the corresponding area for the high
capacity group (all tasks beyond "d"). Thus, although
the high capacity subjects do have lower error rates than
the low capacity subjects for both rehearsal and task
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failure errors, it is easier (o distinguish between the task
failure error rates. Therefore, while there was not a
significant effect of WM on rehcarsal error rates, we
believe that the true test of the importance of WM as a
predictor of information loss error rates is with the
impact of WM capacity on task failure rates. This
belief is supported by our empirical results, which show
a strong cffect of WM on task failure error rates.

While menu structure had little impact on
information loss, it was highly significant on choice
(navigational) error rates, confirming our claim that
menu structure should have an impact on processing
demands in WM, but not on storage demands.
Although we did not observe a significant interaction
between WM capacity and menu structure as predicted
by H5, choice (navigational) error rates for PBI-DEEP
did increase by nearly ten percentage points as WM
decreased from high to low, while choice error rates for
PBI-BROAD increased by less than three percentage
points in the same situation. Out inability to find a
significant effect for the interaction may have been due
to a lack of statistical power, or to an actual lack of an
effect. If the interaction effect does exist, then it
appears to be a weak effect, and may be due to strategic
reallocation of WM resources bctween storage and
processing, based on WM load incurred “on the fly”
during menu navigation. We are in the process of
refining the modeling of WM failure by accounting for
altermative resource allocation strategies in WM.
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