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FOREWQRD

The National Resource for Computation in Chemistry (NRCC) was
established as a Division of Lawrence Berkeley Laboratory (LBL) in
October 1977. The functions of the NRCC may be broadly categorized as
follows: (1) to make information on existing and developing computa-
tional methodologies available to all segments of the chemistry
commmity, (2) to make state-of-the-art computational facilities (both
hardware and software) accessible to the chemistry community, and
(3) to foster research and development of new computational methods
for application to chemical problems.

Workshops are one facet of the NRCC's program for both obtaining
and making available information on new developments in computationally
oriented subdisciplines of chemistry. The goal of this workshop was to
provide an introduction to the use of state-of-the-art computer codes
for the semi-empirical and ab initio computation of the electronic
structure and geometry of small and large molecules.

The workshop consisted of lectures on the theoretical foundations
of the codes, followed by laboratory sessions which utilized these codes.
The lectures, many of which were presented by the original developers of
the computational methods, provided the participants with a knowledge of
the strengths and weaknesses of the various theoretical methods. The
laboratories, which were conducted by NRCC and QCPE staff, provided a
unique "hands-on" experience for the participants. Through the use of
remote interactive terminals and a remote job entry station, they were
able to utilize all of the methods presented in the lectures in an

examination of chemically intevesting systems.




Forty-five participants from the academic, industrial, and govern-
mental sectors attended this workshop.

The material contained in these proceedings consists solely of the
partially edited lecture notes provided by the guest speakers. They are
reproduced here to convey the essence of the subject matter covered in
the lectures to those not in attendance.

The NRCC ic indebted to QCPE for helping to organize this workshop,
to the Indiana University Chemistry Department for making their facilities
available, to the Indianapolis office of the Control Data Corporaiion for
providing a remote job entry station, and to the Computer Science and
Electronics departments at Lawrence Berkeley Laboratory for providing
help and technical assistance.

We also thank Drs., Michel Dupuis and John J. Wendoloski of the NRCC
for their efforts in organizing this volume.

The National Resource for Computation in Chemistry is supported
in part by a grant from the National Science Foundation (Grant No.
CHE-7721305) and the Basic Energy Sciences Division of the U.S. Department
of Energy (Contract No. W-7405-ENG-48).

The Quantum Chemistry Program Exchange is a self-supporting
organization and is part of the Department of Chemistry of Indiana

University, Bloomington, Indiana.

William A. Lester, Jr.,
Director NRCC
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INTRODUCTION TO COMPUTATIONAL
QUANTUM CHEMISTRY

Lecture 1

by
Ernest R. Davidson

Department of Chemistry
University of Washington
Seattle, Washington



The Schrddinger equation (1926) for the stationary
states of a molecule

Hy = Ey

is intractable! Nevertheless, by 1931 a well defined set
of approximations had been outlined capable of giving
qualitative or quantitative information about the nature

of the chemical bond. These approximations are detailed

below.

BORN_ OPPENHEIMER

Hoy Uog (TR} = U(R) ¥, (z5R)

[K.E.y ¢+ UR)] wy(R) = E ¥y(R)

LINEAR VARIATION METHOD (Hyleraas, James-Coolidge, etc.)

bep = ECI 2

(epiPlvey

Mid W.R.T. C;
Caglvgy?

) arbitrary functions

I



INDEPENDENT PARTICLE MODEL

N
H = :L G(i)
l i=1
¢‘(1)a(1) ¢1(2)a(2) v ¢1(N)G(N)
1
Yy =
VET | ¢,(1)8(D
6, (a(1)
¢,(1)8(1)
= Slater determinant (Pau;iisﬁgggzion)
¢ = sum of products, each product has same E
G¢k = Ek ¢k
E o= ] ey

Useful for free electron gas model of solid.

HARTREE-FOCK (ATOMS)

G = G(p)

Self-consistent field defined SCF atomic orbitals.




CONFIGURATION-INTERACTION:

Literally perturbative interactions between atomic

configurations.

w1 . H - 2G(i} = perturbation

LCAQ-MO (TIGHT BINDING) APPROACH TO MOLECULES:

Linear variation method applied to

where x 1is coefficient and f = atomic orbital,

or STD ~ A
s.. = [f. f.dr
Co.l6le:) ) e 5
s __JL.F__E_ = 0 —
Ch.]¢. 0
1 1 =
Gy; St 6 £ dt
G i .= 0 11
I (Gpq = &5 Spa)¥gs atrp
1.€., §~i = elg).Si



This approach is inadequate whenever more than one
configuration is close in energy,

i.e., HZ

o, = (1sy + 1533/‘/2_(“—5)

) ¢,2(1) 4,a(2) .
vy = — = —_¢l¢l(GB'BU)
VI ey e,80) V2
Large R
'lsA(l) 1sp(2) + lsB(l) 1sA(2)
o 7z
lsA(l)lsA(Z) + 1sB(l)lsB(2)
vz
{ a(1)B(2) - s(1)a(2)
v
while
184lsp + 1Isplsy \ /45 - go
wexact vrf vri

NOTE: Independent Particle model (MO theory) is
intrinsically wrong at large bond lengths, i.e., at

small S,



VALENCE BOND MODEL

v o= 5¢{wA(1...NA) p(Na*1 ...NA+NB)...}
approaches correct asymptote (R » =), ¥y atomic w~avefunction

much more accurate than wMO but very difficult to compute.

Prob..
Spin Couplings;

cH, [C(sp’)'s]-4n(*s)

8 unpaired electrons —+ 14 ways to make singlet.

Problem:
Tonic and other atomic configurations are very important;

{c(s*p®)’p] - 4H(®S)

[c(s*p*) 1 - (amy”*

Problem:
Non-orthogonal CI with many electrons is intractable on
computer;

(cost ~ N“/matrix element)



=
0
~3

But: semi-empirical VB 'resonance" calculations were good
for predicting “resonance energy," and may be better than

vas realized for certain excitation energies.

EQUIVALENCE OF MO/CI AND VB/CI

¢I = ﬁ{fil e fiN,

Y = ] Cp 9

_(Lt
o = Ale b
¥o= [ Cp oo

Every @i is linear combination of ¢I’ so P's are the same.

C/CI is easier to carry out. Both are hard to interpret.

HUCKE'. THEORY
Borrowed from solid state.

Approximate matrix elements.
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m ELECTRON THEORY

By symmetry if there is a mirror plane, there are A'(g)

and A" (w) orbitals

™o, = L %jilfap0)
(filfj) = sij = (0.25) = 0
& i=j

(fiIGlfj) = {6 i,j adjacent

¢ i,j not adjacent

~23 /<0




e correlates well with

Excitation E

Ip

EA

Reduction pnotential

z eini ++ resonance energy

HETEROATOM HUCKEL THEORY

Forced assignment of a. -ay, etc.
Compared to atomic SCF

-g «+ IP

so,

o -y (-IC) -(~IN) .
Variation of bond lengths and twisting (non-planarities)
+> variation of B

8 = B8%s/s%)

i.e., G.. ~ S

e ~ o - wq
Overlap inclusion G x = S x ¢ does not particularly

improve result.



%; = ! xji fJ
LCAO-MO fj literally atomic orbital
G = effective Hamiltonian

(filfj » = (STO0;|STO;?

S..
1] J

{fi} all valence orbitals

Gij = kijsij (Longuet-Higgins)

= kijsij(Gii +ij)/2 (Wolfsberg Helmholz)

¥

kijsij VGiiij (Ballhausen § Gray)

etc.
-G,; = valence orbital ionization potential

1]

Rotational Invariance

ki' same for all orbitals with same nf% on same atom

and
H.. is 1i .
ij is linearly related to SiJ
Gx = Sxe
i.e.,
g %5 = g X8
Xa .
_ 1i _ -
Xy b, = xji fJ



Non-orthogonal Eigenvalue Problem

Hy {1s, 1s,}) = ()
1 s

S =

- 5 1
/-1

G

-kSI )
(-RSI -1

A
V2(1+5)

1s, + 1sB

1sA - lsB

Vv2(1-5)

-1 -kSI
1+8

oI (11-1:55)
145

-1+
1-8§

_ IS(k-1)

IS(k-1)

_I(

1 +kS§S
1+8

)


file:///-kSI

k~1.8
___4[__._.
+0.81S/(1-5)
1— ! —
-0.81S/(443)
B
&,
at Re S ~ 0.75
e, ~ -1+ 2.41
e, ~-I - 0.31
€| - <,
A
-1 = 3




Significance of €

-e(R)) = I(R) ?
Fovp, = 27 !
UR) = 251 ?
All true for R > R,. But 2g, has no minimum except for

R=0, so it cannot be used to give geometry.

Hoffman has used U = | €;n; to approximate bond angles.
Others have used this for bond lengths of more complicated

systems with rather poor results.

Notice that 2e _TT:7;>E(w)
while <¢|}1|¢>T_,4_.E(m)
-> 00

because Y goes to wrong limit.

vo= T?%_ 19,9,} — (Is,1sp + 1spls,)/2

+ (lsAlsA + lsBlsB)/Z

50% covalent {correct limit)

+ 50% ionic



Evaluation of VOIE (Virtual Orbital Tomization Energy):

Case I: Non-Iterative Neutral Molecule

(VOIE)i IP of atom in promoted state

i.e., for sp'C

R

(VOIE) E’ch) - E(sp’C)

where E 1is configuration average.

Case II: Iterative EHT

Mulliken population analysis

N/2

N = 32[“’112 dr
i=1

N/2
p = ZE(cbi(Z dt = electron density
i=1

*
P = X P £y



Define

I;’aa + Z Pabsba
b#a
———

overlap
population

e
»
n

QA = ZA-Z qy = net charge

Re-evaluate VOIE for this Q and this configuration by
interpolation. Iterate to self-consistency

Q —> VOIE — new Q .

Results:

IEHT gives very 1low net Q .

EHT gives very high net Q .

{ VOIE is very sensitive to Q .

Q is very sensitive to VOIE



1-16
GBUT

> R

Compared to ab initio, IEHT |7| is too small

or

PPP (CI) with empirical
integrals ~» good energies
for vertical excitation
(re” theory)

CNDO etc. imitate

ab initio SCF ~ bad

energy for right reason MNDO
refined EHT
gor.d energy from
MO ¢ without CI

cheap ab initio

LCAQ-MO-SCF-CI
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INTRODUCTION TO SCF THEORY

Lecture 2/3

by

Ernest R. Davidsor

Department of Chemistry
University of Washington
Seattle, Washington



2/3-2

HARTREE-FOCK METHOD

For single determinant wavefunctions.

Closed shell Hartree Fock,

¢,2(1) ¢,a(2) $,a(3)
6,800 0,8(2) '
y = 1
VAT | 40
$,8(1)
= 1 -
= Det {05, ... On2 Pysz )
(¢ii¢j) = ‘Sij orthonormal MO's
N/2

E = Z Zhii+ZZJij - Ky
i=1 i3

where
ki = f¢i h ¢, dt
h = K.E. + VN—e
. 2 1 2
Jij = f“’i(l” r—1‘2‘|¢j(2)[ dr dr,
= 1
Kij = f¢i(1)¢j 1) ;.E ¢i(2)¢j 2) dr,dr,
NOTE

Jii T Ky
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s -
JR < B - ( ) = 0
5e6;1 (B~ Mpq “tpleq )
+
('¢p)) - (¢p|
pleq? = Opq
F|¢p) = 3 \ap |¢q>
q
F = h+2ff-X
p = % density matrix

N/2
B(1,10 = ). 6, 6,000
i=1

Consider unitary transformation
(0, wvv Oyyz) = (0 --or byyp) U
It mixes occupied orbitals with each other.

Important result:

Det {¢, 4. ...}

171

e

Det{¢; ¢, ...}

o = Toe.me.an® = Ielean*
1 1 1 1

so, F is unchanged in form and value by such a transform
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Fo; = 1 Uy Fos
j
= I U A ¢
i g iid e
= TIIU g (u'l)kq oy
gk ’
- *
W g = Ugk
your oa v o= @t ug,
. qk "qj "ji < % Sk
qaj \
S
i.e., F¢; = J xii ok

so ¢' are also solutions to the Hartree-Fock equations.

An arbitrary (?) but convenient choice are the 'canonical

srbitals.” For some U, A' is diagonal, so

is a possible choice.
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HARTREE-FOCK EQUATION

Basic Theorems Related to Hartree-Fock Wavefunction

BRILLOUIN THEOREM

Consider unitary mixing of virtual and occupied orbitals.

This does change ¢!

¢i = ¢'1 + e ¢a
¢; = b, -t
Ap.. = e —L  Det]...(¢.9. * 6.6:) ...}
1a m 1'a a’l

AE = 2<Awia[1-[|w>
(Awia]H!vp) = 2¢ <¢i|1=l¢a)

But if Fo = eo

,

\ (o lFle, > = e 65, 2

SO

(A;pia[H[xl-) = 0 «=> F, = 0

§

AE = 0 <> E is stationary
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Brillouin conditions are frequently used to:

a) derive stationary conditions for more complicated ¢

b) prove perturbation formula:

b= Vger +Z Civa Vi+a +Z Cijab Yijab * -+~
i+a
j-b
(87 |H|\D )
C 1 "SCE_ first order
I Ecop - E
SCF I
where
CI = 0 for single excitations (Brillouin)
C; = 0 for triple, or higher excitations

(two-body operator)

Only double excita:ions contribute to first order.

Molecular One-Electron Properties

N
(M) = fwz M(31) ¥ dt, ...d‘rN
i=1

SCF: N/2
23 [o. 0" nw o ar,
i=1

(M)

= sum of properties of occupied MO's



Corrections:

= ey (2) (2) (2)
¥ = VUgor * Vdouble * VYsingle ¥ VYdouble * Veriple
2
v 0B me - % WP v
(¢SCF|ZM(1)'¢L) = 0, L > double ,

SO there is no first order correction to <M)5CF!

= (2)
(M) = (Mdgpp + 2U¥gcp MUV G nae?

n a2
+ (wdoub’M,wdoub) - "ll* " (M>SCF

To a good approximaticn it is usually true that

cvlitpeh = Je@PPang .,

Ny,

2 e2ny(2)
s it
so most of (M comes from su@le

Conciusion: (M)SCF should be accurate, but most of

; e
correction comes from sumle
v > (1) - (2
SCF mix double mix single
2 2
*”Er%p or wéu;d do not matter
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KOOPMANS' THEOREMS

Consider positive ion {open shell) in crude approximation

of frozen orbitals,

+ _ 1 — -
vy o= W Det { 6,8, -+ $505,165,9 -

Approximate ion by

Do configuration interaction. It requires

_ + +
Hij = (\viIlej>

n

+ + o
(\l’iIHl\!’j) -(¢j|F|¢i)+E 8

o _ canonical
(& Ei)sij (orbitals )

so H is diagonal and

for canonical orbitals. Similarly for negative ion:

- 1

= ——— Det ..._
¥a ToenT et tatal
0 a#b 2
o lhjug ) =
EC+¢ a=b g



for canonical

2/3-9

orbitals

EA

14
v
m

Errors
AEC = difference in correlation E
EC = '"correlation E"
= Merror in ESCF"
AER = relaxation E
I = II( » EA # EAK
- -
i EK AE EK'. AE
'-J—,' + “ 2
IK _—f_ EA <O
E .. AE JI B aE L AR
T — 3--4&-—;;; 3 ©
EA
Bsep = D 2hg; + I (2355 - Kyp) + Vg
i i,]
Bscp = L 2¢; - Voo * Vi
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€; includes Jij
ej includes Jij
Ei+Ej includes Jij twice
or
Bscp = I (e * hyy) *+ Vyy -
NOTE Egop # ! 2e; .

?? de
SE ¢ HOMO

SR R

as often assumed. Very difficult to justify!

ROCTHAAN EQUATIONS

Expand $; = 1 e fa
where X coefficients
fa "atomic orbitals"

"basis functions"

same set of fa used for all MO's, LCAO-MO-SCF.

Determine x to minimize (H) for fixed f. (Perhaps also
optimize £?) Following previous derivation taking

§¢ +»> 8x gives matrix equatinn
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<falF¢i> = Ei‘fa”’i’
Expanding ¢i
G IFIE X, = ey BCE I x s
b b
where
CE 1y = Sy ' overlap matrix
CEFl£) = Fyy Fock matrix
Fx = Sxe
Fab ~ 1L‘ab * 2gab B ﬁab
£ _ *
b= Legey = I B g ffy
i c,d
Pcd = E X;.X5q ¢ % bond order;
= charge density matrix
gab = 1 Poa [abllcd]
cd
Aap = )X Pa [ac]|bd ]

cd

[ablcd] = ffgl)f,gl) ;1—2 £{8)£{8) qr ar,
1
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Solve iteratively

i

guess X or P «——

;e

construct F iterate

solve FY = SYe&

often Xnext ©

old

P + aP(y)
next 1

gometimes P

gometimes diagonal of F is modified to improve

convergence of y —+ XgeR* At self-consistency
Yout = in

Interpretation of ¢ is usually done through

B = 2P

2 * - yB., £f
Ioegef = DBy, £5y

(M) = ] B,y My,

(1 = N 2 Bab bba

E o= DBy (Fp, + hyo) + Vi
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MULLIKEN POPULATION ANALYSIS

Assume fa are literally "atomic orbitals." Then

z Bab sba

can be partitioned

1 a=b
Spa =
0 a#b a and b on same atom
Define
q, = Baa + E E Bab Sba , for a "on" A.
B(#A) b '
onB

Bab Sba "overlap population" generally proportional to
bond strength. B.b "bond order" also proportional to

bond strength for S at R_.

e

Difficulties:

q sometimes > 2

qQ sometimes < 0

q arbitrary partitioning of overlap

population between a and b equally

qQ difficult to extend to other basis sets

Advantages:

E Q= ey -

ionA
independent of molecular rotation even if basis

does not rotate.
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OTHER POPULATION SCHEMES

1.

2.

5.

Sphere charge.
Proportionate splitting of overlap population.

Atomic boundary:

Extended basis sets:
— one center expansion
—~ overcomplete multicenter set
— how to handle?
Project result onto minimum "atomic
orbital” set or onto "scaled AO set™
Non-orthogonal sets on an atom, e.g., STO,
Gaussians, etc. Partitioning of "oae-center"

overlap equally can give strange results.

BASIS SETS IN COMMON USE

Slater type orbital (atoms, diatomics)

n-1 -g

e e Ty (0,9)

Slater type orbital (polyatomics)

n-%-1 -
T e T Q,M(x,y,Z)

@1 M = real spherical polynomial
»
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Atomic orbital — literally solution to atomic SCF equations.
May be of Roothaan type, i.e., expanded in a one-center

basis of STO's or Gaussians

-ar?
Gaussian lobe e
or;

. . n_& .m “HIA
Cartesian Gaussian Xp Yp 25 €
Contracted Gaussians

f, = E Cua By fixed C .

STO_BASIS SET NAMING

Minimum: One STO for each occupied AO.
Double zeta: Two STO for each occupied AO with different T.

Split valence: One STO for each core A0, two STO for

each valence AO.

Polarization: One set of STO's of higher L than any

occupied in atoms.

Common level of "accurate" caleculations:
double zeta + polarization.
Rydberg orbitals: Approximations of diffuse orbitals

used in excited states of ataoms
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CCMMONLY USED CONTRACTIONS

Pople
STO 3G 431G 321G
—— [ —)
minimum split valence
Lunning/Husinaga

(3s/5p) ——» [4s/2p]

[3s/2p]

H (45) ———» [25]

Raffenetti extended; not disjoint

[5s/3p/1d]

Duijneveldt/McMurchie

4316*
L —
split valence
+ polarization

DZ

split valence

(14s/8p) ———» [8s/6p] + 2d

H (8s) ————» [65]

Even tempered

n_z
eGBI‘
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OPEN SHELL HIGH SPIN HARTREE-FOCK

v o= ’¢ 3 ¢ 3 R ¢k$k¢k*1¢k+2}

Unrestricted Hartree-Fock

1 —_—r—1 -t
T 10,8, 80, Bl

<
[

No longer s? eigenfunction

(¢i¢; Yy = 0 by spin orthogonality
§ .v 5 N =
{E -1 Aij (¢il¢j Y-l A5 <¢il¢j )} 0
8¢o, |
) = €.¢
e 11 canonical choice
. of orbitals

Fg; = €395

by = I 0507

pg = I ¢j0:"
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In Roothaan form

O L
F, x. = ;S x.
g X3 €3 2 %

Best single determinant with orbitals of pure spin (o or B)

Advantages of UHF:

— correct dissociation

— simplicity

— more general Brillouin theorem and Koopmans' theorem
Disadvantages:

— not s? eigenfunction

EXAMPLE: HZ DZP Basis
RHF

- 1 Iy
Yscp T oz Det {o,9,3

c, (Isy+1sp) + Cz(15A +lsé) + ¢y (205, +2p5p)

©
-
H

Large R: ¢ is 50% ionic

1im R + o WSCF is not ¢

v o+ (1§AlsB + lsBlsAJ
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UHF, there is critical R*

& =
for R<R Yunp = YRHF
for R > R Yy = 7;__ Det {4,9,}
¢1 > 1SA
Cp, > lSB
y - lsAlsB

4 Voer

E ~L
R

R

'
2

Ex>e

Notice neither curve has R ° shape. UHF curve has
discontinuous slope at R*. UHF is only weakly bonding.

wUHF is not WVB so it does not give strong valence bond

_— ____.kR CORRECT
=== LML
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Yuugp 50% (S=0) + 50% (S=1)

Yscp * 90% Yyp * 50% ¥ion5c

Both wrong!
In general, there is difficulty with UHF when two states

of different S are close in energy.

SPIN DENSITIES

HYPERFINE SPLITTING PARAMETERS

= _ 8w
aA = gese gNBN —3* DS(A)
3z, - r
= & A A
3,, T 3% gefe BBy _[ps 75 dt
A
SPIN POPULATIONS

- : PS5 £ f
P Pg * Za Pap fafp
a,b

q(S) = spin population
a
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For o radicals: "a'" is usually OK (+10%)

For w radicals: "a" is zero for RHF
'"a" is non-zero but very inaccurate for UHF

,proton hyperfine
H-C (
\ e s)
ay (-27 gauss)(qwC )

SPIN PROJECTION

il s%- 8'(58'+1)

v
S(S+1) -§'(s'+1) VUHF

S#s!
produces spin eigenfunction but mot¢ better spin

distribution (usually).

LOCALIZED ORBITALS

Recall ¢SCF is unchanged by unitary transformation among

occupied orbitals.

= 1 3
HZ : o= —;— {¢1¢1}
- = 1 ry ry
He, : v o= —j;; (9,9, 6,0,

where
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o, = (ls, + 1sp)/ VZ(1*8)
$, = (1s, - 1sB)/\/2(1-S)
1s
1 ' A 1 1
- (8,40,) = b = =R +
N 1 z (\/1+S 1-s>
1
. B S
2 1+8S 1-s

MIRROR IMAGE
AND

NOTE:

(¢’

Wl # 0

A ORTHONORMAL.
—Z

Equivalence transformation

L cee ony2) (@) - Oyyo) ¥

also leaves Y unchanged
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- 1 -1 Py L
L JNT IWI |¢1¢1 e ¢N/2¢N/Z}
- 1 T T 2

¥ = N {15A15A lsBlsB’/(l -87%)

Non-orthogonal basis fully localized.
The formula for E and # in non-orthogonal basis is
complicated. Most authors define best orthogonal localized

orbitals.

RUEDENBERG:

maximize Z Jii
i

minimize i;j (ZJij - Kij)

OTHER POSSIBILITIES:
minimize Z(o + a; + Uz)i
2 2
minimize ) jw¢il lé.] dt

1 - Z orbital

minimize )) volume
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DISADVANTAGES OF LOCALIZED ORBITAL

— Broken symmetry (CI cannot take advantage of symmetry)

— Banana bonds
z

— Non-negligible tails

ADVANTAGES
— CI more compact?
— Transferable?

+ 2+«C.~H

c 202 s0fls1

100 H

{ Do all MO's change or only a few? }

Conceptual!

ACTUAL PRACTICE
Seldom used except conceptually.
No good for spectra or ionization?

Or are they better?
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ITERATIVE METHODS FOR SOLVING THE HARTREE-FOCK EQUATION

Try to solve x = G(x)
by procedure y = 6G(z)
Convergence?

3G,
Gi(z) = Gi(%s) + Z(BG—%) [ZJ 'xj)
J )rx

(%)
(ry-x3) = 12 A (z5-x5)

3G
bl < o e e
3G
— 1 <
Converges for ﬂ8§ n 1
d f 2 1
Ma iverge i _J;l| >
Y g ox
Second order process
3G 3G
J—— s_l = 0, I =
*5 ) x 3x
FOCK/BRILLOUIN/CI PROCESSES
z = current guess to MO coefficients

y = new guess

x = correct coefficients
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-1

Y = zuss oy -ty

U = wunitary matrix

(z and Y both orthonormal sets)

FOCK_PROCEDURE

F(p(2)) Y = SYc¢

trz 27ly = ztsz 2z lye

—_—

F v - 1 U e
i.e.,

EU - Ue

To first order, f.nd U by perturbation theory

(near convergence, F almost diagonal)

1
¢j =1 Uij i
lly" IIZII
;.
v.., = — W (i# 33
ij _F J
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GUEST-SAUNDERS (ideas from level shift paper)

True second order

v - 3’E N Y
SERES Pl BN T
3Us5 Uy 1Y)
s s ) D

super super
matrix vector

Approximate second order

-1

3’E 3E
T e ) ey,

ij ij

Evaluating derivatives gives
P
Uy = et (i#3)
Fjj'_ Fog * Jij - SKij

INO/CI/SCFE
bR byt 2 Cieg Vi
J,1
Determine C.,_ . by CI. Compare

1+]

o 2

so to first order



2/3-28

PERTURBATION THEORY FOR CI EIGENVECTOR

Wiy lHlv ey

iej T :
o IRlv -Gy Ty 0

Evaluating matrix elements gives

Fij

ij F.. - F - 3K, .
Fjj Fii + Jij 3K1J

to first order.

CONCLUSION

Fock iteration is tsensible, IF

3B
Wy Ay,

is diagonal dominant, and if

has same sign as F., - F.. + J.. - 3Kij

(j occ., i unocc.)

Level Shift: add constant to F.. (i unocc) to make

ii
Fjj - (ﬁii + o) approximate
FJ.J. - (Fy - Jij + sxij)

or to make |U-1] smaii.
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INTEGRAL APPROXIMATIONS

- ) o
oy - Huv+zpo)‘(uv|c)\) PR SNCEIMY
g,A }q;
integrals

This is such a large problem that HF theory is geared to
integral evaluation and processing. The fastest method for

SCF is prcbably the "super matrix" formalism:

: >
Fuv = hu\) *2 Po)\ UVOA "“}- uvor Po
o,A
where
Wvor supermatrix element

- ol - B,

7{‘/1.1\10?\ =k [(uo|va) + (urfvo}]

Pax is spin density = ng - PSX
- p% 8
Par = Pox * Por

REDUCING THE NUMBER OF INTEGRALS

Reduction Based on Integral Size

A--Amz
(ug|va) ~ —“%ﬂ [(unlvv) + (uuiar) + (oo|w) + (go|an)]

where
br5 = (ulod

This is not so important for small systems.



VRDDO = Variable retention of
differential diatomic overlap
by Popkie and Kaufman

VRDDO + core potential = VRDDO - MODPOT

Retention by Systematic Approximation or Neglect

Systematic approximation or neglect involves both symmetry

and balance.

Symmetry:

O X;(Z)Xd(z)
(KD X

(xyloo) = 0 by DO
xy = Pe(1)P,(1)
N ———
ADO
X + 1 (x+y)
1

y + — (x-y)
V2 Y

0 = (xy|loo) =+ %k {-(xx|co)+ (yy|oad}



(xx]o0) (yy|oo) to have ZDO

"

{xx]o0) {yyloo) = (pploo)

N2 these interactions
are considered the

Same

In TNDO (intermediate neglect of differential overlap):

_ 4 2
Oylyy) = By + 5% F
. R
(xx|yy) Fo - 5% F
We must have
_ 3 g2
(xy|xy) 7 F

for s,p basis for all integrals of the form (ii]jj) or
(ij]ij) that we considered for atoms.

Note that A is 0K, so

= o] .
BUU Auveuv is OK
o} 2 ] .
Bvu 2= Auvsuv + uvBuv is not OK

We will return to this later.
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Balance

Consider two idential atoms

A e
Their electrostatic energy is
Z, 2
A “B o Akln- !
Ees ™ "Ry © ‘A’B AR 22,2y (AA|Ry ")
= 0 at reasonably large RAB

|
t'\Rcasonably large R p!!

AB

Usually for balance in Fock matrix

(ﬂﬁ]RA') + V(core) + V{orthog) = (up|wv)

set (iR = qm[v) .



If = (AA|BB) from semi-empirical approximations, then

YaR
we must scale nuclear repulsion energy. Spectroscopic INDO
and CNDO theories at present do not give geometries!

Balance: a more subtle example!

Consider Mulliken population

No= Dmgo= Dongeeglep
i i
where
N = npumber of electrons
n; = 0 or 1 = occupation of ¢i
N o= Dy CinCivluy
1,1,
- 2 Pvluv = 2{2 PuvAuv}
U, o
M =
uu E Puvbuy

= Mulliken Orbital Population



Now
Juv = ZPM(uvlc)\]
o,A
L}
{Xu} -+ {xp}
- Ll 1] r
Juv = z PU,\(U\’|U A
g,A
This is exact. Suppose we choose {Xu} 3 (uvje'A) very

small for o' #A'. Then

Jpy = 2 Poy(uvler’) = ZP;U(uvlc'd')
o,\ g

The four center integrals can thus be dropped in a system-
atic rational fashion, sn N* N7,

What about three center integrals?

PR = ulelv) - g (ulRy* V)2

1 1 1
+ ¥ Pcc(uv[c o') - Ky
The three-center terms

R CICEERRENVILERY

Drop all three center terms
g Qg(ulRg'[v)

where Qp = Pp-Zp if Qp e emall, and (ﬁIRl;llv) ~ (uv|o'a").



Bad N But usually
=2 // \\\/ (/R f)

Three center terms of the type

H

N

C "big"” orbitals

IIBII/' /
center

H

are treated differently by certain methods.

PRDDO and AAMOM methoa xeep these terms.

PRDDO = partial retention of differential
diatomic overlap
AAMOM = an approximate MO method



15

Error (%)
°

CNDO
INDO

o

e ESE
SBD/2C

‘o AAMOM

o PRDDO
\_.

4-9

VRDDO ?To -36

MODPOT-VRDDO
I

| 1

5

Lrom Halgren

10 15
Relative time

, L\bscomb, et al.
TACS 100 , 515 (11718)
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2

N® ZDO Methods

o = _pl
L I [Py, (uulon) - Py (uofud)]

r
12 AA BB
P, (B[ vv)

X, (1)X, (1) X5 (2) %, (2)

CNDO Complete neglect of DO

INDO Intermediate neglect of DO

NDDO

Neglect of differential diatomic O
0 "
A A B c
1Z P o (uu?ve™)

Co X, (2) X5 (2) =—— 0
CNDO
INDO

Xu(l)xu(l) NDDO

A A B c
P vieT)
—_—
CNDO

D INDO

Fl, 60, K> 0 —gpg O



ZD0 Integral Approximations

1) NDDO
XR(1) xg(1) dr(1) = &, xhX) dr(w)
2) CNDO
X, (1%, (1) dt(1) = §, X, (1)X,(1) dr(1)
3) INDO = CNDO + all one centre terms
WAVBLoAY) = 5, 58008, (P VAIaMAA)

A B, CC
a _6AC)6uv60A(u wiloe)

Dizgonal: u €A

Full
Y, = U+ P (uulod) - P (uolud) - D (mulRy)z
uu uu oA oA B7A B B
NDDO
o & 1
R = Uy * QL Py (unlon) - ) P (uslun)- Y 2y (uulRyY)
[0,2]eB [o,2]eA B#A
INDO
o = -
Fuw = Uy +§: Pop (MH[02) = Py (uolun)
[o,0]eA
© D P Gilae) - S zpGaIRgD
GFEA B#£A

for H and first row o=X.



CNDO
a Ssisey Cpd na(an) - 7 (oalRr:?
Fou Uy, * g Pyq (ME[00) uu(uuluu) B;A g(UnlRy
0ff-Diagonal {u,v} ¢ A

NDDO
= Bu\)

tiv Z (uv[Rg )2 +Z Pgy (BV]01)
B

[o,2]eA
- E sz (uo]ur)
[o,2]eA

']

o
%v

For H and first row

Fiv = Buy ¥ Z Pop(uvlon) = PO LCuu[vw) + (uoluv) ]
[o,A]eB
INDO

Ev = Byt Z{Pm(u\llcx) - ng(ucrhﬂ\)}
[o,A2]eA

For H and first row atoms,

o
Fay = Byuy* 2Py (uvluv) - PR L(uulve) + (uvluv)]
CNDO
a L opl s
Fiv = 8Ly Puv(uulvv)



0ff-Diagonal:

NDDO
Fﬁv = By

INDO
Foy = By

CNDO
Fay = By
Example: Integrals for N,

(zsAzsAlzsAzsA)

(zsAzsAlszsz)
(zsAzsAlzsAsz)
(ZSAZPA|ZSA2PAJ

o2
(25,2P] 25 ZPBJ

(25,2pp| 2P32P

/><\

ESTFC)@;

’

-E ng (uo|vA)

ceA
AeB

o e
- PoyCunlve)

- P (un]v0)

STO
0.709

0.452
0.277
0.157
0.121

0.135

ueA, veB, A#B (most elements!)

LTO
0.738

0.437

-0.016

0.138

0.084

0.094

/\><,\

LTO=s

-0

Parr ~ steubb'\ngs —Zerner



SOME FORMULATIONS

Resonance or Bonding Integrals

AA

Buu = 0

AB  _ A B, &

Bow = (B, + BY) §,,/2
most often

A _ A _ A

BS = Bp = B

Sy = W) = oAy,

Nuclear Electronic Attraction

- . 5
(u|Rg" 1) + Vi (€) + V (STO=ITO) =~ ¥,

Core Integral

CNDO/1
from ionization potential
INDO/1
CNDO/Y1T _ V.
U‘J = Iu (Z 1)yAA
CNDO/2
from I, + A
INDO/2 koo

USNDO/Z _ ‘(Iu*'Au)/z Al -%)YAA



CNDQ/1
o - _ _plt _
Fm;‘/}p +PaaZ¥an * (L-Ppvp, + 1 (PpgmZp)v,g
N —_ —
ionization correc- correction all charged
potential of tion for if not a neighbors
Xy in free charged "full" o have an
atom atom electron! influence!
o _ _ o
Fuv - Buv % puquv
shere
A
_ Y A b
Buy = — (B +8))

MINDO/3 (Bingham, Dewar, Lo [JACS 97, 1285 (1975)])

1
= — —_ Ohr.>-Klopman
YMN \/_Pz__z_ ( pman)
MN T PMy
i = % (Yl " )
mm YNN
B“u = (Iu * Iv)suv Bag
Bap = 2 "pair" parameter
Ve T X (CR) g

AeB



(CR)p = 2325 [vap + (Ryp - Yap) £3(Rap)]
-Rap )
fS(RAB) = op e if NH and OH
~aapRAB .
fS(RAB) = e otherwise

Example: MNDO and MINDO/3 Predictions

Class of Compounds, etc. MNDO MINDO/3
AHf (all compounds) Kcal/m 6.3 11.0
AHg (HC) Kcal/m 6.0 9.7
AHg (nitrogen compounds) 6.5 17.3
AH (oxygen compounds) 5.2 6.8
Bond lengths (all) & 0.014 0.022
Bond lengths (CH) R 0.009 0.019
Bond lengths (cC) A 0.012 0.016
Bond lengths (NN) R 0.032 0.074
Bond lengths (00) R 0.117 0.043
Bond angles (all) 2.8° 5.6°

about C 2.0° 4.4°
N 3.2° 7.1°

0 8.5° 10.7°



EXTENDED HUCKEL THEORIES

Consider Mulliken approximation

8 AV
(wvloo) = E¥ f(uuloo) + (vvlao))

[=d

(wviRg") = =+ {(uulRél) + (WIRQ')}

Diagonal Terms

Flll-l

= U, Z ZB(quRg’) + ZPGA[(uulol) - Y(uolurd]
B#A

Tt T, ¢ (- BNV, + 2 (Mp-Z) Vg

SN T

simple iterative higher the big
Huckel extended + order error
or Huckel terms
extended
Huckel

@ too attractive if one
.
5" ignores neighboring
repulsions



0ff-Diagonal Terms

Huv = (Huu + va)Auv Kuv/Z

= = i '
Usually, Kuv K 1.7 to 2.0, but different Kuv s lead
to improved results Zf one is careful with symmetry

(the NEMQ method of Newton and Libscomb). The method is

then rotationally variant, or

Hy = \/HWHW AuvK
£ = -kv 4]y
B
A _ A
f Xu Eu Xu
= vz e vy W A
u u A H Py U E

Wl-9%/2 - 2Ry 0w+ D M (ow)

geA
= -Ip ¢ R]_l
- A R 2
Fou = &, % Z (Mpg - Zp)¥z3

B#A



_ 2z g2
Fiv = (ulf + v¥/2 - v*/20w)

= (ul-v%/2 + VAlv) + (ul-v?/2 + VBIv)
+ E|viv) +:E: wlvelv)
C#A,B

= (eA + eﬁ)Auv + Eulvt|v)

u

toE b, Z Mee - Ze) ac * Yp!
C#A,B

Mulliken Approximation

A
X, (%, (1) = 2 @ X)) + X (1) xy (1)}
= (uw|Rg") = n [ur|REY) + (w|RM]
HV{Rp =3 LiHuiRg B
(wvloo) = -2 [(uujoo) + (vv|oo)]

Harris-Rein

aCuv[rg™) + (uv[R "]

Y [CurlRy ™)+ (uu[Rg ")+ (W Ry 1)+ (v Ry ™) ]
: . 4L uvlup) + (uvlvv)l
Ky [ Cunlum)+ (v vw)+ (uu [ vv)+ (v |uu) ]

- JN‘J = ANV(JUU+JV\))



A.U.

10 2.0

Hybrid Integrals } )

—Calc.——=Mul. Apx. Uz N2
}— I §2525|2.s’25)
O (Zs2slZ2ps Zps)
1L (25251 2ps2s)
X (2s2sl2s 2ps)




Example: Performance Examples

Relative Relative Cost
Error Time Efficiency

INDO 14 0.18 0.4
PRDDO 1 1 1
ST0-3G 0.2 16 0.3
AAMOM 2.5 0.4 1
VRDDO ~0.2 ~12 ~0.4
VR oT ~0.5 ~5 ~0.4
ESE MO/2C ~7 ~0.7 ~0.2

1
(Relative error) x (Relative cost)

(from Halgren and Lobscomb, et al., [JACS 100, 6595 (1978)]



1)

2]

3)

4]

MOLECULAR ORBITAL THEORY "REVISITED"

HY = EY

H is non-relativistic time-independent fixed

nuclei Hamiltonian

MO_Approximation MO's
'
>
) o~ oy, ) ; EA[,(1)$,(2) .. 0, ()]
e e
MO Apx electronic
configuration

"The Big Approximation"

LCAO-MO Approximation

n
¢35 =qucu.1 = X&y
p=1

Variational Principle

_ Gglaley .
- X
Chplyp
W o= 0 = (F-en) € = 0
(secular equation)
& = X% = overlap

F = x'rx = (x|F|x)



a0 _ e
Fiv = (XHIFIX\,) = hy, + T, - K (UHF)
= tyy - g ZA(ulRAllv) * ] Py (uvlod)
a
I Pgy (wotvd)
where
tyy = kinetic energy = “kulviiv)
B - -1
wirg' o) = iRy = farn xh@x, g
. 1 .
(uv]or) = -de(l)dT(Z) Xu(l)Xv(l] 12 XO(ZJXA(Z)
MO's
PSV = :S Cﬁa Cganz (na = occupancy
a = 0 or 1)
= Fock Dirac '"o'" density
B o= %
o= ooy, - Z (ulZg/Rylw) + 2 Py unfon) - 3 P (uolun)
B#£A o,A
A) Uuu = "core integral" = (p|-kv°® - ZA/RA]uJ

an atomic-like integral

B) One electron two center integrals nuclear

attraction (u{ZB/RB|u)



% Re
®
X3 (1) %, (1)

C) Two-center two-electron

1) (vulvv)

lz

*
X, (1)x, (1) X, (2)" X, (2)

Coulomb interaction between two charge distributions
with the '"test"™ elcctron in X:(l)xu(l) and P,

electrons in the other.

(up|or)

X2 (D) X5@)dT,
Differential

diatomic overlap

XB(Z)X (2) = Difrerential
atomic overiap
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Returning to Fgu, we can write

MO
Fi, = Uy, - g (] Zg/Rylu) + g (uulo,8,)

HH

so E ({6, or E(C)

5} Self-Consistent Field SCF

Guess C,

Co > F(Co) > €+ Cl > F(Clj > €, » etc.

CRITIQUE OF MOLECULAR ORBITAL THEORY

A. Computational difficulties

1y~

MO
- g (woglue,)

integrals (uv|oA) where N is size of basis

2) N3 matrix problem — solution of sucular equation

All MO methods are limited "spiritually" by N3 matrix problem.

Integral approximations try to reduce integral problem to

N3 or less

N —e N3 — o §2
AAMBM differential overlap methods
PRDDO CNDO, INDO, NDDO, PPP

B. Theoretical Limitations
Fundamentally incapable of yielding exact answers

one electron case!

extended Huckel methods

except for



RETURN TO ATOMIC HARTREE-FOCK THEORY
1) Good intuitive feel for atoms as well as Hartree-Fock
procedurc.
2) Most approximate methods have parameters derived from
atomic information.

Consider, for example

v o= P = |ssp|

E(ZP) = 2US + Up + JSs + ZJSp - l(Sp
Jsp = (ss/pp) , Jeg = (ss/ss)
Ksp = (sp/sp)

Consider also a basis set of STO's (for now!!)

- m
nim = Xnom an(r) Y1(9¢)
- -Er n-1
Rop(r) = n. e r , STO
m _ m im¢
Y2(9¢) = Pz(cose) e

with such a basis one-center integrals are easy!
(1sltl1s) = g,/2 , (2sltl2s) = ¢€,./6

Labng
n

(zplt]2p) = EZp/Z » (anmle/RAlxnlm) =
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Two-center integrals are not quite as easy, but

1 N r<k
T, 2: o Pklcos8is)
12 Ty
K=0
z .
n
=73
-
2
e k ik(4;-6,)
1. Leolmp)l T pmig gpMegy ot R
Ty, (k +Im|)t l_>E+1 kiU1/ g\ V2
k=0 m=-k
(1j]k2) = E R¥(ijke) fde,de, Y;[I)Yj[I)Y;[Z)Yz(Z)
im(¢1'¢2)
m m
x Pu(I)Pu(Z) e
Slater Condon _ 2 2 *
RM(ijlk8) = factor = Sriar friar, RIGOR ()
U
I‘< *
= Ry (1, )Ry (1)
>
(ijlk8) = & 8 s(m,+m, ,m,+m,)
$iS5 SyS, t R < R 2

k k
EEUC (limiljmj)c (lkmkllml)
= e ———

Clebsch-Gordon
coefficients



The sum is not infinite, but to k = inf[2i+2j,2k+22)

special cases!

(iiljj) = ]{ ak(!.imiljlj) FX (i)
where
R = RR(ailig
K - K
a (limiljmj) = C (limilimi)c (ljmjljmj)
ot k s -
(ij1i3) = } b (gymya.m.) 67(ij)
X )]
ck(ij) = R,
K ok 2
b (Limiljmj) = C (limiljmj)

Now for only s and p orbitals

oo = FOss) , Jsp = FO(sp) ,
Kgp = G (sp)/3 I = FPOD) + 5 Fiipp)
Ty = FOOR) - St Elpp L Ko = 5% PR ipp)
For our example of Zp - |S§M
Bc’p) = 205+ U, + FO(ss) + 2F%(sp) - 1/3 G'(sp)

This is a great theory! Can derive energy for any atomic



spectroscopic state providing

s'y = S(S+1)¥
L2y = L(L+1)y
S,0 = my
Ly = my

For now consider average energies of a pair of electrons

(two electron part).

{ss) = (s5) = F%(ss)

(sp) = ¥{(sp)+(sp)+(sp)+(sp)} = X{(sp)+(sp)}

F,(sp) - %G'(sp)

(55) = == (15 possible) = F°(pp) - = F%(pp)
15 25
For our case
2 — J—
E("P) = 22U, + Up + (ss) + 2(sp)
and, in general, the average energy of a configuration is
given by
2 =
Eive(s prd™y = LU+ mUp + nUy + Y (pair)
Consider, as a typical atomic property, the ionization

energy I



1 = E(+ve) - E(atom)

1 = E(s 2-1 md ) - E(slpmdn)

= U, - (2-1)F%(s3) -m[F°(sp) - 26" (sp)]

2
o n[ro,. _ G (sd)
7 [Foc) 10 ]
2
Ip = -Upg- (m-1) [F (pp) - 3¢ F (pp)]
1 3
Al - ]l - g0 s )
I = Ugg - (n-D) [F (@d) - & (FFaa)er *(aan]
1
[P - EEDT L e pa - SED -5 3pa]
Au = E(atom) - E(ve) , atc. !

One can calculate from these expressions ionization energies,
but it is far more common to estimate the core integral from
atomic information, and then use this Uul_1 in molezular

calculations, i.e. ,

I. = U. CNDO/1 Hiickel
INDO/1 EHT
PPP most others



(1,+4;)/2 = U, CNDO/ 2
INDO/ 2

can also obtain this information from atomic spectroscopy
in a similar fashion.
Several "fakes':

1) Minimum basis set representation for atom.

2} Frozen orbital representa* on for positive and

negative ions.

3) What happened to the inner shell orbitals?

CORE VALENCE SEPARATION
Do we ...ed the core electrons?
a) Chemists seldom consider inner-shell electrons
for most chemical phenomena
b) Early calculations in which valence orbitals
were orthogonalized to the core showed that in
some sense core orbitals were separable.

Why would we want to do this?

Minimum basis set for benzene C6H6: 36 a.o.'s but 30 valence
30} .
(33) ~ half the number of integrals

Double-§ for CuCl2 (78 functions) of which 34 are valence.



34 4 1
55 ~ 1§ the number of integrals!

Cannot just drop core orbitals by "wishful thinking" however.

For NZ’
1s 2s 2po
1s -15,71
A 2s -3.78 -2.04
o= 2po -0.03 -0.35 -0.82
¢ 1s | -0.00 -0.88 -1.48
B 2s -0.88 -1.17 -1.05
Z2pe | -1.98 -1.05 -0.53
Fy = -3.78 is second largest number in F matrix.
sAZSA

Cannot hope to just toss it away!

EVERYONE'S CORE "POTENTIAL'

Use partitioning technique:

(F - EM)C  MC = 0
MCC MCV ’:C

= 0
M M c

vc vv v



Mcccc TPty T 0 3 cc - -Mcc Mcvcv
fen
M€ + M, C = 0
(M, -m MM e =0
vV vc cc cv/Tv
— A ———
Vee
This yields:
(va i E/Avv)':v =0
' -
Hyy = Hyy *Vyy
where vvv is an exact core potential.
~1
-vij = uzﬂ (Fiu_Aiuh)(u:cc-/AccE)uB(FBj-ABjE)
’
where 1,j,... are valence a.o.'s and «,B,... are core

a.c.'s. The problem is now more difficult than when we
started! But we note that M. is nearly diagonal (see,

for example F for NZ: the F15A153 = (0.00), so

M.. = A+R

where A is diagonal and B is off-diagonal

Ml o= eyl o= att - atlease)”

1



{We can check this by multiplying on the right by (A+B)

and deriving 1=1}, and iterate

@+8)" 1 = a7l - alea s alBalea! .
S0
. - -1 (k)
Vs )3 (Fig = 83gFIM ) g (Fys - 85E) = > vt
a,B — k=1
expand

where the above equation is a Brillouin Wigner perturbation

sequence
-V;}) = (Mvc Aég Mcv)ij
-Vi;) B (ch ;é IBcc ;é ch)ij
etc.
Consider
Fia = AiaFaa * Gia

As an empirical observation, Gia is small! Then,

v . -1
Vij (Mvc Acc Mcv)ij

-1

[Faj - EAaj)

) (Fig = 834B) (Fyy-E)

G, G .
{Z [Aia(Faa-E)A S+ G A A. G . + ML”

- < ¥ . .
o aj ia"aj ia"aj (Fuq-E)

vi2) |
Vij = etc.



What if Gia= 0 ail i? Then, fxu = Fuaxu or each X4

is an eigenfunction of the Fock operator F. Empirically

this is very nearly so! If Giu= 0, then Mcc ig diapgonal
and

. R S .

Vij Vij 2 Aia[Faa E)Aaj

Phillips Kleinman "pseudo-potential"

Thi. is reasonably accurate, but depends on E, the valcence
orbital eigenvalues, and
a) Must solve iteratively for each Evalence'

b) Each crbital solves a different F operator.

c) Too many disadvantages!

so, note that € ~ Fua < EValence (i.e., for NZ’ €y = -15.7
and €valence -1.0). Then,
Vi; = g Big €abyj

which is related to everyone's "pseudo-potential", where
€y is a parameter and By is an inner-shell outer-shell

overlap often estimated by an effective potential.

For now, note that

.
. 2 ~ 2 ~
Vii = Big% * 2 8ig%g i,0 € A
—_—— OFB
one two

center center



. ~
s = S .
Ull U11 Al(! E(!

This last ecxpression is what came from experimental informa-
tion when we ignored the core. Thus, empirical methods that
utilize atomic information for core integrals implicitly
include the inner shell. The two-center part of this
repulsion must then be included parametrically - usually

by scaling two-ccnter nuclear attraction integrals!

P1-SIGMA (PEEL-CORE) SEPARATION
Consider planar molecular and two-elements of symmetry:

I (docs nothing) and Sh (reflects in plane). So,
[E,H]) = [oh,H) = 0
because E and o), cannot change any observable property of

the system, especially the energy! Usually [heff’gi] =0

whenever [H,gi] = 0 by Roothaan-Hall construction. Then,

heff(l)q’i(l) = Ei ¢‘i(1)



(since [Uh’heff] = 0)
z = -
opé; T Aoy = A0

opd; = Eéy =4y
The ot equals E¢; since reflecting and reflecting back

does nothing.

- At =1
o= 21
g MO's
0h¢i = '¢1
T MO's
Now, LCAQ-MO ] /ao's
¢; = ) Xy Cul
U
ond; = 9, = Z(th )C
S @ P / This one changes
N/ Stgn upon
reflection
+hrou8h
)
- A Xy plane
b s \~"/F; '/1 P Y




Uh(Sny,Py,dxz_yzydxy.dz : pzrdxz)dyz)

= (Srpxrpyadxz_yzstYSdz . _pzr‘dxzr'dyz)
N J
Ny Sm—
o ao's m ao's have

changed sign

(o) o (m) B
opby = ey = £ DX Gy e )X Cyy
u v
(a) s ™
_ _ _ hig
= I (o x,)C,; = 2 DXy Cui L Xg Sy
u Y
0 ao's T ao's

Comparing coefficients implies:
m MO's have only m symmetry ao's

o MO's have only ¢ symmetry ao's
(F - eim)ci = MCi =

These elements must be zero or ¢ MO's would have 7 ao's and
m MO's would have ¢ ao's.
{ o ao's transform as a' irreducible representation of CS}

T ao's as a", Has a', and (u|H|v) must
transform as a', etc.



Note that this block diagonal form does not imply that M__
does not depend on o electrons — it does!

Following Lykos and Parr:

vo= A@m = @)

Cpler = (2)](E)) = ((m)](m)y = 1
We want

@ wl @b =B, = E + B
with

Ec = ((E)IHUI(Z))

E. = ((n)[le(ﬂ))

Can these conditions be mety 0f course!

Oue solution

=
Q

n
=
—_—
Q
—
+
Ly
~
Q |~
¢

o= o, A
n +n'|T n0+n'ﬂ'
= 1

Hp = S : hcore(u) + % E : ?;:

u=n°+1 L
where
h(o) = (ol-47*[0) - ] (olZ,/R4]0)
A
hoore) = h@u) + J () - K, ()



I, m = farm ) 2 @m
g OM
represents Coulomb repulsion between o and m electrons, and
K = [agmS 2 5 m
gl (m T4 F;; ™
5

represents the exchange term between sigma and pi electrons.
The above separation is exget and one could iterate, first

solving for (L), then (w), etc.

Approximations

1) (n'IKclﬂ) (v'o|mo)

Qr~1

= ¥ Zcuﬂ.cwchcdc(uvue) ~ 0
g MV
X8
Larger terms are when p=v (up|Ad), but Cuﬂ'cuc =0
for an a.o. cannot be both a component of a o and
a m MO!

2) (n{dglm) = g (nm]oo) = g Evcuccvc(nnluv)

E

~ E M, (rfuw)

Mulliken integral Mulliken orbital
approximation population

MY (mm|nn)
/Z\ " pp



MK represents the number of o electrons from
(rihim) = (=|t{m) -] (ﬂIZA/RA]n)
A
- - -1
(mheorelm = (rlt[m « /z\ My (rr i) -y (n|R 7 )

| Bonded atoms

I |~ Non - nearest nei gh bors

!
!
!
|
I

R—
(rrl i) = (n[Rg[m)

o io? _ gyp-1
hiore = %Y g (ZA nAJRA

N’
= of
= ZA

where “K is the number of o electrons of atom A.
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Pariser Parr Pople (PPP} Theory

m
¢, = Y x C..
i AT
(F - ciﬂ)ci = 0
_ T T _
L=1 +» (xu[x\)) 6w
F€ = € » CFC = ¢
- = U LT .
Fon ap T g Pog™ 267 Yuo = 2Puy Yoy
Yoy F (un|vv)
(T, +4 ) Y
- - -1 St Yoy
Uuu uu u or ———E——— -
= - 1
Fuv Buv " 2P0

Buv is a parameter usually chosen to fit spectra after a

singles only CI. More about PPP later.
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GAUSSIAN PROGRAMS

G 70 (IBM)
S,P bases + RHF + UHF

G 76 (CDC)
S,P,D bases + RHF + UHF

G 78 (DEC-VAX)
G 76 + direct minimization SCF
+ energy derivatives (OPT)

+ correlation by MP2, MP3

G 80 (DEC-VAX)
G 78 + CID + CISD + archive

THEORETICAL MODEL CHEMISTRY

REQUIREMENTS

1. Uniqueness and universality
2. Simplicity
3. Interpretability

4. Size consistency (i.e., additivity for isolated

systems).
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HARTREE-FOCK THEORY
¥ o= aD7E XX, Xl
N
Spinorbitals X; = } Chi Yy

Basis Functions w,

Coefficients Cui adjusted to minimize

E = fy*uy ar

RHF THEORY

-
— -
—— 4

closed shell open shell

o
Spinorbitals X = WX{
8

Only one set of coefficients Cui®

Advantage: eigenfunction of s?
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UHF _THEORY

TTE
1

Spinorbitals X = wuu or wBB

o B

[of

Two sets of coefficients Cli» ni

Advantages:
more flexible

size-consistent (dissociation)

Disadvantages:

not an eigenfunction of S2

ROOTHAAN EQUATIONS

g (Fuv— i duv)cvi =0
Fap = HEOTS 4 D B [(uvlre) - k(ui]ve)]
Ao
PAG = density matrix
nl2

- »
? 2. €2 Soi
1
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Overlap : Siw = f¢u¢v dr
. core _ core ,
Core H : Huv j}u H :v dt

wvlra) = ff 8,01 6,(D) }% 0,(2) 6,(2) dr,dt,

MATHEMATICAL PORM OF BASIS FUNCTIONS

Slater : e & , xe 5T , etc.

Advantages: Like AQ's

Disadvantages: (uv|ic) hard

2 P
Gaussian (Boys) : e or , Xe or , etc.

Advantages: (uv|io) easy

Disadvantages: Contraction usually necessary

EVALUATION OF INTEGRALS

1
a2
Boys (1950): uses fuZn e tu du = Fn(t)

o
related to the error functioi.
King, Rys, Dupuis (1976): wuses orthogonal polynomials to
reduce problem to 2-dimensional integrals. Superior for

integrals with d and f basis functions.
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FLOATING SPHERICAL GAUSSIANS

2
Simplest basis (subminimal) ¢ = e ®(TTA)"  £or each

electron pair, e.g., BeH2
H Be "
[_ ) __I
BZOND PAVR

No SCF needed but much searching needed for big molecuies.

MINIMAL-BASIS SETS

Slater type: STO-01d (1930).
STO-NG: give equivalent results.
ST0-3G: is chosen for extensive exploration.

This sets up the

HF/STO-3G Model

EXTENDED BASIS SETS

Doubtle zeta: 2 xminimal

Split valence: 4-31G, 6-31G.
Now: 3-21G, 6-21G.
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Polarized: 6-316%, 6-31c**

*: 4 on Li...F

**: also p on H

Large: 6-316** (suitable for correlation)

also uncontracted (841/41), etc.

STRUCTURE OF SCF PROGRAM

Calculate
nuclear
coordinates

3

Calculate store
—_—
l-e I

|

Calculate store(~N4)
2-e I

\ 4

disc

|

Initial guess read
Hiickel (~N%)
each

AI cycle

ISCF Iterat;;nsJ -«

Analyze
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ENERGY DERIVATIVES (HF)

Closed shell:

3 _ _ R 3 (uv[ro)
3R z Puv * z[Puv Ao uAPvc 1“PuoerA] 3R
uv

UVAo

%
z i CuiCui
i

+

nuc
Wy

uv

Integral derivatives needed but do not have to be stored!

HARTREE FOCK TIMES (VAX)

N=40 15 min
e.g., STO- 36 CgHgF
4-316 C4Hg
6-31G6" CHNH,
N=60 60 min
e.g., STO- 3G CBHIB
4-316 CeHg
6-316* €04

Derivative calculation requires about the same time as

single point = Factor 2.
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Optimization
(Fletcher-Powell)

(Murtagh-Sargent}

Approximately one derivative run per variable given a good

starting geometry.

MOLLER-PLESSET THEORY

oce vir

_ ab ,ab

fyp = Yyp * “22 a5 ¥ij
ij ab

Double substitution corrections:

—_—1T etc.

These are treated as perturbations.

p

H(A) = ZFP+A[H-ZF]
P P

where A = perturbation parameter. If A=0, WHF and ??? are

exact and A should be 1. Expand in powers of A and cut off,

) = B0 4 el 4 z2g(2) 4 305 (3)
R S
HF used in  yps

MP2
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MP2 THEORY
occ vir
(z) . b
B® - a3y Sl
ij ab J
. _ * * 1
(ijJab) = xi(1)xj(2)(;;;)

* [X (1)%(2) - X ()X, (2)] dr,dr,

This step requires integral transformation from (uv|io) to

(ijlab). Simple, but O(nN*) compared with O(N') for HF.
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MOLECULAR PROPERTIES FROM AB INITIO SCF

I. ENERGETICS
II. CHARGE/SPIN DENSITY

III. "POLARIZABILITIES"

ENERGETICS
A. Geometry
1. Isomers
2. Rotomers
3. Reaction intermediates
4, Transition states

Stationary points, AU =0

B. Reaction Energy
1. Barriers
2. Isomerization
3. Rearrangement

80U = U(x,) - U(x,) ¢ aU=0

C. Normal Mode Analysis, K = (BZU/Bxi:)xj) @ AU=0
1. Vibrational levels
2. Force constants
3. Normal modes

a. vibration

b. reaction

D. Excited States
1. Electronic excitation
2. Ionization potential

3. Electron affinity



Unrelaxed "Koopmans"

IP = -¢g; ¢ = Det{1'2® ...i'.. .}

EA = -& p o= Det|1‘z2 A
= a = ...(7) a
P - ~ R

AE(®in) = €y " €4 Jia
i) = . -

AE( i) €y " €4 Jia + ZKiu

Reiaxed orbitals separate SCF on each state
Rk
AE = U (RT) - U(R)

vertical or adiabatic.

II. CHARGE/SPIN DENSITY

e = ptPg = 1 P55 £if;
(p,-0.)

o, = Lal%)
(NN )

A. Population Analysis

pe = I Pipjn 81a85m

where

atomic orbital

o

= Bond order gia *7 B

iAib jB

iaia t ;; PiAjB SiAjB = Mulliken population
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B. Moments

1. Charge

@ = T I, ORy - e[t ] QY dr,...dry
o 1

&

Iz, @R - ¢ [ Q) p(x)dr
[+1

where & = X,Y,Z dipole moment

& = 3x*-r?, 3¥*-r?, 3z%-R°
3XY, Yz, 3XZ quadrupole moment

&= rAl diagmagnetic shielding (also 3U/3ZA)
&= xA/ri, YAITE’ zA/rR electric field
Hellmann-Feynman force
& = xAyA/r; etc.
(3x; - r;)/r; etc.

firld gradient "q" (e*qQ quadrupole coupling)

-

& SEin
@ = [ (r) Br)ar

"

&

8 : . .
—% G(rA) isotropic Fermi contact

@

(3x;-t3)/r; etc., anisotropic



D,E (spin dipole-dipole part) zero field splitting
3. Derivatives

- IR intensity, u = dipole moment

Finite difference

a(u) o (IJ)lXAd—G - <u)'xA

BXA 5

4, Vibrational average

‘), = f<@>x w‘z”?(x) ax
n

ant = SO Vg Yy X

n
(n) (")

ST ,

Hppt = 7xy (nleln )

e
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ITI. POLARIZABILITIES

_ o]
H = H +).AA+ABB+....
y(n| A+ L. D)
1 [n A
T =>__':
n Ey ~En
E = Ej+E. +E)+.
E, = ' A+ .. 0
2
) COJA A + Ll My
E, =z
E -E
n o] n
A = A°+A1+...
A_ = (0]A}0)

C0|ApA...[n> ¢n|AJ0)

Ap = 1 COJAIn Y (n|a A+ . f0) +
E_ -E
n [0} n
E = Eo+§ AAg * 5 LAy Keg

(A)Y = Ao+]§KAB Ap



ColA)sY ¢nlBl0Y + ¢0|Bln? ¢(njAj0?

KAB=§~ E, - By

C0lA|n? (n]A]O?

AA

n Eo'En
K, = _2E _ A}
AB 33y aAB

One electron operators

N .
A =Za(i) , B =zb(i) , etc.

i=1

a B... occupied orbitals

kgm... virtual orbitals

talalk) (kibla>

KAB E%% €y €%

Finite perturbation theory, coupled Hartree-Fock

~ o
E = F(p)+>\AA+ABB+...
o # o°
(Aol - A
1
Kpp & ————

Ag
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Example polarizability

AA = +E (-u)

AgB = Ey(-uy) , etc.
= _.a__ - M

o x 3, ( u,
= 2 ¢

axy aEy ¢ ux)

Polarizability derivatives (Raman intensity)

da
-2X  finite difference
axA
NMR Shielding
ert = % 2(-13 + L K')Z vk ] Vi
p L i c’i 3
J J
'f >
. X7T.
A = B xT, + 7 g8 MM
] [s] 3 MMM 1‘3

A3
Gauge invariant atomic orbitals
T
-iAyrtr/cC
e 81M



NMR Coupling
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-+ >
I, ¢
2ph M KM
pert = 2 _E—gMBM s
, kM
> > > > 2 - -
3053 Ty " Ta) - Ty Sy Iy
+ g8h SnBM G
TxM
BT pex 2.7
v oggeyfylt 55 STy Sytly
dominant term
BOND LENGTHS
(calc)
¢ .100 % F - 1.33
1.128 (expt) 1.44
1.06 N o 1.160
1.10 1.207
F 1364 /F
1.575 N\, _1.303
1.217
Typical AB - 0.04 R

AH - 0.01 }


file:///1.364

H H H H
102.4 132.4
03.7calc 29.5
C
3B 1A
H H
94.8 HOO 111.5° HOOH
102.5 113.7°
0 G

typical #2°


file:///102.5

ENERGY
DISSCGCIATION ENERGY
co 11.1 eV 7.9
F2 +1.35 eV (expt) -1.37 calc
0, 5.08 eV 1.3
N2 9.9 eV 5.3

ISODESMIC (retention of bond type) error 5 kcal/mol

co, + CH4 + 2H2CO 52.2 kcal (calc)
57.9 (expt)
Eydrogenation
HZO + ZHZ -+ CH4 + HZO -63.5 calc
-57.3 expt

Hydrcgen Transfer

ZCH, + CyH, - 2C,H, -13.0 calc
-17.2 expt

ISOMERIZATION ENERGY

F H F F
\ / \ /
C=C — /C:C\

H/ \F H H
AE ¢culc - 0,26 kcal

Requires near HF limit basis

expt - 1.2




ENERGY BARRIERS

C,Hg rotation 3 + % kcal
Rotation (in general) 0.5 kcal SCF limit
HZ + H exchange 9.8 kcal (exact)
24.4 kcal SCF
/OH
C i —» COp+Hz 81  kcal SCF
\O/H (allowed) 68  kcal CI
IONIZATION AND EXCITATION ENERGIES
Formamide Koop Expt 1.p.
HCONHZ n 11.9 10.3
m 11.5 10.5
™, 15.6 14.2
[+ 16.5 14.8

Urea (NHZ)ZCO
unrelaxed ASCF

kS 7.6 5.9

3wk 7.6 6.0

n ion 11.2 8.4

¥ ion 10.6 " 8.6

'nm# 7.9 6.1

Lrn# 11.2 10.1
Formamide

ng# 6.2 4.5

Srw

Inm

Inpx 9.8 8.2

CI (or expt)
6.8
6.7
9.1
9.4

(7.1)

(5.3)

(5.1)
(7.3)



FORCE CONSTANTS

LiH 1.10 {calc) 1.03 (expt)
NZ 26.1 23.0
CH4 sym. stretch 5.7 (calc) 5.5 (expt)
t stretch 5.5 5.4
e bend 0.64 0.58
t bend 0.61 0.54
3%E
H2 — 0.3814 calc SCF 0.3701 exact
aR
3
5E _1.2686 -1.2703
aRr?
y
2E 4 300 4.224
3R*
HZCO €O 13,66 12.90

CoO-CH 0.79 0.74



TRANSITION STATES AU = 0

One negative force constant. No experimental data?

Controversy
2C PAAN
¢ c c Cc
¢t —
e C\c/c

Symmetrical or

O (\ .

X




DIPOLE MOMENT (DEBYE)

SCF cI Expt'l
LiH 6.002 5.853 5.82
BeH 0.282 0.248 -
BH -1.733 -1.470 --
cH -1.570 -1.427 -1.40
NH -1.627 -1.587 --
OH -1.780 -1.633 -1.66
FH -1.942 -1.816 -1.82
du  LiH 0.23 0.30 0.29
3R HF 1.7 -- 0.95
q
SCF Expt
LiF -11.8 -0.128
Q
co -1.81 -1.63

OSCILLATOR STRENGTH

C2H4 Lag* SCF  92.113
Expt 0.34
Transition Moment
H, a; > Ty 0.367 (SCF) 0.360 (expt)
> agau 0.55 (SCF) 0.50 (expt}

Large molecule canonical orbital usually meaningless.

IVO has 50% error, ASCF difficult; has non-orthogonality
problem.
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FERMI CONTACT

SCF 0 Expt ?

Planar = radicals

30 0 lv(o)|? AL 0
SCF Expt SCF
B 0.70 0.72 AL 0.00
0 0.05 0.02 0 0.08
Anisotropic
B 0.34 -0.06
0 g.19 0 or 0.8

Na atom, Q = 217G (SCF}, 316G fexpt)

cH, B fw(o)}?
SCF expt
_ 0.214 0.22
H 0.007 ~0
expt
D 0.763 0.76

E 0.062 0.052

Expt
0.7



STATIC POLARIZABILITY

3

Ny o a, (ao)
calc 14.79 9.75
expt 15.¢2 10.32
HZS calc 3.47 expt. 3.67 mean a Ks
HF & calc 4.98 expt 5.60

oy oy 1.45 1.49
HZO calc 8.68 expt 9.82
co calc 2.43 expt 1.9%

J _NMR COUPLING

CF in CHSF calc -98
expt -162
HF calc 784
expt 530

Coupled SCF (FPT)

HH in CH4 -6.1 calc -12.4 expt
Geometry HH in C2H4 12.9 2.5
cis in C2H4 6.7 11.6
trans in C2H4 14.9 19.1

Sum over ''state"
HH in CHy -58 coupled SCF FPT
HH in H, 60 calc 43 expt  FPT



Very sensitive to basis set choice.

CH in CH 319 calc , 125 expt

4
(minimum basis FPT)

NOTE: FPT-INDO works well, ab initio uanreliable!

Shielding Constants 13¢
calc expt
C,Hg - 7.4 - 8.0
CH5F -65.4 -77.5
C2H4 -130.8 -125.6
H,CO -199.6 -197

2
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THEORETICAL OBJECTIVES: DIFFERENCES IN ENERGIES

e.g., Bond energy
Barrier height
Excitation energy
Ionization potential
Electron affinity

Potential surface
A small bias toward either limit causes a big change in the
AE. Theory must treat all states at comparable levels of:

Basis set
Orbitals

Level of CI

REVIEW — ELECTRONIC STATES

XY = EY

ZaaZoss
#(1,2,...N) = Lh +X F£— ¥ T ¥ p
e M

e>e' Tee' M:l‘jl' MM?'
N
xeﬂ

where M = nuclei, e = electrons

I

M ™

BORN-OPPENHEIMER APPROXIMATION

¥(rg...,Ry---) = %fl(re...) FE:C(RM...)

electronic vibration
wave function rotation
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Solve for wel as a function of geometry

_ e el
wl (r .«.) = Ely; (re.¢.) ground state
xok Yot = St first excited state
; \ Vy(R)
E \_
V,(R)
R Vi(R)
WAVEFUNCTIONS
wez(rl,rz,...rN]
HARTREE-FOCK APPROXIMATIONS
(Also molecular orbital)
p(1...N) = 2i(¢,0)(4,8)(¢,0)(¢,B)...}

where ¢{ is a Slater de*erminant, $; = molecular orbital,
and a,f = up and down spin. Apply variation principle; gei
HF or SCF equation, HHF $; = ei¢i. This is a one-electron
equation but gets N eigenstates.

HF = h+ 7 27, -k
§ T

where the ZJj is the Coulomb operator and Kj the exchange
operator. The HHF depends on occupied orbitals, therefore

solve iteratively.
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General Advantages of HF

1. Orbital interpretation ~ useful for qualitative

reasoning.

2. Good for qualitative interpretation of PES

(photo-electron spectroscopy).

General Problems of HF

1. Does not describe bond breaking or reactive

intermediates.

E HF

EXPER

2. Bad for excitation energies,
2. HF G5 is a triplet, not a singlet

b. Systematic bias against M

Ni Exper HF
gto 1.8 eV 5.6 eV
slq® -0.04 eV 1.8 eV

s%q8 0 0

3, Basic problem with HF (weakly overlapping radical

orbitals), i.e., broken bond,



9/10-5

9, (18 (2) = (X (X, (1){Xy (2) + X,.(2))

(XgXy +XpXp) + (XpX. + X X))
e R S e
ionic covalent

therefore foree ionic character. How does system respond

(closed shell case)?

SA(111): ﬂ) ®

3 —
-

VAN

A
— /7,
SA(100): ’/ ~o 7

Guideline: When can MO theory be trusted? (band theory,

tight binding, TGHT) — When chemical ideas would lead to
doubly occupied orbitals. Therefore doa't trust SA(111),

SA(IOO), or SA(110), but reconstructed GaAs(110) may be OKX.

©

As
|>IGZ - N
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Hartree-Fock Wavefunction (Molecular Orbital)

Bond energies (De)

Theory Experiment
CH4-CH4 72.1 96.7 kcal
CHS-OH 62.9 98.8
HO-OH 1.0 52.2
HZC=CH2 123.3 180.3
HZC=O 105.5 182.1

(Good basis, DZd)

Conclusion: HF not useful for bond energies

Approximate versions HF

1. Extended Hiickel theory, tight binding CNDO, MINDO,
MNDO. Semiempirical parameterized to fit one
property or another.

1/3

2. x_, use p approximation to exchange terms.

[+3
Muffin tin approximation not semiempirical.
3. Pseudopotential approximation to replace core

orbitals.

Advantages of Approximate HF

* (Good geometries for simple (closed shell) molecules
* Simple prediction of photoemission (using

Koopman's theorem)
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Disadvantages

* Even exact HF theory has serious deficiencies for

our purposes.

SW-xo (Scattered Wave)

Approximate k as ap1/3, where p = electron density and

a = parameter (~0.7).

Muffin tin approximation:

HHF

is spherically symmetric within sphere about each nucleus
and constant between spheres. The advantage is no atomic

basis set (but do need scattered wave basis). Problems are:

a. Do not get total energy, therefore cannot get
geometries and potential surfaces (use of Z €5

i
leads to linear HZO; 0 not bound to Ni surface).
b. Bad PES unless muffins overlap (violates theory).

c. Spherical averaging bad if atom not symmetric.

Semiempirical

Use minimal basis (one function per AO). Evaluate (XuIHHFIXv)

semiempirically. Do not get total energy, therefore there is
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a problem to get the geometry.

For the extended Hiickel theory (BHT), put average two-electron
terms into one electron part,

_ HF, ..
a = <xulH [xu> same atom
HF .
g < <Xu]H I%,> adjacent atoms

For iterative EBHT (SCCC), put charge term into a.

For CNDO/2 (INDQ), evaluate largest Jij (atomic Kij) from
theory and get a and B semiempirically (to fit theory).

For MINDD, MINDO/2, MINDO/2.5, MINDO/3, MNDO: it is the

same as CNDO but choose parameters to fit experiment.

All have serious problems with transition metals since there
is not enough experimentalldata to fix all parameters. All
are bad for reaction intermediates. MINDO systematically b;d

for closed vs. open.

Second Problem with Approximate HF

Eiotal = Ep* By * B

where EO is the nuclear-nuclear, El = electron-nuclear,

and EZ = electron-electron

feg = By + 2
i
the ¢, are HF one-electron energies (Koopman's IP), and 2E2
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double counts electron-electron; therefore,

Etotal = L € * (Eg"Ep)

i
Many methods calculate only €50 therefore, cannot get Etotal'

(Most pseudopotential calc., most tight bonding, therefore,

cannot get geometric structure. Example:

H . .H ic =ci
HG ; Ca n

C ~—C \‘C ¢

H H H y

without a barrier. Experiment: benzene more stable than

3 HCCH by ~4 eV and these are large barriers in both directions.

GENERALIZED VALENCE BOND (GVB)

Solve for orbitals while ineluding dominant eleetron correla-
tion effects. Basic wavefunction has one ordbital per electron
(not two electrons in orbital), but orbitals allowed to
overlap. Normal bond pair qualitatively similar to valence
bond wavefunction. Two orbitals, one on each atom. 4b initio

(no adjustable parameters)
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CORRELATED WAVEFUNCTIONS

HE 1L two electrons in
~&- —— same orbital

GVB

Correlate motion of electrons along axis (left-right correlation)

ADDITIONAL CORRELATION EFFECTS

i) (two cases): m

(call this up-down or y

starboard-portside or

angular correlation)

ii) (call this in-out or CD

tight-loose correlation)

Generally four important correlations include all four in

GVB calculation (5 orbitals to describe one electron pair),

denote as (1/5)
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BEST SIMPLE WAVEFUNCTION

W(1,2) = 1004, (1)¢,,(2) - Chooy(1)ogy(2) left-right
C3¢20g(1) ¢2°g(2) in-out
- Gt (D00 (2) - C4¢ﬂuv(1)¢nuy(2) angular

Error = 2 kcal at Re or 0 kcal at R=w, This is a (1/5)

calculation.

CORRELATION EFFECTS (kcal) WITHIN A BOND PAIR

-
O

Elect.1

O @
Elect.2 (:::) (E:E)

H;C-CH, 8.7 2.0 1.0+1.0
H,C-OH 12.8 1.6 0.9+0.8
HO-OH 29.8 1.1 0.6+0.5
H,C=CH, [o] 5.8 1.8 1.1
[r] 17.3 1.3 0.4
H,C=0 [o] 8.8 1.6 1.0
[w] 23.0 1.1 0.5

All these correlation errors disappear at R=o.
Conclusion: DO GVB (1/5) calculation on bond being dissoci-
ated. Four intra-pair correlations account for 50% of HF

bond energy error.
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ADDITIONAL CORRELATIONS

Hp
\C

When the electrons in bond C!—lé1 move toward H2 then the

—+Hd

electrons in bond CHb move toward the C, But at R=« this

correlation disappears. Hb

\
-0 Ha
A

These interpair correlations generally increase the bond energy.

Cross Correlation Effects

(a) Double Bond (> =<)
o bond pair (>+<)
m bond pair (> «<

Correlated motion: HZC = CHZ’ 6.8 kcal; HZC = 0, 9.3 kcal.
(b) Adjacent bonds

Simultaneous correlations

H4C-CHjy cc-cH 1.2 kecal %6 = 7.2 kcal
H,C=CH, CCo-CH 1.0 kcal %4 = 4.0
CCr-CH 1.2 %4 = 4.8
H,C=0 COo-CH 0.7 %2 = 1.4
-OM 3.4 *1 = 3.4
COn-CH 0.7 *2 = 1.4
-OM 4.0 *1 = 4.0
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Typical GVB-CI: CC bond energy H3C-CH3

H /H
TS5

Wy [ BN
\(1/5) HH
(1/2)— 6 Cases

\ o 2—:

thus GVB is (7/17) (7 is the number of electron pairs, 17 is
number NO). After optimizing all orbitals do CI (quadruples).

Within GVB space (17 orbitals), same calculation for fragments.

Generalized Valence Bond GVB-CI

Bond energies (De)

Theory Exper
CHS-CH3 93.9 96.7 kcal
CH,-OH 98.0 98.8
HO-OH 56.4 52.2
H2C=CH2 171.6 18G.3
H2C=O 174.6 182.1
0=0('4) 98.2 97.6

(Good basis, DZd)

Conclusinon: GVB-CI satisfactory.
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Typical calculation

\
\
t:;a -—— b
Ring opening:
g op g »
7 . \F
7 A Y
Basis: Dzd = 6& B.F. 4
GVB: (i) Include all four correlations for bond being

broken (0-0), therefore, 5 orbitals/1 electron
pair = 1/5
(ii) Correlate all other valence pairs as in normal

GVB (2 orbitals/l electron pair = 1/2)

Four CH
One CC
Two CO

Four O 1lone pair ,
therefore, 5 + 2 x 11 = 27
optimum GVB valence orbitals,
Think of this as 12 occupied MO's plus 15 optimal correlating
orbitals. GVB-CI: do high order CI (quadruple excitations)
among GVB orbitals (impossible for full basis).

Result: Dyo = 14 kecal for ring opening; therefore,

24 kcal strain energy in ‘ |
-—0

(exver. 26 for [:] and [:ﬁ )
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All accurate methods involve configuration interaction.
HE-CI:

1. Calculate set of optimum occupied orbitals

2. Select set of unoccupied (virtual orbitals)

3. Allow single, double, triple... excitations from
occupied to virtual orbitals (usually double
excitations)

Comments:

a. No reliable method of using less than all virtuals
plus all occupied valence orbitals

b. Often do excitations WRT one configuration.

This is biased against state with large correlation
error.
D D~ YD -
small correlation large correlation
c. AB + C + A+ BC (planar)

Doubles WRT one dominant ~40000 configuration.

CI (HF + S + D)
Include all configurations involving single and double

excitations

~ I 13
Vo= ¥ *2011 b +ZCIJij ¥i3
Ii 1,7
i,j
1. No reliable method of using less than all virtual

orbitals and all valence occupied orbitals, therefore,

magnitude of calculation increases rapidly with size

of system.
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Inconsistent if number of electrons or bondedness
changes. For example, He + He: at R=« we need S+D
on left He and S+D on right He, therefore, for

He, we must use S+D+T+Q. If we do only S+D for He,,
do not go to proper He limit at R=w,

R=e CH3 +H requires doubles c¢n CHS; therefore,

require selected triples in CH,. If we do all triples on

CH4, this does not lead to proper CH3 at R=ew,

GVB-CI
1.

Calculate orbitals self-consistently while including
dominant electron correlation effects and generalized
valence bond.

Do high order CI (e.g., quadruple excitations) among
GVB orbitals and low order CI involving virtual
orbitals.

GVB orbitals localize into bond orbitals in different
regions. Thus we can identify active GVB orbitals
for high correlation and inactive orbitals for medium
correlation.

Active: change in process (bond pair being broken)

Inactive: Not changing
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® O—oO
“xample: HF-CT !

68 basis FNS (DZd)
16 molecular orbitals (12 valence, 4 core)
52 virtual (unoccupied) orbitals
Singly excited determinants, 1.2 x 103
Doubly excited determinants, 3.9 x 105

Triply excited determinants, 2.0 x 108

Quadruply excited determinants, 2.7 x 1010
(Need at least triples for bond energy; practical level is

~3 x 105.)

Exanple: GVB-CI

Optimize orbitals with dominant correlations present.

Therefore, 4 core + 24 valence (12 valeuce in HF).

Residual correlation energy

Quadruple excitaticas within GVB; pairs + 1221 configurations.
Cross terms + excitations to virtuals: 8000 to 15000

configurations. Includes major effect of 2.7 x 1010 configs.

Correlation-consistent CI {CC-CI)

Active orbitals: changed directly in the physical process
being studied, the CHa bond pair in our case.

Demiactive orbitals: localized adjacent to the active orbitals
and hence responsible for differential correlation effects.

The other three CH bonds in CH4.
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Inactive orbitals: other orbitals.
PN
C—H
N
H W Wy

CC-CI: All double excitations out of active orbitals times
all single excitations out of demiactive orbitals. Thus,
CC-CI includes selected triple excitations, but does not
include all doubles. CC-CI increases very slowly with

increasing substituents.

CH4 — CH3 + H
Number
De config. Error

HF 88.3 kcal 1 1.03 eV
CI (HF+S+D) 99.5 769 0.47
GVB 106.4 S 0.215
CC-CI 111.8 1033 0.016
Exper 112.2

Problems with GVB: Must use finite complex, therefore, most

useful for cases with localized interactions. Can't calculate
modification of bulk band structure; is tedious to get photo-

emission. No reliable semiempirical versions.
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2

l | > Loyeo® + H,0  OH = 45 keal

therefore concludes that decompositinn must require S «» T

3 ~
Dewar MINDO/3 concludes that "0, » 10, + || » [ ~o0—0

intersystem crossing. The problem is that MINDO is biased

toward ring geometry by ~20 to 30 kcal., e.g.,

negative

C )
eg. 11"'0"" [:O OH is 22 kcal too
C

Cc—0C c—C D=45 kcal, therefore,
Eigh ‘ | >/ \ MINDO = negative strain
0—=©0 O¢ O of +7 keal

Hinze CNDO-MCSCF + empirical E correction concludes

Hz‘:-*_-CD HzS:"‘~c>
N \

Problem with those calculated - CC bond 58, experiment 89.

+ 00 bond 153, experiment 53.

Comparison GVB-CI vs. MINDO/3 AH (kcal)

GVB-CI MINDO/3 Exper.

>=:< + o(sp)——}o -79.8 -105.3 -83.
Y=¢ + 'Oz"”j}:—_g -36.9 -65.5

>=< + 'Oz-»j;o——o +16.5 -16.1
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-50.2 ; MINDO/3, -27.5

|+ 2n,00 (5p+sp) GVB-CI,

2H,C0 (SO+T1) GVB-CI, +21.9 ; MINDO/3, +44.4

BASIS SETS

MBS (minimal basis set)

One PN per atomic orbital, therefore 5 on C or O, 1 on H

(e.g., STO-3G)

VDZ or DZ (valence double zeta)
Two FNS per atomic orbital (ailows contraction upon

bond formation), therefore, 9 on C or O, 2 on H.

DZd: Add d FNS on C or O,
Add p FNS on H (if break CH bond)

This aliows polarization of bond orbitals

where ¢ = GVB orbital, u = sum over all centers, and

X = basis functions.

Effective Potentials, replace Ar core of Ni with effective

potential Vcore' Therefore, reduce system to 10 electrons.

Get Vcore from all-electron ab initio (Hartree-Fock) calculation

on several states (6) of atom. Leads to ab initio result for
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molecules., (V completely determined by atomic calculation,

core

requires energies and shapes to be reproduced by Vco:e.)

Comments: pseudopotential calculation

Be (15)2(25)2 .-‘__,_-—-~\~ /’—-h-\~____

b )

HE: A (6150) (914B) (6,40) (85.B) ‘\i
\l—\f\/w—/
core valence

Hydss = €259

HN = h+ Vcore + Vval
=
2557 Kas

215Ky

where Jls is Coulomb and Kls is exchange energy

Pseudopotential: find VCore to replace core electrons.

Pseudopotentials.

Note, let by = by t A¢15

(6750) (97 B) (9558) (0, 8) = L(0;,0) (81,B) (dya) (¢yB)

thorefore, can mix b1 into $,5 tO get new ¢y, without

changing energy or properties. Usually choose 1 3 by is smooth.
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Problen: consider density of
. 2 2
orthogonal orbitals: p = 2¢15 + 2¢25

core valence

Nonorthogonal orbitals: <¢N|¢15> =S #0

p o= 20y, + 200 + Ao
x core valence
\/ v \
Bo = - =27 by ey - sep)
s

1-
-
ap + core, - valence

Pseudopotential calculations usually assume p = 2¢5

val
(summed over valence). This is wrong, it leads to charge too

small in core region and too large in bond region.

Another problem: valence-valence interaction
LTI i & T S S
han 1 . E le: J .
changes valence xample: Jpo ¢ # JV,V

The correct HF Hamiltonian involves ¢,5 in complicated way.

Ps 4,

/

self energy different
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|2s> = lz:> A\l

HF orbitals
Pseudo-orbital

Error in CHF approx.

0.02

O

leV

Error in Hartrees
)
o
3
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(b) Ni-C PI BOND
xz PLANE ONE xz PLANE ONE

NI 3d
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Ni, Qualitative picture:

u)lea? — ustea’
left right

Niy GVB ORBITALS (35 STATE)

A. 43-4s BOND PAIR

45-45
BoND

45
GR ) ¢

s,

/ \om:
1’ (o)) .
P il .

! K
3 i/’
~

(9]

0. 38,1, PAIR E.308,:.,2 ORBITAL
Two 3 d 11 ONE
A 3::‘5 S \\
o l

=30

on left NiT

1.0

on right Ni
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AB INITIO EFFECTIVE POTENTIALS

1. Require shape of pseudo orbital to be unchanged in

valence region. Worbiﬁal
e

2. Require that valence-valence interactions be unchnaged

a. J25,25 = Y25,75 ¢ KZs,Zp B

75,7

(ACE) JZS,Zp = J_Z_S,_ZE’

b. Require the combination entering the valence
(SHC) Hamiltonian to be correct
3. Find smooth core shape to satisfy above conditions.

After choosing smooth pseudo-orbitals, find effective

potential for core, such that

Hyby = eybq (ey from ab injtio)
n
where
HN =h~+ Vcore * Vval

(h is one-electron, vval is valence Hamiltonian. Do this

for lower states, e.g.,

Ga: (a) (1502 (25) 2 (2p) 8 (3512 (3p) O (34) 10 (45) 2 (ap)
e

cores
(b) (core) (45)1(4p)?

(c) (core)(4s)2(4d)1
(@) (core)(4s)2(af)?!
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CARBONS ORBITAL.S

| 1 1 1 J

o2 I
¢ Q833 0667 2500 3333 4.d67 5.000

R in Bohr
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Arsenic effective potential

..b
(]
1

iy
o

Potential (Hartrees)
N
Q O

{
re
O

T HL 1 |

1 ! | |

®)

0.5 1.0 15 0 725
Distance from nucleus (Bohr)
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Example, Ga

~

Vs(r)Ps + V'pPp + Vde + Vir)

v

~

where PS = projection operator for 2=0, WRT Ga center

Pp = projection operator for 2=1

ﬁd = projection operator for 2=2

Vs’vp’vd = repulsive (Pauli principle)

5 1.136 -2.7151° -0.96572
V(r) = - ; - —'-r—*‘ e - 1.429 e
13.119 -1.884r2 -1.858r2
v (r) = 2119 +7.082 e
s r2
s 106 -0-449r7 -0.45172
VP(I') = —rz— e - 0.950 e
-0.445r2
Vy(r) = 0.906 e

States of atoms: error € 0.01 eV

States of molecules: error < 0.1 eV

Example, CCl,

Triplet
Singlet -k -~ s glet
ing C (), (=>oc inple
ab initio effective error
CC12 potential
singlet 2.233 eV 2,238 eV +0.005 eV
triplet 0.820 eV 0.824 eV +0.004 ev

singlet 0 0
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EXAMPLE: TIMING

Ab initio 26 min IBM 360/91

Effective potential 26 sec IBM 3032

RELAYATION ENERGY HAGaAs

og T T T— 1
—0.2 A@ —1
H7 S
-04 / \H i
> H—~ Ga i
8 "Oné \H
>
Po-0.8 ) -
2 SHC
W -y.0p- \g\ A
-2 AblInitio 7
~-14 1 l l L 1 i
O 5 10 15 20 25 30 35
Angle (degrees)
ab inttio Eff. Pot. Error
Q 25.927 25.559 0.368 Twist angle (deg)

Emin(cv) -1.093 -1.0727 0.02 eV Relaxation energy
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Example: Si atom (35)2(3p)2
hybrid (3s)1(3p)3

Four singly occupied orbitals, therefore four bonds
(tetrahedral). Crystalline Si: four bonds to each Si
(tetrahedral). Si surface: three bonds to each surface Si,
therefore one electron in hybrid orbital pointing away from

surface (dangling bond)

. 7 N,
Si - top lzxycr\ /St-— S'\ /5‘—5i\ /
St-botom g s Si—si Sj— Si
Yer o/~ \}, / \
-L'Si ‘\\ i— Si Si—- 5| 5 —
| { \ /,'/(\ \\ 7
Top v e\‘/«/ Si—5—8i “\_ Si— S Si— 5i
v /N Yoo o\ \
_T—S| ) 7l-—-fﬁ/) Si—S5i Si—
N\ (X /
SIS _ -7 Si—si S—3i
[ (:‘l |',:) ll:"
Side view X X

{ |
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£ Si(S:Hy), DANGLwG GoND o02QITAL
o
-
g— 6.0
5
0
&
mn
[4.]
=z
o
=z
[a
= SurFAc]
i AB
S AtomE
~ I
. | |2MD
- l LAYER
=
& |
=
& l 320
g | LAYER
@ 6.0 |
y —s‘.lo fC-CRB+AC RS 6.C

i %;”CONTOUIZS" A=0.0! , = -—0,12 71O +OQ,\P

\ . Zoor
H=Si—S5;
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RELAXATION OF SURFACE Si

THEORY

Y 0.08 A bou7 R v0.38 &

Q4

yd “:2/ v ‘“;07 ,//, ‘iﬁv/

Nevirai Negativc Positive
]or\ on

EXPERIMENT (after theory was published)

Neutral Neutral
2 x 1 {MBnsch)

0.12 = 0.04 & One Si +0.16 R
One Si +0,00 &
(1 x1 stabilized with Te) Average displacement - 0.08 R
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GaAs RECONSTRUCTION AND INITIAL STEPS IN OXIDATION
IDEAL SURFACE

Hlﬂ

1

n e

Top layer —= As/ \A -~ Ga\As/ o

&, /g\ /3

Second layer a

6a
As/ \As/ \A/

H
NMode! Ga fis: H \A/ a\H &a As, W4
Ty
Model Ga, As_ ¢ H\A_ /ea.\&s/u Ga,Rs; Hg
H W
0 A

G"a
Mode) GazAs]: H/ 6_5/6 Ny Ga, Asg Hy
R
Ll H
é —

G
Model Ga, As, W N as” a\A_g/H Ga,AszHy,

il
T
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GEOMETRY VARIATIONS

Fix second layer. Move all As of first layer same.
Move all Ga of first layer same. H: use standard AsH, Gal
distance. Orientation determined by virtual position of Ga

or As which is Tepresented by H.

tetrahedral
(not reconstructed)

l

°
1 T relaxation energy
energy

I 1@.\/ (drives reconstruction)

0.

\oo/

1
043& Ga mokion down
O-'Z.ZA As motion up

O O

(Note: surface relaxation is 0.55 eV/surface atom (large)

As—Ga As—Ga  Toplayer
GaAs Sideview :
|

a—g a 2na layer

Unreconstructed

As

{
1
|
%
~
Reconstructed Ga! / Ga
4 8/ \a——g ™
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Model GzGa GzAS GyGa GyAS Twist angle
Ga,As 0.43 -0.22 0.48 0.37 25.6°
GalAs2 0.41

Ga,As, 0.44

Exper. 0.45  -0.20 27+ 2°

0.47 -0.23

Conclusion: 1local model describes essence of reconstruction

in GaAs. (In progress, GaP, AfAs, ALP.)

Empty orbs 0

CHARACTER OF WAVE FUNCTIONS \ As
a- n

) W& ~
Geometry = angles at surface atom \\/

As: 90, 90, 108 -+ 96° average

Ga: 125, 125, 108 »119° average
Isolated trivalent molecule: 93° AsH3, 120° GaH3.
Conclusion: surface reconstruction dominated by local

valence effects.

CHARGES

Ga-As bond pair, 0.3 electrons from Ga to As (Mulliken population)
Ga: 48% P character, As: 84% P character.

As lone pair, localized on As, 33% P character.

Note: geometry of surface determined by local valence effects.
Therefore, can estimate effects from experiment or theoretical

study of small complexes.
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Haw—}
2
H2
As-Ga BOND PAIR
7.0 Y /
Vol
} /As
z /
/
/  [PARED
-0 / [ ]

10.0
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As LONE PAIR

[
\

H4u..h_,A@ \\

H3me @ 5\ z
H2

10.0

¢
\\'@
Hl
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OXIDATION
0 _ATOM 5 2 2s 2z :LF>‘4
0 A1OM (5% (25)* (2P)
\ZP,\
2Pz
\Z.Py
0, MOLECULE
Resonant
conﬁgura’c'.on
biradical -— triplet lowest since orbitals orthogonal

L triplet
and singlet

' ' _ Ground
()

° Exciked

-Qo G ) states
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Conceptualize O, as ‘Ag

»e 21:1 k:(;P\L_ =:1 CN/

321;
two singly occupied states, therefore triplet and singlet.

These two orbitals orthogonal, therefore triplet lower.

BOND ENERGIES

30, o bond » 47 keal

7 bond + 71 kcal (includes resonance)

1O2 m bond 22.5 kcal weaker
Bond H to 20,: Normal H-0 bond = 104 kcal (H-OMe or H-OEt)
no bond good bond

Result: lose most (57 kcal) of resonance); therefore
D(H-Oz) = 104 - 57 = 47 kcal

Bond H to HOZ: Lose remaining 14 kcal (71-57) of O bond;
therefore, D(H-OZH) = 104 -14 = 90 kcal. Visualize HO2 as

. Excited state

G 8 ?—" Q



a D) 4—1 Repulsive interactions
S hot cluse o form bridge
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{Foe RAPID OXIDATION
AT LOW TEMPERATURE
PUT O, INTO DISCHARGE .

5- .
GET © ATOM AND EXCITED ©,]) ilicon

doxide
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Add OZ to Si surface, and what do we get?

Bridge O"O\ Atoms o o
| \
Si
y/4 \/5 \/ \/\\\ ///\/ L \/SL N
Si Si St Si St
l [ l \ ! l
Silicon
inSertion dioxidey ?
N /SL"O\ /5'- \/\\\ ///\/0/5‘—\? (@) B\ N
StooSseos gl sl T
St 8 ©

Experimentally it is possible to form one or two intermediate

surface oxides before obtaining fully oxidized surface.

EX"°RIMENTAL EVIDENCE FOR PEROXY RADICAL MODEL ESL @
n chemisorbed O2 on Si. q '
(<)
a. XPS (Rowe): initial state chemisorbed 02, two 015 d

signals of same intensity but different chemical shift
b. High resolution electron energy loss.

3 vibrational modes with dipole

(component) — to surface

Peroxy Si0 stretch

£
Si00 bend / o

00 stretch
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Bond OZ to As

Ground state 0, requires singly occupied orbital

N\ S
T/ 0 Y~ ’ 1 34A
) CX 1ze° O

but as orbital is doubly occupied,

GaAs )Asc@
forces 0, to bond \ 3

1. Energy is 1.6 eV higher than free 2, therefore, no bond.
2. Chemical shift of Ols orbitals is 3.4 eV {disagrees with
experiment).

Conclusion: we do not get a chemical bond of 0, at As

: z loose complex (bond 0.2 to 0.4 eV)

no significant effect on surface

H\ o Bond
ASG (+°) Basis Wavefn. Raso energy
f/ . bz HF 1.748  -0.55 eV

H/ DZd HF 1.61K 0.64 eV
DZd GVB-CI 1.634 2.25 eV
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Tlll
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Me3As =0 H3As =0
Exper. Theory
Raso 1.631 & 1.63 &
Dipole moment 1.14 €& 1.00 el
AsO vibration 107 MeV
frequency 112 MeV 124 MeV
Bond energy ~- 2.25 eV

Comparisons of bond lengths

x-0 x=0 change
P 1.62 R 1.39 R 0.23 R
As 1.80 1.63 0.17
Sb 2.0
+ +
from X,0

2%z from XZOS

CHEMICAL SHIFTS IN CORE ORBITALS Ga(3d), As(34)

Upon reconstruction, As(3d) ¢+ 0.24 eV (deeper)
Ga(3d} + 0.20 eV
As (lone pair) + 0.86 eV
Ga (empty) + 1.22 eV

Upon oxidation, As(3d) + 2.6 eV \\:S
Ga(3d) + 0.8 eV Ga
Ga(empty) + 0.8 eV \\\

g
S
/) U



Experimental
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Low Coverage

High Coverage

Ga As Ga As
Spicer (1978) 0 +2.9 1.0 4.6
Brundle (1979) v0.8 +2.8
Spicer (1979) +1.0 +2.9
Donor acceptor +0.8 +2.6

Conclusion: experimental chemical shifts of low coverage

oxide are consistent with donor-acceptor complex.

Al Overlayer on GaAs

top view

side view

Gavreo Ag

Gd/ \g

General assumption is that additional metal (eg., Al) is at

normal Ga site.
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@ G
A E\D
y c{\ 3
Ga Ga \\
v | /|
twist 25.6° 1§.6°

As=0 bond is at angle of 56° WRT surface normal
As=0 bond = 1.63 &
EXAFS January 1979, 1.52 & and May 1979, 1.62 + 0.1 &

CHARGE DISTRIBUTION

H3As = 1.26 eA, therefore lone pair

Yione pair
centered 0.63 & from As

Y1one pair ~ 2.32 ek
@ oxyy = ~0.26 ek

net change, 0.80 eX and R = 1.63 &, therefore,

one-half electron transferrred.

Brillson: one-half monolayer Al on GaAs(110).
Obs: ordered 1x1, chemical shifts: + density at Ga
+ density at Al

no change at As
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Mele: tight binding calculation - two cases

Ga

;Ga OUOG'AS/AL >A£’...AS/

7Ga¢ N~ 7A£¢ \Ga/
/Ga\ /

Finds that this (on the right) leads to expected change
in density. Therefore, concludes that one-half monolayer

of Al on GaAs(110) leads to Ga overlayer and Al in surface

o AL
2814/ \}As
Ga<y As\

Optimum structure \ 8 <
(bond energy 0.56 eV) (HF) 7\3 8 \

AR

layer.

Ab Initio Calculation

Comparisons, H.Ga-Al, R = 2.23 R
HgAs-Al, R = 3.45 &

Charge transfer AL

therefore chemical ’/ \

shifts Al + (deeper)

Ga 4+0.95 eV Ga
As ¢ %As

Reconstruction: HgAs,Ga, 62g, = 0.41 R
0.29 &

H As GaAl, 62Ga
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EXAMPLE: Heme Fe O
e

| Model Calc ]
o
7
H\ /H j)
H H —p —N
Nam Fet @0 N e~
" @ H @
N W/ Su
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Before bonding 0, to Fe comsider bonding 0, to O (making ozone)

We gain new 0-0 o bond (4-7 kcal) and lose 0z resonance (-57
kcal). ©Net bond is -10 kcal. Add in new 7 bonding (+35 kcal),
and net bond is +25 kcal, This 7 bond is special 3-center-

4-electron bond (essential to stability of ozomne).

Bond O2 to Mb N“?X

Fe q state OZ Fe t state O2
xz-yz +1 (or 1) xz—y2
2? +1 Lpo 2? 1 + Lpo
yz +1 44 (ortd) Lpw yz 1 + Lpmw
Xz 1L Xz 1L
Xy 1 Xy 1L
two unpaired spins, no unpaired spins,

therefore paramagnetic therefore diamagnetic



8.0
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@) \
O/ \{ ~D O, 7 Gowd oRG
’ «—aq 0, T¥amneons, oes

«— N2 Fedzz orB
(

I €~ C My LONE IR
AV
H

” I
H
A. Fe-O SIGMA BOND PAIR
4/ Fe dz? Az oz 7>

Feizz__ 07| (e~ o)
) \ ;

—_—
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HF GVB CI
249,41 (6m)
0.84, © 089 4,
A (77) A (57)
e U8R,
A (7m)
0.64 2
A" (7)) - AT {7T)
© 0,12 0.45
TR ) L., T 3 em
o 0.33 ¢
U'A’(ﬁ ) A7 (5m)
O rar(om)

MbO, Excitation energy (eV), points

1. HF is bad, bad, bad. Gets septet (8=3) ground state,
also triplet and quintet below ciosed shell singlet.

2. GVB ok, correct ordering.

3, CI needed for accurate E.
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SUMMARY - OXIDATIM

1. 302 and 102 are biradicals

C GO

2. Attack upnon radical gets peroxy radical

Radical electron is w, perpendicular to

OGO

ROO plane
3. Attack 102 on olefin Fi
\/ XY
i cC—0
-+ o — T ]
/\C/H \ /c\co
\ < 7 H
C—OCJ
| H
a=™

Si % + 30?_ —> %—O\ — Products
Ne

Gal\sg + 30Z — Defec{—-o\o — %-—-o—* Products

\
HEME Fe ‘Fc-—o\
/'\ »
3 Na Na
Na (100) + ‘0, @ — © Top view

Na Na
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EXAMPLE: Ni

8
Nia, simple cubic 80 electrons. Basic configuration energy,
1% on each Ni = 0. % on each Ni (t,g holes) = 2..35 eV

~d1% on each Ni, 32.91 eV, Xa state

(start wi.th 44.57 ev, a0, then ei > a%g

(eg holes) = 23.73 eV.

9

Band structure. d°: d band width, 2.67 eV; s band width, 6.04 eV.

SIMPLIFICATIONS

FACTS

1. When bo..ded, Ni favors a (45)1(3d)g configuration

2. 3d orbitals are too small and too tightly bound to enter
strongly into metal-metal bonds

3. Changing 3d occupation has only a small effect on

4s-1like orbitals.

CONCLUSION

Study 4s and 3d bands of solid separately by

1. averaging over all five (3d)g configurations (to avoid bias)
2. replace this (Sd)g shell with an effective potential.

Therefore Ni is reduced from

28 e (full atom) - 10 e (valence) =+ 1 e (4s only)

4 4
core a° averaged
effective potential
potential
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Bonding of H to Bridge Site Of NiZO'

Two Cases:

a. Focus on two nearest Ni and two next nearest (tetrahedron

of Ni) and use ali ten valence electrons;

Ni using d9-average potential (therefore 1 elect/Ni)

describe other ten

b. Describe all twenty Ni using dg-averaged potential

Case a
4 full Ni
16 le Ni

Bond energy 66 kcal

Vibrational freq. 1507 em™ !

Distance of H 1.03 &
above surface

Case b
20 1le Ni

63
1428

kcal

em1

0.99 &

Conclusion: good description of chemisorption of H using

dg—averaged potential. This leads to enormous computational

savings.

Geometries

S at Ni(100) NigS , 1.36 A Ni,gS , 1.24 &  Exper. 1.3:0.1

0 at Na(100) Nic0 , 0.96 A Ni,,0 , 0.88 A

Vibrational frequency

H at Ni(100)  Niy,H 592 cm!

73 MeV

Exper.,

Exper

605 cm~

1

0.920.1
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Cluster Ry s w D
: - NiH e_ e
Site size (R) (ém 1) (keal)
1 fold 20 1.50 2286 36
2 fold 20 1.59 1428 63
28 1.55 1419 57
3 fold
no atom 28 1.61 1185 52
beneath
3 fold
atom 20 1.63 1248 74
beneath 28 1.64 1216 72
4 fold 20 1.78 592 70

Experiment: diatomic Nili: Ry;y = 1.47 R

we = 1811 cm”}
Ni(100) (Anderson): w_ = 605 cm !
i3Ni4Cp4 (Bau): H on 3 fold site
Ry., = 1.691 &

NiH
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Geometries

S at Ni(100) — Ni .S , 1.36A Ni, S , 1.24 A Exper.
5 20 -
1.5 0.1
0 at Ni(100) —- Ni;O , 0.96 A NiZUO , 0.88 A 0.9 0.1

Vibrational Frequency

H at Ni(100) — NiygH , 592 em ! Exper.: 605 cm ]
73 MeV
Bond Energies
S at Ni(100) — Ni,S , 3.9 eV  Niy S, 4.1 eV Exper.” 4.5 eV

therefore, NiZOS + H2 + Nizo + HZS R AH = +23 kcal

0 at Ni{100) — Ni;O , 3.1 eV NiZUS , 2.85 eV
therefore, NiZUO + H2 -+ Nizo + HZO R AH = -52 kcal

+ O2 - ONi,,O0 R AH = -12 kcal

Nizg 20

CO at Ni(100) — NiZOCO , 27 kcal , Exper.: 30-32 kcal
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Ni-C Bonds

H

Nig C /3”" D = GO KCAL
1.87A \HH
Ni y D=2 KCAL
H N ‘
Ni =c’§n+° D= 65 KCAL CérlOB
™ Ni”™ 1914
50
LM 2 4,
4
..... |u+122/1 D=1T KCAL F petkea
\ Nl . .“‘—stA
1924 A
(Nic = 2.01A) 95Ah Sy
(NiCc=2.0TA)
/H 1.87A
Nieml, & Ni /
=] D=3ZKCAL )
i ¢ i mwA |
’ 0 D=4bKCL
<>
1.48A NI/ H
(NiC=2.02A) s}
1.53A
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OPEN SHELL RHF (Restricted Hartree Fock) and

MCSCF (Multiconfiguration)

Similar in many concepts

{fi} basis functions

¥

(o, = [ x;,£5) orthonormal molecular orbitals
J 33 orbitals
+

ty,u =705 (13;(2D)...5;

. N) X
RO C RN OLY

J labels space orbital product

XE’M = spin eigenfunction for N-K electrons
¥
¥ o= z cJ,v wJ,v
J,v
Why RHF?

a. Parent configuration SCF for excited stiates
(relaxation effects)

b. Singlet biradicals; transition states

c. More convenient than UHF for starting CI
WHY MCSCF?

a. Correct dissociation limits

b. Originally hoped to get good De

c. Better description of weak bonds

*d. Good orbitals for CI
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Notice implied restriction — all configurations are constructed
from one mutually orthogonal pool of MO's. RHF only one
configuration of this type (or possibly more with CJ,v fixed

by symmetry). The problem: to determine 'best" xij and CJv

for a given selection of J,v.

Equivalence Classes of Orbitals

Generally orbitals can be put4into subsets with the property
that mixing of orbitals within the same subset need not
change ¥. This is true if:
a. Every wJ,v is unchanged
1. {¢.)} doubly occupied in every V¥
j J,v
2. {¢j} empty in every wJ,v
b. This set ¥;  is closed under mixing {¢j}
?

Partition orbitals into equivalence sets é@‘,;yé,;#s,....

Examy .c 1
¥ = (6,0,0,0, ¢,4,00)
(triplet S=1, M=1)

b, * (4, +€0,) /Y 1 +¢€?
lezves ¥ unchanged

9, + ($,+€d,) /Y1 +e?

b, + (b, +e,) /Y 1 +€?
leaves ¥ unchanged

$, * (9, *€4,) /Y 1+e2

L= 1o, 6,1, o =16, 0}

v=_¢,...}

b4
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E. ample_ 2
v o= A(0,8,0,7, 0,0, ke

(singlet S=1, M=0)

o, « (o,+e6,)/V 1+¢?
¢, « (¢, +e0,) v 1+e?
—_ _ 2
v« A4 <¢ o 60 ¢ ¢ abBa 1:5_>
1 1717272 374 /2 1+€2

2e  (6,0,0,0, 6,8,)/(1+e?)

+vZe (6,0,0,0, ¢,9,)/(1+e?)

L= 19,00 =063, S, =), = {0,...)

Notice that for the second example, if

vo= ¢ {0,6,0,9, 6,0, (28-8a)/vI)]
+Cy (9,9,0,8, 6.6
+ Cy (6,0,0,0, 6,0,)

then mixing ¢,+¢, brings in no new terms, so

(»‘ﬁ: {6, 9,1 J= {¢3¢“} , v = {¢5...}

but mixing ¢,+¢ for fixed C's would change Y.

CONCLUSION: There is no "best" choice of orbitals within each
set. E and ¥ will be unchanged (after the best C's are chosen).
This freedom can be used as in closed she.. cases to eliminate

some Lagrangian multipliers.



The energy expression

E = [Cp Cou Hiv,au

assuming all quantities to be real. Variation of CIu for

fixed orbitals gives

) HIuleJ Cru EC
Ju

(the matrix eigenvalue problem).

_ Iudv
HIqu =

where «f is a basic integral over MO's.

E =°} (ZCIUCJ\, Q}“J“)J

E =}QJJ
Determination of optimal MO's: variation of orbitals for
fixed C's

SE - T 8/

<¢p. J .

§<o;1 §<¢;

Lagrangian multipliers to ensure orthogonality: minimize

E - Z )‘ij <¢j,¢i>

ij
s/ -
L Y 6<¢jl E M3 194>
¥
- = A.. <¢.
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xij = x;i ensures (|¢i>)+ » <¢i| and makes these two
variations equivalent so that only the first need be considered.
These equations are too hard to solve explicitly. The objective
is to find a set of equations for improving the orbitals.

This set should
(a) be easily set up and solved, and
(b) rapidly converge when used iteratively.
No scheme has yet been found which is fully satisfactory.
If {a,... } denotes the set {Cl,...xlz...} of paraneters to
be optimized, the Newton-Raphson or Fletcher-Powell-Davidson

schemes require &8a = J VE where J » (aZE/aaiaaj)'l. But J
k1 £

=~

is too large to determine economically, and too non-diagonal
to approximate by diagonal elements only, and singular due

t> non-uniqueness of best a.

The basic apnroach usually expands nth, iterate in (n—l)th
O R I Y e R
i.e.,
(n) | (n-1)
¢ = ¥ 2 Uss

Now suppose we are near convergence, 5o Uii ~ 1 and Uij ~ small.

Consider the simplest mixing process ¢i “> b,

j
¢i(n) - ¢i(n-l) . uji ¢gn—l)
(n} _ (n-1) _ (n~1)
®5 ¢ Y51 05

¢ ¢j still orthogonal to first order with fixed coefficients:
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+
a.a

o n-1)
w(n) = yf ¢ ug; ) Cy i1 L2

.
u;s LGy oy 3585 ¥y,

m) . gt (n-1) _ (n-1)
1] = uji(ajai aiaj)w uji Eji ¥

See previous example:

Vo= A06,8,. . b by, (aB-Ba)/VT )

a1;+lak v Jﬁ(¢1'"¢k+1¢k+1(a5-5a)//f }

= ﬁﬂ{q}l.‘.¢k+1¢k+1}

By AV = Y26, 00}
so,

1200 R PS B
N
S0 = e/ Z [AB{0 -ty 10,1} - AL 0,0,1]

as found before to first order in €.

E(n) ~ E(n-l) + <6wIH|w> + c.C.

sg(n)

3 *a. - at (n) (n)
- ) <(ajai aiaj) ¥ jH{p >

ji
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Brillouin stationary condition

»g (M)

auij

= - <(a;ai - a;aj)w(n)lle(nJ> =0

<Eji ¢(n)|H|¢(nJ> = 0

2 x 2 ROTATION METHOD

To find best uij

higher order results:

, assuming all others are zero, we need

e (oD s o)/ i,

j
(n) _ _ (n-1) , ,(n-1) VAR
o5 = (e 05" ey

(n-1)

¢§n1 = (1 - gufi) o5 + uji ¢§n-i)

(n) _ 2 (n-1) _ (n-1)
¢J (1 !iuji) ¢j uji ¢i

exactly orthogonal, normalized to second order

(n) _ (n-1)
S¢y Eji ¥y

(n) A + + (n-1) 2 (n-1)
5“’2 3 (aiai + ajaj)\p + Eji ¥
8B = 2uy; <Ey y (1) (-1

+

2 ; -1 -1 - -
“ji(2<“’(n )|H|6¢§“ > +<5¢,(1“11H|5w{“ 1>
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<Eji\v(“'1)|H|w(“'1]>

2<(n-1] IH,5w£n'1)>+<6w£n~1) IHlé‘pfn‘l) >

Example of closed (i) <> empty (j) mixing

<ilﬁij>

3L <ilFli> - <3IEl§> + 20g, - 6K,

Eo= onilheore * 2"ﬁi 'iﬁ) (n;=2)
or
vz Ui T <P MY >
By Eyug - Ky

This is the correct expression for Uss for 2x2 rotation
method. In this method one cycles sequentially through the
uij’ mixing one pair of orbitals at a time. Monotonic
convergence is assured but cost is high and convergence is

slow.

Simultaneous Variations of uij

The alternative is to vary many of the uij simultaneously.
A true second order method would generalize

3E/3u; .
Ues =~ = ——m 1)
e a’s/auij
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te 3E/ 0
Ku :ala/az12
= - 13
where
2
Koq = 532_26_
P q

This is usually not feasible because K is too large to

construct or invert.

1)

Approximate K diagonally (ignore coupling between ujs

<E.. \l,(n~1) Ile(n-l) S

= - )1 _—
Ui N
Ji,J1
where
i . 3'E
ji it — 2
auji

Now from comparison with closed shell SCF derived the

same way, We know Kij,ij = OE HEjinZ s0
. b AL

R Ly E,) IE;; vl

(B 30) ~ Fo) 1F5a¥

Now the right-hand side is about the same quantity which
would be arrived at by a CI calculation, sc one can do a "CI"

using the set
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n-1 n-1
E12 ] Ei' ]

p(o-1) e
IE;, R g, "7

b
which will give (using C°=1)

[n-1]
_ w[n-l] v T Eij v

v {3 T
1] (n'A.)
IE 5 v
then
C. .
qu_ = ____ll_
IE vl

The CI to some extent properly accounts for K_1 coupling
between uji’ i.e., it is better (but more costly)} to do CI
rather than just perturbation theory (Grein § Chang).

Bender has used INO (iterative natural orbital)

This method does CI in the basis

{v }

1> Yr,ie5 0 1,501
which is a much larger CI. Then the NO's of this w(n) are

used as new orbitals. Ruedenberg has noted that for w(n-l)

the orbitals in w(n-l) may differ from NO's by a transformation

XX, ...} = {6,6, -.. }U

2
; ; (n)
while in ¢ (CI) they may be

X, .00 = {89, ...0V
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so an improved set {¢ } may be given by

0.} = g ... Ut o= e, 3 vU

The closed shell result also suggests that uji to first

order agrees with the eigenvectors of a matrix

= (n-1) . {n-1) . .
Fij <Eji " [H|v > it

F

ii €5 "Ejiw(n-l)ﬂz

provided one can define diagonal elements so that

R
2 - ii " Yij
Buij

Note for K basis functions, there are K(K-1)/2 uij’ but

only K Fii’ so it is not clear that a matrix F can be formed

whose eigenvectors give a good approximation to uij If some

ﬁii-ijj have wrong sign, oscillation would be expected.

Fock Operator Method

This equation involving the Fock operator is usually derived
somewhat differently. Consider an orthonormal basis {|f>}

and the MO basis {|¢,>...} = {[£>...} V0 , i.e.,

l¢1> = :),: UJi |fJ>

Then one can consider variations in uji subject to

orthogonality:
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Minimize

E - Aj; <oylep

SE I F..018:> = § a.. los>
5<o, | j 1 ji 'hi
lij = A]1

Detail:

hij = <¢iih'¢j>

h = K.E. + VNe

oF (130, (1) ¢3(2)0,(2)
[ijlke] =f — rl‘; : T, dr,

. 1 s

EQ‘[‘J = x pl]h]1+_x.'rll'J]'[JlﬂJ'l']

ij ii'3j

where Pyi = density matrix in MO basis

S1% hlo.> + 3 sliifjri']
2oy hlog> + 2 Tiivs
5<¢J.| i iitje 5<¢j|
8[3'iji'1
R DU PRl 1 3 S R 3 SR PN
fpg 4 §<¢; | It
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Careful consideration of the Lagrangian multipliers shows

- *
xij kji

is necessary to ensure (|¢i>)+ = <¢i|, if |¢i> and <¢i|
are varied independently. Hence the condition for a

stationary E is

TR 6> = T a.:le:>
X jk 17k R AR
*
ij A5
(Fi* = F;i follows from definition.)
o

"Canonical"” Orbitals

ij =0 if i,j in same set .
Evaluation of Aij:
Aij o= £<¢ilekl¢k> = <¢;1F;]e5>
*
Aji = E <¢lekiI¢j> = <¢i|Fi'¢j>
- * = 0 =
Aij in = = <¢i|Fj'Fil¢j>

<¢i|Fj-Fi|¢j> = <Ejiwlﬁlw >
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(F;le5> - iz#:j Aij”i)) = Ay le>

Aij o= <o IF;le5> (1-by5) + <¢;[F; 105> by

Gyy = <¢lej—Fkl¢j> be; = <o lFyles> - Ay
| G5 = <45IF;ley>

Simgﬁe Example — one open shell RHF doublet state.
o - 2he 2y Ky £y xRy)

y = one gy Hpe w(gy - Ky
(g arbitrary) '

Define

1
[

2 TRy Ayt By

UHF operators

T
i

TR

f& o g Fulﬂ> =F¥fld>

3 _ .
¥ Sew T evvitlv - g 182
y =L - ey viHlv = <R

3(Jv)
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aE - = < -P
km—)' = <§3‘J y|H]y> xJIFBLﬂ

X 3%E
B(oé'ﬂz

<v|Fg |v> - <.9|}:8,I,B'> + 6Kgy - 20g,

% a(?li)z VI lv> - <SRN > + Kyy - 3y,

n

’53[:’9:;]2- = <l > - <BIFgl&>+ Kyp - Ipp

BINKLEY, POPLE, DOBOSH METHOD

(3 Hamiltonian, 2 x2 rotation)

g

Fo | Fe

- ne"-@g
A L v
hs
N Bl |k ie
A V|5 |55
2
2

Co
-
Q
1
Q
‘?04‘
hes)
0
» ‘):{-\

Zero at convergence ({(Brillouin). Other blocks chosen to

mimic k™1 optimum mixing?
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One Hamilton Method — Guest and Saunders

& o v

e Zero at convergence (Brillouin)
L] F.,,FZ,F3 arbitrary

L] F3 = Fa , F. =F, + ¢l =F
common choice
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Roothaan-Bagus — 2 Hamiltonian Method
£ o v
" Fg 5 o
newo, w=(d,v
—_—_—
L §9+ e F6
5

Schmidt orthogonal

—> 54’

F* Fg F~
- >
Fl! Fﬂ.
new \J
F+

® Disadvantage:

Schmidt orthogonalization.

Strange choices in arbitrary blocks.

® Advantage:

One integral read/cycle.
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Davidson (improved) — 2 Hamiltonian method.

& 4 v

k&y FB -3 &y
x FB

5

new &, w=u,v
1
W
Eg Fo
W
Fg

'

new of,v

® Disadvantage: still some strange choices in diagonal.

® Advantage: one integral read/cycle.
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NATURAL ORBITALS

o
[}

N e, 0 000 2,0 N4,y

P(1,1) = ] e55 65(D 671N

j
./;(1:1')X(1')dT; = px(1) for NO

p(1,1) = [ u; X;(1X(1")

p is now "diagonal".

Y generally more rapidly convergent; u; = occupation nuniber,

. o= Y ¢ 2 M.
u P
i<k x! i,k

2e’ Wave Function Special Case

K
v =_iz= €. ¢1(l)¢j(2)

joi=1 M
l X

v o= 3 u? Xi(l)X;(Z) is diagonal
i=1

Cl(fAfB + foA) + CZ(fAfA) + CZ(fAfA)

|

. (X (1)%(2)) + €,(X,(1)%,(2))
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fX]_XZ dt = 0

X, = a f, + b f
Anti-bond

A A
X, -b fA + a fB

Bond A/\
| AN
-~

v o= #{g,(2,2)g,(3,4)g,(5,6)....}

Xi(l)Xi(Z) core

axy (1)%;(2) - bX; (1)X](2) valence

{Xi} mutually orthonormal set.

Special MC-SCF form which takes advantage of NO form of
2e” wavefunction. For this assumed form of ¥, p is diagonal,

i.e.,

Voo = [y X%
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1. INTRODUCTION

The goal of any semi-empirical or approximate method is
to strive for some compromise between ease of application
and accuracy. Ease of application generally implies dropping
terms difficult to evaluate. Within any given level of a
theory parameters can be introduced to mimic the behavior of
that theory applied from first principles (ab initio). These
parameters can also be introduced from experimental observables,
or to reproduce experimental observables, or both. In the
first case, parameterization can yield results no better than
the ab initio theory, by design. In the second case, when
recourse is made to experiment for some of the parameters,
the model constructed, if carefully designed, may shadow
a more exacting theory.

In a very real sense successful quantum mechanical models
for calculating electronic structure that rely on semi-empirical
parameters based on experimental observables contain informa-
tion about electron correlation — as well as implying a
perfect basis set and an '"exact" theory. If the model is at
the restricted Hartree Fock level, then this information is
entirely implicit; if it is a model beyond Hartree-Fock, then
some of the correlation effects will be explicit, some implicit.
A more successful model, however, will have carefully separated
(perhaps unknowingly) the explicit from the implicit and as
such its allusion to a higher order theory should be deri: .ble
from the lower order ab initio theory from which it was

designed.
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Within these notes I would like to discuss semi-empirical
quantum mechanical models which explicitly contain correlation
corrections. Such models have a twofold utility. Although
principally designed to explain experiment, they are useful
in examining the correlation problem itself. The quantum
mechanics of two or more electrons can be examined by but
two theories (themselves approximate}; variational theory and
perturbation theory. For these notes I have chosen one
example of the application of each. The first of these is
the very effective Zero Differential Overlap (ZDO} theories
used in molecular spectroscopy. Here the variational principle
is applied to an approximate Hamiltonian to yield the energy
differences between ground and excited states. The second
of these methods develops the ground state energy of a
system from a reference of doubly occupied bonding orbitals
principally through perturbation theory. This theory is
rapid and apparently accurate enough to allow the calculation

of gecmetric conformation of very large systems.

2. MOLECULAR ORBITAL THEORY AND BEYOND

The review that follows is by necessity brief, but should
serve useful in defining the nomenclature and contrasting the
philosophy of the methods discussed.

Molecular electronic structure theory generally begins
with molecular orbital theory summarized in the equations

below:



Molecular Electronic Schrodinger Equation
Hwa(l,Z,...n) = ana(l,z,...n) (1)

Molecular Orbital (MO) Approzimation

by = ¥o(1,2,...m) = o AL6,(2),(2)...0 ()]
)

Linear Combination of Atomie Orbital Approximation (LCAO)

N
0:G) = D x, ()G (3)
u=1

Variational Principle

<yg|Hlvg >

<1 > x @
Secular Equation

(F - e;83¢; = 0 ()
Self-Consistent Field (SCF)

@ +r(c® » ¢t > & > @) + 2 ... )

The molecular orbital approximation itself, given in
Eq. (2), sets the trial wave function equal to a spin
projected (es) antisymmetrized product (A4} of orbitals ¢i(j).
The assignment of electrons to these orbitals, perhaps by an
aufbau principle, creates the reference configuration. The

accuracy and consistency of Eq. (2) creates the ccrrelation

“problem".
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Application of the variational principle with the trial
wave function of Eqs. (3) and (4) yields the secular Hartree-
Fock Roothaan1 equation (5), with Qi the MO coefficients of
$io Eq. (3), €5 the molecular orbital energy, A, the orbital

overlap matrix

By = (6,10 = (v €

and F, the Fock or energy matrix, with elements for a closed

shell system given by

Fyy = (u[h]v) + ] Py [(or[wv) - %(ou[av)]
h = - % - 12\ }i—’:
Por = g Csa Cra M
(oaluv) = <oulav> = fdr,dr, X3(1)x,(2) yu} X, (1) X,(2)

The Fock matrix represents the kinetic energy of the
electrons, the nuclear electron attraction, and the repulsion
of an electron by the average field of all the electroms.

This latte: manifests itself through the dependence of Eq.

(8) on P, tre first order censity matrix (or the charge and
bond order matrix if A=1), which in turn depends on C, the

MO coefficients not known and s the orbital occupancy of MO,
¢a. This suggests the iterative SCF procedure of Eq. (6)

where én is equal to C® or is extrapolated from it to hasten
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convergence.
Equations (1) to (6) define the Hartree-Fock LCAO-MO-SCF
method. In spite of the many approximations made it is the
most successful theory in Quantum Chemistry.
From the computational standpoint, the evaluation of
Eqs. (8) requires N4 difficult two-electron integrals, where
N is the number of atomic orbitals in Eq. (3). Although
there is hope that this N dependence would decrease to NS
as systems grow larger by neglecting small integrals, this
reduction in N dependence has not yet been realized in any

2,3 In fact,

method that can still truly be called ab initio.
the inclusion of symmetry in molecular programs to simplify
the execution of molecular orbital theory often prevents
dropping any integrals as a consequence of positioning at
least one member of a symmetry-adapted orbital near a member
of another. In addition to this N4 dependence in the evalu-
ation of the integrals there is the repeated N3 problem
associated with the solutions of Eq. (5). As Eq. (5) is
the spiritual bottleneck of any molecular orbital method,
all semi-empirical methods strive to reduce the number of
integrals evaluated to NS or less. In the ZDO methods to be
discussed in these notes the number of integrals to be
evaluated is proportional to NZ.

From the theoretical point of view, the Hartree-Fock

SCF-LCAO-MO theory briefly described has one important flaw:

for systems of two or more electrons it is incapable of
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yielding correct results! The reason is that the restricted
Hartree-Fock theory calculates the repulsion of an electron

in the average field of all the others, and does not correlate
the individual trajectories of electrons. This problem is
well understood as is the method to correct this shortcoming.
A new trial wavefunction is created that is a linear combina-

tion of configurations

T _ -0 a ab
voom dovn ¢ Ddip vyt T dygap Vit e
(9

ab etc., represent configurations in which

. . a
in which 3, Wij’
one or more electrons have been excited from orbitals ¢,, 95>
etc., occupied in the reference configuration Yy into

orbitals ¢a,¢b,... orthogonal to the occupied set. Invoking

the variational principle yields

(H- E 1D = 0 (10)

where Qu are the expansion coefficients of Eq. (9),

H.. = <wg?::lﬂlw§g:: > and E_ is a bound to the energy of y,.

1]
Equation (10) is the configuration interaction problem.

The expansion of Eq. (9) is slow to converge, and most of
modern theoretical quantum chemistry (as opposed to applied)
is concerned in solving or approximating Eq. (10). Neverthe-
less, Eq. (10) is capable, as far as we understand, of

yielding results that can systematically be improved to

approach experiment.
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3. SPECTROSCOPIC ZERO DIFFERENTIAL OVERLAP THEORIES

A. Theory
A great deal of the development of quantum mechanics

itself can be associated with the observed line spectra of
atoms. In an analogous fashion, most modern quantum chemical
methods can be traced to attempts to explain molecular spectra.
One of the first successful methods in organizing molecular
spectra was the semi-empirical method of Pariser, Parr and
Pople (PPP) applied to the pi electron system of conjugated
hydrocarbons.4 In addition to yielding results in near
quantitative agreement with experiment, the model predicted
very directly the importance of configuration interaction at
a time when not even th= Hartree-Fock molecular crbital theory
was well understood. The extension of PPP theory to almost
planar systems, to systems in which heteroatoms or substituents
polarized the sigma electrons not explicitly considered, and
to systems containing transition metals, proved difficult.
Although there are several versions designed to extend the
domain of applicability,5 the PPP theory is perhaps best used
today to examine new approaches to the correlation problem
itself, by providing a well defined model Hamiltonian that
is easy to evaluate and to examine.

Semi-empirical all-valence electron methods have been
introduced that now execute on a computer at the Hartree-Fock
level nearly as rapidly as the PPP method. These methods

are applicable to planar or non-planar systems, take into
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account sigma electron rearrangements in a natural fashionm,
and have been extended to transition elements, thus eliminating
the three major shortcomings of the PPP theory.

Of the many all-valence electron theories that have
been proposed, only those of the ZDO type have been systemat-
ically applied to the study of molecular spectra. Simpler
theories that do not refer directly to the two-electron nature
of the Fock matrix, Eq. (7), are difficult to apply to detailed
spectroscopy, as spectroscopy is inherently a two-electron
phenomenon. On the other hand, theories that purport to more
accurate Hamiltonians, and thus more integrals, eventually
strike the Ns (or N6) integral transformation bottleneck,
making the value of any approximations questionable.

In 1965 Pople and co-workers introduced their Complete
Neglect of Zero Differential Overlap Method,6 summarized by

the following equations:

A) Rotatiomnal Invarianece

Yo Yap = (5,5,1555p) (114)
B) Core Integrals

AA - A1 = -1, - (Y-

Uw = (== g lu) = Iy - (23 - Dy, (CNDO/D)

or (11B)
(I,+A0)
= AR @) wyy, (CNDO/2)

c) 2ZDo: <pv| = & <py| (110)

pv
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- v = 7Y 11D

D) Vap = (sAizB/RB[sA) = Iy Vg (11D)
A (B, +83)

E) }{ﬁg = _P_‘_’___‘;_L (11E)

Approximation C), the ZDO approximation, reduces the

4

number of integrals from N' to NZ, yielding for Fuu’ for

example,

AA _ AA o _ -
Fom = Uy B%A(ZB Pep)¥ap * (Pan szpw)yAA

The relation between core integral, U ionization potential

Hy?
Iu, and electron affinity Au is derived through the ZDO
expression for the valence electron energy of the atomic

configuration szpm,

2Vz¥ - 1)y
E(Szpm) = QUss + mUpp + _JL_ﬂi____AA (12)

where ZX, the core charge, is equal to %+m in the neutral
atom, or the number of valence electrons explicitly considered
in the calculation.7 The original methods were parameterized
through BA to give agreement with mudel minimum basis set
éb initio work.

In many ways the CNDO method is a natural extension of
PPP theory to sigma system, and, as such, was quickly adopted
to spectroscopic purposes using the experience gained with

pi electron theories.® The first of the required modifications
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was the introduction of the Pariser approximation,9 or scaling

down of the two-electron integrals. Using Eq. (12) one derives

Yuu(s) = Li-Ay :

and one may define

(13)

Ypn(s) 3
In general,

YAA(S) ~ Yss(s) ~ Ypp(s) &~ 0.7Yss (Theoretical)
In order to smoothly connect YAA(S) with RA%, the long-range
behavior of the two-electron Coulomb integral (SASA[SBSB)

one generally assumes

Yap(s) = _[RA% ; pA"]”“ (14)

- 2
Pa YAAis + YBBisi

For n=1, the Mataga Nishimoto10 formula is obtair~d; for n=2,
the Ohno-Klopman formula.ll’12

A second important modification for spectroscopic studies
is introduced into Eqs. (11) to correct for the improper place-

ment of the pi molecular orbitals within the sigma. Although



12-12

the original purposes to which the CNDO model were put seemed
relatively insensitive to reasonable error between orbital
energies, the calculation of spectra is crucially dependent
on these energies. In Eq. (l1%), the orbital overlap Auv

is replaced by a scaled overlap, &

uv
Kss' = Ase
Bspr = Bggr Eggr (1%)
KPP' = Lot foo 8gor * Bpnt Tnp Bype

where g,y are the Eulerian transformations used to transform
frou the molecular coordinate system to the local diatomic
system (and are required for the calculation of all integrals

over Slater-type orbitals) and,s’ls’14

fww ~ 0.60

(16)

fcc ~ 1.0 or 1.3

It should be pointed out that Eq. (11E) has no theoretical
justification in the context of ZDO calculations, and is the
weakest point of the theory, as the method creates a strong
dependence on a given atomic orbital basis set. The introduc-
tion of the two parameters of Eq. (16) free the evaluation of
H somewhat from any choice of basis. Although the dependence

v
of Huv on Ruv is still principally that of Auv' "non-nearest
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neighbor" Hu“ are generally very small,
The Intermediate Neglect of Differential Overlap Theory
(INDO) differs from the CNDQ theory by refinement of one-center

. 5 .
two-electron 1ntegra15,1 viz.,

(ss)ssy = FE°
_ [} 4%
(XX|XX) = F° + =T
2
xxlyy) = ¥°+ ZLS (7
_ 3F?
(xylxy) = 5%
1
(5X|sx) = G_3

16 FK and

In the CNDO theory the higher Slater Gordon factors
GK for K >0 are set to zero. Equations (17) include one-center
exchange terms and would seem crucial for inclusion in any
spectroscopic theory for it is these integrals that split

the atomic term energies for a given configuration, and this
splitting is large. In practice, the improvement for molecules
containing hydrogen and first-row elements is not large, and
mostly confined to (n -7m*) excitatioms. The reason for the
improvement has something to do with the inclusion of the
integrals that split the 1(n,n) from 3(n,1r) excitation energies
that are set to zero under the CNDO approximations, but probably

has more to do with the £  =1.3 in the INDO spectroscopic
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programs as presently implemented13 versus fcc =1.0 in the
CNDO versions,8 Egqs. (15) and (16). The reason that the
improvement is not large is the non-atomic-like spin and
angular momentum coupling present in the atoms of the first
row when they form molecules.

Unlike atoms of the first row, transition metals display
a great deal of atomic character in complexes and the INDO/S
theory shows a clear superiority over the CNDO/S theory. In
these cases though, a clear definition of what is meant by
INDO must be given, as many more integrals occur between s, p,
and d orbitals than the five given in Eqs. (17). Several

17,18 gave defined INDO to mean only those

investigators
integrals of the form (ij|ij), i.e., exchange or Coulomb type,
in an obvious but simplified extension of Eqs. (17). Although
ignoring the general integral (ij|k&) introduces rotational
variances, these effects appear small. Other investigators
have suggested averaging over classes of (ij|ij) integrals to

19

remove these rotational variances, but these definitions will

not suffice if one wants a method for spectroscopy. The ignored
terms are essential for an accurate estimate of the correlation
energy, and for the splitting of various excited states. An
example is given for ferrocene in Figure 1.20

Both the CNDO/S and the INDO/S model are parameterized
on spectroscopic results obtained through Hartree-Fock theory

plus extensive "singles only" CI. The energies of the states

are usually taken as the roots of Eq. (10). Occasionally an
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/
7
30,000 4 /
7
1 L1}
E, (dd’dn) %
T T \
E," (dg,dy) AN
- ~
cm N
N\,
' ddy) T —
20,000
Pre-CI CI
Fig. 1. The (d,d) transitions of ferrocene.

— e
——————

Experiment

The large

P . r r 1 ”" .
CI splitting between E, and E, is caused by

integrals that are not of the classical Coulomb or

exchange type.
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extrapolation procedure between AE(SCF) and CI has been applied
to improve results.21 In both the CNDO/S and INDO/S methods
oscillator strengths are estimated using the dipole length
operator, including the one-center 'charge' terms and the

one-center polarization terms, i.e.,

A

—_ > ~ o~ >

<‘Polﬁlwg> = V2 <¢il“|¢a> =VvZ ZA‘L CaiCaala
a

[NFS

CqiCao (2174 18) (18)

*VZ X
A ’B

Q

Although the second term, the polarization term, may seem
inconsistent with the CNDO scheme, it is theoretically
justified if one assumes that the IZDO approximation is only
appropriate over spherically symmetric operators and is
empirically justified for the superior results obtained by
its inclusion.

In general, the use of Eq. (18) to estimate oscillator
strengths yields rcasonable results for weak transitions and
overestimates the strong transitions by a factor of two or
three. Part of the reason for this overestimate is the
limitation on most calculations to a singles-only CI: higher
excitations usually reduce calculated oscillator strengths by
reducing the weight of both v, in the ground state description,
and wg, the principle component of the single excitation (see
Eq. (18)). Part of the reason also resides in the evaluation

of the polarization terms of Eq. (18) using Slater-type
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orbitals rather than the "better" orbitals parameterized
on the energy.

For molecules composed of hydrogen and first row
elements, CNDO/S and INDO/S execute in roughly the same time
and the results obtained are roughly equivalent. For
complexes containing transition metals the INDO/S method
is somewhat slower, but this is a small price to pay for
vastly improved results.22

There is no question that the CNDO/S and INDO/S theories,
when applied to syster., within their domain, yield useful
results in interpret .ng spectroscopic and photochemical
information. A su vey of some results that are obtained are
presented here as .xamples and indicate the wide range of

information that cen be obtained.

B. Some Results

The results obtained for the pl electron spectra of
hydrocarbons is equally as impressive as those obtained from
the PPP theory. An example is given for the triplet states
of benzene in Table I, where INDO/S results are compared with
experiment, and with those obtained frou the ab Znitio calcu-

23 The most striking differences

lations of Hay and Shavitt.
occur for the 3Bzu(n-n*) band, where the INDO/S results are
0.16 eV below the experimental value, and the ab initio

results 1.40 eV above.
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TABLE 1. Benzene triplet states (eV).

b initio® -

Singles and Singles aad

State Exp. 15po/s? Singles Doubles Doubles and

Triples

3By, 3.9 3.90 3.67 5.20 3.83
0 4.7 4.8 5.15 5.78 4.98
38,, 5.6 5.44 6.01 7.76 7.00
3 6.6 7.06 7.86 8.59 7.28

a) Reference 14

b) Reference 23
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Table II presents results obtained for the singlet
spectrum of pyridine.l3 The numerical agreement with experi-
ment is striking. These results are particularly interesting
in their prediction of a second (n,r*) transition at 44,000
cm'l, midway between two weakly allowed transitions. This
prediction of something new in an "old" spectrum has been
confirmed.

Figure 2 shows the calculated dependence of the spectrum
of pyridazine (1,2-diazine) on the N-N bond length. The
geometry of pyridazine is somevhat uncertain. The best
agreement with the experimental spectrum comes from a choice
of N-N bond length of 1.32 &, which is in good accord with
the N-N length of 1.321 & found in s-tetrazine.l?

Figure 3 shows the dependence of the triplet states of
benzoquinones on methyl ring substitution. The assignment of
the lowest triplet in parabenzoquinones is 3Blg(n,'n*) while
that for duroquinone (tetramethyl parabenzoquinone) is
3B1g(w,w*). The electron densities of these states are

consistent with the hypothesis that 3(n,w*) states photochem-

icallé lead to oxetan formatioi

hu
| ——
(o] (o]
while 3(1r,1r*) states lead to cyclobutanes
o
h
wf| —
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TABLE II. Singlet states of pyridine (1000 cm'l).

Calculated Observed
Type Energy (Osc.)
1B, (n, %) 34.7 (0.01) 34.8 (0.003)
1By(m, %) 38.6 (0.07) 38.4 (0.04)
lay(n, m%) 44.0 (forb.)
Loy (m, %) 49.7 (0.06) 49.8 (0.10)
Tag(n, %) 56.9 (0.91)
55.0 (1.30)
g, (m, ™) 56.9 (0.88)
1a,(r, o*) 59.4 (forb.) 56.4 (diffuse)?
1B (n, m*) 61.8 (0.01)

1By (m, 7%) 62.7 (0.01)
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45

a0l

30p

20
1.20 1.25 1.30 1.35 1.40 1.45

R(N-N)A

2. The spectrum of pyridazine (1-2 diazene) as a
function of the N-N bond length, from Ref. 14.

Heavier lines are used to designate greater intensity,
dashed lines represent forbidden transitions.
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20,000

Fig. 3. The triplet states of parabenzoquinones (PBQ) vs. methyl substitution.

3“35(“"*)

’n“ ()

B, (¥§)
L JA (nn#) Ly
u
-
llg(n' )
3 »
B,_(aw ) -
. 1,
4 By ™)
|
1 1 i 1 1
o 1 2 3 &
PBQ 2-methyl 2,5-dimethy} trimethyl pQ

DQ = duroquinone = tetramethyl PBQ. Taken from Ref. 24.

2Z2-21
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These results contrast with conclusions drawn previously
about the nature of the excited states of these compounds
through emission studies that suggest the same photochemistry
regardless of methyl substitution.24
Table III presents the results of calculations on the
excited states of ferrocene.zn The results are striking.
The detailed assignment obtained via INDO/S for band II
differs from both ab initio CI and AE(SCF) results’> (although
the latter are nearly degenerate). Examination of the vibra-
tional structure (similar to that observed for band III),
however, suggest the INDO/S order of these states is correct.
Bands I-III are (d,d*); at higher energies the excitations
are of charge-transfer tyhe. The INDO/S results are the only
ones that show any a priori predictive strength for these
charge transfer excitations.20
Table IV shows the calculated spectrum of CuCl2 obtained
from many different techniques. The conclusions of this work
are that two (d,d*) bands split by ~2000 em ! exist within
the structure, with Ymax = 9000 cm'l, and that two nearly
degenerate charge-transfer excitations are reponsible for
the maximum at 19,000 em” L. Although all the methods
presented in this table could be used to reach this conclusion
(except the SWX, results), the INDO/S results, obtained in
this case via UHF AE(SCF) calculations, are the only ones
which yield such very good numerical agreement.26

The above are just a few examples of applications of
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TABLE III. Assignment of the ferrocene spectrum (energy
in units of 1000 cm-1) (from Ref. 20).

Observed 2 o/ ° ab initis  wsx,’
CI AE (S5CF)
I 18.9 3313(351") 20.5 B, " 166
20.6 "
20.6 " o1a
S s lzlg(lzl") n.7 Bt o267 142 20.5
b)  24.0 lzzg(lxz“) 23.9 152" 21.2 13.3 25,2
I 50.8 1313(121") 31.9 Te. 463 218 25.2
W, 37.7 (0.02)° 36.9 e, T 36.5F
39,7 lAl' above
39.9 W 7300
V.  4L.7 (0.01) 41.2 (0.06) =’ 4.8
42.2 (0.01) 42.4 o 60.7 36,57
42.9 g 61.4
4.7 Y, 39.2%
vi. 4e9 uacfla dam s3 (029 lay 62.08  36.5°
45.9 g X 46.3%
&7.7 o
49.7¢ 50.2 (0.00) 131' 7.1
VII. 50.9 (0.69)° 1A2u<1A2") 50.3 (0.02) ‘la, 43,c%

3.1 52.3 (0.03)

-
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Footnotes to Table III

a.

b.

Y.S.Sohn, D.C.Hendrickson and H.B.Gray, J. Am. Chem. Soc. 93,
3603 (1971).

On eclipsed ferrocene. The group theoretical assignments
have been made by correspondence between D._  and D..,, from
Ref. 20 3n >d

On staggered ferrocene, Ref. 25.

Average singlet-triplet values from N. Rosch and K.H.Johnson,
Chem. Phys. Letters 24, 179 (1974).

A.T.Armstrong, F.Smith, E.Elder, and S.P.McGlynn, J. Chem.
Phys. 46, 4321 (1967).

The irreducible representations that result from orbital
excitations have not been separated.

See text for discussion of these states. They are arranged
in this table only according to symmetry type, not orbital
character.

II is a transition centered at 22,000 en ! but analyzed in
two transitions, IIa and ITb.
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TABLE IV. Excitation energies (cm'l) from 22; ground
state of CuClZ.a
METHOD zng zAg 2nu zr:
vur®! 1,575 3 818 39 191 39 264
rur?) 1,616 3 600 - -
rur?) 1P} 1, 400 3 600 - -
rr®) 2,310 4 753 - -
RHF-CI®! 8,230 | 10 482 15 230 -
usx -rs?) 6,198 | 23 961 16 673 -
npo?) ) 6,500 8 738 26 070 29 000
en ¢ 3,550 4 275 22 750 22 500
ex B 5,485 7 100 - -
Exp. (1) 9,0009) {18 0009’ - o - 0
Exp. (1) 4,0008 | 9 0oo® | 19 000%’ | 50 000°
Exp. (1) 9,000%) | 9 000 - | 19 0009’ | 44 800
19 000
Exp. (m) 4,200% |10 800’

a) Reference 26

b) Broken Symmetry

c¢) C.D. Garnier, I.H, Hillier and C. Wood, Inorg.Chem. 17, 168 (1978).
d) R(Cu-CL) = 2.17A (geometry optimization).

e) R(Cu-CR) = 2.37A

£) R(Cu-CR) = 2.20A

g) observed peaks

h) estimated from crystal field theory

1) estimated from angular overlap model

1) G.E. Leroi, T.C. James, J.T. Hougen and W. Klemperer, J.Chem.Phys. 36,
1879 (1962).

k) C.W. DeKock, and D.M, Gruen, J.Chem.Phys. 44, 4387 (1966).

1) D.W. Smith, Chem.Phys. Letters 6, 83 (1970).

m) A.B.P, Lever and B.R. Hollebone, Inorg.Chem. 11, 2183 (1972).
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the INDO/S technique, and are far from exhaustive or even

representative of the great number of applications that have

been made.
(o] Discussion

For molecules examined within the "domain of applicabil-
ity", the CNDO/S and INDO/S methods are remarkably accurate.
In a survey of over 1000 experimental bands, the standard
deviation between calculated and experimental results is

+1000 cm” !

for the singlets, and just slightly greater for
the triplets (where less experimental information is available).
Although this comparison is not quite balanced, as it weights
allowed bands where greater accuracy is expected more heavily
than forbidden bands, it is indicative of a reliable theory.
Occasionally calculations of transitions have been off by
4000 cm'1 or even more, and reversals between calculated and
experimental transitions have occurred. But even these modest
deviations cause few difficulties in interpreting the spectra
if the results are taken in conjunction with experiment. I,
personally, do not trust the absolute results of any calcu-
lations, either ab initio or semi-empirical, without carefully
looking over my shoulder at the experiment. This is, I think,
all one can expect from any technique that is not an exact
application of an exact theory.

The '"domain of applicability" of the methods described

in these notes set up, in a certain sense, the ground rules
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for the systems that can be examined. The restrictions are
generally of two types. The first is that the systems should
not be too small, where the Rydberg states are important in
describing the low energy states of interest; the latter,
that the system should not be so large that as a consequence
double or higher excitations are major contributors to the
low energy states.

The incorporation of Rydberg orbitals within ZDO models
is an important extension of the method and has been examined

27,28 These methods generally increase

by several investigators.
the basis set to include 2s,2p orbitals on hydrogen and 3s,3p
orbitals on the first row elements. This modification has
not been as successful as one might first suspect. Part of
the explanation for this appears to be in the fact that the
parameterization allows too much Rydberg mixing into the
ground state description, lowering ground state energy and
damaging the valence spectra agreement. Another reason may
be the failure to include 3d polarization functions in some
systems. These shortcomings, and the reported increased
computing times, all suggest the use of a pseudo-potential to
create the Rydberg orbitals after the SCF step, but before

29 In addition, it is probably unnecessary to include

the CI.
3s orbitals, for example, on all first row elements of the
system, providing all necessary symmetry representations can
be created by those that are included.

i

For large systems, or for systems with two or more
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transition elements, it may be necessary to include higher
excitations than the singles that were used in the parameter-
ization of the method. This is a natural consequence of the
fact that no amount of parameterization can account for the
effect of a higher excitation if an actual higher excited
configuration is in, or near, the region of spectroscopic
interest. Although investigations with double or higher
excitations often do lead to improved results, caution must

be displayed in dealing with what correlation is included
implicitly and what is included explicitly. Consistent would
be a re-parameterization on a theory of all singles, doubles
and triples (triples = doubly excited with respect to all
singles), but such a large Ci would be impossible for the
systems of interest. More feasible would be a re-examination
of the theoretical justification for such model Hamiltonian530’31
and, perhaps, attempts to fold back higher excitations via

perturbation theory.32

Iv. THE LOCALIZED BOND MODEL

A. Theory

For many problems in quantum chemistry the only quantity
of interest is the system energy. When this is the case other
methods certainly becowe competitive with the Hartree-Fock
SCF-MO theory. For example, one can start with any set of

orbitals, including Schmidt orthogonalized atomic orbitals,
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form expansion determinants over these orbitals, Eq. (9), and
minimize the molecular energy with respect to these linear
expansion coefficients, Eq. (10), never visiting the repeated
SCF equations, and very quickly not only obtain a better (lower)
energy than the SCF-MO energy for that basis, but also the
Hartree-Fock limit (best single determinant). The reason
for this is, of course, well known, as one explicitly includes
electron correlation in such a determinant expansion. What,
perhaps, is less appreciated is that this procedure often
proceeds more rapidly than the SCF-MO procedure. Although
the energy of this direct configuration interaction (DCI)
process is often good over large ranges of the potential energy
surface (with sufficient care), the wave function obtained
may be "unbalanced" and not very useful in itself.

Recently Diner, Malrieu and Claverie introduced a series
of approximations within the framework of DCI and created a
consistent scheme for calculating molecular energy.33 Their
model rests upon treating the CI matrix by perturbation theory.
The technique is considerably simplified by adopting the CNDO

6 The result is a

approximation of Pople and co-workers.
scheme which executes five to ten times more rapidly than its
SCF counterpart and produces an energy that is reliable (at
least conceptually) over large regions of the potential energy
surface. I quickly outline their model, perturbation config-

uration interaction localized orbitals (PCILO) here, and then

introduce onto this scheme a variational procedure (called
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PVCILO), and conclude with a comparison of results and a
discussion of general utility. Since the CNDO parameters
are derived to match minimum basis set ab ini¢Zie SCF results,
the PCILO model is ome in which all the correlation energy is
to be included explicitly. This of course does not preclude

a re-parameterization directly on experiment.

(1) One begins the PCILO procedure by assuming a minimum
basis set of valeace-type orbitals. The neglect of the inner
shell is accommodated by parameterizing one-center terms from
experimental atomic information, Eq. (11B), and utilizing

a scaled nuclear-electronic attraction term, Eq. (11D).

(2) One hybridizes the basis. The exact form of the
hybridization does not appear to greatly alter the results.
The method suggested is one that maximizes the averlap

34 Hybridization has many

according to Del Re's procedure.
advantages. Primary among these is the fact that although
overlap between "bonding' hybrids is large, that between
nonbonding hybrids is small, and generally less than 0.25.
Another advantage is that atomic parameters chosen for molecules
seem more transferable from molecule to molecule than the

corresponding parameters for the primitive S and P functions}s’ss

(3) From the hybridized set {Xi} are formed localized
bonds and antibonds {¢i} between adjacent atoms

. = .+ i .
¢1 cosa Xl sina X1+1

21

-si -+ 2
sina X, cosa Xj,9
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For simplicity a is set to 45°, alithough PCILO computer
programs allow for o to be chosen variationally. Choosing
such a set of bonding orbitals then completes the rationale
for invoking the CNDO approximation. The local nature of
the anti-bonds, confined more tightly to the molecule than,
say, virtual molecular orbitals, provides a particularly
convenient set for determinantly expansions of the wave-

function.”’38

(4) The CNDO approximations are now invoked to simplify
the calculation. This is not an essential part of the theory,
but is of course, desirable for investigating large systems.
The choice of a basis of bonds and antibonds between hybrids,
however, makes the zero differential overlap idea (or at least
the neglect of differential diatomic overlap idea) much
sounder than in the SCF-MO theory, where overlap between
atomic orbitals often exceeds 0.50. The CNDO approximation

reduces the number of integrals from N4 to NZ.

(5) The zero-order wavefunction wo is formed from an
antisymmetrized product of doubly occupied bonds. Upon the
fact that this is most often a good starting point rests most
of the current rationale of organic chemistry. It is here that
the philosophy of the method enters. One admits from the
start that the localizea bond descripticn will not provide
the best single determinant of the system, which by definition

is the Hartree-Fock description. But we fully intend, from
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the start, to be beyond the single determinant and include
correlation. In return one avoids the repeated N3 matrix
diagonalizations needed to solve Eq. (5). The zero-order

energy is then given by

et €, = <¥lHlv,> <o[H|o>

and its evaluation is proportional to the number of integrals,
in this case NZ, rather than the complex N3 step suggested

in Eq. (5). <0JH]|0> is generally within 1-2% of Eyg-

(6) The wavefunction ¥ is approximated as Y, plus
contributions from determinants created by exciting one or
more electrons from bonds to antibonds. The energy is then
evaluated by third-order Rayleigh-Schrédinger perturbation

theory.
E ~ e+ €, + E, * E, (19)

e - EE <0|V]I> <I|V]O> (20

2
I Ei B Eo

e = :Z <0|V|I> <I|V]J> <J|V]o> _ E;EE <0]v 152 21

2
1,3 (Ey - Eg) (B - Eg) 1 By Ep)

The Epsteinsg-Nesbet40 partitioning of the Hamiltonian
has been utilized by Malrieu, Claverie and Diner33 where, in

this case
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H = H0 +V (22}
E; = <I|H|I> (23)
<I|ViI> =0 (z24)
<I[H]I> =0, 14J (25)

A particular consequence of Eq. (24) is that e, = <0|V]|0> = 0.

Our version of PCILO follows that outlined above, except
that the expansion is over proper spin states, whereas the
originally disclosed version is over determinants. The
principle consequence of this is that we include in second
order, g,, large terms not included until third order, €y
when using a basis of determinants. Similarly, we include at
third order terms which otherwise are neglected. This results
in an expansion that seems more convergent. Numerical evidence
indicates that v, = ¢,/e, for proper spin states is approxi-
mately one-half that for determinants.41

Equation (14) is of interest for several reasons. The
only N3 step, where N is the number of basis functions (bonds),
is the evaluation of the third-order energy, and this is a
considerably easier N3 step than the repeated matrix diagon-
alization of SCF-MO theory. Second, experience with the
method has shown that the energy expression to third order
is a reasonable representation of the system energy. These
advantages are also chief disadvantages. There is still an

3

N” step, making the method slower than some reliable semi-
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classical methods, although the latter suffer from "personal
interpretations' of bonding. Second, the third-order energy
expression yields results for some molecules below the exact
energy, for others above, making some comparisons unreliable.
Indeed, we have found that Eq. (19) can give energies that
start above the exact energy, and as a bond stretches (or
shrinks) slip below. Such a result shifts calculated minima
of the potential energy surface.

A variational procedure can be obtained from the third
43,44

order energy via the procedure of Goldhammer and Feenberg.

Assuming

o = ug * Ay

where ' is the first order correction

y' = Z <2|VEII> w]_
1 -

0 "I

and utilizing the variational principle we have

2 2
E<w = stlales o, S (Dete vae, (26)
<plo> © 1-a%s

where

§ = <“'l|¢|> = 2 <0|V][I> <I Vl0> (27)

170 (Eg- Ep)

Minimizing Eq. (26) with respect to A yields
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For PCILO with the Epstein-Nesbet partitioning,

€, =

by =

The quantities that occur in Eq.
at the same time as in the third-order energy.

more difficult (or easy) to evaluate Eq.

evaluate Eq. (19).

evaluation of A.

0

= g, +e, 4 Ae,
o L0, - 1oLy, -1 81 3 (28)
(e3 - Sel)
€,
. E<S W= Eo + Aez
e L(y,-1) +L(v,-1)% + 4575} (28")
75 2 2 ’
ei
- ,

(28') are calculated
It is no
(28') than to

The N3 step is still present in the

Bartlett and Brandas have examined in some

detail the utilization of such a variational perturbation

approach and have related this scheme with others.

45

The use of the perturbation-variation technique of

Eq.

(28') has several advantages and one important disadvantage.

Among the advantages is the recognition that changes in A, the

variational parameter, with geometry change q,

do not effect

the energy to first order
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dE _ 2 , 3E A
dq 3q 38X 3q
since
3E _
DY

The suggestion then is to evaluate A at one point of interest
on the potential energy surface with an N3 step, then probe

f, an N2 step. Other regions of

the surface with fixed A, A
interest may come into focus in this cursory examination,.

A is then evaluated at one point in this new region and the
neighboring points corrected with a new Xf. A third-order
method then becomes proportional, chiefly to N2, and as such
competitive to N2 semi-classical methods used to evaluate
molecular conformation. A second advantage to the variation
procedure is that even if the perturbation theory is not well
defined (slowly convergent or even divergent), Eq. (28') still
yields a useful bound. Table V shows an example of this for
CHSCN and CHSNC, where the perturbation expansion for CHSCN

is creeping (g, <0, €,<0) and that for CH;NC oscillating

(e, <0, g,>0).

A major dicadvantage of the variational procedure is
that it tends to smooth out features of the potential energy
surface, and the theory is not '"size consistent'; that is, by
insisting on the comforts of a bound, terms in the energy are
introduced that do not grow properly with the size of the

system. An example of this is given for two benzene molecules

in Table VI. How important size inconsistency is depends on
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TABLE V. Comparison of acetonitrile (CHzCN) and methyliso-
cyanide (CHsNC).

Ci3CN E(kcal/aole) R. (5 k. (mdynes/&)
3 N cN
R.. = 1.46
CN
Ey + Ep -17063.9 1.439 15.3
Eg + E; + Eg ~17557.6 1.431 16.8
£y +2 5, -17548.3 1.459 16.9
£y + AE, -17548.3 1.456 17.0
E(sD)® -17553.5 1.455 17.0
CH3NC E(kcal/mole) R (X) k. (mdynes/Z) AEb(kcal/mole)
CN CN
R., = 1.41
cN
By + E, -17777.5 1.413 15.3 -173.6
Eg + E; + E; ~17164.8 1.397 17.5 392.8
Ep + ATE, ~17434.8 1.423 18.3 113.5
Eg + AE, -17433.9 1.420 18.3 114.4
E(sD)? -17455.1 1.420 18.0 98.4

a} From a diagonallzation of the CI matrix of all single and double excitations.

b) AE = E(H;CNC) - E(H3CCN).
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TABLE VI. PCILO and PVCILO calculations on the parallel
plate dimer of benzene (kcal/mole).*®

E0+EZ+E3 E_ +2AE

o 2
2 x monomer energy -59308.3 -59008.8
Dimer 10A separated -59308.3 -58905.6
Difference 0.0 -103.2
{(0.16%)

*Nesbhet-Epstein partitioning.

the nature of the problem. The perturbation theory results
might be preferred whenever they do not yield results greatly
different from those of the perturbation-variation procedure.
When they do differ, this is generally an indication of a
badly behaved perturbation sequence, and the variational

results might be preferred as still yielding a useful bound.

B. Some Results

Although the PCILO technique has been put to many uses,46
by far the most common and most successful are those that
deal with the molecular conformation of very large systems,
where only semi-classical methods can compete. Notable
applications include studies on the conformation of peptides,47
nucleic acids,48 and phospholipids.49 The method has alsc been
applied to drug design, where structure-activity relations

50

are crucial. In addition PCILO has been used as a prelimi-

nary method to uncover minima in a potential energy surface
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in conjunction with subsequent ab initio calculations. !

In general, the results from the PCILO and PVCILO methods
described mimic the results of the CNDO-SCF theory, but
execute some ten to twenty times faster on the computer.

As such, its failures might be expected to be those of the
CNDO-SCF method. Most notable among those failures is the
systematic stability given strained cycles with respect to
the linear isomers. The PCILO model will contain some of
the correlation energy, but for most of the applications
reported the correlation correction does not seem to greatly
alter results from what one would expect from the SCF counter-
part. Notable exceptions deal with weakly bonded dimers
where the localized zero-order description might be expected
to be superior to the canonical "super'" molecular orbital
description, and more importantly downgrades, to some extent,
the interest the CNDO approximations have for overbinding
such systems. A comparison of PCILO results with those of
CNDO and extended Hiickel theory show the former far superior
in describing the interaction between tetracyanoethylene and
benzene.52 In addition, John Cullen and I have been able to
explain the herringbone structure of liquid benzene from the

relative stabilities of

S
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triplets over all others.53 In this case the CNDO-SCF method

54 Care must be exercised

overbinds by an impressive amount.
in the interpretation of such results, however, as higher
order perturbation theories must converge to the same result
as SCF plus full CI, and the latter is likely to be similar
to the original SCF results because of inherent errors in the

46,35 Very recently Lochmann and

CNDO approximation itself.
Holza’® have examined a great many van der Waals complexes
using the PCILO model with good success for those systems

not possessing lone pairs (see discussion below).

C. Discussion

The PCILO method is interesting both from the applied
point of view, where it provides an easy way to evaluate
molecular energy and thus molecular conformation, and from
the theoretical point of view, where it provides an easy model
Hamiltonian and an interesting reference state of doubly
occupied bonding functions that relate well with 'classical"
chemical concepts.

From the applied point of view the PCILO model is bound
to fail whenever the corresponding CNDO-SCF method fails,
for it has been parameterized on the latter, and most features
present for strong bonding are present in the SCF theory.
Notable exceptions, at least at third-order in perturbation
theory, are found in examining weakly bound van der Waal or
charge transfer complexes in which PCILO yields more reasonable

results.
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An obvious improvement of the model would be its exten-
sion to include INDO or NDDO integrals. The former has been
recently accomplished by Douady, Barone, Ellinger and Subin,
with improved results, especially for calculated angles and

57,58 Part of this improve-

rotational barriers, as expected.
ment, though, may be due to an improved description of the
lone pairs as well as the inclusion of the additional one-
center integrals of Eq. (17).

It is indeed tempting to apply the PCILO idea in an

59 This unfortunately is difficult, for the

ab initio fashion.
localized bonds are not orthogonal, thus making the integrals
of Eqs. (19)-(28) difficult to evaluate. Orthogonalization
of these bonds to one another creates delocalization of these
bonds and re-introduces the integral transformation problem.
The loss of Brillouin's Theorem {that single excitations
interact with the reference configuration) that accompanies
the localized bond description may be too high a price to pay
if one must also transform integrals over bonds to integrals
over the entire system. However, theories that treat the
non-orthogonality problem — or corrections to the NDDO approx-
imation — as a second perturbation, may show promise.

From the theoretical point of view the PCILO model has
been extended to infinite order in single and double excitations,
and to fourth order in singles, doubles,triples,andquadruples.60
Although the former beyond fourth-order proceeds as N5, and

is thus slow in application, the fourth-order fully linked
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TABLE VII. Localized bond study on ethylene (kcal/mole).

KT = Har:ree Fock -10708.2
5: + spcr® -10750.7
EF + SDCI + Ae» ~10752.5
Localized Mollet-Plesset Nesbet-Epstein
Bond Determinant Determinant Spin States
1B = g5 4+ €, -10672.7 -10672.7 -10672.7
LB + g;{singles) ~10697.9 -10706.2 -10705.9
LB + g, + €3 -10749.9 -10753.0 ~10754.9
LB + €5 + €3 + €4 (SD) ~10756.7 -10765.6 ~10765.3
LB + €2 + €5 + €4 (SDTQP -10757.0 -10765.6 -10763.9
Padé on 4th order -10763.1
LB + SD-MBPT® ~10764.2

Time (sec.) Amdahl 450 V5

HF 3.2
CL 32.6
HF + CI 35.8
LB + SDTQ - 4th Order 0.3

a) SDCI = all singles and doubles CI
b) SDIQ = singles, doubles, triples and quads at 4th order
c) The Padé Approximate at 6th order and the direct summation at 8th order

are generally within #0.1 kcal/mole of converged result.
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correct order of states from our interpretation of the
experimental data (in contrast to the data on ferrocene using
a smaller basis set, Table III), the transition energies are
an average factor of 1.7 too small. The INDO/S results for
these copper complexes were usually quite close to the
experimental values.

Turning now to the PCILO method — quite simply few
laboratories would be able to examine the geometric confor-
mations of, say, valinomycine,61 and those that could should
certainly have made a preliminary investigation using PCILO

and PVCILO.
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APPENDIX
PERTURBATION THEORY

Know
o _ o ,0
Howa Ey Vo
want
Hy = Ep
H = Hoi-V s V<H
Consider

0, _ o0[,0
Ho“’o> - Eo,wo>

Hly> = E|y>
<UlH lvg> = EJ <ylyd> @
<vg|Hly> = E<yg|v> ®

Assume "intermediate' normalization
¢}
< > =
Volv> = 1

= ® - @ = (BB = aE = <y_|V]y>

E = Ey+ <y |V[p>
(Ho +V)y = Ey
(H0+V+€)w =  (E+e)y (e is arbitrary shift)

(e -H )Y (V-E+e)¥
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v o= (et (v-Ese)w
gt
resolvent
o _ )
Py, = ¥,
P$ = wg or zero
P+Q¥ = ¥
P and Q are projectors, i.e.,
Po= ud> <ol
o, _ o 0f,0 _ o
Pled> = Juo> <uglug> = lug>
Q = ] lug> <ugl
ofo a
n et=p , &= , =0
N~
idempotent mutually self-
exclusive
Z2) P+Q =1
o= (P+Qy = vy + QY

[o]
QW = Qe-H)T! (V-E+e)

Vo= oy QeerH)Th (V-Eee)y
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Iterate

Vs Wt QleH)Th (V-Bredyg + .

= 1 [Qe-H) Tt (v-E+e)I" y,

n=0

E = E  + <y |V]y>

LS <WolviQe-H) H (V-Eee) My >

= Eo * izo €i+1
€11 = b, IVIQe-H) T (V-Ere) TPy >
e, = <y |viep>
€, = W IVQ(e-H)) T (V-Eve) [y >

= T < IvIed> <ud(e-e2) vy >

i

BRILLOUIN-WIGNER PERTURBATION THEORY

1

E = E,+ ZO <¥, IVIQ(E-H)) ™" V1T |y >
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RAYLEIGH SCHRODINGER PERTURBATION THEORY

_ o
€ = Eo
= -1y, n
-E+E° = CE;-E,- €57 ...

COMMON PARTITIONINGS:

He = ni®E .y

or

=)
"

] [o] ] ]
5 [vg> <vlH|v > <y ]

_ o o o o
vom g T valilvg <vgl

E; = <yilH[v]> = <I|H[I>

<I|V|I> =0

<I|H |J> =0 (I#J)

= g, = <0|V|0> = 0
EPSTEIN-NESBET
Hy = @ f(1) f(1) = h(i) + V(i)
i
oCccC

£, = g €,y , €y = ha + g <aBl o8>

if £(i)} 1is a Fock type operator,
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r

v s A -Tv
i< Tij i

MPLLER-PLESSET PARTITIONING

<OfH+v[0> = el;dP + ebfp
ogc Z

= e - (2J - K. )

o ¢ a, afB afB

Note that e,#0, but

By -E, = g, -e
AB
Ery ~E €pA TFp "F1 "fg

etc.
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PREPARATION FOR CI

Form integrals over MO's

1
Ti2

[ijlke] 0, (2)6,(2) dr,dr,

~~

63 (1o, (1)

N
¢; = 2: c . f

A1 pi Tp
{pq|rs} = Jrfpfl)fq(l) ;%; £.(2)£,(2) dr,dr,
lijfke] = 2: €piCqjCrkSse {pqlirs}

pqrs

N9 as written

Define
Pq -
(F™%) {pafrs}
gPd = CT (FPq C)
3
N~ for each pq
3 = 2N’ multiples
N~ for each pq
Define
k2 - Pa
M) g 6Ly

{ij)ke} = {QT Mkk g}ij 2n® multiples
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so cost goes like NS. Notice this process requires two

sorting steps to arrange arrays in best order for next step.

SORT . .
- disordered file
¥ ¥ ¥ ¥ ¥ ¥ ¥
bins in core,
dump when full
¥ ¥ ¥ ¥ ¥ ¥ ¥
1 0 2 6 6 ] 4 0 S g 8 i
3
{ 106 1 A 9 ;
self loading chains
7 13 X
3 12 on random file
11 14
7 13

1 3 7 11 2 6 10 . process core loads

sequentially

COMPLICATIONS DUE TO SYMMETRY

[ij)xe] [jillke]

[ij]l2k] [jill2k]

[kefij] {ke)51] [ekij] [ekfjil

Need only store i > j > k > 2

{[ijllke], [ik|jel, [i2)ik] }  rtriplet"”
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Point group symmetry: many integrals are zero, arrange in

non-zero blocks (Fi = symmetry type)

(r,r); r,r,; ijlkel

r, ® r,e T

. ® r, = totally symmetric

2

Consideration of symmetry reduces cost but complicates

programs.

CONFIGURATION INTERACTION

Basic
Assume
y o> J Cr #;
Determine "best" C; by minimizing <¥|H|¥Y>/<¥|¥> . Trere are

several approaches:

H Matrix
Hyg = <oplHley>
¥ Hi;C; = ECp (matrix eigenvalue)
J

Small matrix methods: Jacobi, Givens, QR, LR, etc.

Large matrix methods: incomplete expansion

k
¢ . D L3 D)
i=1

1 ~1

Vary a; to get best g(n)_ Select next bi set by some system-

atic scheme, so lim g(n) —» C. b; usually picked by

n-+o
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0
é ... or first order perturbation theory correction
“/to cm1),
"Direct" CI
z ’&IJ
H =
IJ
g 2

where «/ = integral and ¥ = coefficients (mostly zero!)
IS g ey = B
v J

solved using large matrix and perturbation correction

method. F built into program logie or data statements.

Semi-Direct CI
Many "H matrix'" CI programs form KZ;J as a "formula tape'.

Then one can solve
I1J
= 2 C

bringing «f and & from scratch files.

Specialized CI
Closed shell SCF + all single excitations.
Closed shell + all double excitations (self-consistent

pairs).



CONSTRUCTION OF H
A. Integral driven
B Formula driven
C. Partial formula tape
D

Complets formula tape

Al 1. Read in one </

1J

2. Determine all non-zero \zp involving this qf

3. Store (-J,&‘(IJ) or Xy« Xy + Js&‘_ju C;

merge aﬂ{;J use direct CI
to get HIJ methods

Bender semi-direct CI and

Shavitt unitary group are in this category.

B. Formula driven
1. For given I,J determine which ‘/ are needed

2. Extract these «/ from integral file

- _ 13
3. Form Hp; =] ,{fj

C. Partial Formula Tape
1. For given I,J determine which «/ are needed and
part of the J{{IJ formula
2. Sort partial formulas
3 Sort formulas on
4. Form J’{Z{’U and store
5. Sort :j’,é,l‘] on 1,J and combine to get Hyj
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Same as "C" except complete Vz;J is done in step 1.

SPIN-COUPLING

Number of different spin couplings

No. of different spin couplings

+ q = number of half-filled orbitals.

i.e., 5=0 gq=2 («8-Ba) /¥ 2
q=3 (aB-Ba)a/vV 2
(oBa + Bao - 20aB) /Y 2

\Decrease S

ﬁr\cvease S

K1 o 2
X ' \ ‘ ‘ Each path
\\\ ///Y Pepresents
y—-1 * . - . ¢ - . Possible

confiyuration
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SM_ 1 I 7
va JNT ’4{¢il¢11¢12¢12 "'¢iP

I labels {i, ... ip; joo..5.}

XsM is spin eigenfunction for q e,

SM _ M,q
Xy = gAP,(S,V)P(aa ...a B...8)

q

-
2
[*3
+
zZ
™
i

q
} + P takes <q+2M) values

=2
l

=
1t

ZM

N = q+ IM

Simplest X has S=M and is usually used (E independent of M).

SM _ Mq M MqI
T DAesw B or Apsv

M 1 by "

= det s 0s ae- G5 01 P
&Y o det Loy 0y - 05 0ip 05 %,
¥ Plaa ...B... )}
g q'

SM | gSM L L (b)) a A" gM et

<\!’IV IHIVI,V,> = E Z Ap Aplvl<t’8’IPle’IvP|>

P p'

Turn over rule

q
q pr



13-9

A (@
SMy..),SM - qa ,q' M
<\v1v|H]\r§.v.> = g g| BB, Apryr <,9J;’p|1-||,9' ipr>

. . q
where X = number of spin couplings << (q+ZM)

EFFECT OF PERMUTING ORBITALS IN ¥

Iv
¢ik Aind ¢iu no effect
b; by no effect
i, JM
L8 -+ ¢ linear transform
I Ju
i.e.,
$,0,6,(aBa - Baa)/V2Z = ¥,
¢,6,6, (aBa + Boa + 200B)/V 6 = ¥,
Then suppose ¢, ++ ¢,
¢y9,9, (aBa - Baa) /¥ 2 = v,
¢,9,9, (aBa + Baa - 20aB8)/v 2 = W;
R V3
¥, = 70 = v,
Y3 1
O i AR A

=1 L P ) star .t -
iiji i) ... ipipiy---ig

maximum juxtaposition
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Puts I in "standard order" relative to I'; puts 1' in order

"so mismatch is standardized.

- I!
¥iv = 2 Ky Y15
v
<¥ \,,HI‘FI|V|> = _; Q{,\,Q\','\,l IHI‘I’II\)I>
AT
Sllvplo = 1L BA BTG - )
p p' 134
II'vv! ~ I1'yv?
‘\éj Z QV\)Q Ty! -JJ
vV

Partial formula tape gives & complete formula gives %

STANDARDIZED CASES

A. Two orbitals differ (16 cases)

i? » k2, i2 + kz, i%k + k2, i?ke » k222,

i?j » ik?, i?5 » ike, iZjk + ik?e, i%jke - ik?%e?,

i?j2% » ijk?, i?32 » ijke, 12j2k » ijk2e,

i2§2ke » ijk2e?, ij » k2, ij + kg, ijk + k24,

ijke » k%22,

involves two ~/ [ik|32], [i2)jk] . +# depends on case s,q.
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B. One orbital differs (4 cases)
i%k » ik?, ik, i? =+ ik, ik + k?

involves h.p [ik|ppl, [iplkpl; all p common to I and I'.

c. I=1"

involves
nJ=2 n.=2
Lnghyy +X X ny (2355 K5 + 1 Jii}
i 1 j<1 1

and Kij between open shells

LARGE MATRIX EIGENVALUE (Nesbit/Shavitt/Bender)

(n} _ (n-1) a
C = C + Aiei
0
e {1
Z2x2 CI
C(n-l)T H C(n-l) - E(n-l)
~T (n-1) _ (n-1) - (n-1) _
e; HC [HC ]i ) Hijcj = hi
AT ~ _
e; H e; = Hii
™D h /1 1
= g
h H, A A
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(E(n) . E(n-1J) (E(n) -H;;) = n?
(F(n) - E(n-l) ~ - h; (Nesbit)
: H,, -g(M°1

11

2
hy

gn) _ gn-1) _ T
SL(H; -0 D) « Vi, - B0D) gt

i
A =
i ~{(n)
EV0 - Hyy
(n-1) 2
E(n) . < = E + 2hiki + Hii Ai
1 + A5
i
Difficult for excited states
k
g(n) = ai ]-_-,1
i=1
~ + +
ij = by Hby Bi B = 8y
. o
Ha = Ekg , k™ eigenvalue
™ - “E) c(n)
(n) _ . -1 (n)
Ep (Ek pr) qp

First order correction to C(n]. Schmidt orthogonalize § to

{b} and normalize —» by,q- Iterate until cm converges.
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PERTURBATION CORRECTIONS AND APPROXIMATIONS

Quadruple Excitations

~ 2
AEQ = (1 -Co) AESD

CEPA: Shift diagonal elements to account for quad.
Pair correlation ij -

Shift by 6&H = AE all other peaks.

Segal/Davidson/Shavitt By: Neglect most off-diagonal

elements

E R e it C = f--—--

T 2
HOC0 + h'x = ECO

hC0 + Dx = Ex

x = (E-0)"1 nc,

1

[H, +nTE-p)"1nlc, - Ec

[o]

nonlinear in E.

F-D)"! = (D)t - (B-E ) (B,-D) L (E-D) !

T - - -
[Hy-Eq +h' (E,-D) 'hlec, = (B-E )[4 +h"(E,-0) 1 (E-p) Thic,
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Solve #s simultaneous equations

= T -1
B o= H, - E, +h( -D)1h
§ = 1+107(g, - % n

fic, = 15¢c,

where A=0 and E = EO+X

E=Eped =0

A=A (E,)

Minimum at best E,

EO
since BEIBEO =0 at E=E0, small errors in E0 have little

effect on E.
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INTRODUCTION

Perhaps one of the most successful applications of
molecular quantum mechanics has been the reproduction and
prediction of molecular conformation. In many cases bond
lengths are reproduced to #0.02 & and bond angles to *5° with
a variety of simple molecular orbital models, or with minimum
basis set ab initio calculations.l’z Larger basis sets,
especially those of double g plus polarization type and the
inclusion of electron correlation are now producing geometries
which challenge crystallography for accuracy. The optimist,
armed with the growing success of conformational calculations,
might even choose the calculated results on isolated molecules
over the experimental results obtained in condensed media,
as the former may be more appropriate for the chemistry he
is investigating.

In addition to yielding information about global minima
of the potential energy surface, quantum mechanical calcula-
tions yield information on local minima, which may or may not
be observable directly, but which might be involved in reaction
pathways. Similarly information can be obtained about transi-
tion states and energy barriers that would be difficult or
impossible to obtain in other ways.

The gleaning of all this information from a potential
energy surface is difficult. Considering N atoms there are
3N-6 (or 3N-5) degrees of freedom that should be plotted

against the energy. For detailed statistical calculations
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one may have to live with this "3N" problem and visit all
regions of the surface thermally accessible. These notes,
however, are concerned with determining only a small part of
the potential energy surface: those points that either
correspond to minima, and thus stable or metastable confor-

mations, and points that correspond to transition states.

GENERAL CONSIDERATIONS

The energy E of a molecular system obtained under the
Born-Oppenheimer approximation is a parametric function of
the coordinates X = (Xl, XZ""XSN) assumed for the calcu-
lation. We wish to move from E(X) to E(K‘), where q =(K‘ - X).

This may be summarized as a Taylor expansion about X as

E(X') = EQ) + £(X)g" + qH(X)q" + ... (1)
with
£, - a:XD_()
1
and
()
ij BKiBXj

the gradient f and Hessian H matrices, respectively.
Although conceptually the Taylor series is infinite, about
extrema we might expect a quadratic form to be adequate;
i.e., for X =Xg» Where Xe designates a stationary point and

by definition is characterized by f(}ej =0,
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E(X) = E(X) * %¥qH(X)g" +

In a similar fashion

£(X1) = £(X) ¢ gH(X) + ... (2)
For the point Xl = Xe,
£(X) = -qH(X) (3)

The solution of Eq. (3) is the starting point of the
most efficient procedures used to find extrema in functions
of several variables where the functional form of E(X) is

not explicit in X. If H is non-singular, then

i}

1 -£(X) B0 (4)

which allows the solution for X, from any point X near
enough so that the energy function is nearly quadratic.

Similarly, an estimate of E(¥e) is obtained from

E(X,) = EMX) - 5£(0 H ' (X) £7(X) (5)

E(Xg) - %qH(X) q*

For the specific problem of uncovering extrema on the
potential energy surface there are several pathological
considerations. The first of these is that H"(X) will not
exist unless the rotations and translations which represent
zero eigenvalues of H have been factored. This may be

accomplished via the B matrix of Wilson and Eliashevich3
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Y = X8 6)

where X has 3N entries and B is 3N x3N-6. Since work, W,
is independent of the choice of coordinate systems, the six

(or five) zero forces can be separated by

+ + +  +
= = f = f B
We=1fq ty9y = 5, 0 9
f = £ B
1 Iy 2
or 7
. +y-1
fy - f(§ )
where (B')”' is defined from
M6 2 B

In general, (B*)"' can be given by

+

@9 = By

where m is an arbitrary 3N x3N matrix, usually taken as a
diagonal matrix containing the reciprocal of each atomic
mass three times in the appropriate positions.4 It may also
be chosen as the unit matrix with six (or five) zero entries
chosen to prevent translation and rotation. A simple such
choice of this type is to place atom #1 at the origin, atom
#2 on the z-axis and atom #3 in the xz-plane. Then the six
(or five) coordinates removed are X1=Y1=Zl=0, X2=Y2=0, and
Y,=0. If Y, =0 implies X,=0 for any choice of third atoms,
then the molecule is linear and only five degrees of freedom

are chosen.



In addi ion to the consideration that must be given to
the inverse of H, and to which we shall return, we must recall
that neither f nor H are generally calculated in quantum
chemical computations. For this we must consider the energy
E and how it is obtained. For Hartree-Fock calculations E
is dependent explicitly on the occupied molecular orbital
coefficients C and on X. Its derivation is then given by

dE 8 , 3y E *Cia

= 3C. 53

= 95 (8)
dxA BXA i,a ia a

Since aE/BCia = 0 1is the condition for the Hartree-Fock
solutions,
dE 3E (9)
dX, 9X
This realization allows one to ignore to first order the
change in molecular orbital coefficients with respect to

geometry changes. Given for a closed shell system that

E = >P h + 2 P P, <uive> + V (10)
e UV uv VoA uv oA NI
where
B ZaZp

VN ¢ 2

A<B  RaB

m.o.
Puv = z: Cua Cva N,

a

anrfve> = (k1) v(1) |2 (2)0(2))

- 5 (WL o) A (2)u(2)
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where h is the one-electron matrix, Z, the atomic number of
atom A, and P is the first order density. Differentiating

Eq. (10) yields

ah v
T - X ;v + TPy Py a<u;xvu> * ayN
Xy I Xy HVOA A A
IP oP
TR : T\
+ hy,+2 X Py <uilve>  (11)
Z BXA e HVOA 3XA A

Equation (11) suggests that derivatives of the m.o. coefficients
are required, whereas Eq. (9) does not! Expanding the last two

terms of Eq. (11) gives

mo: m.o.
zacua acua
: Z Z 3Xp huvcvana + 2 E : E : W P <uofva>Cn,

U,V a H,v,0,A a
mO. .
= Ha
= 2 E E = 1y * 3. Pgy <uoflva> Cya Ma
Y A g, A
u,v
m.o.
= ua
2 Z X {Fu‘ll Cya My
¥,y @ A
m.o
Bcua
-2 z: Z 3%. %a Suv Cva Ma
a v a

Recalling that the orthonormality condition of the molecular

orbitals are
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uzicua Suv cvb = 6ab

and differentiating the above yields

Z BCua 2 z BSuv
2 S C = - C C v
WLV aXA Hv “va u,v Ha “va aXA

which has eliminated the derivatives of the coefficients.

Combining thicse expressions results in

9E  _ E P Bhuv + P P 8<uA!vu>
axA uv axA [TAV 2 BXA
uv HVGA
v
- E p' EEEB + Elﬂﬁ (12)
v
" H, aXp BXA
where
m.o.'s
1] - A
Puv :; ea rua Cva na *

The relative simplicity of Eq. (12), with no derivatives
of P appearing should not be confised with the Hellman-Feynman
theorem.5 Given that

E = <y[H[y>

with <yp]y> = 1, then

dE 3y . 3y .| 8H
ax, X, [RH[v> « <y|H] 3%, <vl —BXAlw
(13)

The Hellman-Feynman condition then is that
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1’2 LIS = 14
<3XA |Hip> + <y|H] %, > 0 (14

which only holds for exact solutions, or certain classes of
trial functions.6 Under the constraints of Eq. (14), Eq. (13)
is simply

dE

3H
—_— = <q‘l —-l\p> . (15)
dXA BXA

Equation {15) is the expectation valve of a simple one-electron
operator plus the derivative of the nuclear repulsion term.
Equation (11), however, does nof dz2pend on Eq. (14). The
integrals involved in BD/BXA and B(uv[ok)/BXA, discussed
later, involve the wavefunction through "atomic orb.tal
following," i.e., BXa/BXA, with X, an atomic orbital on
center A, and are far more complicated than those of Eq. (15).
In practice, the forces evaluated through Eq. (15) can be
large even when they are calculated to be zero under Eq. (13)
and thus represent an ev*rema of the energy function. Never-
theless, the simplicity =~ Eq. (15) is appealing, and one
wonders if the increased inconvenience of insuring Eq. (14)
is not repaid in utilizing Eq. (15) when the goal is geometry
optimization.7

For a configuration interacted (CI) wavefunction over

determinants Wj’

one obtains for the energy derivatives



14-10

dE=3E+§:aE E:Eaj
dX, 3X, 4 aC;y a d X
ib j
(16)
where now the first sum is over all molecular orbital
coefficients. 1In this case, dE/d)(A = QE/QXG only for a multi-
configuration self-consistent field (MCSCF) function. For

the general Hartree-Fock plus CI wavefunction, aE/Qdi =0

and

dE  _  _8E , 3 Cia (17)
ax aX z:ac- aX

T.e evaluation of aCia/BXu is complicated, but can be
approached through perturbation theory.8 The contribution
to the forces of the second term might be expected to be
small for a large CI, as the dependence of the energy on C
is downgraded, or for a system without a great deal of bond
polarity, or for a system in which the molecular orbitals are
determined by symmetry. Under such situations an inicial
search can be made of the surface using Eq. (9), but for
accurate results reliance on this approximation is not
satisfactory.

Second derivatives of the Hartree-Fock energy can be

obtained directly from Eq. (12):
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92X, 09X [TAVD QXB Ao )
A°*B e A uvor
2 2
; P 3 Suv . 2 vNN . 2 Bpu\)
: : UV 3X,3X 3X,9X aX
.Y A" B A%“B "LV B

1
+ zE p "o B(u;xak) . 2 : Puv 35,
A 3

WV 3Xg aXp

2
2 3 h 2
3 E z uv E : ) <uA|l\)q>
= P + Puv P.

The last three terms of this expression involve the derivatives

of the molecular orbital coefficients and cannot easily be

avoi led.

OPTIMIZATION TECHNIQUES

General Considerations

There is a rather large literature on numerical methods
for finding stationary points as a function of many variables

For tne purposes of these notes they may be classified as

follows:

a) methods without gradients

b) . ethods with numerical gradients and second

derivatives

c) methods with analytical gradients and numerical

second derivatives

d) methods with analytical gradients and analytical

second derivatives.

9,10
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All of these methods relate to the Taylor expansions of
the function E and its derivatives f as given in the previous
section. In practice, they can be applied as "estimate"
techniques, or as "iterative'" techniques.

Type (d) methods might be preferred as utilizing the
maximum amount of information at a given point, but assumes
that the analytic first and second derivatives can be obtained
at the same time, and with the same ease, as the energy E.

It is clear, however, that insofar as our initial estimate of
the geometry at an extrema is within the quadratic region of
the valence bond force field (the y coordinates of Eq. (6)),

a single application of Eqs. (4} and (5) give a set Ye and

the energy E(ye). Such a single application of Eq. (4) we
shall call an estimate. If we arc not within the guadratic
region of the potential, the estimate may not be very accurate,
and it may be desirable to Zterate; that is, having determined
a new set, Xl, from the initial guess Yor solve the equations
of the previous section for yz. This requires f(yl) and

ﬂ'l(yl). This procedure might then be repeated until En -En_1
is below a given threshold or o = f(zn) f+(Zn) is below a
given threshold, or both.

In practice, type (d) algorithms are not used because
of the difficulty that arises in analytically obtaining the
required derivatives. In general, the derivative of an

orbital with respect to a nuclear coordinate gives rise to

several new orbitals (see below), at least one of which is of
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greater £ quantum number than the orbital itself. The second
derivatives will involve even more terms, with atomic Hrbitals
of vaiue 2+2. Assuming an SCF calculation requires s integrals,
~5s or more integrals are required for the derivatives f,

and ~25s for the second derivatives. Since s ~n4 for ab initio
methods, where n is the number of basis atomic orbitals, and
the SCF step proceeds as ns, integral evaluation is already

the time-consuming step. It might thus be possible to perform
many SCF calculations in the same time required to evaluate f
analytically. On the other hand, most semi-empirical methods
have ~n? integrals required in the formation of the Fock
matrix. This time-consuming step is the solution of the
secular equation, and the evaluation of analytic first deriva-
tives are quickly accomplished. The most efficient methods

used today are of Type{(c), but certainly attempts to utilize
Type (d) are in order for methods in which integral evaluation

is not time-consuming.

Some Algorithms

The simplest of the methods are of Type (a). The simplest
of these are the so-called axial iteration or univariant tech-
niques. One chooses a set of internal coordinates and minimizes
the potential energy with respect to each coordinate in turn.
After completing the 3N-6 =m independent searches, one returns
and repeats the procedure until the change in coordinates is

below a given threshold.
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One successful such procedure is to step alone each
coordinate Y by a. If E(Y + aigi) < E(Y), where e; is
the unit vector along "i", repeat the step until E(Y = raigi) >
LY +(r-1)uigi), r an integer. The new coordinates are
Y = i-+(r-l)uigi. If E(Y +aigi) > E(Y), step the other
direction until E(Y —ralgi) > E(Y - (r-l)uigi). Again the new
courdinates are Y =Y -(r-l)aigi. If E(Y) is of lower energy
than both E(Y + aigi) and E(Y -aigi), then a quadratic is fit
through the three points (yi, E[yi)) and the minimum value of
the quadratic found (y;, E(y;)). The coordinates Y are
updated and ay is set to ai/4. This procedure is repeated
for all i, and then iterated until all a; are below a specified
threshold.

The most effective of the Type (a) algorithms seem to be
11,12,13

of the Simplex type. The method given below is that

a.13 Figure 1 is a schematic attempt to

of Nelder and Mea
follow this method for two variables.
Consider m variables. X,, X;, ... X, are the m+l

independent points in this m dimensional space that defines

the "simplex." E; designates the value of the energy E(Li].

Let E, be the highest value of {Ei}’ and E the lowest. Let

X be the centroid of the points {Yi}i#h and [gi gj] the distance
between Xi and Xj'

m
X 517 = ¥ Ix@ - X7
a=1

The reflection of X is denoted 5* and its coordinates given by
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A
A
Yy
N
*
Ya
B
Yy

Fig. 1. The Simplex Method, where h designates Eys
C designates the centroid of points: A, a success-
ful reflextion *, but failed expansion **; B, a
failed reflection *, but successful contraction.
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X' o= (14 @)X - aXy

_ (18)
[x* X1

[X,X]

where o is called the rerlection constant and is positive.
i* is thus on a line joining Kh and X, but reflected to the
far side of X from X;- Three possibilities ensue: If
Ey < E* < Ep» then Xh is replaced by 5* and one starts
again with a new simplex, reflecting the new Xy, etc.
If E* < Ey, if the reflection has produced a new minimum,

then 5* is expanded to 5** Sy

X** = ux* o+ (1 -0)X (19)
where
[x** X3
v = —— 1
[x* X]

where v is the expansion coefficient. If E** < El’ Eh is
replaced by {** and the procedure is restated. If E** > El’
then the expansion has failed and X4 is replaced by X* before
restarting.

Finally, if E* > Ei for all i #h, that is, replacing Xh
with 5*, leaves E* the new maximum; then a new ih is defined
which produces the minimum of E(zh) and E(z*) and a new

contraction is examined

X** = oex o+ (1 - B)X (20)
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[ikzX]
[x, X1

The contraction coefficient B lies between 0 and 1. X**

replaces Xh unless E** > min (lh’ {*J. In the latter rather
rare case, all gi are replaced by (li + 52)/2 and the process
restarted.

From an analysis of analytic functions Nelder and Mead
suggest the values a =1, B=J%, v=2, For the mathematical
implicztions of this strategy one is referred to the original
literature.l3

Applications of the simplex method to molecular orbital
calculations have proven reasonably successful. The MINDO/2
method, for example, was parameterized by such a geometry

14

optimization procedure. A strong advantage of the simplex

method over axial or invariant methods appears when the number
of variables becomes large, and coupling between these
variables arc large.

The most successful methods that use gradients, either

numerical or analytic, that I have cxamined seem to rest on

16 17

the Murtagh Sargent15 variant of the Davidon Fletcher-Powell

method. This procedure is appropriate for Type (c) or Type (d)

algorithms, and proceeds as we have implemented it, as follows:18

A sequence §n = §(§n) is defined that will approach
H-l(ﬁe) for sufficiently large n. The starting point is

Eq. (4).

f

fx-1 k-1 (21)

A = 2 g1 T T%k-1
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Step 1: Set ag = ¥ and §0- 1. Use Eq. (21) to obtain

a new set of coordinates X;. If E; >E;, repeat this step with

ap = 4o until E1< EO' This is equivalent to the method of

steepest descent with "half-steps."

Step 2: Form
Zx = cogeq Egog Spop - (- £y gdsg
= D+ fy g (eg g - 1DIS
(22)
C = Zxlfg - fyy)
+
CTy = Zx I¢

If fCpl < 1075 8Ty or Zyfy 1/Cp > 107°, S is reset to 1,
oy reset to %. These tests insure the stability of §K; that
is, the §K remains positive definite after update. If the
rotational and translational degrees of freedom have been
removed via B of Eq. (6}, then these tests might fail because
of the numerical updating procedure. If these degrees of
freedom have not been removed, then ﬂ'l(xe) is indeed singular
and eventually the v»rocedure will recognize this. 1In either
case, with reasonable starting geometries, §K is seldom reset
to 1, a fortunate finding, for this reset would mean the loss
of all information about the curvature of the surface built

up from previous cycles. If these two tests are passed, then

S

Sg-q is updated by

.
Sg = Sg-1 *t Ik I/ (23)
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and ay is set to unity.

Step 3: Equation (21) is solved to find a new set of KK’
EK and £K are calculated. 1If EK < EK—l’ ore reports back to
step 2 until o/m = £K £;/m <1073 a.u., at which point most
bond lengths are converged to £0.01 a.u. and bond angles to
+0,5°. If EK > EK-I’ ag.q = %“K (a "backstep"), and step 2
is repeated without updating K.

An important feature of the Murtagh Sargent procedure
is that a stationary value of E is obtained at the latest in

15,19 1, practice , far fewer

m+1 steps even if H is singular.
steps than m+1l are required if reasonable guesses on starting

geometries are available.

FIRST DERIVATIVES OF THE ENERGY

Algorithms that utilize the first derivatives in searching
for extrema are, in general, more effective than those that do
not. The question then concerns the difficulty in obtaining

these gradients.

Numerical Methods

The derivatives f can always be obtained by central

difference

o FlX+ose;) - BIX-ayey) (24)

iooaxg Zag

o]
1]

where a; defines the step size and e; is a unit vector in the
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ith direction. The step size must be chosen large enough such
that the difference E(X+a;e.) - E(X-a;e;) is numerically
s.able, and small enough such that this finite difference
equation approaches the derivative. In practice o; = 0.05 &
and 1° seem satisfactory,zo’21 although smaller values have
been suggested.22 Assuming m degrees of freedom (X in a

1xm row vector}, 2m+l calculations must be performed to obtain
£ for each cycle of the Type (b) or Type (c) algorithms.

A more accurate estimate can be made of these derivatives

from the Newton-Stirling formula23’24
3E{X) usE)
£, = = ueE, - + ...
“Hi *\Tox; Ho%0 T 733
X=Xy
-D'@n? 2n+1 :
el LT (25)
(Zn+ 1)!
2n _ Zn-2 _ 2Zn-2 Zn-2
SEXM = SECY] 26EL + 8EL]
2n-1 2n-2 2n-2
HSE = u(eE D% - eEST]
sE? = E(X + raey) r=...-2, -1, 0, 1, 2
r X el) = ...-2, -1, 0, 1, 2,...

The leading term in Eq. (25) is the central difference
formula of Eq. (24). The extra expense involved in going
beyond the first term in Eq. (25) hardly seems worthwhile in
obtaining the elements of f if a reasonable starting geometry

has been guessed.
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" Analytic Derivatives

From Eq. (11), for a closed shell mclecule, we obtain

v
3E _ 4 ( I NE )
== = u v]P
X3 nv 3Xy Y

. 3y
e 2 [l cuivgl B0 v,

- du 3V
+ < == |T|v> + < p|T] == >]P
JL [ 5X; ax; ] Tuv

+ 3 == <ur|ve> LN
HVOA BX ar
av
- NN
- N + P’ o+ 26
= [< x5 sl cul g x >] w e (26)

with P and P' as defined in Eq. (10).

We must now examine the integrals that appear in Eq. (26).
We first examine the derivatives of an atomic orbital with
respect to the ‘isplacement of the nucleus on which it is
centered. Most semi-empirical methods use Slater type

orbitals (STO's) as defined in Eq. (27):

-Zr
n-1 2 b

X(ngm) = N Pg(cose)zim¢

(z7)

N2 o (agynel [ (2£+1)(£-[m[]!_]

nim (2n)! 4n(a+|m|)!

Using the cosine law, and the relationship (25)


http://-iH.lv
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m
3P (cos8) (cos®® - 1)'1[1cosB P?(cosa) »(1+m)Pg_1(cosa)]
dcos8 (28)
and
or
a
= 2
T cos® . (29)

one obtains after quite a bit of algebra

%
3X(ngm) _ 4 {Z(H_l_z) (a+1+fmpj(e 1-[m])
3Ry (20+1) 2n(2n-1) (22+3)

3
x X{n-1,2+1,m) + 2(n+8) [(’“ lm{) (2 - l‘““] x(n,2-1,m)
2n(2n-1) (22-1)

%
[(g -ml+ D)2+ |m] +l]] X(n, 4+1,m)
(22 + 3)

]
[(1"'!“\{)(2- Lml)] x(n,l-l,m) (30)
(2% - 1)

26

an expression first given by Garrett and Mills. Most ab

initio calculations are performed using Cartesian Gaussian

functions
2
-ar
_ m .n a
G(amn) = szn Xa Ya Za 3
where
% 3y
N (80)*™7 (5.1)1(m-1)! (n-1)! (_g)‘
mn (22-1)!(2m-1)!(2n-1) ! 2m
(31)

The derivatives of G(&mn) with respect to the nuclear coordi-

nate on which G is centered is relatively straightforward,
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]
3G (4L Q
"Eéifﬂl = [(28+1)al® G(2+1,m,n) - 22 [EITTJ 6(2-1,m,n)
(32)
with similar expressions for aG/SYA and ac/azA. It is

understood that in the normalizer N, . of Eq. (31) that

n
(-1)!/(-1)! = 1, and that the second term of Eq. (32) is not
used when £=0. Although it appears that Eq. (32) is simpler
than Eq. (30), it must be recalled that there are, indeed,

separate evaluations for aG/axA, BG/BYA and BG/BZA while

SX/BXA etc., are simply obtained from

8 X 3 A . ax
—& = — —= = 51inf, cos¢, — N
3Xp 3Ry 23Xy A A 3Ry
ax  _ . . X
BYA slnGA s1n¢A Y , (33)
3X 3X
32; coseA SR

The derivatives of all one-center integrals are zero,
for it has been assumed that the orbitals on center A follow
the displacement of center A. The kinetic energy operator and
the electron-electron repulsion operator ri% are not functions
of nuclear coordinates. The derivations of the nuclear-nuclear

repulsion energy V is given simply b
NN g ply by

A oS ‘sl . Zp(Xg-X,)
aXy, X R - A ]
A A B,C be B RAB

(34)
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and the derivative of the nuclear-electronic attraction term
by

IVyE
axy

it

z z -X,)

'Z rB . SAt"a A . (35)

B
The above equations of this section are sufficient to calculate
the gradients of all integrals, and thus to evaluate Eq. (11)
assuming Eq. (9) is valid.

In practice, semi-empirical all-valence electron methods
that are in wide use today involve the evaluation of overlap
integrals and certain two-electron two-center integrals of
the form (sAsAlsBsB]. The derivatives of the overlap are
quickly taken using Eq. (30). The two-center integrals, if
integrated over STO's, can also be taken using Eq. (30). These

integrals, however, can also be expanded as a function of

RAB,Z7’28 and the derivatives are most easily taken directly
on these closed expressions. Often semi-empirical methods
utilize formula of the typezg’so’31
n n

Yag = (spsplsgp) = [a" + R b] (36)

where
2
a =
(Yapn * Ypp)
and therefore
1,
Y -(3+ )
AB
—== = -[a" + R"B] Rap (X, - Xg). (37)
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The new MNDO method32 uses multipolar expansions for the NDDO
type integrals. Equation (36) is used with n=2 for integrals
of the type (sAsA sBsB). For the general integral

. A By2
(upvalogrg) = 1 Cio[(RAB+ Cj; Dy *Cyp Dy

A B2 . .2]-%
+ (€3 Dy + Ciy D) + ]

where Ci- are constants depending on the type of two-center
" integral, while D§ depends on atom K and represents the

33

distance from nuclei to "point charge". The derivative

of such an analytic function of RAB is again straightforward.34
The above equations are complete for most semi-empirical
methods. The derivative of three- and four-center integrals
required in ab initio methods for use in Eq. (26) are
applications of Eq. (32) and have been worked out and applied

by Schlegel and Wolfe.ss’36

Again, it is easier and more
effective *to take the explicit derivatives of these integrals

after they have been expanded as functions of R.

FORCE CONSTANTS

From the above considerations it is clear that force
constants can be obtained from the steps utilized in searching
the potential energy surface for extrema. If the rotations
and translations have been separated from the search, and
Type (c)} algorithms have been used, then inversion of §n of

Eq. (21) should approximate the H matrix. A problem with
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this procedure is that the geometry optimization may have
terminated before §ﬂ has accurately converted to ﬂ_l. As
far as T know, the accuracy of this procedure has not been
checked.

Another procedure is to calculate the second derivatives

numerically from the first derivatives at the extreme point.

If the first derivatives are analytic, then second derivatives

can be obtained fromss’zg
B S i 1€ L e
1) BXiBXJ aJ
- - - (X, -a.e.
+ fJQ(-e+ algl)a fJ(—e @5e;) . (38)
i

Both terms that appear in Eq. (38) should be equal, and their
difference is a measure of the accuracy of the numerical
second differentiation. If the rotations and translations
have not been factored then the accuracy of this procedure
can be further checked by the number of significant figures
that the six zero eigenvalues of H are truly zero.

A generalization of Eq. (24) can also be used to obtain

the elements of ﬂ;37 i.e.,

2n+1

S£2(N 2
H ;( ) . (-13"(n) ! u6fj

Tt T (a1l 0

.= sf.(0) -
aHJ u J( )

(39)
with
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§£,(r) = £(X + rae,)
weer o) = w(eely - s (-1
and
afJ?“(r) - st?K‘Z(nl) . zafJ?K'z(r) + st?K‘Z(r-n

Again, the first term of Eq. (39) is Eq. (38). Note that
in the use of Eq. 638) or (39), searches along X * rajgj
complete one column of the H matrix, ﬂj’ when all f are
analytically evaluated (i.e., the first terms of Eq. (38)
for all i). In using the simpler form of Eq. (38) only 2m+l
calculations need be performed.

If both first and second derivatives are obtained
numerically, then Hij is best obtained by

Hi; = [E(X + a;e; + ase;) * E(X) - E(X + aye,)

- E(X + ajng] /Zaiaj ) (40)

an equation easilv derived from previous considerations,
and utilized by Payne.20

One might also consider the evaluation of second deriv-
atives analytically. This is a difficult business, however,
not only because of the additional derivatives of the integrals
that must be performed, but also because the first order

changes to the wave function with respect to nuclear displace-

ment need be considered.
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TRANSITION STATES

Following McIver and Komornicki37 a transition state is
defined when f(ze) =0 (a stationary point) and one and only
one eigenvalue of ﬂ(ze) is negative. These two considerations
define a simple saddle point. 1In addition, g(ge) should be
the highest energy point on a continuous line connecting
reactants and products; 1i.e., Ee should represent the saddle
point of highest energy. Such a definition tends to associate
clearly one side of the "pass" with reactants, the other with
products. In addition, Xe must represent the lowest energy
point which satisfies the above three conditions. Defining,

as before

m
o) = T £0 = £X) £(X) (41)
i=1

we seek points in which c(Xe) = 0. Since o(X) = 0, least
squared minimization procedures are appropriate. Such a
procedure, however, will force convergence on any stationary
point X, so care must be taken with the guesses on initial
geometries. Chemical intuition will be of great use here.
There are many methods of least squared minimization.

The general starting point is, again, a Taylor expansion

_ + +
0(Xgeq) = X * ap,y Vi * Ay Wi ageq *
(42)

X - X

Ak+1 2x+1 T g ,
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where V; is a column vector, the elements of which are

K _ 30 (X)
vy o= 5X, s (43)
ZfXK
X 3’0 (X)
Vi s . (48)
P ox=x

= =K
At the minimum value of o, U(Xe) =0, and !(Ke)= 0, suggest-

ing the iterative equation

-1
Ax+1 Vi ¥y (45)
Since is given by Eq. (41)
Ve = 26, B¢ , (46)
and
.
Wy 2(HHe + C)
with
2
m 3 f
K m
v.o= f — .
€3 & n w0y, (47)

o can be minimized in exactly the same fashion in which
E itself was minimized, for example the Murtagh-Sargent

procedure already described. A similar algorithm described

by Powell40 has been applied with success by Poppinger.41
A generalized Newtcn-Raphson method has been employed by
McIver and i\'omornicki.37 In their application
+
EK ~ ZHK HK . (48)
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Interestingly, WK by this construction is guaranteed
positive semi-definite, and is a good candidate for the
Murtagh Sargent procedure. McIver and Kormornicki, however,
suggest taking the inverse of WK explicitly. If this is to
be done, the rotations and translations must be factored from
the problem. They also remark that higher order terms in
Eq. (39) are desirable in the form of H; 1i.e., more accuracy
in the formation of H lessens the number of cycles required

in the calculation of simpie saddle points.

CONSTRAINED VARIATION

It is clear from the outset that the fewer degrees of
freedom that are varied in the study of the energy surface
of a system, the easier the procedure will be to obtain
stationary points on that surface. The five or six degrees
of freedom representing translation and rotation may always
be removed exactly without any real constraints to the
optimization procedure. If there exists symmetry in the
system, and this symmetry is known to persist throughout the
problem of interest, then symmetry-adapted coordinates may
be used in the optimization procedure, again simplifying the
calculation. Considering formaldehyde, H,CO, there are 12
coordinates, reduced to 6 by removing translation and rotation.
Considering C2V symmetry, only 3 variables remain, the CO and
CH bond lengths and the OCH angle.

The above constraints do not affect our ability to
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obtain exact stationary points on the potential energy surface.
To ease the calculation, however, we might also consider
constraints on the variables guided by "chemical intuition."

In the above example on formaldehyde we might fix the CH

bond at a typical value of 1.1 and vary only the CO bond
length and the OCH angle. If we are interested in the biphenyl
C-C bond between the phenyl moieties, we might fix all the
coordinates except this C-C bond length and the dihedral

angle between the two phenyl planes. The savings of effort
can be substantial, but it is clear that the accuracy of the
results obtained will depend on the accuracy of the starting
intuition.

Somewhat more dangerous is the use of such intuition for
problems that follow pathways on the surface (valleys). In
examining internal rotations as, for example, that of ethane,
it is tempting to freeze all bond lengths and angles except
that representing the torsional one. This is a reasonably
accurate procedure, but if one has started with optimized
coordinates for the minimum, the barrier, calculated without
all coordinates relaxed, might be too large. 1In the search
for reaction pathways, freezing coordinates will generally
lead to an overestimate of barrier energies as our knowledge
about minima is far greater than that about transition states.

Worse, by freezing coordinates we prejudice the direction
of the path, and so can completely miss alternate pathways,

the lowest energy pathways, and perhaps even the most impor-
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tént transition state! A rather interesting example of the
sensitivity of some conformations to the relaxation of all
coordinates is given by Peterson and Csizmadia®? in their
study on the topology of n-butane. While the anti-conforma-
tion was exactly at the point predicted by "intuition,' the
gauche conformation was sensitive to CH3 group torsional

relaxations.

SOME EXAMPLES

The examples in which geometries have been estimated by
quantum chemical calculations are, indeed, numerous. For the
purposes of these notes we might show two examples. The first
of these is to demonstrate the efficiency of the Murtagh
Sargent procedure in obtaining the lowest energy conformation
of formaldehyde. This is a small molecule, the results of
which are easily summarized in Table 1. The variables in this
case are all 12 Cartesian coordinates. In spite of this, there

Ly, at

has been no reset of the inverse Hessian matrix (ﬂ_
"convergence' then, the average root mean square force I'a/m
is 0.0006.

Table 2 summarizes the results of a geometry estimate
using Eq. (4) and (5), estimating f and H via Eqs. (24) and
(40) for a saddle point rotamer of formamide, Fig. 2. The
rotation angle has been constrained to examine t’.» rotation

about the CN bond.21 Nalewajski found that relaxation of the

CN bond length during this rotation lowers the barrier from



14-33

TABLE 1. Murtagh-Sargent optimization on HZCO (INDO) .
Cycle 1 2 3 4
co 1.220 1.2831 1.2545 1.2517
CH 1.090 1.0908 1.1186 1.1197
HH 1.888 1.9082 1.9349 1.9317
E ~25.8471 -25,8486 =25.3547 -25.,8542
Yo 0.1817 0,1894 0.0506 0.0069
Fig. Z. Rotaticnal conformers of formamide.

¢ =0° is the global minimum, ¢ = 90° (this

figure), and ¢ = 270° are two stable
From Nalewajski, Ref. 21.

rotamers.



TABLE 2.

Geometry optimization of a saddle point votamer of formamide, from Nalewaj ski. 2l

Variables ANGLE (degree) LENGTHS (A) ENERGY
Optimized HNH HNC HCN NCO NH co CH CN (A.U.)
Inicial Geom. 119.4 120 113.2 123.8 1.010 1.193 1.102 1.376 ~168. 6405
Optimized:

4-31G6 132.0 114,7 113.5 125.1 1,000 1.196 1.077 1.416 ~168.6495
MINDO 101.0 111.6 111.4 122,2 1.147 1.231 1.232 1.439

Step Size 10.0 10.¢ 5.0 2.0 0..50 0.020 0.050 0.052

Gradient’ ~0.065 0.082 -0.012 0.021 0.005 0.028 0.064

+In a.u./x or a.u./rad,

veE-v1
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about 31 kcal/mole to 25 kcal/mole. An interesting aspect
of Table 2 is the large step sizes taken to obtain f and H,
and the sizes of the gradients calculated at the initial
geometry. A nice additional feature would be a recalculation
of the forces at the estimated "optimal" geometry to give
confidence to the final estimate.

Pulay and coworkers have pioneered work on obtaining
force constants and the infrared structure of molecules using

38,39 Table 3 is the summary of the

the "force field" method.
results obtained by T6r6k, Hegediis, Xosa and Pulay on one of
the fluorinated benzenes they have examined. The results are
remarkably good. They have used a simple scaling scheme to
correct the CNDO forces that are generally calculated a factor

43 Table 4 summarizes a detailed

of two greater than observed.
study of the force constants obtained by ab initio methods for
water. The results for the quadratic force constants, espec-
ially for the larger basis sets, is quite satisfactory. The
results are generally good for the cubic force constants, and
worse for the quartic. In this case, the quartic bending
constant feeee is not satisfactory. These results are
obtained through analytic first derivatives of the energy,
and numerical estimates of the second derivatives, Eq. (38).
McIver and Kormorniki37 introduced and demonstrated the
utility of least squared minimization techniques for obtaining
transition states. An example of the utilization of such a

technique is given in Table 5 for the simple rearrangement:
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1

TABLE 3. 1I.R. frequencies of 1,3-difluorobenzene (cm 7).

From Pulay. 38b

Calc. Type via
Sym. CNDO/2 Exp. CNDO
A> 235 251 c-C
613 599 c-F, C-C
896 879 C-H
By 225 235 c-C
442 458 c-C
689 672 ¢-C, C-F
804 769 C-H
902 853 c-H

1005 978 C-H
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TABLE 4. Calculated force constants of water.

Force
Constant 95741 + 2 sto - 3 ¢ 4-31 ¢® Exp.(c)
£, 9.16 10.18 8.71 8.45
£ -0,17 ~0.48 -0.13 -0.10
foo 0.78 1.31 0.79 0.70
£ 0.29 0.31 0.32 0.22
8
£ -60.80 -57.14 -61.40 59 + 3
£ 0.22 0.76 0.14 0.25 + 1.5
.o -0.48 ~0.59 -0.00 0.40 £ 0.2
foar ~0.41 0.50 -0.43 -0.22 * 0.1
£406 -0.86 ~1.06 -0.91 -0.88 £ 0.1
+
£er 437.6 290.2 413.2 384 % 62
£5000 25.2 -37.9 ~30.7 -0.07 £ 0.2

+Units: For stretches mdynes/x, mdynes/&z, etc., for stretch-bond and
stretch-bond-bond, mdynes.

a) From Pulay, Ref. 38b.

b) From Schlegel and Wolfe, Ref. 35a.

c) From A.R. Hoy, I.M. Mills and G. Strey, Mol.Phys. 24, 1265 (1972).
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TABLE 5. Ethenylidine-acetylene rearrangement; from
Poppinger.41
Variable Ethenylidine Transition® Acetylene
£, (A) 1.316 1.264 (1.270) 1.178
rz(;{) 1.086 1.437 (1.270) 2.253
r3(4) 1.086 1.084 (1.080) 1.075
0, (deg) 121.4 52.8 (60.0) 0.0
02 (deg) 121.4 178.2 (160.0) 180.0
Energy (a.u.) -73.5396 ~73.4889 (-73.4883) -73.6046
DE(kJ/mol) 170.7 303.8 -
a) The numbers in paranthesis give the starting geometry and energy for

the transition state, see text.
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examined by Poppinger.41 The starting geometry for the

transition state was the symmetric hydrogen bridged structure.
Poppinger demonstrated that even relatively poor guesses at
the transition state ied to the same intermediate as given
in the table, but of course the number of calculatious
required to reach this state is increased.

There are many examples that could be presented. The

above, hopefully, are representative of the possible variety.

SOME CONCLUSIONS

Geometry optimization utilizing the axial iteration
techniques is reasonably old and straightforward. Some
versions of the Gaussian 70 computer program43 have included
this option. Providing the coordinates are not strongly
coupled, and a reasonable starting geometry is given, this
procedure is successful is reaching minima. The simplex method
described begins to have an advantage over the univariant
methods when the number of variables increases, insofar as
fewer energy calculations are required to reach a stationary
point. It should be recalled, however, that univariant

searches only require the recalculation of the relatively
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few integrals involving the coordinate change, while the
simplex method requires a recalculation of all integrals.
For this reason, the axial procedure was a natural starting
point in ab initio work, while the simplex method is more
effective for the larger molecules of semi-empirical
theories.l4

Methods that assume the potential is quadratic, and build
up the gradients are far more effective than either than axial
or simplex methods described in the number of SCF calculations
required. Of these, the Murtagh Sargent (MS) method15 out-
lined seems most effective. Table 6 is an attempt to compare
several methods. The results presented for M5 with analytic
derivatives is an estimate from Poppinger's workzz recalling
that seven calculations are required to obtain the derivatives
initially, then six. This estimate was then checked with
an INDO program that analytically evaluates the gradients.
The number of energy calculations required was, indeed four,
when all twelve coordinates were involved (and thus H
is singular). The question then is "can the gradients of
the energy be evaluated more rapidly than five or six SCF
calculations?" For semi-empirical theories, the gradients
are evaluated much more quickly than the SCF step. In ab
initio calculations the gradients require about the same time
as does the SCF.36’43 At the SCF level then, methods that

use analytic gradients are to be preferred over those that

do not.
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TABLE 6. A comparison of optimization methods: number

of energy evaluations.?

Derivatives No Derivatives «— Numerical — Analytic
Simplex® ArT® psc? us® FLd wst
CH,0 12(3) 28(3) 28(3) 25(3) 20(3) 4(12)
csHst 199(8)® 76(8) 4¢20)

* Numbers in parentheses are number of independent variables considered.

a)
b)

c)
d)
e)
£)
g)

Ref. 22a, Axial Iteration Technique.

Ref. 22a, a variant of the axial iteration
change in direction.

Murtagh Sargent, Ref. 22a.

Fletcher, from Ref. 22a.

Nelder and Mead, this work.

Murtagh Sargent with analytic derivatives,

Reported of lower accuracy, Ref. 22a.

technique that allows a

this wor':,
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As we have seen, with a reasonably good starting point,
two SCF calculations are all that are required if the first
and second derivatives are available. The analytic evaluation
of the second derivaiives, however, is difficult, requiring
information on the first order change of the molecular orbital
coefficients with respect to geometry. Nevertheless, the
elegance of such a procedure is appealing. For semi-empirical
methods these derivatives may still be evaluated rapidly.

In practice, four or five calculations of the Murtagh Sargent
type are required if the analytic first derivatives are
available and if we are in the quadratic region of the minimum
with our initial guess. Then can the second derivatives be
evaluated in the time of four or five SCF-plus-first-derivative
calculations? If so, such methods are desirable as the most
effective in yielding geometries of molecules at minima and
transition states. As an additional bonus, knowledge of the
second derivatives yield directly force constants and the
infrared spectrum. Initial investigations inm this direction

seem very encouragingfm’“’46
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THE CONFIGURATION INTERACTION METHOD

HOPW = BEY

(Hop: Born-Oppenheimer Hamiltonian)

Expand electronic wavefunction is an n-particle

basis set {¢I},

¥o= % Crop , <Orlep = 615
& : linear combination of Slater determinants,

L
[¢,(1)n(1)...0, (m)n(n) |

Expand spatial orbitals in one-particle basis set {Xp}’
i

¢; < gcp Xp o (45l1e5) = 855

]

Variational principle

3%— YHY> L 5 gor am1 C;
I <¥ly>
HC = EC
Hyy = <¢I|H0p|¢J>

If {¢;} and {@I} are complete, then ¥ and E are exact

solution of Schrddinger equation.

Otherwise E > Eexact
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® Usually AE = E-E is much greater than energy

exact
differences of chemical interest.

® Successful CI calculations must rely on cancellation

of errors.

® Calculation giving the lowest energy is not

necessarily the best!

THREE STEPS CF CI CALCULATION

1. Selection of basis functions {Xp)
2. Construction of orbital basis {g¢;}
3. Selection of configurations
There are more variable parameters than in a semi-empirical

cal-ulation!

HOW DO WE GET MEANINGFUL RESULTS?
¢ Convergence of calculated properties with respect

to systematic improvements of basis sets.

® Often requires qualitative understanding of the

problem at hand.

® Requires a great deal of care to insure one's

qualitativz understanding is correct.

® Agreement with experiment without convergence is

meaningless.



15-4

DEFICIENCY OF RHF METHOD

® Incorrect formal behavior for dissociation, curve
crossing, united-atom limit, etc., e.g., H2 at

separated stom limit:

2 . 2 5 1 .
]Ug = i 15a + k5 lsb + i lsalsb >

He, at united atom limit:

2

1o 2
g

2, 2
10u = 1s"2p

® Necglect of near degeneracy effects, e.g., C atom

ZSZsz + Zp“; RHF gives poor splitting between

1

n, 's, 'D.
® Neglect of dynamic correlation effects.
® The first two may be remedied by MCSCF method(?)
® The last one is best treated with CI.

THE MCSCF METHLOD

|
[=c]

o v = Jcpe , (e ]8)) =
I I'I I'"Jg IJ

* 4, = gc Xp s (65105) = 85,

3 <y Y
o v __iﬂl_i = 0 for all I

<y|y>

@
(@]
—

3 <VIH|Yy>
] — ——L—L—— = 0 for all i and p

<y|y>

o -
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® i,e., orbitals are also determined variationally.

Uniqueness of MCSCF Orbitals

® For some choice of configurations {¢I} the MCSCF
method can only determine certain subsets of the
occupied orbitals {¢;} to within an arbitrary

rotation,

® This occurs when {¢I} is closed with respect to

a rotation of {¢i}.

® TFar a complete CT, MCSCF only serves to partition
the 1-particle space into occupied and virtual

subspaces.

® The lack of uniqueness may be eliminated by
discarding certain configurations from {¢I}

without loss of generality.

An Example
® VYycscr T cyle? + c,20% + cilo2o
lo20 = ——é— (|1oa208] - |10820a])
V2
L] lo = cos6 lo' + sine 2o’
206 = -sine 1¢' + cose 26' = (ic'|[jo') = &

ij
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12 2

® Yycscr = cqle'™ + cy20'” + célc'Zc'

¢! = c,cos’8 + c,sin® + —L_ c_sin2e
1 1 2 7 3
t .2 2 1 .

€; = c¢ysin 6 + c,cos 8 + — c351n26
1 1 . .

c = -— (c,-c,) sin2® + crcos26
3 V3 1 ~2 3

PROPER

Any one of ci may be set to zero by appropriate

choice of 6.

Therefore MCSCF calculation with any two of the three
configurations would give the same wavefunction.
The occupied orbitals would be well defined, but

different in each case.

BOND - DISSOCIATION

Usually means product of RHF wavefunctions for the

fragments at the dissociation limit.
Examples:

(1) SPHF (UHF) for LiH loolo'B2oa2c'B

(SPHF = "spin polarized HF")

RUF

\\

WE exact
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(2) 2-configuration SCF for LiH 16'20? + 1022030
A similar problem to UHF for more complex systems

(more on this later).

(3) Complete valence CI MCSCF for LiH 1022062 + 102302

+ 16%2030; too many configurations.

THE SIMPLEST CASE

RHF, 102

. g

® Dissociation limit, ——é— (1s alsbB - lsbsls a)
V2 a a

® Form molecular orbitals,

- 1 _ _
lcg = i;g— (15a+ lsb) , lcu = i;:— (15a 1sb)
e Inverse transformation

- 1 = 1 _
lsa = i;g— (10g +10u) R lsb Nes (10g lcu)

® Substitution into separated atom wavefunction gives
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RHF, 10%2¢”

1

V2

Dissociation limit, (ZsLialsHB - ZsLjsls”u)

Form molecular orbitals,

2o cosg 2s + sinbd ]sq

Li

30

n

-5iné 25I + cos8 lsH

P

Inverse transformation,

ZSLi = ¢c0s020 - sin63c

Is” = <sinB20 + cosB30

Substitute into dissociation limit waveofunction,

sin20 (20% - 302) + cos28 lo3c
V7

Any choice of € gives correct dissocjation limit.

MCSCF wavefunction independent of 8.

. - . 2 .
To dissociate a single bond o? + o*° is an over-

simplification.

A more useful {(but vague:; Jdefiniticn: & waveTanct.

that gives qualitativoly carre. t hehavior for the

entire dissociation pro-ess

This would exclude: STHT awq Fi Jrmolerals 1o

product at RHF fragments.

Complete valence CI still good.

il



15-9

CH “v
® RHF, 10220230%1m

® Dissociation limit wavefunction in AO,

-

4

2p0a2p"alsﬂ - —;%: {2ps0lp, B + 2pB2p ) isg

® A0 + MO,
Zpo = c¢0s630 + sin6do
1s = -sin@30 + cosédo

® Substitute into disscciation limit wavefuncr:on

1

V6 1%_ Ccoah Tadefiet

- sinzo (-30% + 40%)1T +
+ % 308a(°8)1m

® g can be chosen to make one of the first thro-

vanish without loss of generaliity.
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® The last term always exists
- electron recoupling term
- perfect pairing does not dissociate

correctly for open shell molecules

® RHF + product of fragments does not go smoothly to

dissociation limit,

3021m + 3cdolm (30lw’Nm)
+
c1301'n(3H)4c + c,30ln('Mas

(cl and c, are fixed).

C,H

24

® RHF, o2w2?, consider the bonds only

® Dissociation limit wavefunction in AOQ

3 3
g,y I x °pTh Il

caBﬂchbaﬂba

g aﬂaacbﬁnbe +

v @
1
- V3 (caanas + casﬂaa)(cbanbﬁ + obsnba)
]
e la' = cose'ca + sing oy
2a’ = —sine'ca + cose'cb
12" = cose"na + sine”wb

(1] "

2a" = -sine"-na + cose"nb (set 8' = ¢" = 45°)
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® Dissociated limit wavefunction

] x lanzauzA.)

—z4

® The recoupling term 1a'Za'3A’x 1a"2a"*A' cannot be

made to vanish by choice of ' and 8".

® Perfect pairing does not dissociate correctly for

multiple bonds.

® RHF + product of fragments does nmot go smoothly to

dissociation.

Dissociation to Excited States

+
He,:

® RHF, 10220%301n*
® Dissociation limit wavefunction in AO,

1s%2s?2p* x 1s = CllsZZSZZp;Zp;IS +C21522522p;1s
® Dissociation limit wavefunction in MO,
lo®20%30ln® + c,10%20%3040%1n"

€1

Open-Shell Symmetric Molecules

° RHF, 10,10,

1

® Dissociation, -+

2 2
(lsalsb - lsalsb)



15-12

® This is not correct dissociation

® Dissociation limit in AO: —42— (152151 - 151152)
\/2 a b a b

® Form orthonormal set,

Is' = cyls + cp2s = <is|js> = Gij
1o, = —L (1s_+1s) , 20 = —L (25 +25))
& V2 a 8 N a
R (1s_ - 1s;) 20 = —1_ (2s_ - 2s,)
u NG “a b ’ u 3 a b

® Dissociation 1limit wavefunction in MO

2 2 3 - 1 a0 NG
4[c;lo]10, + cylo220, + cylop20, - V2 ¢, (10,10, 8, )20, 5]

® In general, a very difficult problem; too many

configurations
belt
e RHF, 10225%30

® Apparently corrvect dissociation,

- 2
lo lsB 20 -+ Z8pg 3o ~+ 1sH

e?

® (omplete 3-elcctron CI in 20 and 30 still gives a

miximum at iong-range.

&  (rve Irussing sonot.omes ¢zuses prohlems.
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3eﬂs¥wvn ;><:i3j:
P~

exact

Be H Be H

small R oD O Ce .

26 =2s542p+s B0 =2s5-2p

bohdiha [one—Pair
‘ Be H
arge R O )
> 1s
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He,: Separated and United Atom Limit
2 2 2 2 - ®
L lcglou > lsalsb , R =
> 1s?2p? , R=0

L lcgloz + 16;202 + include ionic terms R =

> 1s*2s? s R =

® Therefore, short of complete CI, it is difficult
(impossible?) to write down a wavefunction with
correct behavior at both limits.

® Another example of curve crossing.

PROPER DISSOCIATION

® Correct dissociation limit

- . . N *
® Insure correct dissociation behavior, o2 » ¢ 2

® Electron recoupling terms

® Look out for complications caused by curve crossing,

etc.

COMPLETE VALENCE CI USING MCSCF ORBITALS

® Gives qualitatively correct PES for reactions.
(PES = potential energy surface)

® Good for bond lengths, usually too long.
e Good for frequencies, ~100 cm 1.
® Poor for dissociation energies ~1 eV.

Excitation energies not quantitative.
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EMPIRICAL POTENTIALS, SEMIEMPIRICAL POTENTIALS,
AND MOLECULAR MECHANICS

Lecture 16/18

by
Norman L. Allinger

Department of Chemistry
University of Georgia
Athens, Georgia



16/18-2

MOLECULAR MECHANICS

Molecular mechanics is a method for studying various
physical properties of molecules. (It can sometimes be
extended to certain chemical properties, and to smaller and
larger systems such as atoms and crystals.) It does not
recquire solution of the Schrddinger equation for the electronic
system. In fact, no explieit considerations of electrons are
required in the usual case. Rather, we consider Van Der Waals
interactions between atoms — which involves all the electron-
electron, nucleus-nucleus, and nucleus-electron interactions
in & simple empirical way. Molecular mechanics also includes
the interactions between instantaneous dipoles (electron
correlation).

What can we do with it in practice? Determine

1} molecular structure
2) energies: isomerization, conformational,
heat of formation

3) vibrational spectra, thermodynamic functiions.

ADVANTAGES

Fast and Accurate. Compared to ab initio calculations on

a molecule containing 3 to 4 first row atoms at, say, the

4-31G level of accuracy, the computer time required is less

by perhaps 103. If the molecule is larger, the advantage
increases rapidly (time approximately Nz vs. Ng where Na
is number of atoms, N_ is number of orbitals). For atoms

&)



16/18-3

heavier than first row, computational time is the same as
for light atoms by molecular mechanics, but Ng still holds
for ab initio methods, Molecular mechanics includes the
effects of correlation energy in an approximate way. Of
course, the 4-31G level gives results that are inadeauate
for many purposes, in which case, a larger basis set (and

much more computer time) would be required for the ab initio

work.

DISADVANTAGES

Empirical parameters must be known. For molecules such

as hydrocarbons, one has 98% of the data one would like, and
95% of it is correct. As refinements continue, there is
little that cannot be done accurately to give structures

and energies of hydrocarbons. Vibrational spectra and thermo-
dynamic functions are treated less well, but generally better
than by ab initio methods.

On the other hand, for functionalized molecules (most of
them), one has perhdaps 85% of the structural informati.n
needed, and 50% of the energy information. Overall, the
reliability is much less good, although for many restrictec

classes of molecules, it approaches the hydrocarbon reliability.

Why does a quantum chemist want to use moleecular mechanics?
Probably to calculate structures. In most cases of
interest, one can cbtain structures of "experimental quality"

by molecular mechanics in a day or two (compared to, say, a
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month by crystallography). Best of all, you do not need a
sample of the compound!

Except for very simple molecules, one cannot optimize
all internal degrees of freedom by ab initio calculations,
so if a structure is needed as a starting point, and a
reliable experimental structure is unavailable, the molecular
mechanics procedure offers a quick easy way to get a structure,

if the necessary parameters are available.

Energies. Again, these can be well calculated (compet-
itive with experiment) for hydrocarbons, pretty well for
several classes of functionalized compounds, but lots of
classes of compounds have not been studied yet, and the

necessary parameters do not exist.

Vibrational spectra. Few force fields have so far

considered spectra. The results here are much more sensitive
to parameters, and the results are usually on the order of
+£20 cm_1 with hydrocarbons, and are not expected to improve

for functionalized molecules (there are few studies to date).

There are a great many force fields in the literature.
They are constructed in ways that are generally the same but
differ some in detail. Depending on what kinds of things the
authors were interested in, different experimental facts
were incorporated in the different programs, and consequently,
the different programs give different predictions, although

the differences are small, on the whole. The following table
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contains my own assessment of the capabilities of many of

the currently available force fields. (My assessment is
based only on the information I have available, and may not
be completely accurate; but it's the best I can do.) It is
offered only as a guide to the uninformed user who may wish
to choose between various possible force fields for different

kinds of problems.

In the program to be discussed and used here (MM1), the
stretching energy for each bond in the molecule is given by
E, = %(2—20)2(1 +CS(Z-ZO)), where C, has a fixed numerical
value for all bonds.

The value of k differs for different kinds of bonds
(C-H, Cc-C, C-0, etc.), as does the value of Zo' These values
were all established by studies on simple molecules where
sufficient experimental data exist to permit their evaluation.
Lists of these numerical values can be obtained from the MMI
program, and updates are given in the manual (available from
QCPE).

For bending, a similar function is used:

Ey = k(e-eo)z(l + cf(e-eo))

and the constants have similar meaning with respect to bending
and were evaluated as were the stretching constants above.
The Van Der Waals interactions proved to be quite

difficult to quantify. Theory and experiment agree that at

longer distances, two rare gas atoms have an attraction between



TABLE 1. Limitations of some popular force fields.

Saturated Hydrocarbons

Force Energy  Vibra. Thermodvn. Conjunctive Functionalized
Author field Structure Hg spectra  functions hydrocarbons melecules
R.H.Boyd - B (B) B ) -
L.S.Bartell MUB-1 B - - - -
L.S.Bartell MUB-2* A (8) - - -
S.Lifson Ermer-Lifson BV () A - -
Karplus-Warshel - (B) (B) (B) -
Schleyer - B* B - - -
Allinger 1971 B~ B~ - - C
Allinger MM1(1973) B B - c’ c*
Allinger MM2(1977) A A - B B
White - A B - - -

Letters A, B, C are relative grades. A is current state of the art, probably not perfect;
B is a average; (C is semi-quantitative only. Parentheses indicate insufficient data to

evaluate with certainty, but a best guess is given.

*With improved torsional terms added later to original MUB-2.

9-81/9T
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them which lowers their energy by r'6. This energy (due to
electron correlation), and called London or dispersion energy

is usually put in the form

The minus sign means the energy goes down as the atoms
approach, and the distance is expressed in units of the sum
of the Van Der Waals energy of the atoms involved. The
parameter a is empirically adjusted to give the correct
magnitude of E at any one distance r. How all this applies
to atoms in molecules is not obvious. What has been done is
to adjust T, and a empirically to fit known data on molecules.
The intramolecular interactions are summed over all atoms
which are not bound to each other or to a common atom.

The part of the Van Der Waals function that led to
trouble in practice was the repulsive part. As two rare gas
atoms approach, the energy first goes down from dispersion,
then as they approach still closer, it abruptly goes up very

steeply. A Lennard-Jones potential:
6
E = -a (_r_) + b(_r)
To To

is commonly used to represent the total behavior.

12

A Buckingham potential

6
E = -a(_r) + b exp(- z)
T T

o o
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is indistinguishable from the Lennard-Jones function in the
region of interest and is used in MM1.

It is now recognized that the exponent 12 in the Lennard
Jones potential (and the corresponding constant d in the
Buckingham) is too large, and a value of 9 or 10 is better.
The value 12 gives "harder" atoms, and MM2 is better than

MM1 in this respect.

TORSION
In ethane the observed torsional barrier is not obtained
using only the above three functions. One must add a term

of the type

Vi
E, = - (1-cos 3w)

For unsaturated molecules such as ethylene, a term of the
kind
V2

E, = 5 (1+cos 2w)

is needed.

These prototype molecules suggested that simple torsional
terms as shown would be adequate for saturated and unsaturated
molecules, respectively, and MMl works this way. We now know
that a three-term Fourier expansion is needed for good results:

Vi V2 V3
E = > {1- cosw) + - {1+ cos2w) + - (1 - cos3w)

{The signs of the constants, the signs of the three terms,

and the signs in front of cosnw can be written in many
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different combinations, and there are no generally accepted
conventions.)

Such a function is included in MM2 (and was an addend to
MUB-2). With MM1, only the single V3 term was used. This
would have resulted in energies which were too low for gauche-
butane type interactions, so a hard hydrogen was used to
compensate. The resulting force field is good, but with the
3-term function, one can do better. If one uses only the
3-fold term, some error is present which cannot be corrected
completely by any method yet found. Schleyer (also White)
reduced the Van Der Waals interaction between carbon and
hydrogen to a very low value, which permits a soft hydrogen
and a good gauche-butane energy. Overall, however, the results
were not any better than with MM1. Others (Ermer, Bartell,
MUB-1 and the original MUB-2} have used a soft hydrogen and
accepted the gauche-butane error, so the structures are

generally better but the energies poorer than with MM1.

FURTHER IMPROVEMENTS

As bond angles are compressed, the two bonds including
the angle are generally lengthened, and the reverse is also
true. This led to the early development of the Urey-Bradley
force field, in which two atoms bound to a common atom have
an optimum distance, and a Hooke's law (usually) relationship
also applies at that distance for each pair of atoms bound

to a common atom. An alternative is to add to the valence
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force field, so-called cross terms, of which the streteh-bend
type is the most important in terms of the effect on geometry.

kse

Estretch-bend - “z- (751 (8-8,)

Other types of cross terms (stretch-stretch, torsion-
bend, etc.) are often important for spectral calculations,
but not ordinarily for geometry and energy.

Snyder and Schachtschneider showed that using an
equivalent number of parameters, a Urey-Bradley force field

and a valence force field with cross terms give similar results.

GEOMETRY OPTIMIZATION

The most important feature of force-field calculations
is that they are able to take a rough, approximate structure
and optimize it to an accurate "experimental' structure.

If the functions given above are considered in relation to

a molecule, they define a multi-dimensional potential surface,
where energy can be imagined as the vertical coordinate. To
find the structure one needs to find the location of the energy
minimum on the surface. That point gives the (ground state)
structure of the molecule and also tells us something about

its energy. If a molecule has several conformations, there
will be several minima, separated by saddle points. All
geometry optimization routines operate by starting from the
initial geometry and minimizing the energy (or locating places

on the surface where BE/BXi = 0 for all coordinates (internal
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or Cartesian) Xi. So if one starts with an approximate struc-
ture for, say, gauche-butane, one will obtain an optimized
structure for gauche-butane, not for the more stable anti-
conformation. Finding the global energy minimum is not
usually a problem for small or simple molecules, but it can

be for large molecules.

ENERGY MINIMIZATION

There are two levels of sophistication that can be used,
and a host of variants. Basically, one can use only first
derivatives of the energy with respect to the coordinates
(Steepest Descent Methods) or one can use both first and second
derivatives. These methods are all approximations so one
begins with a starting geometry and improves it by successive
iterations. The first derivative methods are simple to
implement, free from hang-ups and very fast per iteration,
relative to the second derivative methods. They are most
useful in the early stages of an optimization. As one approaches
the energy minimum, the improvement per iteration becomes quite
small, and a large number of iterations is required.

Second derivative methods are usually variants of the
Newton-Raphson scheme. Here one solves a set of simultaneous
equations (3N-6 equation for N atoms), where the coordinates
of the atoms are the unknowns. This is usually done by
diagonalizing a matrix. This method is most efficient when

near the energy minimum. In that case, while each iteration
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{x

_—— %

Fig.

1. Minimization of a function f(x) by the
Newton-Raphson procedure. Iteration starting
at x improves the solution of £'{x) =0
successively to Xy and Xy approaching the

true solution x.
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is time-consuming, the improvement per iteration is very great
and few iterations are required.

Finally, one can use a block-diagonal variant of the
Newton-Raphson method. Each of these methods has advantages
and disadvantages, which depend to some extent on the problem
at hand. Most programs use one method or another, and it is
only necessary that the user knows what the difficulties are
with that particular method, and how to get around them.

The MM1 program uses the block diagonal scheme, which
corresponds to optimizing the atomic positions sequentially.
The only place where one may have problems is in a molecule
where all of the atoms must move cooperatively (as in the
pseudorotation of the boat form of cyclohexane for example).

A few programs (mostly older) used numerical calculation
of derivatives. This is easy to program, but such programs
run very slowly. Faster (by at least a factor of 10) are the
analytical methods, but the programming problems are much

greater then (MM1 uses analytic calculation of all derivatives).

HEATS OF FORMATION

There are two ways to approach these, depending on what
has been done prior to this point. 1In principle, if one knows
the vibrational levels of the molecule, there is some energy
(which can be taken as zero) that corresponds to the minimum
energy geometry for the rigid vibrationless model. To get

the heat of formation one would need to add the zero point
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energy, and the statistical mechanical energy which comes
from populating the higher vibrational levels at room tempera-
ture. This has been done in a cursory way by Boyd.

The alternative method, which has been much more highly
developed, and works well in practice, has been used by
Schleyer, by White, and by us. In this case the geometries
of the molecules correspond to experimental geometries at
room temperature, and these are defined and parametrized that
way. One can similarly define and parametrize the heat of
formation calculations, without reference to vibrational levels.

In the first method, one would have to ascertain the
value for the zero of energy as mentioned above. This would
result from the bonding energy of the molecule. In the second
method, the definition proceeds similarly, except in this case
since empirical parameters are used for bond energies anyway,
one can simply define it to apply at 25°.

The literature abounds with bond-energy schemes, which
when used according to the proper recipe, ordinarily do give
quite good heats of formation. They fail in special cases
where strain in the molecule is not properly taken into account.
Clearly, utilizing a molecular mechanics calculation which
explicitly gives one strain, and superimposing this upon a
bond energy scheme, one would expect to get quite good heats
of formation. For a large sample of 42 saturated hydrocarbons
containing most of the kinds of crowded and strained molecules

for which experimental heats of formation are known, where
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the average reported experimental error was 0.40 kcal/mole,
the MM1 force field gave 0.60 kcal/mol as the standard
deviation between the calculated and experimental values.

The MMI force field reduced this to 0.42 kcal/mole. Thus

the results for MMl were good and those for MMZ are excellent.
Schleyer's force field and also the one by White also give
good results, comparable with those from MM1.

Alkenes can be treated with an accuracy that appears to
approach that for alkanes but fewer data are available and
some of it is not as accurate, so the results are probably
nct quite as good on the whole. For functionalized molecules,
the quantity of data falls, as does its accuracy, so the overall
reliability is somewha* less than for hydrocarbons. Polyfunc-
tional molecules have been studied only to a slight extent
and here the reliability of the calculations is probably a
great deal less.

Returning again to the statistical mechanical viewpoint,
in principle one should calculate separately the rotational
and translational contributions to the heat of formation and
also add a PV correction, since heats of formation are at
constant pressure. These numbers can be evaluated classically,
and have a total combined value of 2.4 kcal/mole.

There are two additional quantities that one needs to
add to the calculated heat of formation for best results. One
is a conformational population term. If we have a single

conformation this term is zero, but if the molecule consists
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TABLE J2_
Alkane Heat of Formation Dan®
Reported
Hf oY Difference  paobable
Compovnd Wi Cale Exp® (CalcExp)  ewors
Methane 1 —17.82 ~-17.89 0.07 0.08
Ethane 2 —20.05 -20-2¢ 019 012
Propane 9 -2528 2482 -046 014
Butane 9 -3026 -3013 -0-11 18
Isobutane 9 —52:19 ~-32-1% 304 016
Pentane 7 —85:20 -95:00 —020 016
Isopentane 8 —56°62 —-36'92 0-30 020
Neopentane 7 —-41:06 —40-27 -0'79 25
Hexane 6 —40-14 -~3996 -—0'18 019
Hepiane 4 4509 —4489 -020 019
n-Octane 3 -5005 —49:82 —028 020
Hexamethylethane 5 -53:19 ~53-95 075 029
2,3-Dimethylbutane 7 —42:16 ~42'49 033 024
2,2,3-Trimethylbutane 6 —48-81 -489% 014 027
Cyclobutane 2 616 638 —0-22 010
Cyclopentane 9 —1802 —1830 028 018
Cyclohexane 8 —30-08 —-29:50 -—0-58 017
Methylcyclohexane 7 —~537-02 —-3699 —008 025
3,3-Dicthylpentane 4 —~55-41 —55-77 0-36 040
1,1-Dimethylcyciohexane 6 —44-02 —43-26 —0-76 046
cis-Dimethylcyclohexane 3 —41-73 —41-13 060 0-27
trans-Dimethylcyclohexane 3 —43-06 —42-99 —0-07 027
Cycloheptane 7 —28-02 —28-22 020 026
Cyclooctane 4 —28'96 —~29:78% 077 033
Cyclodecane 3 —85:35 —36:29 094 1-00
trans-Decalin 3  —4861 —-4354 —007 055
cis-Decalin 3 4111 4045 -066 055
¢is-Hydrindane 4 2997 -3041 044 047
trans-Hydrindane 4 —30-92 —81-45 053 050
Norbornane 7 —18-29 -12:40 -0'89 040
Cubane 1 14918 14870 0-48 1-00
Adamantane 3 -33-34 3296 —0'38 019
Congressane 1 -37-26 -86:64 —0'62 060
Bicyclo(2.2.2)octane 6 -29-81 ~2375 -0:06 030
cis-Bicyclo(3.8.0)octane 1 ~21°43 -22-30 087 050
trans-Bicyclo(3.3.0)octane 1 -15-01 —-15-90 089 060
trans-syn-trans-
Perhydroanthracenc 1 ~57-22 5832 110 1-27
trans-anti-trans-
Perhydroanthracene 1 —51°13 -52-98 1-80 1-47
1051

Standard Deviation: 0-60

Correlation Coelficient: 0-999

9 A few new experimental values became availsble to uy after the data in this table were
assembled, The newer v-hm have been included in the table together with the current dif-

ference b

not been repeased, If it were to be

values, Howewr. the ln-t squares fitting has

would

very small ad

be expected, although no significant changes would result,
The experimental values are genarally taken from Cox and Pilcher, 1970 or API Tables,
Project 44, Bureau of Starndards, Washington, D.C,

inthep



16/18-17

of a mixture of conformations we need to add an increment,

which allows for the fact that the higher energy conformations
are present in a Boltzmann distribution. Finally, some
molecules have torsional vibrations which have small barriers,
such as in the case of the torsion about the C-C bonds in
alkanes. 1In other cases the barriers are much higher (as in
cyclic compounds). To deal with these simultaneously, it has
been found expendient to add a constant, empirically determined,
for each bond of the low torsional frequency type. This term

is referred to in the MMl program as a Torsional term.

MOLECULES CONTAINING DELOCALIZED ELECTRON SYSTEMS

Everything up to this point concerns molecules which can
be described with a single Kekulé structure. Atoms are either
bound together or they are mnot, and there is no uncertainty
on that point. With delocalized electronic systems, however,
things are not so simple.

We can perhaps begin by considering two separate cases,
butadiene and benzene. In butadiene there are two short bonds
and one longer bond. Ordinary polyenes can be treated with
parameters which can be picked to fit butadiene. The energies
of linear polyenes increase in a linear manner with the number
of double bonds and so such systems can be treated in a classical
way. However, use of the same numbers will give unsatisfactory
results for benzene. It is known that in benzene the bond

lengths are all equal, and the energy is a good deal less
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(resonant) than would be suggested from polyene studies.

Again, one can pick different parameters to fit the bonds in
benzene, and hence benzene can be dealt with adequately also.
Molecules which are either polyenes or simple benzene deriva-
tives can be well treated by the appropriate set of parameters.
However, consider what happens if we want to examine a molecule

such as naphthalene:

If we use the benzene parameters, we will obtain essentially
all equal bond lengths. If we use the butadiene parameters,
we will obtain bonds which are strongly alternating long and
short. Experimentally it is observed that an intermediate
situation exists. Howe are we to reproduce that?

Extensive studies on pi-electronic systems over the last
40 years or so have indicated that molecules such as naphthalene
need to have a pi calculation carried out quantum-mechanically
and superimposed on a sigma calculation if the experimental
facts are to be correctly reproduced. One approach is to
do exactly this, and Warshel and Karplus have used this direct
approach. The sigma system energy is calculated as usual, the
pi system energy by a self-consistent field calculation, and
the two are summed. The structure is found by minimizing this
total energy. An alternative method has been used by us
(program MMP1l), Here a self-consistent field calculation

(actually VESCF) is carried out on the trial pi system and
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the bond orders are found in the usual way. It is assumed
that linear relationships exist between bond order and
stretching force constant on the one hand, and between bond
order and natural bond length on the other. The linear
relationships are established by the examination of simple
compounds. These relationships then being known from the trial
pi system SCF calculation, one obtains the bond orders, then
the force constants and the natural lengths. These in turn
are put into the molecular mechanics calculation, which then
proceeds in the usual way. If the geometry changes very much,
the pi system calculation is repeated, and so is the entire
process described above. The system is then brought to self-
consistency with respect to the pi and sigma parts, and the
energy minimum found as usual.

This scheme is found to work very well in practice and
gives good geometries for molecules such as butadiene, benzene
and naphthalene. Looking at several hundred bonds for which
experimental data are available for comparison, perhaps 90%
of them are calculated to within 2 esd of the crystallographic
values. Studies on analogous compounds, or in a few cases
later, more refined work, suggest to me that almost all of
these discrepancies involve experimental rather than calcula-
tional errors. I only know of one molecule (18-annulene)
where there seems to be a real and serious conflict between
what is calculated and what is found crystallographically.

Heats of formation can be calculated utilizing the MM1
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procedure, but the results are not completely satisfying.
Hence this has never been programmed and the QCPE program
should not be used to obtain heats of formation of conjugated
systems. Such calculations lack the proper parameters and,
while the program will run and give numbers, the numbers are

not meaningful.

ELECTROSTATICS IN MOLECULAR MECHANICS

Some force fields have included charge distributions
even in saturated hydrocarbons (Lifson), but our own experiences
have indicated that this is not necessary insofar as the calcu-
lation of energies and structures goes. Similarly, with
monofunctional compounds such as ketone, there is no need
to explicitly include the electrostatics part of the calculation.
However, if one has a compound which contains two or more
dipoles, say, for example, 1,2-dichloroethane, then the
electrostatic interaction between the dipoles plays an important
part in determining the energy of the molecule, the preferred
conformation, and it exerts some effect on the structure. How
should these electrostatic effects be allowed for?

The most simple approach would seem to be to treat the
system as a collection of point charges (ordinarily placed at
atomic centers), or to treat it as a collection ¢ point
dipoles (ordinarily placed in bonds). As long as the distance
between the dipoles is reasonably large relative to the actual

charge distribution within the dipole, this procedure is adequate.
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The point charge and point dipole approximations ordinarily
give very nearly the same rcsults. In a few cases the results
differ, but insufficient study has been put into the problem
to decide which approximation, if either, is better on the
average.

If one assigns bond moments to different kinds of bonds
(which is the MM1 approach), or the equivalent in terms of
point charges, then one has a first approximation for calcu-
lation of the dipole moment of a molecule and for the deforma-
tions which occur, and the energy changes which result from
interaction of these dipoles.

This is as far as our MMI program goes. If one wants
to go further, one can ascertain atomic charges by quantum
mechanical methods, or alternatively, there is a classical
scheme, due originally to Smith and Eyring, which we have
generalized. This scheme allows for the principle moments of
bonds at the outset and then permits each of these to induce
in all of the other bonds of the molecule-induced dipoles,
and the total final charge distribution is found. This scheme
gives us better dipole moments and energies than the simple
scheme above. 1If one is dealing with molecules in solution,
one needs to consider the effect of solvation on this charge
assembly. In this case the total charge assembly can be
approximated by a dipole plus a quadrupole, which can then
be solvated according to a scheme originally due to Onsager.

The original approach described above, which was due to
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James Jeans, is of marginal accuracy for molecular mechanics
purposes. The modified Smith-Eyring method, plus the solva-
tion treatment (due to R.J.Abraham) is better and is perhaps

good enough for molecular mechanics purposes.
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APPENDIX A
(Taken from R.H.Boyd, J. Chem. Phys. 49, 2574 (1968).)

A METHOD FOR THE CALCULATION OF THE MOLECULAR CONFORMATION
OF MINIMUM POTENTIAL ENERGY FROM EMPIRICAL VALENCE FORCE
PUTENTIAL FUNCTIONS

It is assumed that the potential energy of a molecule made
up of N atoms ...ijk#..., is known as a function of the

atomic positions in terms of valence coordinates, rij’ eijk,

¢ijk2’ and 6ijkm’ where
rij = the magnitude of the vector joining 1ij
(i.e., bond length or non-bonded interaction)

eijk = angle between the vector joining ji and the
vector joining jk (i.e., bond angle)

¢ijk2 = angle between the planes of ijk and jk&
(i.e., bond rotation angle)

6ijkm = angle between the vector joining jm and the

plane ijk (i.e., deformation angle of bond

attached to an aromatic ring).

The potential energy is then written as

U = 2 U..(r..) + 2 U.

o (8..0) + 2 Us.y.(coS¢..y.)
et} ijtij ) ijk*Uijk ijke ijks

(1jke)

(igimy "3kn i) o

where the sums are over each set of interactions considered

to be present. For example, if atoms ijk are considered to
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have an angle (eijk) interaction, this is included once in

the summation.

The potential energy is then expanded in a power series

through+quadratic terms about a set of trial coordinates,

o
T. -
ij?

+

+

+

where

o o] [o]
8ijk» %ijk * Sijkm 23S

U, .
o o] o] [o} [} 1)
U ("Tij’ <835k e %ijxar "'Gijkm) * Z aT..| ATy
— ij .o
in T3
N et : Wik :
i 3 Argy + 36 895k
Gy 271 e, G ikl
J ij ijla
. Z aZUi.k po? Z U
13 __LJX A I L A ..
L B |9, UK L st o OSP4 5kg
(ijke) J (ijke) C°S¢ijk2
Uik 2 Z: Uy 5km
— Acosé. . + S LN AS. .
& 3coso. 0 ijke = asijkm 0 ijlm
(ijk8) ijke cos¢ijk (ijkm) Gijkm
2
% 5%;%—— ) A6i?jkm ’ (A2)
(G 1018 i

cross terms have been neglected, and

- _ 0
Arij rij rij

= _ a0
Aeijk = eijk eijk , etc.

Minimizing Eq. (A2) by differentiation with respect to Arij,

j
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9 and A$ is not practical since these

89550 B4k
coordinates are not independent and the equations of constraint

ijkm

are not easily formulated. However, Arij, Aeijk’ A¢ijk1’

and AS. can be transformed to Cartesian coordinates

ijkm
(¢ = 1,2,3; 1i=1,...,N)

th atom.

where a refers to the three space coordinates of the i
The Cartesian coordinates are independent and the
transformed potential energy can be minimized by differenti-

ation with respect to Xg. The transformation is made by

regarding rij’ Aeijk' A¢ijk1’ and Adijkm as small quantities
bris = E}I“AX“+§)J°‘AX°‘+%3 T BT ay®ay®
ij Xy 2% p) (], axdaf - ..
a=1 a=1 a,B=1  P,Q T q
P=I
(13 (A3)

3 3 3
= o, 0, 0 o,y o~ B 065 /0
805 = 2 Tgh *Eﬂe“j “El KgoXy + ';Z_ 2. [Pl g+

a=1 o= ,=1 P,Q
P=1,J,K
Q=I,J,K) (Ad)
3 3 3 3
o, 0 o, 0 o a,. 0
803 53g E T * 2 i + E Keoxg * E Lyoxg
o= a=1 a=1 a,8=1
+ [Q°], i + .. (A5)
a,B=1 P,Q
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a=1 o= a=1 a=1
3
+ gz [13"‘()’3](s mOME + L. (A6)
a,B=1 P,Q
P=I,J,K,M)
Q=1,J,K,M

The coefficients in the transformations, Ig, Jg, Ig, Jg, Kg

etc., are the derivatives

o )
¢ = arii. J% = Efii_ 1% = Efiik
r [ T a <] [+
BXi BXj 3Xi
o o
jo o 205k @ - 2%k etc
] ax ] 5x% ? i
j k
and the coefficients [IaIB]r, [IaJB]r, ce [I“IB]e, [IaIB]e,
etc., are the derivatives
atr,. |° .
[1°rfy, - 13 L N+
r o B » [I J ] - 1
X% x r x% xB
i 1
6 %01 |° 6 3%0, 1 |°
a - i a - ij
[1%1 ]6 m%— , f1%y ]9 Xa XB R etc.
i % i

3cos¢. .
lém) - — ijki etc.

axB ’
1
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They may be calculated from the trial Cartesian coordinates,
..xg(a)..., from the following considerations.
Since
- (1) _ (2))2 ((2)_ (2))2 ((3)_ [3))2
(Xj Xi + Xj Xi + X Xi » (A7)

T. .
1j J

then, ( ))
x0(a) _ yola
S N i/
I TR , (AB)
I‘1J
(9 - (@)
Jr o= I 1 (A9)
rlJ
and

o(a) o(a)Y {yo(B) o(B)

B - _ g, _ &P (X - X X - X

1], = %P, = -], = S - Z(a )
'ij Tij

(A10)

where

§%B - 1,a=8
- {0,0#8

In a similar manner, Ig, Jg, and Kg can be calculated from

T. *T..
cose, ., = - ik =i (A11)
ijk T.,Y. .
jk'ij
and
(ryyor..)(r,.dr,, -1, dr..
a0, = —1 |0 car sar .0 o KT T TR )
ik % 10, sine?. e 2.1
jk'ij ijk ijTjk

(A12)
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o

Collection of AX?, AXj, and AX; coefficients in Eq. (Al2)

results in

5 - [0 59) s & (5@ 5)] w
ijk rij

- 1 B o(a) _,0(x) B AYAIORRIC)
Jg - CEp [‘(l+ F)(xj o =X )+ (1 roz)(xk X ):](Alzl)

ij ik

K - _’"a.l (x‘J?("‘) - x‘i’(")) - —%2- xi(“) - xg.’(“)) (A15)
ijk Tik
where
_ o o PN
aijk = rij rjk 51n6ijk
_ o
g = Tij rjk cos&)ijk

The second derivatives, [Ials]e, ..., etc., could be calculated
by differentiation of Eqs. (Al13) to (Al5). However, the result
is sufficiently complicated that we have chosen to calculate
these coefficients by numerical differentiation of Eq. (Al1).

For the ¢ transformation we use

(ryxrig) - (T*Tii)

CcO0S¢.

ijke (Als)

rijrjkslneijk TjkTRQSInajkl

2
SIS ) 2NES) SR E U DRSS TARSVRAS):
rijrjk51n6ijk rjkaESinejkl

(A17)
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Again, formulas for the transformation derivatives may
be calculated from the transformation relation (Al17)}, but we

have chosen to calculate them by numerical differentiation,

{rom
2
acosé. 2 cosé, .
1% - ke [1“13]¢ - _a—lgk—“ ..., etc.
ax® BX] 8X;

(A18)

The angle §.

ijkm is calculated from the angle between the

normal to the plane ijk and the vector from j to m as,

oDk ERE)

rjmrjkrij 51noijk

cos(n/2 - Gijkm)
We shall be interested only in small displacements of m

{from coplanarity with i,j,k(69 =0), in which case differ-

ijkm
entiation of Eq. (A23) and collection of coefficients X?, X?,
o a . )
Xk, and Xm result in
659 xz? ) -u®
1‘; = _.EL_JL*_. (A20)
Tim %ijk
o s} [o
T 2 )eu® o (1€ .
J% = ( Xrlk) u (rjklej) u (AZ1)
8 £°
jm %ijk
(r?.xr? )-ua
kg = —=l=ll - (A22)
Tim %ijk
o
M = L(ryp<rsy)eu’)
§ ) (A23)

jm %ijk
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where u® is a unit vector along the x* axis.
Substitution of Eqs. (A3) to (AS8) into Eq. (A2) results

in the following equation for the potential energy

3
U = U°(x?(°‘) Xg(a)) + (Z:) u;(ij)[z (Ig‘Axgl + J?Axg)
ij a=1

5 2
suy > %P, AX"‘AXB] = u;(ij)[;l(lg%x‘; + J‘;AX‘J?‘)J

a,B=1 P,Q (i)
(P=1,J)
(Q=1,J)
— 2 B B
L I a, o a, o a (s} e}
+ 2 Uglisho [Z (1ga §+9g8 5+ K3o ) + % 3 %, Aprxq]
(ijk) a=1 a,B=1 P,Q
(P=1,J,¥)
(Q=1,3,¥)

3 2
N LA Qa, .0 a, .0 Q, 0 .
+ 'z(ﬁ_ _k)ue(le)[E (Tgh¥s + JeAXj + KeAXk)] + Z U:b(ljkk)
1] i

3
@, @, 0 o a, 0 N o B o 8
x [0;1 (1306 + G + Kt + LG) + 5y 30 [PR°) Aprxq]

3

2

1 TTIPN ) a, . d S, O a, 0

+ Y E U¢L13kz) [2 (1¢AXi + J¢AXJ. + k¢axk + L¢Axl)]
(ijke) a=1

3
+ Y Up(EIK) [Z (1gaxf + J‘;Ax? KGR+ MEax)
(ijk) a=1

3 2
[+ O o QO (A24
x [a§=1 (1gn + ,)’?AXJ. + 1<°‘.6Axk + WSA’Sn)] (A24)
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where
L. U
U'(IJ) = »
T Brij .o
ij "ij
(AZ5)
2
wiay = Y . etc
ariJ
rij-rlJ

Application of the necessary condition for a minimum in U,

a=1,2,3
1 ( > (A26)
axg i=1,...N

tc Eq. (A24) leads to a set of linear algebraic equations

for the aX%, which may be solved by standard methods. The

AX®* values determined lead to a new conformation which minimizes
(or maximizes) U in Eq. (A%4). This will znot, in general,
minimize U in Eq. (Al), since the expansion of the potential

in Eq. (A2) and the expansions in the transformations, Eqs.

(A3) to (A6), are approximate. However, the ax% values may

be used to calculate a new set of trial coordinates,

@ mew) = x¢®o1a) + ax¢ ,  (az7)

a new set of derivatives, Eq. (A25) and coefficients, Eqgs.
(A8, 9, 10, 13) to (15, 18,20) to Eq. (A23), and the minimi-
zation repeated. When, after repeated iteration, the AX®
are zero to within prescribed limits, the iteration can be

terminated and the geometrical factors of interest calculated
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from the final set of trial coordinates.

In the final iteration the coefficient of each ax® in
the Zinear terms in Eq. (A24) are zero (very nearly) and only
the quadratic terms remain. This final potential may then be
used to calculate the vibrational frequencies of the molecule
by standard methods. In turn, these frequencies may be used
to calculate the vibrational heat capacity and other thermo-

dynaric functions.
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APPENDIX B
(Taken from the Ph.D. Dissertation of D.H.Wertz, submitted to the
University of Georgia, 1974)

NEWTON RAPHSON

In the Newton-Raphson method one assumes that the poten-
tial energy surface can be approximated by a Taylor's Series

terminated after the second order terms:

3N 3N

Ve e () te X teas(ah 3T, ) )

i=1 o i=1 j=1

where Ei = the coordinates of the molecule, and V = steric
energy.

The Taylor's Series above implies that there is an
equation like Eq. (2) that is a good approximation to the

potential energy surface about the present set of coordinates,

Vo= V°+§A % (2)
i=1 J=

u[Vj%

where Ai and Bij are constants.

The equations above give V at a miaimum when all of
the partial derivatives are equal to zero. The partial
derivatives can also be approximat d by a Taylor's Series

that is terminated after the linear terms.

v ° , S a(g;)
= + AE. 1 i=
3E; 3L; ;g% EJ BEj , for i=1,2, 3N

(3)
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We are interested in the set of AEj such that

X 2%V
i+j§;1 Agjm \ for i=1,2,...,3N
The above set of linear equations cannot be solved as is,
because as is well known, there are only 3N-6 internal degrees
of freedom in a molecule while there are 3N equations above.
This means there is more than one set of Agi which will solve
the equations. In order that a nontrivial solution be found,
it is necessary to remove the six translational-rotational
terms. Boyd54 does this by fixing six of the coordinatec of
the molecule such that the molecule cannot translate or Totate.
This means all of the derivatives with respect to these
coordinates can be removed from the matrix. Lifson51 gets
around the problem by expressing the energy in terms of
normal coordinates instead of Cartesian coordinates.
The assumption that the Taylor's Series can be terminated
after the quadratic term is, of course, not exactly correct,

so that several iterations of this procedure are necessary

to minimize the energy of the molecule.

MODIFIED NEWTON-RAPHSON

Shortly after Boyd54 published is Newton-Raphson scheme
I started work on a minimization scheme that is a combination
of the steepest descent method and a Newton-Raphson method

where only the diagonal terms in the matrix are looked at.
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This scheme is generally referred to in the research group

as the firet derivative scheme. The three partial derivatives
with respect to the three coordinates of the atom are analyt-
ically calculated and the atom is then moved along each of

the axes by an amount proportional to the derivatives. The
three partial derivatives are then recalculated and the minimum
energy position of the atom is calculated assuming that the
derivative of the potential energy with respect to each of

the coordinates can be approximated by

av av@ )
A L3y (5)

where g = X,Y,2.
The second derivatives 32V2/3§; are numerically

calculated using the formula

(3 - 31)
%; 8% Py (sa)
1 2
(g5 - &) 2;

Assuming Eq. (5) is a good approximation to the deriva-
tives of the energy of the molecule,with respect to the
coordinates of the atom, is the same thing as assuming that

the energy of the molecule can be approximated by

2 2

v = VO +BXx +cx?+ DY+ EYZ « FZ + 625 . (6)

The process of placing the atoms in the minimum energy

pesition predicted by the equations above is done with each
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of the atoms in turn and the whole process is repeated until
either the largest movement of any atom on any iteration

falls below a fixed value or the energy after a few iterations
(usually five) fails to decrease by a significant amount.

As is done in Wiberg's minimization scheme, atoms bonded
to only one atom (mainly hydrogens) are moved with the atom
they are bonded to, in addition to being looked at independently.

The only comparison made of the times required to minimize
the first derivative scheme and Boyd's program was on n-hexane.
In this particular case, the first derivative scheme was faster
by about a factor of two. One would expect that the time
required to do an iteration by Boyd's program would go up
as the cube of the number of atoms in the molecule because the
required time to solve a set of simultaneous linear equations
goes up as the cube of the number of equations in the matrix.SOb
On the other hand, the time'required per iteration for the
first derivative scheme should be proportional to the number
of interactions, which increases as the square of the number
of atoms.

It is possible that further testing would have shown
that these considerations were incorrect or that n-hexane
was not representative of the average molecule, but the
chances of this were not felt to be great enough to justify
the effort necessary to find out. Boyd's program required
so much core storage that it would have been difficult getting
the University of Georgia Computer Center to give reasonable

turnaround on jobs using this minimization scheme.



16/18-38

A somewhat more extensive comparison using four compounds
was made between the steepest descent program and the first
derivative scheme. On these four molecules it was found
that the first derivative scheme was faster by a factor of
150. This was so much faster that further testing to deter-
mine which one was superior was felt to be unnecessary.

After the first derivative minimization scheme had been
in operation for awhile, it became apparent that the minimiza-
tion scheme could be improved if the potential energy surface
was looked at as a quadratic surface with the cross terms
included, and that the program could be speeded up if the
second derivatives were calculated analytically (i.e., in one
pass) rather than numerically. It seemed reasonable to assume
that these changes would both cut the time required to do an
iteration and would also enable the program to more accurately
place the atom at its minimum position.

When these things were done the results were as hoped.
Both the time per iteration and the number of iterations
required to minimize the energy of the molecule decreased.

The net improvement was about a factor of three.

The present minimization scheme essentially does a
Newton-Raphson minimization on each atom in the molecule on
each iteration. This is faster than doing a full Newton-
Raphson on the complete molecule because one does not have
to calculate the second partial derivatives to fill a 3N x 3N
matrix, and even more importantly, one does not have to

diagonalize a large matrix on each iteration. In the presenr+
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minimization scheme, an atom with hydrogen, or other atom
which has only one bond bonded to it, has these atoms moved
with it when the atom is moved. This means all interactions
involving attached atoms must be looked at when one is
looking at the atom to which they are bonded. The attached
atoms are also looked at independently. This means inter-
actions involving attached atoms are looked at twice which
obviously increases the time required to do an iteration.
However, this extra time is more than made up for by the
fact that the atoms move more rapidly to their minimum

position.
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PARTITIONING OF ONL-PARTICLE SPACE

® Internal space: the subspace spanned by the MCSCF occupied

orbitals

® External space: the orthogonal complement of the internal

space

® Inactive space: the subspace spanned by the occupied orbitals

frozen in the CI calculation

® Active space: the subspace spanned by occupied orbitals

excited in the CI calculation

® (Classify configurations by (i,e), where i is the number of
electrons occupying internal orbitals, e is
the number of electrons occupying external

orbitals

COMPLETE ACTIVE LLECTRON CI

® All possible configurations with n electrons in the
active orbitals (n,0)

® Proper dissociation

® Near-degeneracy effects

® Size-consistency

® Qualitative PES for reactions (PES = Potential Energy
Surface)

® Good for bond lengths, usually too long

® Good for frequeicies, usually too small

® Poor for dissociation energies, usually too small
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® Poor for excitation energies, sometimes wrong order,

but good in some cases

SINGLY EXCITED CI, FIRST ORDER CI, POL-CI, OVC, efc.

® (n,0) +(n-1,1) configuration

® Nearly correct dissociation

® Polarization and semi-internal correlation effects

® RBased on the qualitative idea of separation of atomic
and molecular correlation energies

® Slightly better than (n,0) for bond lengths and

frequencies

® Much better than (n,0) for dissociation and

excitation energies

DOUBLY EXCITED CI

® (n,0) +(n-1,1) +(n-2,2) configurations
® Not size-consistent

® About the biggest CI we can do

® Good dissociation energies?

® Good ionization potentials?

® Potential surfaces for reactions 2-3 kcal/mole

accuracy for barriers?
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® All three types of calculations are independent of

choice of virtual orbitals

® These calculations can get very large and we need

ways of selecting important configurations

CONFIGURATION SELECTiON, PERTURBATION THEORY

H o= H, + 2V
y o= J ARyl
n
E = Ja"g"
n
o . 0.0
H ¥ = E7¢
H'+v® = o
o _ o .0
Hov = By ¥y
o o 2
B2 Ly Sl
o] o

k <uplulup> - Eg

In the CI context, choose {@?} and make

Classify configurations by the order of perturbation wave-

function in which they firs-. appear.
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INTERACTING SUBSPACES

® Zeroth order subspace {¢?} chosen by chemical or

energetic considerations

e First order interacting subspace {¢1}
J

<¢}1Hf¢?> # 0 for some I

® Second order interacting subspace {QZ}
k

2 1
<ty [H[e}> # 0 for some J

® One may, for example, keep only configurations in the
first order interacting subspace with respect to a

chosen zeroth order subspace

e The configurations included in the MCSCF-calculation

is often a good choice for the zeroth order space

® The resulting CI is still independent of the choice

of virtual orbitals

FURTHER SELECTION OF CONFIGURATIONS

® Energy selection: discard all configurations whose
estimated contribution is velow some threshold.
i) perturbation theory

<¢lel¢°>Z
AE, = . no.
(Byy -E)

S 2,-%
i) % = (1-¢ )77 B Crog

I#k
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_ 2 2
AEk = E -Hkk)Ck /(1 -Ck )
AE and Ck estimated by BK method

Advantage: significant reduction.

Disadvantage: bumpy energy surfaces, properties not

as good as energy, and depends on virtual orbitals.

e Natural orbital truncation: discard all natural orbitals
with occupation numbers below some threshold and carry
out the CI calculation in the reduced basis set.

Advantages: smooth potential surface, good properties,
good for excitation energies, and useful for

treating higher order subspaces.

Disadvantages: not efficient for total energy or
dissociation energy, costly to obtain but approx-
imate NO from perturbation and wavefunction

seems to work well.

EXTRAPOLATION BASED ON ENERGY SELECTION

Calculate CI energies for different values of the threshold.
Extrapolate to the zero threshold limit.
Advantage: can get close estimate of CI energy by
a series of relatively small calculations.
Disadvantages: reliable properties? extrapolation
procedures not always reliable, bumpy surface,

and virtual orbital-dependent.



Internal
1)
2)

Virtual

1)

2)
3}
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CONSTRUCTION OF ORBITAL BASIS {¢il

srbitals:
MCSCF (including GVB)
IVO0, ICVO, etc., virtual orbitals determined in

n-1 potential, good for singly excited states

orbitals:

Approximate natural orbitals from perturbation
wavefunctions, best for energy selection and

nrbital truncation

IVO, ICV0O, etc., not very useful for energy selection
Virtual orbitals determined in n-V potential, where
V is the number of valence electrons -- good for

energy selection

HOW TO CHOOSE BASIS SETS?

The basis set error should be a small part of the

remaining error in the calculated properties. Balance

between

n-particle basis set and l-particl: basis set

i-particle basis

1

S -

n-particle basis

A N

Rest
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He, GROUND STATE: lsg 1o,
® RHF potential curve is known
® How do we lind a basis set that gives an SCF curve
parallel to the RHF limit curve?
® Calculation I:
complete atomic basis,
no polarization functions, 1
SCF curve too repulasive,
need p and d functions I

RUF

to describe distortion

of atoms.

® Calculation II:
limited atomic basis set, say double-zeta with polari-
zation functions. SCF curve not repulsive enough
because of basis set superposition error, basis functions
on one center are helping improve the description of the

other atom, leading to :n artificial lowering.

He, C1

z
b

(ta = singly excited configurations from orbitals

2
® CIl 152“1 1s, + ta + +b + tatb

on center a)

® RHF 1limit basis set yields a L.
. RHF  limit
potential curve that is not bas-‘5 5€+

attractive enoug. Needs

more diffuse polarization

functions. b“le:gggtC




5
“

2 2 2 2
e C[2 (lsa + Zs‘,1 + Zpa](lsb +

® CI1 basis set yields a
potential curve that is too
attractive, because super-
position error is back.

To describe the additional
atomic correlation, addi-
tional atomic basis functions

are needed.

+ Zpé) + ta + tb + tatb

Com P\e‘l'e
basis set

CI1
basis set

e Complete CI using 4s-3p-1d (STO) and 4s-3p-1d (CGTO)

basis sets

® Comp with exact results

STo

]E (R)-Egxacr R)

R

R

® The bumps in the error function for the CGTO calculation

is caused by the incorrect long-range behavior of GTO --

they die off too quickly.
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4_.
Energy difference at Rg between CH a £  and A2£

Natural orbital truncation, all singles and doubles from HF
o n Ec's) Error  EC?a)-E(*Z)  Error
k! 1 -38.304738 0.014373 0.107820 0.000948
6 - -38.314663 0.004448 0.107936 0.000832
8 - -38.317600 0.001511 0.108720 0.000048
23 - -538.319111 - 0.108768 -

23 3 -38.356300 0.007666 0.099552 0.002149
- 6 -38.362760 0.001206 0.097735 0.000364
- 8 -38.363515 0.000451 0.097574 0.000203
- 13 -38.3639%966 - 0.097371 -

® Convergence on energy difference much better than

convergence on total energy.



17-11

Comparison of Calculated and Experimental Spectroscopic Constants
3=
for B, (X Eg)

AGyplem™)  AGgpiem™) R (A) Dylev)  (2%%7)

Experiment 1026 1006 1.590 3.79
A(VCI) + 56 + b1 +0.026 2.58 +0.85
AlFOCI) + 53 + 49 +0.030 2.86 +0.11

VCI = Complete Active Electron CI.

FOCI = First Order CI.

® VCI as good as FOCI for bond lengths and frequencies

® FOCI more accurate for dissociation and excitation

energies.
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Comparison of Calculated and Experimental Spectroscopic Constants
for 0, (X*Z;)

AGplem™)  AGg,lem™) R (A} Dy (eV)

Experiment 1568.5 1544.6 1.208 5.213
A(VCI) - 97 - 98 +0.02 -1.43
A{FOCH) - 87 - 84 +0.03 -0.26

® Same conclusions as before for VCI and FOCI.



Comparison of Calculated and Experimental Spectroscopic Constants
for CH (X2)

AGW(cm"‘) AG3,2(cm") Rglag) DgleV) TelaZ )(eV)

QObserved 27325 2606.5 1.120 3.63 0.70
Afvel -172.5 -185.7 +0.017 -0.68 -0.51
A(FOCH) -161.5 -169.3 +0.020 -0.46 ~-0.11
A{SDHF ) - 104 - 48.5 -0.002 -0.12 -0.05

VCI and FOCI = same as before;

SDHF = single and double excitation from HF configuration.

® In this case, SDHF more accurate than VCI and FOCI.
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Vibrational quanta of CO(X124) in em L.

Method AGI/Z Error AG3/2 Error
VCI 2128.3 -15.0 2102.4 -14.4
FOCI 2140.3 - 3.0 2114.7 - 2.1
SDHT 2235.9 92.6 2213.9 56.1
obscrved 2143.3 -- 2116.8 --

® VCI and FOCI give much better vibrational quanta in

spite of higher total energies.

® Needs six-fold excitations to describe the stretch

of a triple bond.



17-15

Comparison of Calculated and Empirical Dipole
Moment Function® for CO(X’Z+):

3 i
H(R) = ¥ M(R-RY)

i=0

Mo My M2 Mg

Empirical -0.1222 1.645 -0.042 -0.350
A(VCD) -0.138 +0.081 +0.041 -0.158
A(FOCI) -0.197 -0.067 0 -0.026
A (SDHF) +0.040 +0.225 +0.134 +0.829

*R in A, ¥ in debye.

K.Kirby-Docken and B.Liu: Molecular dipole moment functions. 1

s
s
sk // \ VCI and FOCI curves
/ \
o4 / \
,x/ \
0 \ ~
sl / \
x
3\-&4— /f \
-o8} \ Empivical curve
/
-1.2L
P SR S L1 ) 1
t4 1B 22 Z.6 30 35 4o 5.0 6.0
Riey

Fig. 1. Dipole moment functions for X'’ state of CO. The solid curve goes
through the FOCI points presented in Table V. The da?Bed curve is
empirical dipole moment function of Young ?Hd Eachus. The x's are
points computed by Billingsley and Krauss. The VCI results discussed
in the text closely parallel the FOCI curve and would not be easily
distinguishable in this figure.

® FOCI curve and empirical curve agree well for R € 3.5 a.u,
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. 3
Divole moment of vibrational states of CO(d™4)

v Healc (debye) ”expt (debye)
3 -0.624 -0.48+0,02
0.060 0.06#0.04
4 -0.564 -0.42+0.02
5
» 0.121 » 0.14%0.04
6 -0.433J -0.2810.02J

® Theory-predicte results later confirmed by
experiment.

Force constants of HCN in indyne/x.

S| Y, Ks
Experiment 3.12(0.01) 9.39(0.09) -0.21(0.08)
A{VCI) -0.07 -0.15 0
A (SDHF) +0.15 +0.94 +0.06

K1 = CH stretch

CN stretch

=
[38]
] n

3 coupling between CH and CN stretches

® VCI results better than SDHF results.
6-fold excitation needed for stretching triple bond.
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0, STUDY R.P.Saxon
B.Liu

® FOCI calculations

® 62 valence states arising from oxygen 3P, 1D and 15

® The maximum error in calculated spectroscopic

constants, for seven low-lying bound states are:

R, — 0.04 R
De - 0.4 eV
T - 0.2 eV
e

w - 120 em”?



17-18

PAUL H. KRUPENIE
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FUTURE OUTLOOK

NEW METHODS

Ab Initio Spin-Spin and Spin-Orbit

Perturbation Methods

Rayleigh-Schrodinger
o0 L ), @,

'\U = oo
g = e(0) 4 g(1) , (@),
RORE OO nt o
i
E o= <®lHl®> + I lulul> (B-2077 <vflH]v®>
ij
Kpp = <w°|H|wg> , omit lﬁo) from set
X = x“ + I(l) s E=E_ +A

« k
E-1071 = ¥ (E-x) 7 [ - aye, - w07
k=0

can be used to fourth order with reasonable MC-SCF wo to
give reliable dissociation energy, properties, ionization

energy, etc.

MBPT simplified version

[o]

v Yscr

HC I F(i)

less general, but simpler tu compute.



Mgller-Plesset Formula
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EV+EY = Eyup
; A |
2 occ virt <1J|r12Iab-ba>
E° = - A
icj ab fa b €17 &
€ = orbital energy of canonical

UHF orbitals

Third and fourth orders are more complicated but similar.

ANALYTICAL DERIVATIVES

Better search procedures for stationary points.

Continuum problems: absorption and scattering.

Dyson equations: time-dependent perturbation theory and

Green's function.

EXTENDED RANGE OF PROBLEMS

1. Spectroscopy
Magnetic

A >

]

Electric

oy

iR

Lfle]

du
9x

30
9x

hyperfine, zero-field
field-gradient tensors

dipole

polarizability tensor



What
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- Photoionization: peak location and cross section.

- Electron excitation: Rydberg-valence mixing.

2. Structure
- Bond lengths and angles
- Multiple structures (rotomers)

- Thermochemistry (AH, AS)

3. Kinetics
- Isotope effects
- Transition state, force constants,and structure
- Spin-orbit rates
- Reaction mechanisms
- Surface sites and reactions

- Photochemistry

will remain hard?
Condensed phase!

Solvent effects of spectra, structure, kinetics.
Secondary, tertiary, etc. structures of biological systems.
High precision results for moderate-size molecules,

i.e., singlet-triplet splits to #2 kcal.
Mixed valence excited states:

MC-SCF with non-orthogonal orbitals

Photochemistry:

Jahn-Teller effects from surface crossings.
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DEEPER UNDERSTANDING OF RESULTS

e What is objective of measurement of physical properties

i etc.)? to determine electronic structure!

(E) @, éa B
e What is objective of electronic spectroscopy?

Assignment of energies to electronic structures!

® What is objective of chemical structure determination?

To understand electronic structure!

® What is objective of kinetics?

Predict rate and products of a reacting mixture

® What is (present) objective of biochemistry?

To understand velation between structure and function.

@ What is the purpose of quantum chemistry?
To understand electronic structure!
a. level of accuracy and relation to accurate
predictions
b. relation of structure to geometry

c. relation of structure to reactivity
i.e., we start with what everyone else wanted to know.

Our problem is to relate our results to trends in

chemical/physical properties.

Ab initio calculations on individual molecules cannot solve

this problem. We need results for families of molecules.
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Too much of quantum chemistry simply asks, ‘'Here is an
experimental result, can we reproduce it?" The answer is
only interesting if it is, "No, because the experiment is

wrong."

What do we know when the calculation is over that we did
not know at the start (provided we agree with experiment)?
The detailed electron distribution. The details of potential

surface far from equilibrium geometry.

What results are usually reported in publications?

GRO Ga4-194/b8





