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Abstract

Integrated MEMS Cavity Optomechanical Oscillators for Wireless and Optical
Communications

by

Turker Beyazoglu

Doctor of Philosophy in Engineering - Electrical Engineering and Computer Sciences

University of California, Berkeley

Professor Clark T.-C. Nguyen, Chair

Recent advancements in micro-optical and micro-mechanical resonator technologies have
allowed researchers to exploit coupling between the optical field and mechanical motion
in an optical cavity to affect cooling or amplification of mechanical motion. Cooling the
mechanical motion of microscale objects has been of high scientific interest, since it facilitates
observation and exploration of certain quantum phenomena, e.g., the standard quantum limit
of detection. On the other hand, amplification of the mechanical motion allows realization
of microscale devices for practical applications, such as light driven low phase noise signal
generation by radiation pressure driven Opto-Mechanical Oscillators (OMO’s).

The ability to achieve self-sustained oscillation with no need for feedback electronics
makes an OMO compelling for on-chip applications where directed light energy, e.g., from
a laser, is available to fuel the oscillation, such as Chip Scale Atomic Clocks (CSAC’s).
Indeed, an OMO can substantially reduce power consumption of a CSAC by replacing its
power-hungry conventional quartz-based microwave synthesizer but this requires that the
OMO output is sufficiently stable, as gauged over short time spans by its phase noise.

Pursuant to identify phase noise mechanisms, this thesis presents a new phase noise model
for OMO’s by deriving an OMO oscillator model with intuitive engineering understanding
of its operation consistent with the established OMO theory. Phase noise theory suggests
that attaining high mechanical-Q (Qm) is crucial to lower the phase noise while high enough
optical-Q (Qo) is required for reasonably low-power operation. This motivates a focus on
achieving a high-Qm OMO to have low phase noise while maintaining a high enough Qo for
low power operation–a challenge in previous OMO’s that had to trade-off Qm and Qo mainly
because they use a single material that sets both.

The work in this thesis demonstrates integrated MEMS-cavity optomechanical oscillators
that combine the best properties of optical and MEMS resonators in single composite multi-
material OMO structures to simultaneously optimize mechanical and optical Q’s. The multi-
material coplanar ring OMO structure using a high-Qo silicon nitride optical ring and a high-
Qm polysilicon ring simultaneously achieves high Qm > 22, 000, which is more than 2× higher
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than that of previous-best silicon nitride OMO, and high Qo > 280, 000 on par with single
silicon nitride ring demonstrations. With its high Qm, the coplanar ring OMO exhibits a
best-to-date phase noise of -114 dBc/Hz at 1 kHz offset and -142 dBc/Hz at 1 MHz offset from
its 52-MHz carrier–a 12 dB improvement from the previous best by an OMO constructed of
silicon nitride alone. The doped polysilicon structure and electrodes additionally allow tuning
of the OMO’s oscillation frequency via voltage control and harmonic locking to an external
source, enabling future deployment of the multi-material OMO as a locked oscillator in a
target low-power CSAC application. A second integrated OMO structure, dubbed stacked-
ring OMO, is also demonstrated using similar silicon nitride and polysilicon ring resonators
but this time coupled in a vertical fashion, allowing easy integration with sidewall sacrificial
layer defined gap MEMS process technology to achieve high electromechanical coupling in
the composite OMO.

Enabled by the MEMS integration that allows electrically coupled input-outputs, a new
optical communications application based on an OMO is introduced. A super-regenerative
optical receiver detecting on-off key (OOK) modulated light inputs has been demonstrated
that harnesses the radiation-pressure gain of the electrically-sustained integrated OMO to
render its oscillation amplitude as a function of the intensity of light coupled into the oscilla-
tor. Unlike previous electronic super-regenerative receivers, this rendition removes the need
to periodically quench the oscillation signal, which then simplifies the receiver architecture
and increases the attainable receive bit rate. A fully functional receiver with a compact ∼ 90
µm OMO comprised only of silicon-compatible materials demonstrates successful recovery
of a 2 kbps bit stream from an OOK modulated 1550 nm laser input. By removing the
need for the expensive III-V compound semiconductor materials often used in conventional
optical receivers, this OMO-based receiver offers a lower cost alternative for sensor network
applications.
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Chapter 1

Introduction and Overview

1.1 Harnessing Optical Energy for Micro-Mechanical

Systems

Micro-mechanical devices offer countless functionalities in various applications partly because
they can couple with many different energy sources through different actuation mechanisms,
such as electrostatic, piezoelectric, thermal, gravitational, and magnetic forces. Recently,
advances in micro-optical and micro-mechanical resonator technologies also allowed harness-
ing optical energy to excite mechanical vibration in these systems via radiation pressure of
light [5].

Radiation pressure stems from the photon scattering from a reflective surface. Photons,
just like any other particle, carry momentum. When a photon reflects from a surface,
momentum conservation requires that some momentum is transferred to the reflecting body
with an associated radiation pressure force. Of course the amount of force exerted by a single
photon is very small. However, when light is confined in a high quality factor optical cavity,
photons bounce off the cavity wall multiple times before escaping so the radiation pressure
becomes considerably large. In a cavity optomechanical system, the mechanical resonator is
embodied within the same optical cavity, i.e. the structure acts both as a mechanical and
an optical resonator. The two are coupled through the dimensional changes in the structure.
A moving cavity boundary modifies the optical path length, and consequently, the optical
resonance frequency that then alters the cavity photon number and radiation pressure. This
coupling yielded rich phenomena including optical bistability [6], transparency [7], squeezing
[8], cooling the mechanical motion [9],[10], and parametric instability [5],[11], which is also
known as phonon lasing or self-sustained oscillation. This thesis investigates the latter where
the interplay between the radiation pressure and the moving cavity sustains regenerative
mechanical oscillations in on-chip micro-resonators to allow synthesis of RF and microwaves
by harnessing light power.
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1.2 Motivation

Figure 1.1: Targeted CSAC application. (a) Conventional CSAC: When the laser modula-
tion generates two sidebands 6.834682610 GHz apart, the Rb vapor cell becomes transparent
to 795 nm laser (a technique referred to as coherent population trapping (CPT), creating an
error signal for correcting the frequency of the VCXO that then exhibits excellent stability.
However, the PLL required for locking swamps the clock’s power consumption. (b) Proposed
low-power CSAC: OMO’s higher-harmonics generate required sidebands for locking, obviat-
ing the need for a PLL while the fundamental frequency still provides the necessary clock
output. Voltage controlled tunability of the OMO provides a simple feedback mechanism for
locking where the tuning voltage emanates from locking circuitry.

Radiation Pressure-driven Opto-Mechanical Oscillators (RP-OMO’s or OMO’s in short)
allow harnessing weak optical forces to supply energy for oscillatory mechanical motion in
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a microscopic device, adding another energy source at the dispense of micro-mechanical
oscillator designers. This is especially compelling for on-chip applications where a laser
source is already present to fuel the oscillation. An example of such a system is a Chip Scale
Atomic Clock (CSAC), where interrogating the atomic reference requires a laser.

Atomic clocks are world’s one of the most stable frequency standards. Today’s atomic
clocks built by NIST [12] achieve frequency uncertainty of about 1 × 10−15, meaning that
they would not lose (or gain) a second in more than 100 million years. If such good timing
instruments were portable, there would be enormous benefits for many applications, such as
faster GPS systems, secure communications, networks with longer autonomy to name a few.

In 2002, DARPA initiated the CSAC program to build miniature versions of these clocks
with much smaller power consumption (< 30 mW) to bring them into portable applications.
Both the NIST atomic clocks and CSAC derive their stability from the transition between the
hyperfine states of an alkali metal atom, which is a constant of nature, and thereby, much
more stable than a mechanical reference like quartz whose frequency is subject to long-
term changes in mechanical dimensions and stress. Figure 1.1(a) presents the schematic of a
CSAC using Rubidium atoms for the frequency reference. Here, a cell containing Rb atoms in
vapor state is interrogated by a 795 nm laser that corresponds to the wavelength for 87Rb D1
transition, so the light is normally absorbed by the vapor cell. When the laser is modulated to
generate sidebands apart by the 6.834682610 GHz hyperfine splitting frequency, it excites the
atoms into a coherent dark state, where they become transparent to the interrogating laser
light (no longer absorb it). A photodiode at the end of the vapor cell monitors the intensity of
the laser light coming through the cell, which gets maximized when the modulation frequency
matches the hyperfine splitting frequency. A feedback circuit then locks the quartz based
microwave oscillator to the hyperfine splitting frequency by controlling the frequency of the
microwave oscillator so that the photodetector output current is maximized at the hyperfine
peak.

At the end of the CSAC program, there was tremendous progress towards the program
goals and a miniaturized version [13] became available. However, of the program specs,
the power consumption was not achieved particularly because the microwave synthesizer
exceeds the power budget whereas the other atomic clock parts, such as the micro-oven
needed to keep the Rb in vapor state, have successfully been implemented with low power.
The microwave source consumes much power because it synthesizes the required ∼3.4 GHz
(half of the 6.834682610 GHz) signal from a 10 MHz voltage controlled crystal oscillator
(VCXO) by using power hungry frequency division. Here, replacing the microwave source
by a low power 3.4 GHz oscillator does not solve the problem since the actual clock output
frequency near 10 MHz is desired, so some form of power-hungry frequency division would
still be required.

An OMO could substantially reduce the CSAC power consumption by replacing its power-
hungry microwave synthesizer. Figure 1.1(b) presents the targeted CSAC implementation
using RP-OMO. Here, the RP-OMO modulates the pump laser at the mechanical resonance
frequency, and via non-linear mechanical and optical interaction, at higher harmonics as well.
This efficient built-in harmonic generation would allow exciting the hyperfine transition of
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the Rb cell with an OMO harmonic at 3.4 GHz, while the OMO provides a much lower
standard frequency clock output without the need for power-hungry frequency division.

Other than the above mentioned low-power CSAC target application, OMO’s have also
been proposed in other diverse applications such as microwave frequency generation [5],
communications [14], and sensing [15]. To be useful in such applications, the output of
an OMO must be sufficiently stable, as gauged over short time spans by its phase noise.
Next section gives a brief review of the previous work with the emphasis on phase noise
performance and required optical threshold power (Pth) to obtain oscillation. It is also
important to note the values of the mechanical-Q (Qm) and the optical-Q (Qo) since they
ultimately govern these performances to a great extent, as will be explained in more detail
later.

1.3 Previous Work

Table 1.1: Summary of several RP-OMO devices and their performance.

Reference Material Qm Qo Pth Phase noise at 1 kHz offset
[16] Silica 2000 5.5× 106 250 µW -60 dBc/Hz
[4] Silica (PSG) 7200 2.8× 106 N/A -87 dBc/Hz
[17] SiN 2000 5.2× 105 2 mW -85 dBc/Hz
[4] SiN 10400 74000 N/A -102 dBc/Hz
[18] Si 3300 3.5× 105 3.56 µW N/A
[19] Si 6000 N/A 7.94 mW -55.4 dBc/Hz
[20] Si 376 42000 ∼100 µW ∼-40 dBc/Hz

Early OMO demonstrations used silica microtoroid resonators [5],[16] with ultra-high
Qo’s in the order of 107, which led to remarkably low (∼20 µW) optical threshold power.
Although they exhibit low Pth, the phase noise in such oscillators has typically been poor,
with best-to-date published phase noise value from a phospho-silicate glass (PSG) microring
resonator of -87 dBc/Hz at a 1 kHz offset from a 18.6 MHz carrier [4]. An important aspect
to note regarding silica OMO fabrication is that the microtoroid resonators require one-by-
one laser annealing and PSG devices require high temperature (> 1000 ◦C) reflow to achieve
such high Qo’s.

More recently, silicon nitride microring resonators have shown the potential of RP-OMO’s
to be immune to flicker noise [17] and achieved promising low phase noise marks [4] for
communications applications. Among single material OMO’s, the work of [4] was able to
achieve the lowest phase noise of -102 dBc/Hz at 1 kHz from its 74 MHz carrier by enhancing
its Qm over 10,400–a result of recognizing that mechanical Qm has the strongest impact on
phase noise, much more than the optical Qo. Indeed, the silicon nitride OMO has posted a
much lower Qo of 74,000 (consequently, much higher Pth) than its silica counterparts.
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Silicon OMO’s also offer some promise especially in low power and high frequency ap-
plications. A microdisk OMO has achieved oscillation frequency beyond GHz with a low
threshold at a dropped power below 4 µW [18]. However, the phase noise performance of
this OMO is not reported so a measure of its frequency stability may be inferred from its
Qm=3,300. Although it is not driven by radiation pressure, an electrostatically actuated
opto-acoustic oscillator comprised of silicon microring resonators in positive feedback with
external electronic amplifiers has posted -80 dBc/Hz phase noise at 10 kHz offset from a
2.05 GHz carrier [21]. More recently, same resonator structure also realized a true RP-OMO
[19] but with a rather high phase noise value of -55.4 dBc/Hz at 1 kHz from its 175.3 MHz
carrier despite operating at 80 ◦K to attain Qm=6,000. Other than the Whispering Gallery
Mode (WGM) devices, slot-type photonic crystal optomechanical cavities constructed in sil-
icon have also shown parametric oscillations [20]. These devices offer high optomechanical
coupling since the coupling is exponentially proportional to slot gaps between the beams
which can be set to be on the order of wavelength of light (albeit, this needs electron beam
lithography) whereas the optomechanical coupling scales with the radius of the cavity for
WGM devices. Large optomechanical coupling provides an advantage to achieve low Pth and
the work of [20] demonstrated an RP-OMO with Pth slightly above 100 µW. The measured
Qm=376 is however very low and the posted phase noise is in the order of -40 dBc/Hz at a
1 kHz offset from a 65 MHz carrier.

Table 1.1 summarizes notable examples of the previous OMO’s. Note that there are many
more optomechanical resonators using similar structures but they operate in the subthreshold
regime (i.e. without oscillating) so they have not reported phase noise performance or
threshold power.

1.4 Thesis Organization

The thesis begins with a review of optical and electro-mechanical microresonators in Chap-
ter 2, which have been enablers of the OMO technology as well as many applications in
optical and wireless communications. Chapter 2 explains the basic operation of Whispering
Gallery Mode optical resonators and capacitively-transduced MEMS resonators, which are
the building blocks of the OMO devices introduced later in Chapters 4 and 5.

Chapter 3 introduces the OMO technology and operation principles from an established
theory perspective first, and continues with a more intuitive model presented for the first
time in this thesis. The OMO model draws many parallels with engineer’s understanding of
oscillators and enables an intuitive understanding of the noise processes that contribute to
the OMO phase noise. Finally, the chapter presents a new phase noise model based on the
engineering OMO modeling, highlighting the roadmap for a low phase noise and low power
OMO implementation.

In Chapter 4, the requirements for a high performance (low phase noise, low power)
OMO derived in Chapter 3 are pursued using an integrated MEMS-OMO approach. With
careful mechanical circuit design, composite multi-material devices combine the best prop-
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erties of optical and MEMS resonators in a single OMO body, simultaneously optimizing
mechanical and optical Q’s. The chapter explains the design principles and operation of
the multi-material OMO’s, and presents experimental results that show best-to-date perfor-
mance in its class. Furthermore, additional capabilities required for a CSAC implementation,
such as voltage controlled frequency tuning and harmonic locking to an external source, are
demonstrated with the composite structure.

Chapter 5 presents a new application enabled by the integrated OMO of Chapter 4,
namely a super-regenerative optical receiver that receives and converts optical information
into electrical signals. The receiver is a promising low-cost alternative for low bit rate
communications, e.g. massive autonomous sensor networks, for which cost is paramount.
Experimental results are presented with a fully functional receiver architecture, confirming
successful operation of the OMO-based receiver.
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Chapter 2

Micro Optical and Mechanical
Resonators

This chapter introduces optical and mechanical micro-resonator technologies relevant to
optomechanical oscillators, which have been fundamental building blocks of many optical and
radio-frequency on-chip applications. Each of these technologies will be discussed separately
in their own domain to explain fundamental operating and design principles, and a new class
of technology named opto-mechanical resonator that essentially combines their functions in
a single device will be introduced in the next chapter.

2.1 Micro-Optical Resonators

Optical resonators come in a variety forms such as Fabry-Perot resonators formed by two
parallel mirrors, disk or ring-shaped dielectrics, multi-layer Distributed Bragg Reflectors
(DBR’s) and photonic crystals to name a few. In the microscale they have demonstrated
great promise as fundamental building blocks in applications spanning from lasers, ampli-
fiers, and sensors to optical channel dropping filters, add/drop multiplexers, and switches.
Of these resonator geometries, disk/ring resonators particularly stand out with simple mi-
crofabrication process requirements. Unlike DBR’s that use multiple layers of thin films or
photonic crystals requiring precise dimensions with challenging lithography (often requir-
ing E-beam lithography) steps, micro-disk/ring resonators only require a single layer film
and single mask lithography with low-resolution that is easily achievable with a traditional
stepper tool.

This section introduces micro-disk and micro-ring based optical resonator technology that
played the key role on emergence of optomechanical oscillators as well as developments in
other timing applications in microwave and optical domains.



CHAPTER 2. MICRO OPTICAL AND MECHANICAL RESONATORS 8

2.1.1 Micro-Optical Whispering Gallery Mode Ring Resonators
(”Cavities”)

Figure 2.1: Whispering Gallery Mode (WGM) resonators in optical and acoustic domain.
(a) SEM image of a WGM optical cavity from [1]. (b) Inset: FEA simulation of a WGM
acoustic resonator presented in [2]. Measured spectrum reveals a remarkable Qm of 47,900
at 510 MHz.

Microresonators with disk or ring geometry essentially channel light in a closed loop, and
the loop in general can take form of another closed shape such as ellipse. Here, for brevity
we use the term micro-ring but the concepts are valid for disk-shaped resonator geometry as
well. Also, to avoid confusion with the mechanical resonator especially in the later chapters,
we use the term ”cavity” instead of resonator, although the latter term would be more
appropriate.

Microring cavity is simply a curved waveguide closed onto itself to guide the wave in
the cavity plane in a circular fashion by supporting both longitudinal and transverse modes.
An interesting feature of the microring cavity is that it does not require an inner dielectric
boundary to confine and guide the light–a critical feature exploited in the coplanar double-
ring optomechanical oscillator design in Chapter 4.

Whispering Gallery Modes (WGM’s) are such modes where the light is guided along the
outer ring boundary in a repeated fashion without ”seeing” the inner boundary. WGM’s were
first discovered in the acoustic domain by Lord Rayleigh as the word ”whispering” suggests
its relation to sound waves. The term has since been also used for other family of modes
formed in optical and mechanical micro-resonators with electromagnetic and ultrasound
waves. Figure 2.1 shows examples of both, where (a) is an optical WGM resonator from
[1], and (b) depicts the mode shape of mechanical WGM disk demonstrated in [2] with a
remarkable Qm of 47,900 at 510 MHz.

As illustrated with the guided field profile in Figure 2.2, WGM’s consist of azimuthally
propagating fields confined to the inside surface of a dielectric boundary which guides the
wave with repeated Total Internal Reflection (TIR). This cylindrical coordinate geometry
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Figure 2.2: WGM Transverse Magnetic (TM) optical mode profile in a dielectric disk cavity.
The mode propagates in the azimuthal direction by total internal reflection. In the TM
mode, the dominant z-field is Ez while the transverse fields are Hr and Hφ.

of Figure 2.2 will facilitate the analytical description of WGM’s by solving the Helmholtz
equation in the next section.

Transverse Magnetic (TM) and Transverse Electric (TE) Mode Solutions of
WGM’s

WGM solutions of the Helmholtz equation approximately fall into two category: Transverse
Magnetic (TM) and Transverse Electric (TE), which are dominated by Ez (z-directed electric
field) and Hz (z-directed magnetic field), respectively. Note that this nomenclature follows
the conventions of waveguides where the wave propagation is in the z direction, as it would
be the case for an infinitely long cylinder. The analyses for TM and TE are identical, except
with a change in the transverse and longitudinal fields. For this reason, the analysis will
only derive the field expressions for TM mode and add TE mode solutions at the end.

For the TM mode, the Helmholtz equation

(∇2 + k2)Ez = 0 (2.1)

can be written in cylindrical coordinates as(
∂2

∂r2
+

1

r

∂

∂r
+

1

r

∂2

∂φ2
+ k2

)
Ez(r, φ) = 0 (2.2)

Equation (2.2) can be solved by separation of variables such that Ez(r, φ) = Ez(r)Ez(φ).
This yields two equations for the azimuthal and radial components(

∂2

∂φ2
+m2

)
Ez(φ) = 0 (2.3)

and (
∂2

∂r2
+

1

r

∂

∂r
+ k2 − m2

r2

)
Ez(r) = 0 (2.4)
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respectively. Here, m is the azimuthal mode number indicating the number of cycles the
field undergoes when orbiting the ring. Solutions of Equation (2.3) are

Ez(φ) = e±imφ (2.5)

And solutions of Equation (2.4) have the form

Ez(r) =

{
Jm(koneffr) r ≤ Ro

H
(2)
m (kor) r > Ro

(2.6)

where the parameter Ro is the outer radius of the ring, ko is the wavenumber in free space,
neff is the effective refractive index, Jm is the Bessel function of the first kind, and H

(2)
m is

the Henkel function of the second kind. Combining Equations (2.5) and (2.6) yields

Ez(r) =

{
AzJm(koneffr)e

±imφ r ≤ Ro

BzH
(2)
m (kor)e

±imφ r > Ro

(2.7)

where Az and Bz are the field amplitudes that dependent on the excitation. The rest of the
electric and magnetic fields can be derived easily from Ez using

H(r) =
−i
µoω

1

r

∂Ez
∂φ

(2.8a)

H(φ) =
i

µoω

∂Ez
∂r

(2.8b)

H(z) = Er = Eφ = 0 (2.8c)

In the most general case, there are three mode numbers (k, l,m) associated with each mode
for each coordinate. In the case of a micro-ring resonator, thin dielectric film with a thickness
of less than the resonant wavelength supports only one mode in the z direction so l = 1 is
always assumed. In this case, the resonant wavelength λkm has two mode numbers that
depends on neff associated with each mode. λkm and neff can be found by invoking the
boundary condition at the dielectric-air interface (r=Ro) that forces tangential magnetic
field to be continuous, yielding

H
(2)′
m

(
2πRo

λkm

)
H

(2)
m

(
2πRo

λkm

) = neff
J ′m

(
2πRoneff

λkm

)
Jm

(
2πRoneff

λkm

) (2.9)

Equation (2.9) can be solved numerically for a λkm-neff pair with an iterative approach.
However, the higher-order radial modes (k > 1) are usually not to our interest since the most
confined radial mode is the fundamental mode (k = 1). For the fundamental radial mode,
the resonant condition is simply the periodic boundary condition in the azimuthal direction
derived from Equation (2.5)

eineffko2πRo = 1 (2.10)
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which yields

ko =
m

neffRo

(2.11)

or in terms of the wavelength

λo =
2πRoneff

m
(2.12)

which emphasizes that an integer number of effective wavelengths fit around the ring cir-
cumference.

The solutions of the TE modes simply have the same form as Equations (2.7) and (2.8)
with the Ez → Hz substitution, yielding

Hz(r) =

{
CzJm(koneffr)e

±imφ r ≤ Ro

DzH
(2)
m (kor)e

±imφ r > Ro

(2.13)

and

E(r) =
iµoω

k2
on

2

1

r

∂Hz

∂φ
(2.14a)

E(φ) =
−iµoω
k2
on

2

∂Hz

∂r
(2.14b)

E(z) = Hr = Hφ = 0 (2.14c)

for the complete set of fields of TE modes.

2.1.2 Optical Quality Factor

In an ideal optical cavity, light stored in the resonant mode would stay there forever. In
reality, of course, light has a finite lifetime in the cavity and would eventually be lost due to
various loss mechanisms. Cavity photon lifetime, τ , is inversely proportional to the resonant
frequency, so the ability of an optical cavity to store its light field should rather be quantified
with a dimensionless parameter that takes the resonant frequency also into account. Quality
factor, abbreviated as Q, is a widely used such parameter that can be defined in terms of
the cavity photon lifetime as

Q = ωoτ =
ωo
κ

(2.15)

The term κ in the second relation in Equation (2.15) is the cavity photon decay rate and
is equal to the Full-Width Half-Maximum (FWHM) of the cavity resonance spectrum. By
expressing the decay rate of the cavity stored energy U in terms of the photon decay rate,
it is also possible to define the Q in terms of the stored energy

Q = 2π
Estored
Eloss/cycle

(2.16)
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Various loss mechanisms such as absorption, scattering, and radiation contribute to the total
photon decay rate in the cavity, adding together to shorten the photon lifetime

κ = κabs + κscat + κrad (2.17)

In addition to the these intrinsic losses, external waveguide coupling also introduces an
additional loss, which will be denoted as κex. The total loss including the external one is
then

κ = κabs + κscat + κrad + κex = κi + κex (2.18)

where κi denotes the total intrinsic loss in the cavity.
The optical Q is maximized in WGM cavities by using low optical loss materials such

as silicon dioxide, Phosphosilicate Glass (PSG), silicon nitride and single crystal silicon as
demonstrated in Chapter 1, as well as minimizing the scattering and radiation losses by
appropriately sizing the cavity and achieving smooth side-walls on the outer cavity wall.

2.1.3 Evanescent Optical Coupling

Figure 2.3: The optical field is coupled in and out of the WGM resonator by its evanescent
portion that resides beyond the physical waveguide or resonator boundary. Waveguide and
resonator dimensions are similar for enough overlap of the evanescent field as shown in the
zoom-in panel. The field variables a(t), sin(t), and sout(t) are the amplitudes of the cavity
field, input field at the coupling junction, and the total field at the output of the cavity,
respectively.

Equation (2.7) describes two distinct field components of the WGM where the optical
field inside the ring edge is a guided wave and just outside from it is an evanescent wave.
Using the E and H fields of the evanescent portion it can be shown that the evanescent
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wave does not carry any power. However, they can be launched into propagating modes by
introducing a second interface when evanescent field regions of both geometries intersect.
The reverse is also true, where a waveguide with an evanescent optical field overlapping the
cavity can couple the light in the waveguide to the cavity. The amount of coupling between
the resonator and the waveguide can be controlled by the coupling gap and the waveguide
dimensions.

With reference to Figure 2.3, an input optical field from a waveguide and the field built
up in the resonator obey [22]

ȧ(t) =
(
−i∆− κ

2

)
a(t) + sin(t)

√
κex (2.19a)

sout(t) = sin(t)− a(t)
√
κex (2.19b)

∆ = ωlaser − ωo (2.19c)

where a(t) is the complex mode amplitude with temporal variations other than the e−iωot

dependence, ∆ is the detuning of the field in the waveguide (i.e. laser field) from the cavity
resonance frequency, sin(t) and sout(t) are the complex amplitude of the input and output
field at the coupling junction, respectively.

In Equation (2.19), the amount of coupling between the cavity and waveguide is governed
by the external coupling loss parameter κex. As one can expect, larger coupling takes more
energy out of the cavity into the waveguide. The amount of coupling depends on the overlap
between the cavity and waveguide fields (which is a function of distance between the two),
waveguide dimensions that yield larger evanescent field when sufficiently small, and phase
matching between the two fields that requires neff/cavity ≈ neff/waveguide.

2.1.4 Cavity Transmission

The transmission spectrum sout/sin of the cavity can be derived from the steady state solu-
tions of Equation (2.19) for an external drive sin = sin constant in time. After the transients
die, the field amplitudes read

a = sin

√
κex

−i∆ + κ/2
(2.20a)

sout = sin − a
√
κex = sin

(
1− κex

i∆ + κ/2

)
(2.20b)

The actual measured spectrum in experiments is usually the ratio of the output power
to the input power swept across a certain frequency range. Using the results of Equation
(2.20), power transmission of the cavity is equal to

Pout
Pin

=
s2
out

s2
in

=
∆2 + (κ/2− κex)2

∆2 + (κ/2)2
(2.21)
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Figure 2.4: Cavity transmission spectrum as described by Equation (2.21) with respect
detuning normalized to intrinsic loss rate κi. Curves represent the spectrum with varying
κex, which is a parameter that can be controlled experimentally. For κex < κi (blue, red),
the transmission drops by increasing the κex. When κex reaches κi, the condition known as
critical coupling, transmission (yellow) at the resonance frequency (∆ = 0) drops to zero.
Increasing κex beyond κi results in broadened spectrum.

which is a Lorentzian that shows a minima at ∆ = 0 (i.e. at resonance) with a magnitude
being a function of κex. Figure 2.4 sketches the transmission spectrum for different values of
κex. The minimum transmission (at ∆ = 0) can theoretically be as low as 0 (-∞ dB) with
the condition κex = κi = κ/2, known as critical coupling. In practice, transmission in the
order of -20 dB is achievable but it never reaches zero due to noise and non-ideal matching
conditions.

Lastly, the linear model above does not consider any power dependency in the trans-
mission spectrum. With a high drive power, thermal nonlinearity creates a transmission
spectrum that is not anymore a Lorentzian function. Figure 2.5 demonstrates this effect
with measured spectrum of a silicon nitride ring resonator under low (a) and high (b) input
power. Here, the low power excitation yields a Lorentzian dip as expected. In the high power
case the change in the cavity temperature due to absorption shifts the resonance to higher
wavelengths during the laser frequency sweep, yielding a spectrum with a shark-fin shape.
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Figure 2.5: Measured transmission spectra of a silicon nitride WGM ring cavity with (a)
small power, and (b) high power scans. When the input power is high, thermal nonlinearity
pushes the resonance wavelength to higher values with the laser scan, creating a more gradual
decrease in transmission. Once the laser wavelength is detuned from the resonance, the cavity
temperature and the resonance wavelength shift backwards, resulting in a sharp jump in the
spectrum.

2.2 Micro-Mechanical Resonators

Frequency synthesis and filtering applications have long been utilizing mechanical frequency
references such as quartz, ceramic, and Surface Acoustic Wave (SAW) resonators, especially
in the portable/wireless space (e.g. cell phones). The choice of mechanical resonators is
largely due to two reasons: size and Q. The latter is important to achieve low insertion
loss and sharp roll-off filters in the RF front-ends, and low phase noise in oscillators as
will be discussed in detail in Chapter 3. Q values achieved by these mechanical resonators
are mostly in the order of 1,000 to 10,000 (or even higher for quartz), which is orders of
magnitude better than L-C (inductor-capacitor) electrical resonators. On the other hand,
mechanical resonators are much smaller compared to high-Q microwave resonators due to a
fundamental reason: acoustic velocities are orders of magnitude lower than the speed of light,
hence wavelength of an acoustic wave is much smaller than an electromagnetic wave for the
same frequency. As a result, a microwave resonator needs to have much larger dimensions to
provide the same resonance frequency condition compared to a mechanical resonator, which
convert electrical signals into mechanical vibrations (for filtering with its high-Q) where the
signal travels as an acoustic wave at the speed of sound.

MEMS resonator technology is the next node that can allow continued size reduction by
realizing complex mechanical signal processing functions on a single chip as well as integra-
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tion of mechanical resonators and integrated circuits on the chip or system/package level.
On the filtering side, Bulk Acoustic Wave (BAW) resonators such as Film Bulk Acoustic
Resonator (FBAR) and Solidly Mounted Resonator BAW (SMR-BAW) have already been
the technology of choice in the cell phone market especially for the high frequency bands
where the mature SAW resonator technology falls short on Q. In the oscillators market,
MEMS has also started replacing quartz in some applications such as consumer electronics
and digital computing. MEMS silicon resonators offer cost and size reduction with simple
manufacturing as well as significantly superior stability against vibration and shock. It also
holds the promise of integration with IC and can eventually penetrate more into higher-end
application areas.

The following sections will explain basic operation and modeling of MEMS resonators
including lumped mechanical model, electromechanical transduction and electromechanical
equivalent circuit model for the general resonator class, and design of a ring resonator archi-
tecture in particular to set the stage for the discussion of ring resonator based optomechanical
resonator design in Chapter 4.

2.2.1 Lumped Mechanical Modeling of MEMS Resonators

Figure 2.6: (a) A micromechanical clamped-clamped beam resonator that operates like a
miniaturized version of a guitar string, vibrating at a single tone but with a much higher
frequency (8.5 MHz) due to scaling of the size. (b) Lumped mechanical model of a resonator,
where m is the mass, b is the damping, and k is the stiffness at a location where the force F
is applied.

Mechanical vibration of a solid body is a manifestation of stress field generated in the
structure, which is typically complex to deal with since it is a superposition of three di-
mensional traveling waves. However, each resonant vibrational mode of the structure has a
unique displacement profile, named ”mode shape”, that allows modeling as a single degree
of freedom mass-spring-damper system. For example, a guitar string vibrating at 440 Hz
(the note A) or its miniaturized version depicted in Figure 2.6(a), a silicon micromechanical
beam clamped at its both end to an underneath substrate vibrating at 8.5 MHz, can both
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be modeled with a lumped equivalent mass, spring and damper at their resonant frequency,
as in Figure 2.6(b).

Lumped parameter equivalent circuit modeling is based on the knowledge of stored energy
(relative to an arbitrary excitation) and displacement profile of the resonator. For a given
mode shape, which is usually known a priori from observed deformation of the structure and
otherwise can be figured out via Finite Element Analysis (FEA) or using acoustic microscopy,
determining the stored energy requires an integration over the geometry of the structure.
Since the sum of the kinetic and potential energy is constant, and the kinetic energy is
equal to zero at the maximum potential energy and vice versa, the maximum potential and
kinetic energies are equal. Therefore, it is convenient to use the maximum kinetic energy for
the calculation of total stored energy, which is found by summing up the kinetic energy of
differential elements in the body

KEmax =
1

2

∫∫∫
V

ρ V (r)2 dx dy dz (2.22)

where r(x, y, z) is the position in the three dimensional space R3, ρ is the material density,
and V (r) is the velocity of differential element at position r.

Since the velocity/displacement at a point on the structure depends on the external
excitation, the mode shape is usually a normalized function with respect to the maximum
displacement such that

maxU(r) = 1 (2.23)

where U(r) is the mode shape function describing the displacement amplitude at point
r. This definition allows specification of the mode shape independent of the excitation
amplitude.

Modal displacement has a sinusoidal time dependence whose frequency is equal to the
resonance frequency of the mode. Velocity profile then simply follows from the displacement

U(r, t) = U(r) sin(ωmt) (2.24a)

V (r, t) = U̇(r, t) = ωmU(r) cos(ωmt) (2.24b)

which indicates that velocity is simply equal to displacement times the (angular) resonance
frequency, hence it is known at every point once the mode shape is known.

Effective Mass

Lumped element model of Figure 2.6(b) is a single degree of freedom system where the dis-
placement is a unique single value unlike the actual resonator. This implies that the lumped
element model is specific to location on the resonator, which has a specific displacement given
by the mode shape. Locations on the resonator with different displacements have different
lumped masses so that in all cases the kinetic energy is equal to the kinetic energy of the
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actual resonator. The definition of this location-specific lumped mass, referred as effective
mass, follows from the maximum kinetic energy

meff =
2KEmax
V (ro)2

=
2× 1

2

∫∫∫
V
ρ ω2

mU(r)2 dx dy dz

ω2
mU(ro)2

(2.25)

where ro is the location at which the effective mass is calculated. Arranging the terms yields

meff =
1

U(ro)2

∫∫∫
V

ρ U(r)2 dx dy dz (2.26)

It is evident from Equation (2.26) that effective mass is minimum at the largest dis-
placement location and it is larger at locations with smaller displacement. At the anchor
location where the displacement is zero, effictive mass is infinitely large so a finite force
cannot generate any displacement, as expected.

Effective Stiffness

The equation of motion governing the mass-stiffness-damper system of Figure 2.6(b) is

F = mẍ+ bẋ+ kx (2.27)

For a periodic excitation1 F = Feiωt, displacement of the resonator is

X(ω) =
F

−ω2m+ k + iωb
(2.28)

Equation (2.28) describes a Lorentzian response for the resonator where the displacement is
maximized at the resonance frequency

ωm =

√
k

m
(2.29)

such that

X(ωm) =
F

iωmb
(2.30)

As evident from Equation (2.29), lumped mass and stiffness of the resonator are tied
together through the resonance frequency. As such, once the resonance frequency and mode
shape is known, effective mass follows from Equation (2.26) and stiffness follows from Equa-
tion (2.29)

keff = ω2
mmeff (2.31)

1We will use the phasor notation x cosωt = Xeiωt



CHAPTER 2. MICRO OPTICAL AND MECHANICAL RESONATORS 19

Note that in some structures such as folded-beam resonators [23], it may be straight-
forward to calculate the effective stiffness since only some simple parts (such as beams)
contribute to the stiffness. In this case, the resonance frequency can be calculated directly
from Equation (2.29).

Effective Damping

Modeling the damping of a resonator is not trivial since it requires calculating mechanical
losses due to all loss mechanisms such as dissipation through the anchors to the substrate,
thermo-elastic damping, air-damping, material losses, and phonon-phonon interactions. Al-
though there are models of different loss mechanisms, attempts to predict total loss for a
given resonator generally fall short on providing an absolute quantity, rather the models can
be useful to figure out the dominant loss mechanism(s) in each resonator case. As such,
total damping represented by parameter b in Figure 2.6(b) is not known a priori. In most
cases, b is predicted from previous observations of similar resonators or extracted from the
measurements after fabrication.

One of the easiest methods to quantify resonator losses (and accordingly parameter b) is
to measure the quality factor from the resonance spectrum. The quality factor, also referred
to as Q, relates the energy loss to the stored energy in the resonator such that the loss
is quantified relatively rather than absolutely. The definition of Q from this fundamental
perspective is

Q = 2π
Estored
Eloss/cycle

= 2π
Estored
Ploss × T

= ωm
Estored
Ploss

(2.32)

where Estored is the time-averaged stored energy in the resonator, Eloss/cycle is the energy lost
during one oscillation period, Ploss is the power loss, T is the period, and ωm is the angular
resonance frequency. This definition of Q can further be extended for a definition in terms
of the equivalent lumped element values. Since the time-averaged stored energy is equal to
the peak kinetic energy

Estored =
1

2
meffv

2
max (2.33)

and power flow associated with a damper for a sinusoidal motion is

Ploss = 〈Fv〉 = beff〈v2〉 =
1

2
bv2
max (2.34)

the ratio of the two yields

Q = ωm
meff

beff
(2.35)
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A quick and easy way to measure Q of a resonator is to use a sweep frequency technique2

to look at the resonator response. The response governed by Equation (2.28) is a Lorentzian
with a 3-dB bandwidth of

∆ω3dB =
beff
meff

= Γm (2.36)

where Γm is known as mechanical damping rate. Substituting the expression for b in Equation
(1.13) yields

Q = ωm
meff

meffΓm
=
ωm
Γm

=
fm

∆f3dB

(2.37)

Once the Q of the resonator is determined from the measured Lorentzian spectrum, the
value of damping

beff =
ωmmeff

Q
(2.38)

and thus the lumped equivalent model is completely known.

2.2.2 Capacitive-Gap MEMS Resonator Equivalent
Electromechanical Model

Figure 2.7: A high-Qm MEMS resonator with a diamond ring structure presented in [3]. The
measured Qm of 42,900 is impressive at a high resonance frequency of 2.97 GHz.

MEMS resonators process electrical signals in mechanical domain with its high Q by
first converting the input electrical signals into mechanical vibrations, and mechanical vibra-
tions back into electrical signals at its output upon processing. The component facilitating

2There are several techniques of measuring Q of a MEMS resonator and the choice usually depends on
the needed frequency resolution based on the Q value. For ultra high-Q’s in the order of 106 or higher and
especially low frequency resonances, ring-down measurement [1] can provide a quicker measurement.
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this conversion between the mechanical and electrical domains is called transducer, which
can be formed using different transduction mechanisms such as widely used piezoelectric
and capacitive transduction in MEMS resonators. Piezoelectric transduction requires using
piezoelectric films as the bulk resonator material and can achieve high electromechanical cou-
pling coefficients of 6% or even more [24] compared to capacitive transduction with coupling
lower by an order of magnitude, especially at high frequencies in the GHz range. However,
Q values of piezoelectric MEMS resonators are typically lower than capacitively-transduced
ones, in the range of 103 to 104 compared to 104 to 105 easily achieved by capacitive ones.
Figure 2.7 shows an example capacitively-transduced ring resonator [3] with impressive Qm

of 42,900 at 2.97 GHz. This is a typical Qm value also routienly achieved by polysilicon
resonators, but usually at a lower resonance frequency. From the optomechanical oscillator
point of view, Q is the key parameter for MEMS integration and we will limit our discussion
to capacitive transduction as it is the technology used in the work presented in this thesis.

Capacitive-Gap Transducer Model

Figure 2.8: Schematic description of a capacitively-transduced MEMS ring resonator oper-
ation. The resonator structure (green) is held at a constant voltage VP that charges the
capacitance across the electrode-to-resonator gap. An input AC voltage with an amplitude
Vi generates an electrostatic force Fe at the capacitor plates, which then pushes the res-
onator into vibration. The induced motion then modulates the charged output capacitance,
creating an output electrical current on the second electrode.

Before diving into modeling of the transducer, it is useful to examine the physics of capac-
itive transduction mechanism. The force generated by the transducer is an electrostatic force
that pulls the resonator towards the (stationary) electrode when there is a voltage difference
between the electrode and the resonator. Note that this requires that both the electrode and
resonator be electrically conductive to be at a defined (externally applied) voltage potential.
Figure 2.8 illustrates this operation where the input electrode of a capacitively-transduced
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ring resonator is tied to an AC voltage with amplitude vi and the resonator itself is kept at
a DC potential VP >> vi. Two conductive structures with the airgap in between forms a
movable capacitor, which stores an electrical energy equal to 1

2
CV 2. The electric field across

the capacitor plates generates an electrostatic force that is equal to change in energy with
respect to displacement

Fe =
1

2

∂C

∂x
(VP − vi)2 =

1

2

∂C

∂x

(
V 2
P − 2VPvi + v2

i

)
(2.39)

For a resonant drive vi cosωmt Equation (2.39) expands into

Fe =
1

2

∂C

∂x

(
V 2
P − 2VPvi cosωmt+

v2
i

2
(1 + cos 2ωm)

)
(2.40)

where the first term is a DC component and the third term yields a very small DC and 2nd

harmonic components. The DC force is usually balanced by an equal force generated at the
output electrode. The relevant resonant electrostatic force that drives the resonator is then

Fe = −VP
∂C

∂x
vi (2.41)

Note that the above derivation does not consider any frequency dependence in the partial
derivative term ∂C

∂x
, which is a good approximation especially for small resonator displace-

ments with respect to the electrode-to-resonator gap spacing. However, in reality the partial
derivative term is non-linear for electrode configuration of Figure 2.8, and includes first and
higher-order displacement terms, which generate additional resonant force components 90◦

phase shifted from the main driving force of Equation (2.41). We will exploit this feature of
capacitive transduction for tuning the oscillation frequency of the optomechanical oscillators
of Chapter 4 and omit its modeling here for brevity. The reader can refer to [25] for the
discussion of complete modeling.

Table 2.1: Lumped element parameter conversions between electrical and mechanical do-
mains using velocity and current as the flow variables.

Mechanical Domain Electrical Domain
Force F Voltage v, V

Velocity ẋ Current i, I
Displacement x Charge q

Mass m Inductance l, L
Stiffness k 1/Capacitance 1/c, 1/C
Damping b Resistance r, R

In the meantime, the resonator motion modulates the air-gap capacitance which results
in a current flow from the AC voltage source to the capacitive transducer given by
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Figure 2.9: (a) A general transducer model that converts electrical domain variables v, i
into mechanical domain variables f , and ẋ. (b) Transformer model for the capacitive-gap
electromechanical transducer used in MEMS resonators.

i = VP
∂C

∂t
= VP

∂C

∂x

∂x

∂t
(2.42)

Figure 2.9(a) depicts a general electro-mechanical transducer where the effort and flow
variables are voltage and current on the electrical side, and force and velocity on the me-
chanical side. In general, there is a one-to-one analogy between the electrical and mechanical
domains since both systems are governed by analogous second-order differential equations

F = mẍ+ bẋ+ kx (2.43a)

V = l
di

dt
+ ri+ c

∫
idt = lq̈ + rq̇ + cq (2.43b)

where q is the electrical charge. It is straightforward to see the analogy between the force and
voltage as well as velocity and current directly from above equations and Table 2.1 presents
a more complete picture with different parameters in both domains.

As the above analogy suggests, the transducer needs to transform voltage and current
on one side to force and current on the other side, respectively. Equations (2.41) and (2.42)
facilitate this relation

Fe = ηvi (2.44a)

i = −ηẋ (2.44b)

where the coupling coefficient η is defined as

η =

∣∣∣∣VP ∂C∂x
∣∣∣∣ (2.45)
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This linear relation between the effort and flow variables on each side of the transducer
can most conveniently modeled by an electrical transformer with an equivalent turns ratio
equal to the coupling coefficient as illustrated in Figure 2.9(b).

Complete Equivalent Electromechanical Model

Figure 2.10: Complete equivalent electromechanical model of a capacitively-transduced
MEMS resonator. r-l-c branch inside the transducers allow measuring mechanical variable
values, where the voltage generated across the input transducer (on the r-l-c side) is equal
to force and current flowing through the branch is equal to velocity.

Once the mechanical resonator and electromechanical transducers are modeled, it is
straightforward to combine them in a complete electromechanical model that allows sim-
ulating the resonator behavior using circuit simulation tools such as SPICE. As presented
in Table 2.1, the lumped mechanical model directly correspond to electrical circuit elements

meff = leq (2.46a)

keff =
1

ceq
(2.46b)

beff = req (2.46c)

The mechanical resonator represented with a series l-r-c branch couples to electrical
signals using a transformer for each electrode placement around the resonator. In the case
of one input and one output electrode, two transformers with turns ratio

ηin =

∣∣∣∣VP ∂Cin∂x

∣∣∣∣ , ηout =

∣∣∣∣VP ∂Cout∂x

∣∣∣∣ (2.47)

connect to the l-r-c branch as shown in Figure 2.10, where the input and output capaci-
tances are assumed identical such that ηin = ηout = ηe. Additional capacitors Co across
the transformers model the electrical path formed by the overlap capacitance between an
electrode and the resonator. This electrical path conducts AC current from an input voltage
source to ground that is not generated by the motion of the device. If this current reaches
the output via any parasitic path, it may compete with the desired motional current. This
is an important consideration especially for MEMS filter and oscillator applications where
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high ratio of the motional capacitance to Co is desired. Circuit presented in Figure 2.10 is
the basic complete equivalent model of a MEMS resonator. The model is powerful in that it
allows using electrical circuit simulators to extract values of the mechanical variables (force
and velocity) for a given electrical excitation as well as the resonator electrical response at
the output.

2.3 Conclusion

Basic operation principles of optical and MEMS resonators summarized in this chapter are
also fundamental to the operation and design of integrated OMO’s presented in the following
chapters. Especially, high-Qo WGM optical cavity design considerations and mechanically
coupled device modeling are instrumental and will be further investigated with the integrated
OMO designs.
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Chapter 3

OMO Operation and Modeling

3.1 Radiation Pressure

Pressure effects due to electromagnetic radiation is not a new idea. Kepler hypothesized in
the 17th century that comet tails always point away from the sun because of the force exerted
by the sunlight. Maxwell’s theory has also predicted such effects due to electromagnetic
radiation but experimental evidence did not become available until the 20th century. With
the invention of lasers, it became possible to use optical forces to manipulate mechanical
objects, such as freezing out the random motion of atoms and ions with a technique termed
laser cooling.

Figure 3.1: (a) Picture of momentum transfer onto a mirror upon reflection of a photon.
Conservation of momentum dictates the sum of momentum vectors after the reflection must
be equal to the momentum of the incoming photon. (b) A coherent light beam with ”#”
photons hitting the mirror per second has a normalized field amplitude sin such that |sin|2
equals the photon arrival rate #/second.

Theoretical framework for radiation pressure effects on massive mechanical resonators has
been developed in the context of LIGO [26], where kilogram-scale suspended mirrors con-
stitute kilometer-scale interferometers to detect tiny displacements induced by gravitational
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waves. The theory has provided a comprehensive understanding of the optomechanical in-
teractions in a suspended cavity, where the radiation pressure was predicted to change the
dynamics of the mechanical system by effectively adding an optically induced stiffness and
damping.

The physical origin of the radiation pressure is the momentum transfer resulting from re-
flection of a photon. DeBroglie’s theorem states that a particle’s momentum and wavelength
are related by

λ =
h

p
(3.1)

where λ is the wavelength, p is the momentum and h is the Planck’s constant. According to
this relation, even massless light waves carry a certain momentum and have particle nature.
In terms of the wavenumber k = 2π/λ, the momentum of each photon is

p = }k (3.2)

where the reduced Planck’s constant } = h/2π is used. With reference to Figure 3.1(b),
radiation pressure force on a mirror being subject to a coherent light beam with a photon
arrival rate |sin|2 is

Frp =
dp

dt
=

2}kNph

dt
= 2}k|sin|2 (3.3)

The factor of two is a natural result of momentum conservation that dictates the sum of the
momentum vectors before and after the collision should be equal, as illustrated in Figure
3.1(a). Assuming the coherent light beam is from a laser with an output power Plaser and
radial frequency ωo, using the relation Plaser = }ωoNph, radiation pressure force in terms of
the laser power becomes

Frp =
2k

ωo
Pin =

2Pin
c

(3.4)

This is of course a very small force that makes it difficult to observe in daily life. Even with
a large laser power of 1 W, the radiation pressure force is only 6.7 nN. However, the force
becomes profound when photons are recycled, such as when traveling in an optical cavity.

3.2 Optomechanical Interactions in a Cavity

In an optical cavity, the number of round trips a photon makes before leaking out or being
absorbed is approximately equal to the cavity Finesse, F . Therefore, in a high Finesse cavity
the built-up optical power is much larger than the input optical power, so the radiation
pressure is also amplified. In order to find an expression for the radiation pressure force
exerted to a WGM ring by the circulating cavity field, it would be useful to look at the
simplistic ray optics picture depicted in Figure 3.2. A photon confined in a cavity with n
sidewalls makes n collisions at an angle of π/n in each round trip, with a corresponding
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Figure 3.2: Simplified ray picture of light circulating in a cavity. A photon makes n collisions
at an angle of π/n with cavity walls in each cycle where n is the number of sidewalls of the
cavity. For a circular geometry, n→∞ and the collision becomes tangential.

radial momentum transfer of 2}knsin(π/n). In the limit n→∞ for a circular WGM cavity,
the radial momentum transfer per photon per round trip becomes:

2}k lim
n→∞

nsin(π/n) = 2π}k (3.5)

The associated radial force per photon is then found by dividing this momentum transfer by
the cavity round trip time τrt = 2πRneff/c

Frp/ph =
2π}k
τrt

=
}koc
R

=
}ωo
R

(3.6)

Total force acting on the cavity wall is then simply the product of single-photon induced
force and the number of photons stored in the cavity.

Frp/ph = }
ωo
R
Nph (3.7)

3.3 Optomechanical Coupling

There are several mechanisms that can couple optical and mechanical degrees of freedom
in a cavity, such as photothermal [27] and photoelastic [28] effects, but in the context of
optomechanics the coupling mechanism is a moving cavity boundary that shifts the optical
resonance with mechanical displacement.

An on-chip WGM cavity such as micro-disk, toroid, or ring is free to move once it is
(partially) released from its substrate, just like the MEMS resonators of Chapter 2. In this
case, the structure embodies two resonators, i.e., it acts as a mechanical as well as an optical
resonator. The resonance condition 2πneffR = mλ for a WGM cavity indicates that the
resonance wavelength (or frequency) depends on the cavity radius R. This indicates that any
(small) cavity displacement that changes the radius would also change the cavity resonance
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frequency. The optomechanical coupling strength gauges the frequency shift in the optical
resonance upon a mechanical displacement x1

gom = −dωo
dx

(3.8)

assuming that the cavity displacement is described by the one-dimensional variable x that
shifts the optical resonance frequency in a linear fashion. In this case, the optical resonance
frequency with a moving cavity boundary is expressed as

ω′o = ωo + gomx (3.9)

where ω′o and ωo are the modified and unperturbed cavity resonance frequencies, respectively.
Since the displacement profile of the cavity radius depends on the mechanical resonance

mode, gom is not uniquely defined for a given structure. A general expression for gom can be
derived from the stored electromagnetic energy in the cavity. Total stored electromagnetic
energy U is equal to

U = }ωoNph (3.10)

and the change in the stored energy upon displacement must be due to the change in the
optical resonance frequency, so ∆U = }∆ωoNph. This allows using perturbation of the stored

energy to calculate optical resonance shift due to arbitrary displacement ~R(~r) [29]

∆U

U
=

∆ωo
ωo

=
1

2

∫
| ~E(~r)|2 · (ε(~r + ~u(~r))− ε(~r))d3r∫

| ~E(~r)|2 · ε(~r)d3r
(3.11)

where ε is the permittivity of the cavity material. When applied to the case of a moving
dielectric boundary, this perturbation theory provides an expression for the frequency shift
to an arbitrary mechanical deformation of the confining dielectric cavity [30]

gom = −ωo
2

∫
( ~R · ~n)(∆ε| ~E‖|2 −∆ε−1| ~D⊥|2)dS∫

( ~E · ~D)dV
(3.12)

where displacement ~R is normalized such that max | ~R| = 1 and n is the outward facing

normal vector, ~E is the electric field, ~D is the electric displacement field with subscripts ‖
and ⊥ indicating the field components parallel and perpendicular to the surface, respectively.
∆ε = εcavity − εair is the difference between the refractive index of the cavity material and
surrounding medium and ∆ε−1 is defined as ε−1

cavity − ε−1
air. This comprehensive expression

for the coupling can be used to determine the optomechanical coupling strength of different
mechanical mode shapes of the structure. As an example, four different mechanical modes
of a disk geometry investigated in [28] including first and second radial contour modes have

1It is also common to use vacuum optomechanical coupling rate that is normalized to the zero-point

fluctuations xzpf =
√

}
2meffωm

such that go = gomxzpf .
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significantly different optomechanical coupling strengths, with the largest of -1080 GHz/nm
for the first radial contour mode, being much stronger than the second contour mode, ”pinch-
ing” mode and ”bowl” mode with -82 GHz/nm, -412 GHz/nm, and -0.11 GHz/nm coupling
strengths, respectively. Since the first radial contour mode has the largest coupling, it is the
mode that oscillates when the laser power is large enough to sustain the oscillations. In fact,
all oscillators presented in this thesis oscillate in the first radial contour mode (although
in a bit distorted fashion due to the support beams) as well as almost all other reported
WGM oscillator examples in the literature. Purely radial mechanical displacement with the
maximum amplitude at the cavity periphery yields a simple expression for the gom

gom = −dωo
dx

= −dωo
dR

dR

dx
= −dωo

dR
= −ωo

R
(3.13)

which will be used throughout this thesis.

3.4 Coupled Mode Theory

The previous section established the basis of how the mechanical vibrations couple to the
optical resonator. Specifically, in terms of the parameters of Equation (2.19), displacement
of the cavity modifying the optical resonance frequency changes the tuning according to

∆(x) = ∆− gomx(t) (3.14)

Meanwhile, the radiation pressure force given by equation (3.7) can now be re-written in
terms of the derived coupling constant gom = −ωo/R. In addition, since the cavity photon
number depends on the optical intensity built up in the cavity, it is convenient to normalize
the field such that |a|2 = Nph (with this normalization, it follows that |sin|2 is the input
photon flux, i.e., the number of photons arriving in the fiber-cavity coupling region per
second). Doing so yields

Frp = −}gom|a|2 (3.15)

This radiation pressure force couples the optical field back to the mechanical resonator by
acting on it as an external force.

Displacement dependent detuning and radiation pressure force in equations (3.14) and
(3.15) modify Equations (2.19) and (2.27) such that

ȧ =
[
i(∆− gomx)− κ

2

]
a+ sin

√
κex (3.16)

meff ẍ+meffΓmẋ+ kx = −}gom|a|2 (3.17)

Since the radiation pressure force acts on the outer resonator boundary, the values of lumped
elements meff , Γm and k are calculated at r = Ro as explained in Chapter 2. Equations
(3.16) and (3.17) are the coupled equations describing the optomechanical system [14]. This
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coupling between the optical cavity and the mechanical resonator originates a rich set of phe-
nomena including the self-sustained mechanical oscillations as will be explained in detailed
in the following sections. We first start by looking at the static solutions of the coupled
equations.

3.4.1 Static Solutions

The radiation pressure force acting on the resonator boundary will alter its position just
like any other force acting on a spring-mass system. For a given cavity position x = x̄ and
constant drive amplitude sin, after the transients vanish in the steady state, cavity field
amplitude obeys

ā =
sin
√
κex

κ
2
− i(∆− gomx̄)

(3.18)

The static force then follows as

F̄rp = −}gom
4|sin|2κex

κ2 + 4(∆− gomx̄)2
(3.19)

where the terms with bar represent the static values.

Figure 3.3: Graphical solutions of F̄rp = kx̄ with three possible solutions. Solid dots are
the stable solution points where the restoring force counteracts the change in the radiation
pressure force with displacement. Hallow circle indicates the unstable solution.

On the other hand the balancing static force from the mechanical resonator is simply

F̄ = kx̄ (3.20)

Solutions of F̄rp = kx̄ yield the static displacement of the cavity, which can be obtained
graphically as illustrated in Figure 3.3. There is always at least one solution, and in the
case of red detuning ∆ < 0 there can be two additional ones depending on the resonator
parameters (such as power, stiffness, cavity bandwidth etc.) such that there are two stable
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solutions. This is known as optomechanical static bistability [6] where the two possible stable
states correspond to, for example, high and low cavity power, resulting in hysteresis in the
transmission behavior.

3.4.2 Dynamic Effects

The dynamical effects emanate from the retarded nature of the radiation pressure force.
Due to the finite cavity storage time, photon number does not change instantaneously upon
mechanical displacement, so the radiation pressure force lags the mechanical position with
a finite time delay. We show this dependence explicitly in Equation 3.17

meff ẍ(t) +meffΓmẋ(t) + kx(t) = Frp(x(t− τ)) = −}gom|a(t)|2 (3.21)

where τ ≈ 1/κ is the cavity delay time. Now with this dynamic contribution we turn our
attention from static solutions to time-varying oscillatory mechanical displacements. For
x = xo sinωmt, the equation for optical field amplitude (3.16) has an oscillatory term that
would modulate it accordingly. To show this modulation explicitly, we can switch to a phasor
domain that does not rotate at the laser frequency so that the input field is sine

−iωLt from
a laser with ω = ωL. The equation for optical field then reads

ȧ(t) =
[
i(ωo − gom(xo sinωmt))−

κ

2

]
a(t) + sine

−iωLt
√
κex (3.22)

which has the solution [31]

a(t) = sin
√
κex

+∞∑
n,m=−∞

in−mJn(β)Jm(β)

−i(∆ + nωm) + κ/2
e−i[ωL+(n−m)ωm]t (3.23)

where β , −gomxo/ωm is the modulation index. Equation (3.23) reveals that the mechani-
cal displacement modulates the optical field, generating sidebands at ωL±ωm, and for large
displacement amplitudes (or β) the sidebands extend even further in the frequency domain,
occurring at the harmonic frequencies nωm. This frequency comb generation is an impor-
tant property of optomechanical oscillators and particularly useful for lowering the power
consumption in the targeted CSAC application. Chapter 4 will present OMO harmonic
generation and locking using a coplanar double-ring structure.

It is possible to solve the coupled equations (3.16) and (3.17) simultaneously to study
the dynamics of the optomechanical system but this requires using a numerical solver to
see the system behavior for every possible design and operating conditions. Alternatively,
an analytical solution, which is possible with the small signal approximation, is valuable to
understand how the dynamics modify the system, and how self-sustained oscillations start in
the case of large positive feedback. For small values of x and a, equations (3.16) and (3.17)
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can be linearized around static values

x̄ =
−}gom|ā|2

k

ā =
sin
√
κex

κ
2
− i(∆− gomx̄)

(3.24)

such that
a(t) = ā+ δa(t)

x(t) = x̄+ δx(t)
(3.25)

and δa(t) << ā and δx(t) << x̄. Here, the input field amplitude sin is assumed to be
constant so δsin(t) ≈ 0 . Substituting (3.25) into (3.16) and (3.17) yields

δȧ(t) =
[
i(∆̄− gomδx(t))− κ

2

]
(ā+ δa(t)) + sin

√
κex

meff

(
δẍ(t) + Γmδẋ(t) + ω2

m(x̄+ δx(t))
)

=

−}gom
(
|ā|2 + ā∗δa(t) + āδa∗(t) + |δa(t)|2

) (3.26)

where ∆̄ ≡ ∆−gomx̄ is the effective detuning including the static cavity displacement. Elim-
inating the static terms with the aid of (3.24) gives the time-varying small signal amplitudes
δa(t) and δx(t)

δȧ(t) =
[
i∆̄− κ

2

]
δa(t)− iāgomδx(t)

meff

(
δẍ(t) + Γmδẋ(t) + ω2

mδx(t)
)

= −}gom (δa(t) + δa∗(t))
(3.27)

assuming that the second-order small signal products are negligibly small and ā = ā∗, which
is always possible by adjusting the (physically irrelevant) phase of the input field.

Linearized coupled equations in (3.27) are perhaps easiest to solve in frequency domain.
Applying Fourier transform, we get

−iωδa(ω) =
(
i∆̄− κ

2

)
δa(ω)− iāgomδx(ω)

meff

(
ω2
m − ω2 − iωΓm

)
δx(ω) = −}gomā (δa(ω) + δa∗(−ω))

(3.28)

The small signal optical field δa(ω) and its conjugate are then

δa(ω) =
−iāgom

κ/2− i(∆̄ + ω)
δx(ω)

δa∗(−ω) =
iāgom

κ/2 + i(∆̄− ω)
δx(ω)

(3.29)

where the relation δx∗(−ω) = δx(ω) is used since δx(ω) is symmetric and real. Equation
(3.29) shows that the intracavity optical field gets modulated with displacement which in
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Figure 3.4: A plot of Γom with respect to detuning frequency, normalized to cavity loss rate
κ. A resonant drive (∆ = 0) yields Γom = 0 and only produces a static effect. Blue detuning
(∆ > 0) results in negative Γom which then reduces the total damping. Largest value of Γom
is achieved around ∆ ≈ 0.3κ.

turn gives rise to an oscillating force equal to

δFrp(ω) = −}gomā (δa(ω) + δa∗(−ω))

= −}g2
om|ā|2

(
−iδx(ω)

κ/2− i(∆̄ + ω)
+

iδx(ω)

κ/2 + i(∆̄− ω)

)
= −}g2

om|ā|2
(

∆̄ + ω − iκ/2
κ2/4 + (∆̄ + ω)2

+
∆̄− ω + iκ/2

κ2/4 + (∆̄− ω)2

)
δx(ω)

(3.30)

Grouping the terms in the bottom equation of (3.28) as the internal forces, the response of
the resonator to an externally applied force changes according to

Fex = meff

(
ω2
m − ω2 − iωΓm

)
δx(ω)

+}g2
om|ā|2

(
∆̄ + ω − iκ/2
κ2/4 + (∆̄ + ω)2

+
∆̄− ω + iκ/2

κ2/4 + (∆̄− ω)2

)
δx(ω)

= meff

[
−ω2 − iω(Γm + Γom) +

(
ω2
m +

kom
meff

)]
δx(ω)

(3.31)
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where the newly introduced terms

kom = }g2
om|ā|2

(
∆̄ + ω

(κ/2)2 + (∆̄ + ω)2
+

∆̄− ω
(κ/2)2 + (∆̄− ω)2

)
Γom =

}g2
om|ā|2

meffω

(
κ/2

(κ/2)2 + (∆̄ + ω)2
− κ/2

(κ/2)2 + (∆̄− ω)2

) (3.32)

modifies the dynamics of the mechanical resonator by changing its effective stiffness (or
equivalently, mechanical resonance frequency) and damping.

There are several parameters that determines the magnitude and the sign of Γom and kom
including the device parameters such as meff and κ as well as the external operating condi-
tions such as the input power (which governs |ā|2) and detuning. Operating conditions allow
controlling the device behavior in a wide range. Obviously, higher input power intensifies
the optomechanical effects and increases the magnitude of Γom and kom. On the other hand,
detuning governs both magnitude and sign of Γom and kom such that the optomechanical
effects can be reversed or nulled by changing the detuning. Figure 3.4 presents a plot of
Γom with respect to detuning for a fixed input power. It is evident that Γom = 0 for exact
resonant excitation (∆ = 0) and red detuning (∆ < 0) yields a positive Γom that increases
the total damping. This corresponds to the case where the thermal noise driven mechanical
motion is further damped with a positive Γom that effectively reduces the noise temperature
(so-called optomechanical cooling). On the other hand, the opposite is true for blue detuning
(∆ > 0). Negative Γom reduces the total damping that then results in a larger mechanical
displacement at the mechanical resonance frequency. Effectively, the mechanical resonator
exhibits a larger Qm in the blue detuning case. If Γom approaches (or exceeds) −Γm, then
Qm → ∞, which means that the oscillations will be sustained in the system. In this case,
vibrational energy lost in the mechanical resonator in each cycle is supplied by the optical
field and the device continues to oscillate as long as the loop is preserved. The effect of blue
and red detuning on kom is opposite of Γom, where blue (red) detuning increases (decreases)
the total stiffness which then increases (decreases) the oscillation frequency.

3.5 Optomechanical Oscillators

As explained in Section 3.4.2, a blue detuned laser input reduces the effective damping of the
optomechanical resonator and if optomechanically induced damping Γom completely cancels
out the intrinsic Γm the system becomes unstable. This is explained in the context of control
theory with the pole-zero diagram in Figure 3.5 where the poles cross the imaginary axis
when Γom + Γm = 0, at which point the system exhibits sustained oscillations.

It is then straightforward to derive the conditions for onset of self-sustained oscillations
by using the relation

Γom =
}g2

om|ā|2

meffω

(
κ/2

(κ/2)2 + (∆̄ + ω)2
− κ/2

(κ/2)2 + (∆̄− ω)2

)
= −Γm (3.33)
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Figure 3.5: Pole-zero diagram of an oscillatory system with two poles moving in the direction
of the arrows with increasingQ (reduced damping). When the system’sQ is increased beyond
the critical damping point, the poles have non-zero imaginary values and approach further
closer to the imaginary axis as the Q keeps increasing. If the damping is completely removed,
poles become purely imaginary and oscillations are self-sustained in the system.

Plugging in Equation (3.18) and replacing the photon flux with the input laser power Pin =
}ωo|sin|2, Equation (3.33) becomes

g2
omPin

ωomeffω

(
κex

(κ/2)2 + ∆̄2

)(
κ/2

(κ/2)2 + (∆̄ + ω)2
− κ/2

(κ/2)2 + (∆̄− ω)2

)
= −Γm (3.34)

Note that Γom has a frequency dependence (more so for ultra-high-Qo cavity case) and while
determining the oscillation condition it needs to be calculated at the oscillation frequency,
which is modified due to optical stiffening

ωosc = ωm +
√
kom/meff (3.35)

Equation (3.34) outlines the necessary condition for oscillation. It describes a threshold
behavior where the externally supplied input power needs to be large enough to ensure
Γom = −Γm. Isolating the input power and emphasizing the threshold behavior by denoting
Pin = Pth when Γom = −Γm yields

Pth =
−Γmωomeffωosc

g2
om

×(
(κ/2)2 + ∆̄2

κex

)(
κ/2

(κ/2)2 + (∆̄ + ωosc)2
− κ/2

(κ/2)2 + (∆̄− ωosc)2

)−1 (3.36)
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Figure 3.6: OMO operation in the case of (a) unresolved sideband and (b) resolved sideband
regimes. In the unresolved sideband regime, laser frequency is set at the higher frequency tail
of the optical resonance, creating two asymmetric sidebands (separated by ωm) that reside
in and weighted by the cavity Lorentzian. The amplitude difference between the (larger)
Stoke sideband amplitude and the (lower) anti-Stoke sidebands due to blue detuning results
in a net energy transfer from the optical field to the mechanical, increasing the phonon
number in the mechanical mode. In the resolved side band regime (κ << ωm), laser needs
to park outside of the cavity resonance to create enough asymmetry between the sidebands.
Maximum asymmetry occurs when the detuning is equal to the frequency of the mechanical
mode.

Evidently, the threshold power depends on many parameters and Equation (3.36) is a
complete expression that predicts Pth for all cases. However, there are two distinct regimes
where the threshold power dependence is significantly different and an approximate expres-
sion for Pth would allow more intuitive understanding for low-threshold design and operation.
First is the unresolved sideband regime (USR) where the oscillation frequency is much smaller
than the optical linewidth (κ >> ωm) so that the sidebands produced by the mechanical
modulation fall within the optical cavity Lorentzian. Figure 3.6(a) depicts this case where
the lower (Stokes) sideband is larger than the upper (anti-Stokes) sideband for a blue de-
tuned laser, which also explains the mechanical gain produced in the blue detuned excitation
case. The asymmetry between the sidebands results in energy imbalance between the higher
energy photons }(ωo + ωm) and lower energy photons }(ωo − ωm), which leads to larger
number of phonons. Red detuning produces the opposite effect, where the energy imbalance
(larger anti-Stokes, smaller Stokes sidebands) requires phonon energy to be taken away from
the system. In the USR regime, both detuning and optical linewidth are much larger than
the oscillation frequency (κ, ∆̄ >> ωm). This allows the following approximation for the 3rd

fraction in Equation (3.36)(
κ/2

(κ/2)2 + (∆̄ + ωosc)2
− κ/2

(κ/2)2 + (∆̄− ωosc)2

)
≈ − 32κωosc∆̄

(κ2 + 4∆̄2)2
(3.37)

Substituting the approximate expression back in (3.36) yields an approximate formula for
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the threshold power in USR

PUSR
th ≈ Γmωomeff

g2
om

(κ2 + 4∆̄2)3

128κκex∆̄
(3.38)

The second case is the resolved sideband regime (RSR) where the oscillation frequency is
much larger than the optical linewidth (κ << ωm) so that the sidebands produced by the
mechanical modulation lie outside of the optical cavity Lorentzian. In this regime, the
pump laser is detuned far from the cavity resonance, as presented in Figure 3.6(b), to create
asymmetry between the stokes and anti-stokes sidebands, where the oscillation frequency
and detuning are much larger than the optical linewidth (κ << ∆̄, ωm). Further assuming
that the detuning is exactly adjusted for maximum asymmetry ∆̄ = ωm, the approximate
Pth in the RSR becomes

PRSR
th ≈ ωomeffω

4
osc

2g2
omQm

(3.39)

with the assumption of κ = κex.
The threshold power in the USR case will be further investigated in the following sections

together with the oscillator model. Here, it is appropriate to make a few observations for the
RSR operation of OMO before proceeding to the oscillator model. First, it is independent
of the optical-Q, which is quite different than the USR case where the order of κ (or 1/Qo)
is three. Second, it scales with 1/Qm and 1/g2

om, which motivate achieving higher Qm and
larger coupling that might be possible with smaller device design. OMO’s operating in this
regime have achieved ultra-low threshold powers [14] in the order of 100 µW.

3.5.1 Conventional Oscillator Theory

Physics community is very familiar with forced and parametric resonance, but usually not
with self-oscillation [32], which is very well known by electrical engineers for its use in a
variety of circuits as well as its undesired presence in systems intended to be stable, such
as amplifiers. Engineers have developed their understanding of oscillators with the feedback
systems theory that we will cover here briefly. The basic feedback oscillator has two elements:
a gain and a feedback component with transfer functions A(iω) and β(iω), respectively, as
represented by the boxes in Figure 3.7 that form what is called a feedback loop. Here, the
summing point takes a portion of the output (amount of which is determined by β(iω)) and
feeds it back to the amplifier together with the input. This is a general picture that describes
any feedback system, such as op-amp circuits employing feedback to improve the amplifier
bandwidth. In this case the feedback signal is subtracted (or added with an opposite phase)
from the input signal so this type of feedback is called negative feedback. In the oscillator
case, the feedback is positive, meaning that the feedback signal is added in phase at the
summing point. Note that the input signal at this point is not an externally applied signal
for an oscillator, rather it is an undesired noise component such as thermal noise entering
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the amplifier. With reference to Figure 3.7, the input-output relation (transfer function) of
the feedback loop is

Figure 3.7: Generic feedback loop. In a feedback oscillator, green block with transfer function
A(iω) represents the amplifier and blue block with transfer function β(iω) represents the
resonator. Resonator is the feedback element that sets the frequency of the self-sustained
oscillation in the loop.

H(iω) =
A(iω)

1− Aβ(iω)
(3.40)

In a self-sustained oscillator, the output of the system is a sinusoidal signal with virtually
no input. This happens when the system allows input noise to grow exponentially until
a mechanism (usually some sort of non-linearity) causes the gain to drop at a large signal
amplitude, limiting the amplitude after the transient exponential growth (self-limiting) in
the limit-cycle. This happens when the denominator of Equation (3.40) becomes zero, or
equivalently

Aβ(iωosc) = 1 (3.41)

which is known as the Barkhausen condition. It states that the gain A(iω) of the sustaining
amplifier needs to compensate for the resonator β(iω) loss at the oscillation frequency ω =
ωosc and the signal needs to be added in phase in each cycle, i.e., it has to repeat itself after
going around the loop. This means that the loop phase ∠Aβ(iω) needs to be zero or multiple
of 2π at ω = ωosc. In terms of magnitude and phase

|Aβ(iωosc)| = 1

∠Aβ(iωosc) = 0
(3.42)

is the condition for self-oscillation (at ωosc).
In practice, oscillations start from noise or a transient event such as closing a switch, and

the loop gain is set to a value larger than one (|Aβ(iωosc)| > 1) for oscillations to grow at
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Figure 3.8: Magnitude (a) and phase (b) plots of a feedback resonator β(iω) with a bandpass
biquad (Lorentzian) response.

the startup. In most cases, the resonator frequency response |β(iω)| is a sharp Lorentzian
centered at ω = ωm ≈ ωosc (c.f., Figure 3.8) and amplifier gain is independent of frequency.
Additional phase shift in the loop (due to amplifier, transmission lines etc.) can add up
to the resonator phase and provide a total phase of 2π necessary for oscillation, though
the frequency at which the phase shift is 2π might be slightly shifted from the resonator
center frequency ωm. If the loop doesn’t have enough phase shift at the desired oscillation
frequency, phase shifters can be added to the loop. After the oscillations start and grow
from noise level to a large oscillation amplitude, the loop gain drops to unity and the system
reaches a stationary condition.

Figure 3.9: (a) Pictorial presentation of a negative resistance oscillator referenced to a quartz
resonator. The active element modeled as a voltage controlled current source produces a
current proportional to the voltage across the quartz resonator where the direction of the
current indicates a power flow from the current source to the resonator. (b) The active
element can be modeled with a negative resistance since it produces power (as opposed to a
power-absorbing resistor) while the current on it linearly depends on the voltage. Oscillations
instigate if negative R cancels out the quartz impedance such that Rtot ≤ 0.
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A physical example for the abstract picture of Figure 3.7 is the well-know quartz oscillator,
where the feedback element (resonator) is the quartz crystal with a complex impedance
Z(iω) = V (iω)/I(iω) that takes a real value at resonance, and a transconductance amplifier
takes the voltage of the resonator and delivers a current I = GmV , as illustrated in Figure
3.9 (a). Here, the amplifier supplies power (in contrast to a resistor which absorbs power) as
indicated by the direction of the current, meaning that the transconductance Gm is negative.
In this case the amplifier is modeled by a mere resistor with a negative value, and the
configuration of Figure 3.9 (b) is called negative resistance oscillator. It is now our goal
to represent the OMO system with a similar feedback loop to develop an understanding of
its phase noise and allow oscillator designers to have a more intuitive model to design high
performance OMOs.

3.5.2 Engineering Modeling of Optomechanical Oscillators

We would like to now use Equations (3.16) and (3.17) to describe the system as a feedback
loop and derive conditions for oscillator start-up and steady state using the feedback the-
ory. First, it is straightforward to identify the feedback element β, which is formed by the
mechanical resonator just like in the electronic quartz oscillator case. We choose the input-
output variables as force F and velocity Ẋ since it allows a representation that is completely
analogous to an L− C −R electrical network with voltage input - current output.

β(iω) =
Ẋ

F
=

1

iωmeff +meffΓm + k
iω

(3.43)

similar to derived resonator response in equivalent circuit modeling of Chapter 2. The
mechanical resonator filters any off-resonance signal with its high Qm and feeds it back to
the inherent amplifier mechanism.

Second, we derive the amplifier component A(iω) using Equation (3.16). As explained
in Section 3.4.2 the optical field amplitude cannot change instantaneously with the cavity
position, so the force follows the position with a time lag. This retardation can be modeled
by a response function describing the time delay [33]

Frp(x(t)) = F (xo) +

∫ t

0

∂F (x(t′))

∂t′
h(t− t′)dt′ = F (xo) +

(
∂F

∂t
∗ h
)

(t) (3.44)

where we assume that the force reaches to equilibrium with an exponential decay function
h(t) = 1 − e−tκ. The constant term in Equation 3.44 only causes a static shift on the
cavity position so it can be dropped without the loss of generality. The time derivative of
the force function can be expressed as product of partial derivatives, and using small signal
approximation around a static displacement x = x̄ yields

∂F

∂t
=

(
∂F̄

∂x

∣∣∣∣
x=x̄

)(
∂x

∂t

)
= ∇F̄ ∂x

∂t
(3.45)
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Figure 3.10: (a) Modeling of the inherent amplifier mechanism in OMO. The optical force is a
function of the laser detuning (∆(x)), and in return, position of the cavity boundary (x). This
position-force curve is similar to the I-V curve of a transistor amplifier where the small signal
voltage input produces a corresponding current, which is modeled as a transconductance
”gm” or a negative resistance. In the OMO ”amplifier” small signal displacement produces a
corresponding oscillating force with a time delay, which again can be modeled as a negative
resistance and an additional capacitor. (b) Closed loop feedback model of the OMO. The
mechanical resonator acts as the feedback element that sets the oscillation frequency while
the amplifier sustains the oscillations.

Substituting Equation (3.45) in (3.44) and transforming to frequency domain, the velocity-
to-force transfer function becomes

A(iω) =
F

Ẋ
= ∇F̄H(iω) = ∇F̄ κ

κ+ iω

1

iω
(3.46)

which describes the response of the optical force to cavity displacement (or velocity). In this
regard, ∇F̄ is the gain from velocity (input) to force (output) just like a transistor amplifier
converts voltage input to current output. Similar to the case where bias voltage sets the
operating point and consequently the transconductance gain (slope of the I-V curve) for a
transistor, laser detuning sets the gain in an optomechanical oscillator by setting the slope of
the force-displacement curve, as depicted in 3.10(b). The slope is negative for blue detuning
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(∆ >), positive for red detuning (∆ < 0) and zero for resonant drive (∆ = 0), indicating that
the optomechanical feedback can be positive, negative or zero depending on the operating
point. This feedback loop is further described in 3.10(c) with an analogy to an electronic
oscillator using an R-L-C network as the frequency selective tank and an electronic amplifier
to sustain the oscillation. In the optomechanical loop, the mechanical resonator realizes the
frequency selective tank, whereas the optical cavity storing the optical force realizes the two
functions described by A(iω): an amplifier followed by a low-pass-filter. Since the cut-off
frequency of this filter is much larger than the oscillation frequency, its effect is only a small
phase shift that retards the force with respect to the input displacement. However, this is
an important effect since the total phase shift has to be 360◦ in the oscillator loop.

To instigate oscillations, the loop gain Al = Aβ(iω) needs to be at least 1 (Barkhausen
condition), which dictates that:

∇F̄ κ

κ+ iω

1

iω
= iωmeff +meffΓm +

k

iω
(3.47)

Equating real and imaginary parts and observing that κ/(κ + iω) ≈ (κ − iω)/κ in the
low-frequency regime (κ >> ωm), self-oscillation conditions read

∇F̄
κ

= −meffΓm

ω2 =
k

meff

− ∇F̄
meff

(3.48)

Note that this is equivalent to conditions (3.33) and (3.35) for onset of self-oscillations derived
in Section 3.4.2, with the corresponding Γom and kom

Γom =
∇F̄
meffκ

kom = −∇F̄
(3.49)

Equation (3.48) states that optomechanically induced stiffness modifies the oscillation fre-
quency such that ωosc = ωm +

√
kom/meff is the frequency of oscillation and threshold

condition Γom = −Γm needs to be satisfied.
Pursuant to derive the threshold condition for oscillation in terms of the design parame-

ters, we can replace the expression for ∇F̄ in Γom. Using (3.19)

∇F̄ =
∂F̄

∂x

∣∣∣∣
x=x̄

=
−}g2

om32|sin|2κex∆̄
(κ2 + 4∆̄2)2

(3.50)

Γom becomes

Γom =
−g2

omωo32Pinκex∆̄

(κ2 + 4∆̄2)2

1

meffκ
(3.51)
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Remember that ∆̄ and κex are operating conditions that can be tuned for optimum operation.
Setting ∆̄ = κ/2

√
3 and κex = κ/4 for maximum gain (or equivalently, minimum threshold

power) yields:

Γmaxom = −3
√

3

4

g2
omPin

ωomeffκ3
≈ −1

2

PinQ
3
o

meffR2ω2
o

(3.52)

and finally the minimum threshold power becomes

Pth =
2ΓmmeffR

2ω2
o

Q3
o

=
2meffR

2ωmω
2
o

QmQ3
o

(3.53)

Equation (3.53) agrees very well with Equation (3.38) derived earlier with the established
OMO theory, which has been validated with experiments [33],[16]. However, for the devices
introduced in Chapter 4 that operate deeply in USR, experimentally measured threshold
power is lower than the predicted values from Equations (3.53) and (3.38). We have seen
that the theoretical threshold power agrees well with the measurement when it is scaled by
a factor κ/ωm. This suggests that at the startup of the oscillations amplifier has a larger
(negative) resistance, which reduces the threshold power. In the following discussions, we
will keep this into account and just scale the power values accordingly.

Following the representation of negative resistance crystal oscillator model, we can now
model the OMO as a negative resistance oscillator. Using the circuit convention with current
entering the positive terminal, the amplifier’s equivalent impedance F/Ẋ becomes

Zamp = −∇F̄ κ− iω
κ

1

iω
= −∇F̄ 1

iω
+∇F̄ 1

κ
(3.54)

from which amplifier’s equivalent resistance and capacitance simply follow as

Ramp = ∇F̄ 1

κ

Camp = − 1

∇F̄

(3.55)

which take negative and positive values, respectively, for blue detuning, as expected. In this
case, the oscillation condition is

Ramp +Rres = 0

ωosc =
1√

LresCeq

(3.56)

where Ceq is the equivalent series capacitance (C−1
eq = C−1

amp + C−1
res) of the oscillator circuit,

Lres = meff , and Rres = b = Γmmeff as derived in Chapter 2. Equation (3.56) is exactly
equivalent to (3.48) with the above definitions. Also, a DC loop gain can be defined in terms
of the resistor values

Al = −Ramp

Rres

(3.57)
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to explain oscillator behavior at the startup and steady state. As explained in Section 3.5.1,
in practice the system has a larger loop gain (Al > 1) at the startup to allow oscillations
to grow from noise and the gain gradually decreases with larger oscillation amplitude so the
total loop gain drops to 1 at the steady state.

Figure 3.11: (a) OMO loop gain for the feedback oscillator model for several values of Qo.
Larger Qo creates a larger slope in the displacement-force curve which in turn creates a
larger loop gain. (b) Oscillation amplitude starts increasing at lower power levels for higher
Qo values, but it saturates earlier compared to lower Qo case. (c) High-Qm decreases the
oscillation threshold power without saturating the oscillation amplitude as opposed to the
case with higher Qo. (d) Calculated optical power at the OMO output for the displacement
values in (b), showing a similar saturation behavior.

Figure 3.11(a) shows plots of the loop gain with respect to detuning for different values of
Qo, from which it is evident that the gain rolls-off from its maximum value as the amplitude
grows. Since the loop gain will be equal to 1 at the steady state, the oscillation amplitude
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can be estimated by finding the excursion from the bias point which makes the average value
equal to 1. Figure 3.11(b) plots oscillation amplitude vs input power for several Qo values.
Since the threshold power has inverse cubic dependence on Qo, device with higher Qo start
to oscillate at much less input power. However, higher Qo exhibits a sharper gain roll-off as
the amplitude increase, which results in saturation at a lower oscillation amplitude compared
to a lower Qo device. In this regard, although higher Qo is desired for low threshold power
operation, it is also a limiting factor for the oscillator performance since higher oscillation
amplitude is desired for lower phase noise. HigherQm, on the other hand, both helps reducing
the threshold power and reaching a higher oscillation amplitude for a given input power as
depicted in Figure 3.11(c).

3.6 Output Spectrum

Finally, the modulated optical field in the device couples back to the tapered fiber that
delivers the input field, hence the output optical field comprises of both the laser input and
the coupled field:

sout = sin − aκex (3.58)

It is possible to calculate the exact output field and output power by solving the coupled
equations but this is a rather involved calculation. Instead of solving the field amplitudes,
the cavity transmission

Pout
Pin

=
4∆2 + (κ− 2κex)

2

(4∆2 + κ2)
(3.59)

can provide the oscillating output power once the displacement amplitude is known. Figure
3.11(d) plots the output power of OMO for different Qo values, which show a similar trend
with the displacement plots of Figure 3.11(b), where the output power saturates at a lower
amplitude.

3.7 OMO Phase Noise

Phase noise modeling of oscillators is not trivial due to non-linear, time-varying nature of
oscillators as well as presence of various noise sources that convert into phase noise via
different mechanisms. This is in part why there exist many phase noise models for electronic
oscillators, where models consider only a subset of the noise sources and/or have restrictive
assumptions about the system which are applicable to only a limited class of oscillators.

One famous and widely used model for tuned tank oscillators is Leeson’s model [34] that
can explain general phase noise behavior of such oscillators with empirical arguments in a
relatively simple way. It has also found its use in explaining phase noise performance of
optomechanical oscillators [35],[4],[36] as they also employ a (mechanical) tuned tank for
frequency selection. In the following section we will briefly discuss the power and limitations
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of Leeson’s model and investigate it from an optomechanical oscillator designer’s point of
view.

3.7.1 Leeson’s Model

Figure 3.12: Typical phase noise behavior of an electronic oscillator modeled by Leeson’s
equation with 1/f 3, 1/f 2 and flat noise regions.

Leeson’s model is perhaps the most popular model for phase noise in electronic oscillators
as experimental data usually follow the model’s predictions relatively well. The model is
based on the empirical observation of phase noise frequency spectrum with decaying and
flat portions within and out of the resonator feedback half-bandwidth. With an LTI system
assumption, the phase noise spectrum is derived for a given ”input phase fluctuation”, ∆θ(t),
of the oscillator due to noise and parameter variations, which is translated into frequency
error through the phase-frequency relationship of the frequency network:

φ̇ =
ωo
2Q

∆θ (3.60)

where φ is the ”output” phase that contains the measured noise spectrum, Sφ(ω). Thus,
within the feedback half-bandwidth ωo/2Q the spectrum of frequency Sφ̇ is just a scaled
version of the input phase noise spectrum:

Sφ̇ = (
ωo
2Q

)2S∆θ (3.61)

The argument for frequencies outside of the feedback half-bandwidth is that the noise is
no longer filtered by the resonator and the power spectral density of the output phase is
identical to the input phase noise spectrum. Combining with the (3.61)
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{
Sφ̇ = ( ωo

2Q
)2S∆θ ω < ωo

2Q

Sφ = S∆θ
ωo

2Q
< ω

and using the relation Sφ(ω) = ω−2Sφ̇(ω) yields

Sφ = S∆θ

[
1 +

(
ωo

2Qω

)2
]

(3.62)

The results of Leeson’s derivation so far tell us that the feedback network employed in the
oscillator filters out the noise in the vicinity of the carrier, while at frequencies out of the
feedback (half) bandwidth the noise reaches to the output without any filtering. It is clear
that the tank Q is important in reducing the close-to-carrier noise but the ”input” phase
noise spectrum remains unknown.

Figure 3.13: Pictorial illustration of conversion from voltage noise to phase noise. Arrows are
the phasor representations of the signal and noise voltages where noise vector adds to signal
and rotates at an arbitrary frequency ω. At this frequency maximum phase deviation is equal
to tan−1(vnoise/Vsignal) ≈ vnoise/Vsignal, and RMS deviation is equal to ∆φrms = vnoise/Vsignal
when the fluctuating component at −ω is also considered. This yields a phase noise spectral
density of S∆θ(ω) = v2

noise/V
2
signal = Pnoise/Psignal.

For the input phase errors, Leeson model assumes a spectrum of the form S∆θ(ω) =
α/ω+ β, where β is the additive white noise component that would be equal to half 2 of the
mean-square noise voltage relative to mean-square signal (carrier) voltage (see Figure 3.13),
2kT/PS with k being the Boltzmann constant, T temperature, and PS the signal power.
However, in practice typical phase noise values are quite larger than this prediction because
there are other noise sources (such as the amplifier) besides tank loss. To account for this
discrepancy, Leeson’s model introduces an ”effective noise figure” F for the oscillator to make
β = 2FkT/PS. The second component α/ω is assumed to be result of parameter variations
and its 1/ω dependence is based on observations. Usually this is attributed to the 1/f noise
of the active elements present in the energy restoring block (amplifier).

2By the equipartition theorem of thermodynamics, amplitude and phase noise are equal in equilibrium
and the amplitude limiting mechanism in oscillators removes half the noise in amplitude
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In this model α is a pure fitting parameter determined by the level of 1/f 3 variations in
the output phase noise. It is also important to note that the ”noise figure” F should not
be confused with the amplifier noise figure. In reality, F is also a fitting parameter that
is determined by the measured spectra rather than a true design variable, thus it becomes
difficult to predict the phase noise a priori.

Figure 3.12 illustrates the spectrum of phase noise with three different regimes: a flat
portion at frequencies far from the carrier, a 1/f 2 region shaped by the tank, and a 1/f 3

portion that is formed by 1/f noise. This spectrum can be written in a compact form:

Sφ =
2FkT

Psig

[
1 +

(
ωo

2Qω

)2
](

1 +
ω1/f3

ω

)
(3.63)

where the parameter α is eliminated to use 2FkT/Psig as a common factor, and instead
ω1/f3 is used. Again, the new variable ω1/f3 is a fitting parameter and does not necessarily
coincide with the 1/f corner of device/amplifier noise.

Although the Leeson’s equation is very intuitive and simple to use, it does not provide
much insight for reducing the phase noise beyond increase Psig and increase Q of the tank
circuit. The factor F can have significant contribution to the phase noise and yet it is not
fully clear what it depends on and what are the ways to reduce it.

Despite these limitations, Leeson model has been used for OMO phase noise modeling
[35],[4],[36] to identify the observed phase noise behavior similar to electronic oscillators as
well as general trends with the signal power and tank Q. Since an OMO embodies two
resonators (an optical and a mechanical), initially the strategies to improve performance
focused on increasing both Qo and Qm, but understanding that it is the mechanical tank
that acts as the frequency selective element led to focusing efforts on to increasing the Qm for
better phase noise. In this regard, Leeson model has still been useful as a guide for reducing
OMO phase noise, but it falls short on providing design guidelines for other parameters such
as Qo.

In the next section we will develop a phase noise model for OMOs, specifically for the
high performance ones that are typically operating in the USR regime.

3.7.2 OMO Phase Noise Model

There have been previous studies to model phase noise in OMOs where one approach has
been to use Leeson model with modifications [37] to include more OMO parameters. Al-
though this approach shows some agreement between the model and (a particular) data,
it still lacks a rigorous treatment of noise sources and processes in phase noise conversion,
as well as a complete discussion of OMO parameters in determining the phase noise. A
second approach is found to have more rigorous treatment of noise sources/processes though
the phase noise components are expressed using lengthy equations unlike the closed-form
expression of Leeson model [38],[39]. This makes it quite difficult to gain intuitive design
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strategies for practical OMO design, and in some cases even the model fit is questionable
[38].

Figure 3.14: OMO oscillator loop with additional noise inputs to facilitate phase noise
modeling.

It is therefore desirable to derive a comprehensive yet intuitive phase noise model that
can truly be a designer’s tool for low phase noise OMO design. Here, we will leverage the
engineering model of Section 3.5.2 for OMO as it allows an easy treatment of noise using
transfer functions, and include noise sources as inputs entering the system that eventually
convert to phase noise. Figure 3.14 shows the oscillator loop with two noise sources: nth
being the (mechanical) thermal noise (also referred sometimes as Brownian noise) associated
with the resonator (tank) losses and nlaser being the noise associated with the amplifier
component. Since the amplifier is driven by a laser, the primary source of this component
is the laser noise. Note that although the noise inputs are essentially entering to the same
node of the loop, it is still preferred to keep them as separate noise sources since in some
cases one can dominate the other (as will be seen). Also, it is always possible to refer the
noise sources to the input or output of a component and hence the noise sources would not
necessarily enter to the same node.

Let us first start by deriving the noise spectrum of displacement at the output of the
resonator component using the input noise spectra Sth and Slaser. Use of displacement noise
spectrum allows easy conversion to phase noise spectrum at the output of the OMO where
the signal is the RF-modulated laser field. With Sx being the displacement noise spectrum,
and β being the (mechanical) resonator transfer function, the relationship between Sx, Sth,
and Slaser is

Sx =
|β|2

|1− Aβ|2
(Sth + Slaser) (3.64)
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which merely follows from the noise transformation around the loop

(nxA+ nth + nlaser)β = nx (3.65)

With the definitions of β and A from Section 3.5.2, it is straightforward to derive the noise
shaping term in (3.64). First, the factor 1− Aβ is simply equal to

1− Aβ = 1 +
kom + iωΓommeff

meff (ω2
m − ω2 + iωΓm)

≈ ω2
osc − ω2

ω2
m − ω2 + iωΓm

(3.66)

where the approximation Γm + Γom = 0 is used, which is valid for the oscillator steady state.
Multiplying with β and taking the magnitude square yields

|β|2

|1− Aβ|2
=

1

m2
eff (ω

2
osc − ω2)2

(3.67)

Equation (3.67) is merely a frequency shaping function that has 1/f 2 dependence due to
filtering action of the resonator in the feedback loop, as expected.

Now, we turn our attention to the noise densities Sth and Slaser that are filtered by the
above expression. The spectral density of thermal noise, Sth, entering the system is simply

Sth = 4kBTΓmmeff (3.68)

where kB is the Boltzmann constant and T is the absolute temperature.
Laser noise entering the oscillator loop can also have several components but here we

assume the dominant sources are laser relative intensity noise (RIN) and laser frequency
noise. Since small signal approximation is valid for noise components, derivative of the force
(Equation 3.19) with respect to laser power and detuning would relate the RIN and laser
frequency noise to the noise entering as a force input, leading to

Slaser = Slaserf

(
32Pinκex∆gom
ωo(κ2 + 4∆2)

)2

+ SPin

(
4κexgom

ωo(κ2 + 4∆2)

)2

(3.69)

assuming the noise sources are uncorrelated. The actual oscillator output is the modulated
optical power at the device output and would have two noise components: input laser noise
directly reaching the output and oscillator displacement fluctuations creating unwanted op-
tical modulation. The output noise can be derived from the optical transmission

NPout =
dPout
dx

Nx +
dPout
dPin

NPin

=
32Pinκexκi∆̄gom

(κ2 + 4∆̄2)2
Nx +

4∆̄2 + (κ− 2κex)
2

κ2 + 4∆̄2
NPin

(3.70)

Using the previous relations ∆̄ = κ/2
√

3 and κex = κ/4 yields

SPout =

(
81

64
√

3

Qo

R
Pin

)2

Sx +

(
7

16

)2

SPin
(3.71)
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Figure 3.15: Power spectral density of the various phase noise components due to laser
frequency noise (red), laser relative intensity noise (blue), and thermal noise (yellow) con-
tributing to Sx and flat noise due to relative intensity noise reaching the output (black).
Thermal noise is the dominant component in the 1/f 2 region. Design values used in calcu-
lations are given in the inset.

Figure 3.15 shows different components of the output noise spectrum of an OMO with
device parameters indicated in the figure. The plots assume a laser frequency noise that is
twice the laser linewidth with a value of 50 kHz, and a laser RIN of -130 dB. The thermal
noise dominates the noise in the oscillator spectrum as also predicted by earlier studies
[40],[16]. In this case, the output noise spectrum is approximately

SPout =
4kBTΓm
meff

1

8

(
PinQo

ωoscR

)2(
1

∆ω

)2

+

(
7

16

)2

SPin
(3.72)

from which the output phase noise spectral density can be derived by dividing to square of
the signal power [34]:

Sφout =
4kBTωm
meffQm

1

8

(
PinQo

PsigωoscR

)2(
1

∆ω

)2

+
SPin

Psig

(
7

16

)2

(3.73)

and finally the single-sided phase noise spectrum as a function of frequency offset from the
carrier is defined as

L(f) = 10 log10

(
Sφout

2

)
(3.74)

Figure 3.16 plots the OMO phase noise vs input power at 1 kHz and 1 MHz offset from
the carrier for several Qo and Qm values. Phase noise at 1 kHz offset improves with higher
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Figure 3.16: Effect of Qm and Qo on phase noise at close-to-carrier (a-b) and far-from-carrier
(c-d) offsets. Higher Qm reduces close-to-carrier noise while also reducing the required input
power for both close-to-carrier and far-from-carrier offsets. Lower Qo achieves lower close-
to-carrier noise but at the expense of increased input power.

Qm and lower Qo, although lower Qo requires larger power to achieve such low-noise. Higher
Qm also reduces the required input power to achieve low-noise so it is always desirable. At 1
MHz, phase noise reduction with a lower Qo is marginal at the expanse of higher power, and
higher Qm again helps with the power but the lowest achievable noise floor stays the same.

Although Equation (3.73) outlines the phase noise dependence on device parameters, the
signal power is still a function of them, so the exact phase noise dependence on Qm and
Qo is not explicitly known. However, for small oscillation amplitudes, signal power can be
approximated as

Psig =
81

64
√

3

Qo

R
Pinxosc (3.75)
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In this case the expression for output noise spectrum becomes

Sφout =
kBTωm
meffQm
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xoscωosc

)2(
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Q2
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(3.76)

where NRIN is the RIN of the laser such that SPin
= P 2

inNRIN . Realizing that meff (xoscωosc)
2

is equal to twice the total mechanical energy stored in the resonator, ES, the expression for
the 1/f 2 noise spectral density reduces to

S
1/f2

φout
=
kBTωm
8π2ES

1

Qm

(
1

∆f

)2

(3.77)

which is in excellent agreement with the expression found for the oscillation linewidth in the
case of a thermally limited OMO in reference [16]:

Γosc =
kBT

2ES
Γm (3.78)

where the two are related by

Γosc = 4π2(∆f)2
S

1/f2

φout

2
(3.79)

Equation (3.76) suggests that large effective mass and oscillation amplitude reduces the
phase noise. High Qm improves the phase noise in two ways: it filters out the noise and
increases the oscillation amplitude, which in turn reduces the phase noise. Although the flat-
noise spectrum has an inverse-quadratic dependence on Qo, large Qo limits the oscillation
amplitude as well, resulting in near-constant minimum achievable noise floor.

3.8 Outlook

Phase noise model of Section 3.7.2 underscores the importance of mechanical quality factor
for lowering the phase noise of an OMO. This motivates a focus to increase Qm of the
resonator without degrading other key parameters. Work in [4] is a good example where
OMO’s Qm were increased merely by removing the air damping in vacuum, yielding better
phase noise performance as expected. While continuing the efforts to achieve higher Qm,
for example with a new OMO design, Qo is likely the most important parameter to watch
for, since usually Qm and Qo are coupled through the resonator structure and material
properties. For example, high-Qm MEMS resonators would use polysilicon or diamond thin
films to achieve Qm’s >40,000 at the frequency range >10 MHz as presented in Chapter 2,
but these materials are not suited for an OMO because of high optical losses they would
have. As we have seen in this chapter, even a small drop in Qo can significantly increase
the threshold power for operation. A minimally intrusive OMO design with increased Qm

seems critical for further improvement in phase noise. Chapter 4 will introduce such designs
and their performance to demonstrate best-in-class OMO’s that validate the predictions and
conclusions we have arrived in this chapter.
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Chapter 4

Integrated MEMS Optomechanical
Oscillators

We have seen in Chapter 3 that best OMO performance requires optimal mechanical and
optical designs. Chapter 2 introduced mechanical and optical microresonator technologies
with materials and designs for optimal performance in these individual domains. It is highly
desirable to have the best of both worlds, possibly by integrating high performance MEMS
resonators and optical resonators in a composite OMO. In this chapter, we will use this
approach to introduce new OMO designs that allow decoupling of optical and mechanical
designs and hence simultaneous optimization of Qm and Qo for best oscillator performance.

As introduced in Chapter 1, one of the most benefited application from a high perfor-
mance, low power OMO would be a CSAC with a much lower power consumption as a result
of using an OMO as its oscillator. In this implementation, an OMO harmonic at ∼3.4 GHz
would be used to interrogate the Rb vapor cell, and the error voltage produced at the cell
output would be used to correct the frequency error of OMO. As such, the OMO must have
ability to lock to an external reference with its ∼3.4 GHz harmonic, low phase noise and low
power, and a frequency tuning mechanism. Also, an electrical output from the OMO would
allow direct access to the lower frequency (MHz) fundamental oscillator output without extra
filtering (that would be required at the photodetector output), which would additionally be
free of photodetector noise. These requirements on OMO can be translated into a checklist
that must be accomplished for a successful low power CSAC implementation:

• High frequency harmonics (combs) up to ∼3.4 GHz

• Have simultaneous high-Qo and high-Qm (for low power and low phase noise)

• Voltage control of frequency for easy tuning

• Electrical output

• Higher harmonic locking
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Among the items in this checklist, high frequency comb generation is already achiev-
able with previous OMO designs. Thus, our focus is to achieve simultaneous high-Qo and
high-Qm, as well as having a voltage controlled frequency tuning mechanism that should
enable using a higher-order harmonic for locking to an external reference. Chapter 2 already
showed us that capacitively coupled MEMS resonators fulfill high-Qm and voltage controlled
frequency tuning requirements, but fall short on providing high-Qo mainly because of the
high (optical) loss materials used in these resonators. Similarly, high-Qo resonators are gener-
ally dielectric or other non-conductive materials that do not have electromechanical coupling
(necessary for voltage controlled tuning and electrical output), as well as show limited Qm

compared to MEMS resonators. All in all, material limitation on performance is the key
problem that needs to be addressed.

To this end, an integrated MEMS-OMO approach combining more than one material
using careful mechanical circuit design techniques in the resonator structure can eliminate
the material limitation problem. OMOs presented in this chapter use this approach and
achieve best-in-class performance, paving the way for a low power CSAC application as well
as a stable on-chip microwave source with power-efficient high frequency harmonics. The
crux behind the mechanical design for high-Qm is a technique dubbed Q-boosting, which we
will explain in the next section.

4.1 Q-Boosting

Q-boosting is a mechanical circuit-based approach first introduced in [41], where a high-
Qm resonator raises the functional Qm of a low-Qm resonator in a mechanically coupled
system by sharing its energy while adding relatively no loss. In the work of [41] and [42],
combination of high and low-Qm MEMS resonators in a mechanically coupled array to realize
a single resonator function is motivated by achieving simultaneous low impedance and high
Qm with the composite array resonator, which don’t come together in a single resonator
structure. For example, piezoelectric resonators (such as AlN) attain low impedance as a
result of large electromechanical coupling, but they show limited Qm. On the other hand,
capacitively-transduced resonators (such as polysilicon) can achieve much higher Qm’s, but
with impedances larger than piezoelectric resonators due to lower electromechanical coupling.
In the Qm-boosted array, AlN resonators are employed in the input-output to provide large
electromechanical coupling that results in low impedance. In a way, polysilicon resonators
added in between these input-output resonators provide additional mechanical energy to the
composite array while adding very little loss compared to AlN, thus total Qm of the array
gets boosted from Qm of AlN to a higher value, depending on the number of resonators. To
illustrate the basic Qm-boosting argument, we will analyze the case in [41] where n identical
size resonators are mechanically coupled by half-wavelength coupling beams connecting each
adjacent resonator to one another to force all of them vibrate in phase with equal amplitude,
as depicted in Figure 4.1. Since all the resonators are equal in mass and vibrate with equal
amplitude and frequency, each stores equal average mechanical energy, but we consider a
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Figure 4.1: (a) MEMS coupled array resonators. λm/2 long coupling beams ensure in-phase
motion with equal amplitude between the individual resonators. (b) Equivalent circuit model
of the mechanical array in (a), where the entire branch share the same current as ensured
by the λ/2 coupling beams. (c) Condensed equivalent circuit of (b) that has n times larger
L of an individual resonator, and a resistance of Rtot = R1 +R2 + ...+Rn. In the case of a
dominant low-Q resonator with R ≈ Rtot, composite array’s Q becomes Qarray ≈ nQlow.

general case where the energy loss can be different. In this case, total Qm of the array can
be derived from the basic energy definition:

Qm,tot = 2π
ES,tot
EL,tot

= 2π

n∑
i

ESi

n∑
i

ELi

= 2π
n× ESo

n∑
i

ELi

= n×

(
n∑
i

ELi

2πESo

)−1

(4.1)

where ES,tot and EL,tot are the total average stored energy and the total energy lost per
cycle in the entire array, ESo = ES1 = ES2 = ... = ESn is the average stored energy in
each resonator. By definition, the fraction ELi

/(2πESo) is equal to individual Qm of each
resonator. Total array Qm in terms of individual resonator Qm is then

Qm,tot = n×
(

1

Qm1

+
1

Qm2

+ ...+
1

Qmn

)−1

(4.2)
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In the case where all resonators are identically designed, individual resonator Qm’s are
equal, hence Qm,tot = Qm1 = Qm2 = ... = Qmn , as expected. Q-boosting1 occurs when a
low-Qm resonator is coupled to high-Qm resonators so that the sum in Equation (4.2) is
dominated by the low-Qm resonator. In the case Qm,low ¡¡ Qm,high, the composite array will
exhibit a Qm,tot of

Qm,tot = n×
(

1

Qm,low

)−1

= n×Qm,low (4.3)

which is the biggest boost possible. If Qm,low is not so much smaller than Qm,high, then the
final Qm,tot should follow Equation (4.2) with a Qm,low smaller than n×Qm,low.

The same arguments can also be made by using electrical equivalent circuits of individual
resonators, added in series fashion when coupled in an array, as shown in Figure 4.1(b).
The exact coupling would actually be through transmission lines representing the coupling
beams, but in the case of strong coupling (0-λm, λm/2 etc.) the coupling elements can
simply be ignored. This picture gives a more intuitive understanding without the energy
arguments, where the the total energy loss is simply represented by the total resistance,
which is dominated by the low-Qm resonator. It is also important to note that for Q-
boosting the inductor and capacitor (mass and stiffness) values of the resonators need not to
be equal, and final Qm,tot will also be proportional to the inductance (mass) of the composite
array.

4.1.1 OMO Qm-Boosting Design Considerations

We have seen that the optimal OMO performance requires simultaneous optimization of Qm

and Qo. Although it is not feasible to increase Qm of a good optical material resonator once it
is limited by the material loss (assuming that the resonator is already designed optimally for
minimal anchor loss), Q-boosting provides a way to increase overall Qm of an OMO structure
by coupling its low-Qm / high-Qo resonator to a high-Qm resonator, where the two shares
the vibrational energy while the optical field is still stored in the high-Qo resonator. Figure
4.2 shows an example placement of the resonators, where the high-Qo resonator is a silicon
nitride and the high-Qm is a polysilicon ring, reminiscent of the AlN-polysilicon resonator
array proposed in [41] that has AlN for large electromechanical coupling and polysilicon
for high-Qm. Although this array design would boost the Qm of the silicon nitride ring, it
is still not optimal because the beam coupling would degrade optical-Q by introducing a
scatter defect at the silicon nitride ring outer edge, where the optical field is confined. So
this design would be a compromise between Qm and Qo, which is not acceptable for our case.

1To avoid confusion, it should be emphasized that the term Q-boosting refers to the boost of low-Qm

from its value to a higher value with the use of coupling to high-Qm resonators. It should be kept in mind
that the low-Qm resonator is the resonator that is employed due some other attractive quality, such as larger
electromechanical coupling in the case of AlN resonator, but lacking the required Qm. With coupling, the
array shows both large electromechanical coupling and higher-Qm than Qm of AlN
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Figure 4.2: Laterally-coupled high-Qo (but low-Qm) and high-Qm resonators. Coupling
beam at the outer edge of the high-Qo ring introduces a scattering defect for the optical
field, reducing the Qo.

It is necessary to find the optimal design that can yield both high Qo and Qm at the same
time.

This chapter introduces two multi-material OMO designs that allow simultaneous opti-
mization of Qm and Qo without any compromise. Figure 4.3 introduces the designs with a
more general consideration where the choice of high-Qo and high-Qm materials is up to the
designer, as long as they can be integrated in a single fabrication process. Here, the res-
onator placement, mechanical coupling, electrode placement, and electrical routing all have
an important role for optimal design, which we will explain further in the coming sections.

4.2 Coplanar Double-Ring OMO

The first multi-material OMO design we will present in this thesis is the concentric, coplanar
double-ring design which couples a high-Qo (but low-Qm) ring through its inner edge to a
high-Qm (but low-Qo) and electrically conductive ring forQm-boosting and electromechanical
coupling. In particular, we will demonstrate Qm-boosted OMOs using silicon nitride as its
high-Qo ring material and polysilicon as the high-Qm electrically conductive ring material,
with best-to-date phase noise performance enabled by the boosted-Qm.

4.2.1 Device Structure and Operation

Mechanical Design

The coplanar ring OMO, summarized in perspective-view and cross-section in Figure 4.4,
comprises a high-Qm polysilicon inner ring physically attached at its outer edge to a concen-
tric high-Qo (but comparatively low Qm) silicon nitride ring. Spokes attached to the inner
edges of the polysilicon ring extend radially inwards to a common central anchor and serve to
support the entire double-ring device in a completely balanced fashion, where inward forces
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Figure 4.3: Multi-material OMO designs (lower panel) eliminate the scattering defect in-
troduced by the lateral coupling beam in the ordinary coupled-array design (upper panel),
preserving the high-Qo of the optical cavity (green ring) while coupling it to high-Qm, elec-
trically conductive MEMS resonator(s) (blue).

along the spokes are met with equal and opposite ones, canceling energy leakage from the
spokes to the substrate. Polysilicon electrodes inside the polysilicon ring overlap its inner
edge to form capacitive gaps that then allow electrical interrogation and control (in addition
to optical).

Because the optical mode supported by the silicon nitride ring structure couples most
strongly to the fundamental (breathing) contour mechanical mode, radiation pressure force
built in the device excites this mechanical mode into oscillation. Radially symmetric contour
mode ensures that the inner polysilicon ring experiences equal radial force along its perimeter,
where it couples to the silicon nitride ring. As a result, both rings vibrate in breathing
mode in a strongly coupled fashion (similar to 0-λm beam coupling [43],[44]) such that
the displacement of the two rings are in-phase. This allows using equivalent circuits to
conveniently model the composite structure as a coupled mechanical system.
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Figure 4.4: (a) Perspective-view and (b) cross-sectional schematics of the Q-boosted coplanar
double-ring OMO. Here, the polysilicon inner ring is mechanically coupled at its outer edge
to a concentric high-Qo silicon nitride ring. A tapered fiber provides optical coupling, while
polysilicon electrodes inside the ring enable frequency tuning and electrical input-output.

In the coupled equivalent model each ring is represented by an equivalent circuit, thus
it is not necessary to derive mechanical design equations for the entire composite structure.
Instead, we will design and model each ring separately and insert the models to the coupled
resonator model. For a single ring resonator, first step in mechanical modeling is to find the
resonance frequency by solving the transcendental frequency equations

[J1(pri)σ − J1(pri) + ripJ0(pri)] [Y1(pro)σ − Y1(pro) + ropY0(pro)]

−[Y1(pri)σ − Y1(pri) + ripY0(pri)][J1(pro)σ − J1(pro) + ropJ0(pro)] = 0
(4.4)
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Table 4.1: Several example OMO designs with calculated and measured mechanical resonance
frequencies.

Design 1 Design 2 Design 3 Design 4
Ri (µm) 20 20 30 15
Rc (µm) 30 30 40 20
Ro (µm) 36.5 38 49 26.5
mp (ng) 7.759 7.759 10.699 2.675
mn (ng) 1.607 2.004 2.974 1.102

fm,p (MHz) 52.06 52.06 36.96 73.92
fm,n (MHz) 43.12 42.22 32.22 61.86
fcalc (MHz) 50.55 50.19 35.97 70.61
fmeas (MHz) 52.08 51.94 37.01 74.02

fm =
p

2π

√
E

ρ(1− σ2)
(4.5)

that govern the mechanical resonance frequency for all radially symmetric contour modes.
Here, ri and ro are the dimensions of inner and outer radii of the ring, respectively, Jn is
the Bessel functions of the first kind, Yn is the Bessel functions of the second kind, ρ is the
density, ν is the Poisson’s ratio, and E is the Young’s modulus of the resonator material.
The breathing mode corresponds to p = 1, where p is named frequency parameter.

Once the resonance frequency for a given mode is known, mechanical lumped equivalent
model follows from the definitions of effective mass, stiffness, and damping:

meff =
ES

1
2
V 2(r)

=
1
2

∫ 2π

0

∫ Rout

Rin
ωmx(r)dm

1
2

(ωmx(r))2 (4.6)

keff = ω2
mmeff (4.7)

beff =
ωmmeff

Qm

(4.8)

where ES is the total kinetic energy stored in the structure, ωm is the mechanical (radial)
resonance frequency, and x(r) is the displacement amplitude at a given radius. As such,
lumped element values are specific to a chosen location on the structure. Three important
radial locations identified on the inset of Figure 4.4 as Ri, Rc and Ro correspond to the
polysilicon ring’s inner radius, coupling location of the two rings, and silicon nitride ring’s
outer radius, respectively.

After individual equivalent circuit modeling of polysilicon and silicon nitride rings the
next step is to represent them in the composite structure with appropriate mechanical cou-
pling. Electrical transformers allow appropriately carrying current and voltage (velocity and
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Figure 4.5: Impedance transform from point a to point b using a transformer. Transformer
turns ratio ensures that the velocity and force in each branch are carried appropriately. In
the above configuration impedance scales as Zb = Za/η

2.

force) values at the equivalent circuit location to other locations so that the circuit branches
have equal current and equal voltage at the coupling point. Briefly, with reference to Figure
4.5, a circuit branch gets transformed from point a to point b via turns ratio η = ẋb/ẋa so
that the equivalent circuit elements l (meff ), c (1/keff ), and r (beff ) at point b become

lb = meff,b =
1

η2
meff,a =

1

η2
la

cb =
1

keff,b
=

1

keff,a1/η2
= η2ca

rb = beff,b =
1

η2
beff,a =

1

η2
ra

(4.9)

as dictated by conservation of energy and can also be derived directly from Equations (4.6-
4.8).

Figure 4.6(a) presents the equivalent electro-mechanical model of the composite double-
ring structure where the electrical analogues l, c, and r represent the mechanical (lumped)
elements m, k, and b, respectively. Here, the transformers with coupling coefficient ηe repre-
sent the electro-mechanical coupling between the polysilicon electrodes and the polysilicon
ring that form parallel-plate capacitors. Although there are four electrodes, two of each are
electrically connected to realize an input and an output port, so the equivalent circuit shows
the combined electrode configuration at each port. Voltage across the ports generate a force
at the inner surface of the polysilicon ring, so the tank circuit values lp, cp, and rp represent
the polysilicon ring’s equivalent circuit at Ri. Similarly, ln, cn, and rn represent the silicon
nitride ring’s equivalent circuit at Ro where the optical force is generated.

Note that the choice of location on the ring for equivalent circuit representation is ar-
bitrary, and each radial location would yield a different equivalent circuit representation.
We could chose the coupling location Rc for both equivalent circuits to easily link the two
circuits. In that case the two r-l-c branches would appear side-by-side, since they would
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Figure 4.6: Electrical domain equivalent circuit of the Q-boosted OMO. (a) Full circuit with
polysilicon and silicon nitride resonator values explicitly shown. (b) Condensed circuit after
removal of velocity transformers showing the final resonant circuit that governs the overall
mechanical resonant frequency.

share the same velocity/mesh current at that location. However, our choice of Ri and Ro

allows depicting electro-mechanical and optical forces directly on respective branches, and
the two circuits can still be linked by a mere velocity transformation. This transformation
is done by a transformer in the electrical domain, where the turns ratio is equal to the ratio
of velocity on each side of the transformer. In this case, the silicon-nitride ring’s equivalent
circuit is transformed from Ro to Rc via turns ratio

ηa =
ẋo
ẋc

(4.10)

and the polysilicon ring’s equivalent circuit is transformed from Ri to Rc via turns ratio

ηb =
ẋc
ẋi

(4.11)

where, at Rc, both rings experience the same velocity/displacement.
Figure 4.6(b) presents a condensed version of the equivalent circuit of Figure 4.6(a) after

the velocity transformations. Since the two tank circuits at Rc result in series configuration,



CHAPTER 4. INTEGRATED MEMS OPTOMECHANICAL OSCILLATORS 65

the effective mass, stiffness and damping values of individual rings just add at this location.
In this case, resonance frequency of the composite structure becomes:

fm =
1

2π

√
keff
meff

=
1

2π

√
ω2
m,nmn + ω2

m,pmp

mn +mp

(4.12)

Figure 4.7: Comparison of measured (blue) mechanical resonance frequency of OMO’s given
in Table 4.1 vs calculated using Equation (4.12) (green) and Equation (4.13) (yellow). The
approximate analysis matches measured frequencies fairly well, proving the usefulness of
approximate formula for OMO design.

In the actual device structure, the polysilicon ring is wider than the silicon nitride ring
since a high-Qm design needs minimal silicon nitride to minimize the mechanical loss. Also,
thicker (2 µm) polysilicon ring increases the electromechanical coupling, while silicon nitride
thickness is limited to typically below 500 nm because of the high tensile stress in the
deposited film. The overall result is that the polysilicon ring is physically much larger than
the silicon nitride ring. As such, the polysilicon ring dominates the total effective mass meff

of the composite structure, so it ultimately dictates the coplanar ring OMO’s mechanical
resonance frequency to first order (as will be seen). In this case, the first eigen-frequency
solution of the transcendental equations (4.4) for the polysilicon ring will yield a close result
to the full-blown analysis that requires calculating the equivalent circuit values. However,
this approach still needs numerical methods that lacks an intuitive approach for designing
the OMO frequency. Instead, designers can use an approximate expression for the breathing
mode ring frequency [ref]:
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fm =
1

2π

√
E

ρ

2

Rin +Rout

(4.13)

To gauge the efficacy of Equation (4.12) and (4.13), Figure 4.7 plots the measured me-
chanical oscillation frequencies of several OMO designs of Table 4.1 together with the cal-
culated values from the design Equations (4.12) and (4.13). For each design, the predicted
values follow the measurements fairly well.

Optical Design and Operation

Silicon nitride ring surrounding the structure serves as the optical resonator that supports
Whispering Gallery Mode (WGM) optical resonances. As explained in Chapter 2, WGM
resonances confine the light field primarily to the outer edge of the resonator and the field
circulates with successive reflections off the cavity outer periphery in a repeating circular
trajectory. Here, the modes of interest have mode numbers l=1 (in z) since the silicon
nitride cavity is thin (h << λ) and only supports one mode in the z-direction, and k=1
(in r) since it is the most confined radial mode. Therefore, the resonant modes 1, 1,m have
wavelengths

λo =
2πRoneff

m
(4.14)

as a result of the periodic boundary condition in the azimuthal direction, which emphasizes
that the resonance condition arise when an integer number of effective wavelengths fit around
the ring circumference.

These WGM resonances of the coplanar ring structure will have similar Qo’s to that of a
stand-alone silicon nitride ring cavity as long as the optical field profile does not overlap with
the scatter and absorption-prone lossy polysilicon ring. This dictates a minimum distance
between the silicon nitride-polysilicon attachment interface and the outer edge of the silicon
nitride ring to retain the high-Qo of the silicon nitride. A conservative design would use
a wide silicon nitride ring to make sure the optical mode is well away from the polysilicon
interface but this may compromise the overall Qm since silicon nitride has higher mechanical
loss (lower Qm) compared to polysilicon. To find the minimum silicon nitride width required
for high Qo, the optical field profile of several silicon nitride rings were simulated using
an FEA solver, and the minimum width data points were fitted to a design equation (as
presented in [45]) in terms of Rc and Ro to yield

Ro − 2.1263 ln(Ro) = Rc − 1.2665 (4.15)

where Ro and Rc are in microns. As an example, the 52-MHz OMO design with Rc = 30
µm requires about 6.4 µm silicon nitride width according to (4.15), with an Ro > 36.4 µm.
Design 1 of Table 4.1 with Rc = 30 µm, and Ro = 36.5 µm exhibits Qo = 283,370, which is
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on par with or even better than the Qo’s of silicon-nitride-only rings reported before [17],[4],
showing that the multi-material design is capable of preserving high-Qo of the silicon nitride.

To couple light into and out of the silicon-nitride ring cavity, it is possible to use a
tapered fiber [46] clamped on a nano-positioning stage for precise control of coupling gap or
an integrated waveguide that can provide a robust interface for eliminating lower-frequency
vibrations of a clamped fiber. This work uses the former approach to allow varying the
coupling gap during measurements.

Electrical Input/Output and Frequency Tuning

Although the multi-material OMO is a stand-alone oscillator that doesn’t require exter-
nal electronic circuitry for operation, it can also be driven electrically–a functionality not
available in nonconductive single-material OMO’s. This allows electrical modulation of the
optical field and voltage controlled tuning of the oscillation frequency. It further provides
direct electrical output without the need for a photodetector to isolate the mechanical oscil-
lation.

To enable electrical input/output, four polysilicon electrodes inside the polysilicon ring
overlap its inner edge to form parallel plate capacitors that then realize capacitive-gap trans-
ducers. The electrodes anchor to underlying polysilicon interconnects that facilitate signal
routing and connection to external electronic circuitry.

Obtaining an electrical output from the coplanar ring OMO entails applying a DC bias
(VP ) across the conductive polysilicon ring and electrodes. When the radiation pressure
drives the ring into oscillation, the ensuing motion modulates the DC-biased output capac-
itance Cout at the resonance frequency, generating displacement currents across this time-
varying electrode-to-resonator gap:

io = VP
∂Cout
∂t

= VP
∂Cout
∂x

∂x

∂t
(4.16)

which can then serve as output signal proportional to displacement or velocity.
The electrodes additionally allow tuning of the OMO’s oscillation frequency (such as

needed for CSAC application) via DC voltage. The applied voltage VP generates a force
from the resonator to the electrodes given by

Fe =
1

2

∂C

∂x
V 2
P (4.17)

where

∂C

∂x
=
Co
do

(
1− x

do

)−2

(4.18)

is the change in electrode-to-resonator capacitance per unit radial displacement of the OMO,
Co is the static electrode-to-resonator overlap capacitance and do is the electrode-to-resonator
gap spacing. For small displacements, the resonant force acting on the resonator becomes
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Fe = V 2
P

Co
d2
o

x (4.19)

This force is proportional to and in phase with the resonator displacement, which identi-
fies the term V 2

PCo/d
2
o as a stiffness generated via electrical means [47],[48],[49]. Intuitively,

the electrical force acts to enhance the displacement since it grows when the resonator gets
close to electrode. Thus, the electrical stiffness subtracts from the mechanical stiffness,
yielding a voltage dependent mechanical frequency given by

fm =
1

2π

√
keff
meff

=
1

2π

√
km − ke
meff

= fnom

√
1− V 2

PCo
kmd2

o

(4.20)

where fnom is the nominal mechanical frequency under no DC voltage.
It is also important to emphasize that the unique electrode placement of the multi-

material OMO is a key design consideration. Although WGM OMO’s constructed in single
crystal silicon can exhibit electromechanical coupling [21],[35], the lack of an underlying
interconnect necessitates electrodes placed around the ring periphery to have large enough
area to probe the electrodes. In this case, a second ring is employed for optical coupling,
which connects to the electromechanical ring via a coupling beam. The use of a coupling
beam, however, introduces a scattering location for the optical field, which then limits the
achievable Qo.

4.2.2 Mechanical Q-Boosting

The key to achieve simultaneous high-Qm and high-Qo in the multi-material OMO struc-
ture is the Q-boosting concept introduced in Section 4.1. In the multi-material OMO,
high-Qm polysilicon ring raises the functional Qm of the composite structure from that of
silicon nitride-only resonator by sharing its energy while adding relatively no loss. Both the
polysilicon and silicon nitride rings supply vibrational energy to the composite structure in
proportion to their effective masses (precisely, effective masses at Rc since the velocity of
both masses are equal at Rc). Neglecting the loss at the nitride-polysilicon interface and
possible change in the structure’s anchor loss due to coupling of two materials, the functional
Qm,tot of the composite structure can be expressed as

Qm,tot = ωm
En
S + Ep

S

Pd
(4.21)

where Pd is the total dissipated power in the entire composite structure, En
S and Ep

S are the
mechanical energy stored in the silicon nitride and polysilicon ring, respectively. Substituting
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En
S =

1

2
mnV

2
Rc

Ep
S =

1

2
mpV

2
Rc

Pd =
1

2
(bn + bp)V

2
Rc

(4.22)

we get

Qm,tot = ωm
mn +mp

bn + bp
(4.23)

which is equal to the Qm of the tank circuit of Figure 4.6(b), as expected. Assuming
mp/mn >> 1 and ωmmn/bn ≈ Qm,n, Equation (4.23) simplifies to

Qm,tot =

(
mp

mn

Qm,n

)
||Qm,p (4.24)

where the operator || denotes the operation x||y = (x−1 + y−1)−1, just like equivalent re-
sistance of two resistors connected in parallel. It should be noted that the resultant Qm,tot

is never larger than Qm of the polysilicon ring. Rather, in the case Qm,nmp/mn << Qm,p

it appears that Qm,tot is boosted from Qm of the silicon nitride ring by mp/mn times in
the composite structure. If Qm,nmp/mn >> Qm,p, then Qm,tot is simply equal to Qm of the
polysilicon ring. For the OMO designs of Table 4.1, Qm,tot results in the Qm,p > Qm,tot > Qmn

range, depending on the ratio mp/mn.

4.2.3 Experimental Results

Fabrication

Figure 4.8 depicts the microfabrication process to build the coplanar ring OMO structures.
The process includes five lithography steps all using a deep-UV stepper and materials in a
standard CMOS process, making the Q-boosted OMO attractive for low-cost batch fabrica-
tion. The process starts with LPCVD deposition of 3 µm Low-Temperature Oxide (LTO)
and ∼ 350 nm of low-stress silicon nitride on a standard six-inch silicon wafer to isolate the
substrate and the electrical interconnects. A first LPCVD polysilicon film of ∼ 350 nm is
deposited with in-situ phosphorus doping and defined using the first lithography step to leave
interconnect traces and bond-pads that facilitate electrical input-output and signal routing.
Another thick LTO film is deposited as a sacrificial layer, followed by a CMP step timed
to yield a final LTO thickness > 2 µm needed to keep the lossy polysilicon (interconnect)
interface away from the optical field stored in the cavity, leaving the cross-section of Figure
4.8(a). CMP is an important step in the process since it removes the topography and any
large surface roughness that can be detrimental to Qo if transferred to the silicon-nitride
cavity.
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Figure 4.8: Summary of the fabrication process flow. (a) LTO and silicon nitride layers are
deposited for electrical isolation and etch stop followed by polysilicon interconnect deposition
and etch. Another LTO layer is deposited and CMP’ed to a final thickness of 2 µm, leaving
a planar surface for the silicon nitride film. (b) The optical cavity is formed by patterning a
400 nm silicon nitride film and protected during subsequent etches by a thin layer of LTO. (c)
Protective thin LTO is removed from the inner ring edge, followed by etching thick LTO to
define anchors. (d) 2 µm of polysilicon is deposited and etched to define the polysilicon ring
and electrodes. (e) Finally, devices are released in 49% HF, yielding the final cross-section
of Figure 4.4(b).
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Optical cavities are then formed by a 400 nm stoichiometric silicon nitride (Si3N4) film
deposited via LPCVD, followed by the second lithography step. A final 100 nm protective
LTO is then deposited over the etched Si3N4 to protect it during a later polysilicon etch
step, which can induce roughness on the cavity if not protected. The third lithography step
clears the protective LTO over the inner radius region of the optical ring to allow subsequent
polysilicon depositing directly on the opening to form mechanical coupling and physical
attachment between the Si3N4 and polysilicon rings. Another lithography step defines the
anchor openings into the sacrificial LTO layer to achieve the cross-section of Figure 4.8(c),
exposing polysilicon interconnect areas where the structure and electrodes anchored. The
second polysilicon film of 2 µm is finally deposited to fill the anchor openings and form the
high-Qm polysilicon ring and electrodes, which also makes a good electrical connection with
the first polysilicon interconnect layer. The final lithography step then defines the polysilicon
ring and electrodes, leaving the cross-section of Figure 4.8(d) ready for the subsequent HF
release.

Figure 4.9 shows SEM images of the released devices upon completion of the process,
where each image reveals various details of the device design and structure.

OMO Performance

Figure 4.10 introduces the experimental setup used for coplanar ring OMO characterization.
In order to have enough spectral resolution to measure high-Qo optical resonances, swept
laser measurement setup of Figure 4.10(a) is first used, where a computer sweeps a tunable
laser’s wavelength while recording the power at the cavity output using a photodetector
and an oscilloscope. Figure 4.10(b) depicts the setup used for oscillator characterization,
which employs the custom-built vacuum probe system described in [4] to provide medium
(10 mBar) vacuum environment. It should be noted that the vacuum environment reveals
the true Qm of the structure by removing the air-damping induced mechanical loss and it
can only help if other losses are already smaller than or comparable to the air damping.
Structures with high anchor loss, for example, will exhibit similar Qm in air and vacuum, so
their performance will not necessarily improve by operating in vacuum. Also, air damping
becomes less significant at higher vibrational frequency [48], so high-Qm operation in air is
still possible with higher frequency OMO designs.

Figure 4.11 (a-c) present Brownian noise measurement of OMO designs 1-3 of Table 4.1,
which reveal boosted Qm values indicated in the figures. Qm = 22,355 of design 1 is the
highest measured double-ring Qm, which is more than 2× higher than demonstrated in a
previous silicon nitride ring OMO [4]. To gauge the degree to which Equation (4.24) matches
the measured Qm,tot requires knowledge of the Qm,p of a spoke-supported polysilicon ring and
the Qm,n of an unsupported nitride ring. The former is readily measured to be on the order
of 40,900 on an actual polysilicon-only ring as shown in the insertion loss measurement of
Figure 4.11(d). The Qm of an unsupported nitride ring, on the other hand, is much more
elusive, since any real fabricated nitride ring does have supports, so suffers from anchor
loss not present in an unsupported (levitated) ring. Considering the highest Qm of 10,400
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Figure 4.9: SEM images of Qm-boosted coplanar ring OMO’s. (a) Hundreds or thousands of
devices are fabricated with the wafer-level process technology on a single wafer. The image
shows only one die that is separated from the wafer using a wafer saw. The die width is kept
narrow for containing only one device in the horizontal direction to avoid fiber coupling to
multiple devices at the same time. (b) A single device with bondpads that allow electrical
probing in a vacuum probe station. (c) Colorized SEM of the device that highlights different
materials, where purple is polysilicon ring and electrodes, and green is the silicon nitride
ring. (d) Zoom-in on the silicon nitride ring on the outer edge of the device where it couples
to polysilicon ring. Smooth nitride film shown in the image is crucial to achieve high Qo’s.
(e) Zoom-in on a polysilicon spoke that supports and holds the resonator structure. On both
sides of the spoke where it connects to the polysilicon ring are the device electrodes that
overlap with the polysilicon ring. (f) A larger device with easily visible large anchor areas.

measured among several fabricated spoke supported 1st radial contour mode nitride rings
[4], a reasonable estimation would be somewhere between 10,000 to 50,000. With the above
Qm values and 1.61 ng nitride and 7.76 ng polysilicon effective masses calculated in Table
4.1, Equation (4.24) predicts a Qm,tot of 22,125 to 34,965 for the composite OMO. Measured
Qm,tot values of 14,000 to 22,000 is not far from this estimation, but may suggest that
the nitride-polysilicon coupling alters the individual Qm’s, perhaps by changing the device
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Figure 4.10: Schematic description of the experimental measurement setup. (a) Optical-Q
measurement setup employs a computer that sweeps the laser frequency while recording
optical power in time. Use of the vacuum chamber is optional. (b) Setup for phase noise
and mechanical-Q measurements employing a custom-built vacuum chamber as described in
[4]. An Agilent E5505A phase noise test system is used for phase noise measurements.

geometry due to film stress.
Figure 4.12 presents the measured optical transmission spectra of OMO designs 1 and

2 with characteristic multiple WGM resonances that exhibit Qo’s as high as 283,370. This
performance is no less than what is typically expected from silicon-nitride-only rings, proving
the efficacy of coplanar ring OMO’s unique design to achieve such high-Qo’s.

Figure 4.13 presents the measured phase noise for the OMO of -114 dBc/Hz at 1 kHz
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Figure 4.11: (a-c) Measured Brownian motion of the Q-boosted coplanar ring OMO designs
1-3 of Table 4.1, from which Qm values are extracted. (d) Measured insertion loss of a single
polysilicon ring that reveals a much higher Qm = 40,900, as expected.

and -142 dBc/Hz at 1 MHz offsets from its 52 MHz carrier, which is 12 dB better than
the previous state of the art OMO constructed of silicon nitride alone [4]. This phase noise
performance, when divided down to 13 MHz using oscillator figure-of-merit [50], satisfies
GSM reference oscillator phase noise specification [51] at far-from-carrier offsets; while being
only 4 dB higher at 1 kHz offset, proving OMO technology to be a strong competitor for
MEMS and even quartz-based oscillators. It is also notable that the OMO input laser power
of only 3.7 mW has been sufficient to achieve such a good performance compared to 7.5 mW
input power of the previous state-of-the-art [4], which is enabled by the higher Qm together
with the high-Qo preserved within the coplanar ring OMO.

Figure 4.14 present OMO output spectra under several tuning voltages and measured
plots gauging oscillating OMO frequency versus tuning voltage, where a relatively large
440 nm electrode-to-resonator gap spacing still allows a 3 ppm/V (Parts-Per-Million/V)
frequency shift suitable for locking to the Rb vapor cell in a CSAC. Indeed, frequency tuning
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Figure 4.12: Measured optical transmission spectra of coplanar ring OMO designs 1 and 2
of Table 4.1. (a) Design 1’s spectrum with repeating resonances showing its Free Spectral
Range (FSR). (b) Zoom-in on one of the peaks reveals Qo > 220, 000. (c) Spectrum of Design
2, and (d) zoom-in on a high-Qo peak with Qo > 283, 000.

enables coplanar ring OMO phase-locking using higher harmonics to an external reference to
improve the long-term stability substantially, proving the concept of using higher-harmonic
phase-locking in the target CSAC application.

4.2.4 Higher Harmonic Locking

Off the checklist items for a low power CSAC implementation presented in the introduction
of this chapter, the only remaining one to be demonstrated is the higher harmonic locking.
Pursuant to demonstrate this capability, this section presents phase-locking of the Q-boosted
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Figure 4.13: Phase noise of the Q-boosted OMO compared to the previous best silicon
nitride-only OMO [4]. Blue and red solid lines are measured spectra with device values and
measurement power indicated in the figure. As expected, the boosted Qm lowers the phase
noise, achieving a 12 dB improvement at both 1 kHz and 1 MHz offsets. Black dashed lines
are model fits from the phase noise model presented in Chapter 3.

coplanar ring OMO to a microwave source using one of its higher-order harmonics, as previ-
ously presented by Alejandro Grine in [52] who designed the experiment.

In the intended CSAC application, phase noise of the locked OMO at small frequency
offsets follows the excellent long term stability of the lock reference. However, unlike a high
quality signal source (such as a quartz oscillator), the hyperfine transition frequency stability
is poor at short time scales. Therefore, at large offset frequencies the locked system has to
follow the phase noise of the free running OMO, so the effective CSAC lock bandwidth is
intentionally kept small.

In our harmonic locking demonstration, the Q-boosted OMO posts phase noise of -140
dBc/Hz at greater than 50 kHz offset, a 20 dB improvement over the previous harmonic
lock demonstration [53]. Also, voltage controlled tuning eliminates the need for a separate
intensity modulator and allows the detuning and input power to be targeted for optimal
phase noise, threshold power, or harmonic generation. Phase locking greatly improves the
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Figure 4.14: (a) Q-boosted OMO output spectrum under several applied tuning voltages,
demonstrating frequency tuning. (b) Measured frequency shift with respect to applied volt-
age (via curve-fitting) indicate a 440 nm resonator-to-electrode gap spacing.

OMO’s long term drift while simultaneously retaining its excellent short term characteristics.
Phase-locking the 9th harmonic of an OMO at 466 MHz to an RF signal generator improved
the phase noise by 85 dB at 1 Hz offset, while maintaining a phase noise of -140 dBc/Hz at
offsets > 50 kHz.

Figure 4.15 presents the setup used for harmonically locking the OMO to a low noise
reference by mixing photodetected light at the cavity output with an RF signal generator
set near the ninth harmonic frequency of 466 MHz. The frequency comb imprinted on the
photodetector output then mixes with a low noise SRS SG384 RF signal generator. After a
low pass filter, the error signal that is proportional to the difference in phase between the
OMO harmonic and the signal generator is further filtered by an SRS SIM960 proportional-
integral (PI) controller followed by a high voltage amplifier. The final control voltage then
feeds the device tuning electrodes to tune the oscillation frequency. Variable optical and RF
attenuators prevent saturation of the photodetector and RF amplifiers respectively ensuring
harmonics are only created through optomechanical transduction.

Figure 4.16 shows the measured phase noise of the (blue) unlocked vs. (red) locked
OMO which shows an 85 dB improvement at 1 Hz offset. The OMO harmonically locked to
an oven-controlled crystal borrows the excellent long term frequency stability of the signal
generator with little to no degradation in the excellent short term stability of the OMO, just
as desired in the intended CSAC application.
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Figure 4.15: Pictorial representation of the experimental setup used in harmonic locking.
In an actual CSAC implementation, the optical output from OMO would directly feed the
external frequency reference (Rb vapor cell) and use of a mixer would not be necessary.

4.3 3-D Stacked Ring OMO with Large

Electromechanical Coupling

Although the coplanar ring OMO design of the previous section has shown the best-to-date
performance among all OMO’s, there are still possible areas of performance improvement,
especially in the electrical domain. Electromechanical coupling limited by the lithographi-
cally defined electrode-to-resonator gap spacing necessitates using rather large DC voltages
to achieve enough coupling for frequency tuning and (direct) output electrical current. State
of the art MEMS resonators generally utilize a sacrificial layer in the fabrication process for
the definition electrode-to-resonator gap spacing, which allows much better precision and
resolution due to easy control of deposition thickness compared to lithographic methods.
This type of sacrificial layer defined gaps could also be used in a coplanar ring OMO process
but it was traded off for a simpler process in OMO’s of the previous section.

The second multi-material OMO design presented in this thesis is a 3-D design dubbed
stacked-ring OMO, which couples a high-Qo (but low-Qm) ring via a vertical coupling beam
to a high-Qm (but low-Qo) and electrically conductive ring or ring array. Figure 4.3 illustrates
an example design using three high-Qm conductive rings in the lower plane with surrounding
electrodes and a high-Qo ring in the upper plane, where the two layers are connected with
four vertical beams. This design allows integration of more high-Qm resonators for larger
electromechanical coupling by removing the optical layer from mechanical resonator plane,
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Figure 4.16: Phase noise improvement by harmonically locking a Q-boosted coplanar ring
OMO to an external signal generator using its 466 MHz harmonic. Blue trace shows the
phase noise of the free-running OMO used in the experiment, before phase locking. Black
is the measured phase noise of an oven-controlled crystal oscillator based table-top signal
generator unit SRS-SG384, which shows excellent close-to-carrier phase noise. Red is the
measured phase noise at the OMO output, with a remarkable 85 dB improvement at 1 Hz
offset after phase locking.

enabling the use of lateral coupling beams to add more mechanical resonators into the array
as well as placement of electrodes on the outer ring periphery with larger electrode-resonator
overlap area. Vertical separation of optical layer from the electromechanical resonators
removes the optical design constraints in the electromechanical layer and vice-versa, allowing
independent optimization and more flexible fabrication. As will be seen, the stacked-ring
OMOs achieve 170 ppm/V electrical frequency tuning by using a sacrificial layer defined gap
process just like the MEMS resonators of Chapter 2. In this regard, the stacked ring OMO
fabrication can rely on on a MEMS shuttle process where the devices are fabricated after
MEMS resonators with two additional lithography steps.

The following section introduces the first 3-D stacked-ring OMO realization using polysil-
icon and silicon nitride thin films for the MEMS and optical layers similar to the coplanar
ring devices.
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4.3.1 Nitride Over Silicon Stacked Ring OMO

Figure 4.17: Colorized SEM images of the fabricated stacked-ring OMO’s. Red silicon nitride
ring mechanically couples to the polysilicon ring underneath via vertical beam couplers.
Zoom-in on the vertical coupler (upper right-hand side panel) shows the via placement that
is intentionally kept away from the silicon nitride outer edge to preserve high Qo. Vertical
beams with ≈ 0λm length ensures that both rings vibrate in phase in breathing contour
mode shape as shown in the FEA simulation (lower right-hand side panel).

As illustrated in the general device structure of Figure 4.3, multi-material stacked-ring
composite OMO implementation comprises of a high-Qo and one or more high-Qm resonators
realized here with silicon nitride and a polysilicon ring structures coupled in a vertical fashion
to allow virtually independent optimization of optical and mechanical properties as well as
electromechanical coupling.

The first rendition of this device, with lithographically defined electrode gap requiring
a simpler fabrication but sacrificing electromechanical coupling, realized an 87-MHz OMO
with a threshold power fraction of a milliwatt. Figure 4.17 presents a colored SEM image of
the stacked-ring OMO where the purple layer shows the polysilicon ring with surrounding
electrodes, and the red shows silicon nitride ring atop. A zoom-in on this image (b) reveals
the vertical coupling between the nitride and polysilicon. This coupling scheme ensures
that the optical field stored in the silicon nitride cavity is not affected by the mechanical
coupling, which in turn allows retention of high optical-Q. As such, the composite device
exhibits Qo > 154, 000 comparable to a silicon nitride-only cavity. The vertical coupling
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further allows optimized electrode placing around the device since the cavity (hence the
optical field) is far above from the optically lossy polysilicon layer.

Figure 4.18: (a) Measured phase noise of a stacked-ring OMO. Although the structure has
large meff , it can still oscillate with small input power due to high Qo in the order of 150,000.
Despite the lower than expected Qm (b), phase noise of the stacked-ring OMO is still better
than many of the previous single-material OMO demonstrations owing to its large meff and
high enough Qo

.

Characterization of stacked-ring devices employs the experimental setup and techniques
presented in Section 4.2.3. The 3-D device geometry allows easier tapered fiber-to-device
alignment since the optical cavity is elevated far from the substrate.

Figure 4.18 presents the measured phase noise and Qm of the stacked ring OMO, which,
although adequately low for many applications, isn’t as remarkable as the phase noise per-
formance of the Q-boosted coplanar ring OMO of the previous section. The device exhibits
a rather lower mechanical-Q of 6,000 which then limits the phase noise performance. The
unexpectedly low polysilicon-only resonator Qm suggests a possible culprit which is bad
polysilicon film quality obtained during deposition that may not be well-controlled in a
shared laboratory environment.

The second rendition of the stacked-ring OMO uses a process similar to previously demon-
strated MEMS resonators [54] with additional top electrode planarization, which allows def-
inition of the electrode gap spacing by the sacrificial layer thickness–a much more precise
and scalable technique to define the gaps compared to lithography. With the sacrificial
layer defined gap process, stacked-ring OMO’s achieve much smaller gap and much stronger
electromechanical coupling. The addition of silicon nitride ring and vertical couplers above
MEMS just require 2 more lithography steps on top of a mature and standard process flow.
Figure 4.19 shows measured resonance frequency of such a device under several different
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Figure 4.19: Measured insertion loss and frequency versus tuning voltage plots for the
stacked-ring OMO. The tuning curve with strong coupling is consistent with the intended
40 nm process.

bias voltages which is consistent with the deposited sacrificial layer thickness of 40 nm. This
yields a frequency shift of approximately 170 ppm/V compared to 3 ppm/V of the coplanar
ring OMO.
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Chapter 5

An OMO Based Optical Receiver

This chapter demonstrates a super-regenerative optical receiver that detects on-off key
(OOK) modulated light inputs by harnessing the radiation-pressure gain of a self-sustained
electro-opto-mechanical oscillator (EOMO) to render its oscillation amplitude a function
of the intensity of light coupled into the oscillator. This is, to our knowledge, the first
demonstration of an OMO-based optical receiver converting optical information to electrical
digital signal at its output. The super-regenerative receiver architecture used in this work
removes the need to periodically quench the oscillation signal unlike the previous electronic
super-regenerative receivers, which then simplifies the receiver architecture and increases
the attainable receive bit rate. A fully functional receiver with a compact ∼ 90 µm EOMO
comprised only of silicon-compatible materials demonstrates successful recovery of a 2 kbps
(kilobits per second) bit stream from an OOK modulated 1550 nm laser input. By removing
the need for the expensive III-V compound semiconductor materials often used in conven-
tional optical receivers, this EOMO-based receiver offers a lower cost alternative for sensor
network applications.

5.1 Introduction

Radiation pressure-driven optomechanical oscillators have proven useful in stand-alone os-
cillator [5], communications [14], and sensing applications [15]. The addition of electrodes to
conventional optomechanical devices allows electrically coupled inputs as demonstrated with
coplanar ring devices in Chapter 4 and in [55],[56] as well as optical ones that then enable new
integrated electro-optomechanical systems where electrical signals modify optical properties
[57]. The converse should also be true, where laser light coupled to an electro-optomechanical
system might change the electro-mechanical properties of the device, perhaps in a way that
allows electrical detection and decoding of optical signals. If possible, this might then enable
an optical receiver constructed strictly in silicon compatible materials, i.e., with no need for
compound semiconductor photonic devices and the associated cost and technology required
to integrate them alongside silicon electronics.
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Figure 5.1: Perspective-view schematic of the EOMO and basic receiver operation. Here, an
electronic amplifier connects to input/output polysilicon electrodes and sustains oscillation.
An amplitude modulated optical input couples to the Si3N4 ring of the EOMO and changes
the output electrical oscillation amplitude, which indicates the received bits.

Pursuant to capitalizing on this possibility, and spurred by recent demonstrations of
simple low power MEMS radios based on super-regenerative reception [58],[59], this work
presents for the first time a fully functional super-regenerative optical receiver based on an
electro-opto-mechanical oscillator (EOMO), cf. Figure 5.1, that detects OOK modulated
light input and directly demodulates and recovers input bits in the electrical domain. The
key enabler here is the simultaneous use of both electrical and optical input/output (I/O)
ports, the former used in the positive feedback loop of a self-sustained electronic oscillator
circuit; while the latter used to accept optical inputs that perturb the steady-state oscillation
amplitude of the electronic oscillator. Via use of an EOMO constructed of only silicon-
compatible materials, this receiver obviates the need for compound semiconductor technology
while still providing optical reception commensurate with the needs of massive autonomous
sensor networks, for which cost is paramount [60].

5.2 Device Operation

The EOMO illustrated in Figure 5.1 comprises a high-Qm polysilicon inner ring mechanically
attached at its outer edge to a concentric high-Qo stoichiometric silicon nitride ring, just like
the coplanar double-ring OMO presented in Chapter 4.

With theQm-boosting as a result of mechanical coupling, the composite structure exhibits
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a much higher Qm than otherwise provided by a silicon nitride-only ring while still preserving
the high-Qo of silicon nitride. This combination of high Qm and high Qo is key to low power
and low phase noise in the present wireless receiver.

5.3 Electrical I/O

Electromechanical coupling used for voltage-controlled frequency tuning of the OMO’s demon-
strated in Chapter 4 also allows electrical inputs that can induce mechanical vibrations at
the frequency of input signal. Exciting the EOMO electrically entails applying a DC bias
VP to the conductive polysilicon ring and an AC voltage vi to an input electrode, where
VP >> vi. The voltage difference across the capacitive gap generates a time-varying force

Fe =
1

2

∂Ci
∂x

(VP − vi)2 (5.1)

that drives the ring into mechanical vibration. The amplitude of vibration significantly
increases when the mechanical resonance and excitation frequencies match, i.e., in the case
of resonant drive. Keeping only the resonant term in Equation (5.1), magnitude of the
excitation force becomes

Fe =
1

2

∂Ci
∂x

2VPvi (5.2)

and the amplitude of motion generated by this force at the resonant frequency is simply

x = Qm
Fe
keff

(5.3)

The ensuing motion then generates displacement currents across each DC-biased time-
varying gap with an amplitude given by Equation (4.16), which can then serve as output
signals proportional to displacement or velocity. The amount of output current io for a given
excitation voltage vi is governed by motional impedance of the device, defined as Rx = vi/io.
Expressing the input voltage and output current in terms of the resulting force and motion
yields

Rx =
vi
io

= Fe

(
VP
∂Ci
∂x

)−1(
ẋVP

∂Co
∂x

)−1

(5.4)

Partial derivatives of the input-output capacitances, derived in Equation (4.18), reduce
to Co/do since only resonant-AC terms are relevant and EOMO has equal input and out-
put overlap capacitances. In terms of design parameters, expression of EOMO motional
impedance becomes
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Figure 5.2: EOMO optical modulator characterization setup. EOMO is driven by the elec-
trostatic force that is swept across frequency using a network analyzer. Mechanical motion
induced by the electrostatic force modulates the optical output field of the EOMO, which
then feeds a photodetector to convert the modulation to electrical signals. Received signal
at each frequency is recorded by the network analyzer and the ratio of the received signal
amplitude to the excitation amplitude is conveniently displayed as an s21 trace.

Motional impedance is an important parameter since it dictates the required sustain-
ing amplifier gain for an electronic oscillator referenced to a MEMS resonator. It is also
important for the EOMO-based optical receiver as will be explained in the coming sections.

5.4 Optical I/O

Just as in the pure OMO demonstration of Chapter 4, optical I/O is facilitated by a tapered
fiber and the silicon nitride outer ring of the EOMO. However, different than the operation
in Chapter 4, EOMO does not require high input optical power to sustain mechanical oscil-
lations. Rather, the input signal for detection needs to be high enough to detect the increase
in the oscillation amplitude.

5.5 EOMO as an Optical Modulator

Before proceeding to the fully operational optical receiver implementation, it is useful to
look at how the electrical excitation induce mechanical vibrations and how these vibrations
are manifested as modulation in the optical output of the EOMO. The super-regenerative
optical receiver application will then exploit the converse effect where the input optical signal
increases the vibration amplitude, thereby inducing a larger electrical signal at the output.
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Figure 5.3: Measured modulator response from the setup of Figure 5.2. Although the dis-
played signal levels is in the form of ”insertion loss” measurement, it is not an insertion
loss measurement in the strict sense, so the absolute values are not of much importance.
However, the signal level above the measurement floor is a good indication of how much
displacement ensues at each frequency as a result of electrostatic actuation. In other words,
measured peak heights gauge the displacement amplitude for each mechanical mode that can
couple to the optical field. On the left is a zoom in on the largest peak which corresponds to
the breathing contour mode as expected. Wider frequency sweep on the right reveals many
mechanical modes, most of which is invisible with a pure electrical measurement due to low
electomechanical coupling-high measurement floor, showing the impressive sensitivity of the
optical probing technique for measuring mechanical displacements.

To operate the EOMO as an optical modulator, the device is electrostatically actuated
by applying a DC voltage VP to the polysilicon ring structure and an AC voltage to its
electrodes, while being probed with a continuous-wave (CW) laser using a tapered fiber.
Vibrational motion driven by the capacitive actuators shifts the optical resonance frequency
via the moving optical boundary, i.e. the optomechanical coupling (gom) described in Chap-
ter 3. This optical resonance shift in turn modulates the optical intensity at the device
output, creating a modulation sideband near the laser. This is the underlying mechanism of
the optical modulation using EOMO which takes electrical signals, convert them into me-
chanical vibrations and finally to optical modulation. Figure 5.2 depicts the experimental
setup used for characterization of the EOMO-based optical modulator, where an electrical
network analyzer output feeds the EOMO electrodes for electrical modulation and detects
optical modulation amplitude at its input. The use of a network analyzer conveniently allows
sweeping the modulation frequency and looking at the modulator response as a transmission
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spectrum (s21) that reveals multiple mechanical resonances.

Figure 5.4: Super-regenerative optical receiver model. Light received at the proper wave-
length forms an additional positive feedback loop, thereby raising the steady-state oscillation
amplitude from the no light case (where only the upper branch contributes to the loop gain).

The use of mechanical resonator for the optical modulation results in a frequency-
dependent modulation amplitude since the amplitude of vibration is much larger at the (me-
chanical) resonant frequencies and also depends on the electromechanical coupling strength
of these mechanical modes. Therefore, the EOMO realizes a narrow-band optical modulator
in contrast to common optical modulators with wide bandwidth. An application that can
benefit from such narrow-band optical modulator is an opto-acoustic oscillator [35], where
essentially the network analyzer in Figure 5.2 is replaced with an electrical amplifier (and a
phase shifter for proper 2π phase shift around the loop), creating a positive-feedback loop
between the electrical amplifier and mechanical resonator with an optical detection scheme
for the mechanical motion. This oscillator implementation is especially useful for exciting the
high frequency mechanical modes into oscillation, which may not be possible using a pure
electromechanical excitation-detection scheme (like in MEMS resonators) due to reduced
electromechanical coupling with the high frequency modes.

Figure 5.3 shows the resulting optical modulation spectrum using the setup of Figure
5.2 where the breathing contour mode creates the largest modulation as an expected result
of the largest coupling. The sensitivity of the optical detection of motion is remarkable,
which reveals many mechanical modes that are otherwise not visible within a pure electrical
measurement spectrum.
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5.6 Self-Sustained Oscillation

Figure 5.5: Comparison of conventional and EOMO-based super-regenerative receivers. (a)
Reception of a ”1” or a ”0” is determined by the speed at which oscillations reach a prescribed
threshold value starting from a quenched state. (b) Reception of a ”1” or a ”0”, without
quenching, is determined by the amplitude of oscillation, which can switch quickly, greatly
increasing the permissible bit data rate.

With two I/O modes, the EOMO offers two methods to instigate self-sustained oscilla-
tion: electrical or optical. Figure 5.4 summarizes the two methods via a simple block diagram
with two feedback loops. The electrical method is the same as that used in conventional
oscillators [51], where two electrodes (i.e., capacitive-gap transducers) of the EOMO connect
to the input and output terminals of an electronic amplifier to create a positive feedback
loop with loop gain (Al) greater than unity when Al = Ramp/Rx > 1. Here, Ramp is the
transresistance of the amplifier and Rx is the motional resistance between the EOMO elec-
trodes embedded in the loop, given by Equation (5.5). With loop gain greater than unity,
regenerative amplification of ring structure’s Brownian motion at its resonance frequency
eventually leads to sustained oscillation with steady-state amplitude governed by nonlinear-
ities that reduce gain as amplitude increases. The ”electrical loop” in Figure 5.4 summarizes
the operative mechanisms in this mode of self-sustained oscillation.
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The optical method, on the other hand, does not require an external amplifier, but rather
just a strong enough blue-detuned laser input (or pump) to incite self-sustained optomechan-
ical oscillation, as described in Chapter 3. Here, the field in the high-Qo cavity builds up to a
sizable circulating optical power that generates an outward radial radiation pressure force on
the silicon nitride ring. When Brownian motion (again, strongest at the ring mechanical reso-
nance frequency) modulates the optical cavity boundary, it modulates the radiation pressure
force, leading to a force at the ring mechanical resonance frequency. When the laser intensity
is strong enough, the velocity-to-radiation pressure force transfer function—captured by the
amplifier symbol with a laser power supply in Figure 5.4—contributes sufficient gain to the
”optical loop” to achieve a loop gain greater than unity. This then instigates regenerative
oscillation growth in the exact same manner as the ”electrical loop”.

The super-regenerative optical receiver of Figure 5.1 employs the gains of both Figure
5.4 modes, simultaneously. It specifically uses the electrical mode to instigate and sustain a
primary oscillation, and the optical mode to influence the amplitude of the oscillation. Note
that the optical gain does not need to be large enough to sustain the oscillations; rather, its
function is to alter the total amplifier gain around the mechanical resonator. To facilitate
analysis, Figure 5.5(b) condenses the complexity of Figure 5.4 into a simpler equivalent
block diagram that lumps the electrical and optomechanical gain mechanisms into a single
amplifier controlled by the optical input. Here, the stronger the optical input, the larger
the amplifier gain. The larger the amplifier gain, the larger the nonlinearity required to
limit oscillation growth, and the larger the displacement amplitude needed to generate that
nonlinearity. Thus, the steady-state amplitude of the oscillator becomes a direct function
of the laser input power, which is the crux behind the present super-regenerative optical
receiver.

5.7 Super-Regenerative Optical Receiver

Figure 5.5 compares a conventional super-regenerative receiver (a) with the EOMO-based
one of this work (b). As shown, both harness the positive feedback loop gain of a closed-loop
oscillator to regeneratively, i.e., cycle-by-cycle, achieve an enormous front-end gain capable
of detecting tiny received signals. In the former approach, in the absence of an RF signal, the
oscillation amplitude rises slowly and gets quenched before reaching a threshold value, which
indicates a ”0”. On the other hand, in the presence of received RF power, the oscillation
amplitude rises quickly past the threshold before quenching, which indicates a ”1”. In this
case, reception of a ”1” or a ”0” is determined by the speed at which oscillations reach a
prescribed threshold value after starting from a quenched state, where quenching is done
once for every bit cycle. In this mode of operation, the bit rate is limited by both the speed
at which oscillations grow and the speed at which they can be quenched.

The EOMO-based approach of this work differs in that it does not require quenching of
the oscillation. With reference to Figure 5.6(a), the EOMO’s electrodes are embedded in
a positive feedback loop with an electronic amplifier, providing enough gain for oscillation
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Figure 5.6: (a) Pictorial summary of the super-regenerative receiver. An electronic amplifier
placed in a positive feedback loop with the EOMO sustains oscillation while a tapered fiber
couples the optical field modulated by the input bit stream (b) into the EOMO, changing
the amplitude of oscillation (c). An envelope detector measuring the amplitude (d) feeds to
a comparator that recovers the data (e).

even in the absence of an optical input. An input light that is slightly blue-detuned from the
optical resonance wavelength (corresponding to a ”1” in OOK) induces radiation pressure,
increasing the total force (and the loop gain) applied to the mechanical resonator, and thereby
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raising the steady-state oscillation amplitude from the no light case (which corresponds to
a ”0”). The oscillation amplitude thus indicates whether a ”1” or a ”0” is received. Figure
5.6 illustrates this receiver operation by comparing time domain traces at the (c) EOMO
amplifier, (d) envelope detector, and (e) comparator outputs, for a given input bit stream
(b). Here, since the oscillator merely switches between amplitude states, the time it takes
for the amplitude to grow is shorter than growing from zero, so 0-to-1 transitions can be
quite fast.

Figure 5.7: Measured time-traces illustrating super-regenerative optical receiver operation.
(a) Input bit stream modulating a CW laser on resonance, (b) envelope detector output
showing the EOMO oscillation amplitude, and (c) output bit stream for a 1 mV thresh-
old from comparator output. The output waveform is identical to the input, as desired,
confirming successful wireless optical OOK reception with a 2 kbps data rate.
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5.8 Experimental Results

The EOMO used to demonstrate optical reception via the setup of Figure 5.6(a) comprises
a polysilicon ring with 30 µm inner and 40 µm outer radii physically attached at its outer
edge to a 6 µm wide silicon nitride ring, yielding a 36.9-MHz mechanical resonance frequency
with a mechanical Qm of 15,740.

EOMO and receiver performance measurements used the custom-built vacuum chamber
of [4] as in Chapter 4, in which a sealed probe station provides easy access to device electrodes,
and nano-positioning piezo stages provide precise control of optical coupling. To construct
the complete optical receiver, the EOMO’s electrical ports connect to a sustaining electronic
amplifier realized by a Zurich Instruments’ HF2LI lock-in unit. Here, the use of a lock-in
amplifier provides a simple off-chip implementation with enhanced noise rejection while also
conveniently serving as the next stage envelope detector.

Figure 5.7 presents measured time-traces confirming receiver operation. Here, an input
bit stream modulates the power of a CW 1550 nm laser between 13 µW, indicating a ”0”,
and 750 µW, indicating a ”1”. This modulated light input then couples to the EOMO,
modulating its radiation pressure gain, thereby modulating the oscillation amplitude. The
EOMO’s electrical output then feeds an envelope detector that produces the envelope trace
in Figure 5.7(b). The amplitude trace is then directed to a comparator that produces the
output bit stream (Figure 5.7(c)) which is identical to the input stream of Figure 5.7(a),
confirming successful optical OOK reception with a 2 kbps data rate.

5.9 Conclusions

An integrated EOMO has realized a first super-regenerative optical receiver that operates
by harnessing the radiation-pressure gain of the EOMO to render its oscillation amplitude
a function of the intensity of light coupled into the oscillator. Unlike its RF analogues, this
super-regenerative receiver rendition operates without the need to periodically quench the
oscillation, and this simplifies the receiver architecture while increasing the attainable receive
bit rate. The demonstrated recovery of a 2 kbps bit stream from an OOK modulated 1550
nm laser input by this fully functional EOMO-based optical receiver encourages expansion
of this capability to versions that support faster bit rates, perhaps made possible by tweaks
to the mechanical and optical Q’s of the multi-material device.

By removing the need for the expensive III-V compound semiconductor materials often
used in conventional optical receivers, this optical super-regenerative receiver additionally
offers a lower cost alternative for sensor network applications. Indeed, the operation modes
and mechanisms demonstrated by this EOMO based receiver present one plausible approach
to a silicon-compatible single-chip receiver with WDM capability, where multiple devices
operating at different wavelengths decode the data simultaneously, allowing channelized
optical communications.
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Chapter 6

Conclusions

This closing chapter summarizes important results and contributions presented in this thesis
and proposes some future research on this work.

6.1 Summary of Achievements

Chapter 3 introduced a new engineering model for OMO operation in the unresolved sideband
regime based on intuitive feedback oscillator understanding. The model agrees well with
the established theory and also provides an intuitive understanding of the noise processes
that contribute to the oscillator phase noise. Based on this understanding, a new phase
noise model has been introduced with expressions for phase noise in terms of the design
parameters, highlighting the importance of increasing mechanical-Q for low phase noise, low
power operation. Optical-Q was interestingly found to have adverse effects on the phase
noise and threshold power. Although higher Qo reduces the threshold power, it also limits
the maximum oscillation amplitude, hence limits the signal-to-noise ratio which essentially
determines the phase noise. If the goal is to get low phase noise within an acceptable
operating power, Qo should only be high enough to meet the power budget. This motivated
an effort to increase Qm of a reasonably good Qo silicon nitride cavity that we have taken in
this work.

In Chapter 4, a multi-material coplanar ring OMO structure has been shown to boost the
Qm of a silicon nitride ring cavity by more than 2× toward realization of the simultaneous
high Qm > 22, 000 and Qo > 280, 000 needed to maximize OMO performance. This is the
highest measured Qm among all the OMO’s (operating above-threshold) to the best of our
knowledge. The design is shown to have little or no effect on the optical properties of the
high Qo silicon nitride ring cavity, allowing retention of high Qo despite the introduction of
an optically lossy material (i.e. polysilicon) interface in the vicinity of the optical cavity.
With optimized Q’s, the coplanar ring OMO bests the previous state-of-the-art by reducing
the phase noise at 1 kHz and 1 MHz offsets from the carrier by a measured 12 dB that
matches the prediction of new phase noise model introduced in Chapter 3. This phase noise
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performance, when divided down to 13 MHz using oscillator figure-of-merit, satisfies GSM
reference oscillator phase noise specification at far-from-carrier offsets; while being only 4 dB
higher at 1 kHz offset, proving OMO technology to be a strong competitor for MEMS and
even quartz-based oscillators. The boosted-Qm further reduces the required operating power
for a good phase noise to only 3.7 mW demonstrated in this work, making the coplanar ring
OMO an ideal candidate to replace the power hungry microwave oscillator for a low power
CSAC.

The use of high Qm doped polysilicon as one of the materials further enables electrically
coupled input/outputs, as well as an electrical stiffness-based voltage controlled frequency
tuning very much needed for locking in the target low-power CSAC application. The mea-
sured 3 ppm/V frequency shift is suitable for locking to the Rb vapor cell in a CSAC as
conceptually demonstrated in the harmonic locking experiment that uses an external sig-
nal source instead of a Rb reference. A second multi-material OMO design using vertically
coupled stacked-rings has also been demonstrated to achieve much larger frequency tuning
coefficient of 170 ppm/V, which unfortunately had lower Qm due to unfavorable variations
in the fabrication process.

Chapter 5 presented a first OMO-based super-regenerative optical receiver that operates
by harnessing the radiation-pressure gain of an electrically sustained electro-optomechanical
oscillator. A fully-functional receiver operation has been demonstrated with 2 kbps bit
stream from an OOK modulated laser. The OMO-based optical receiver offers a lower cost
alternative for sensor network applications by removing the need for the expensive III-V
compound semiconductor materials often used in conventional optical receivers.

6.2 Future Research Directions

This thesis demonstrated that the OMO technology can provide good oscillator performance
just like other MEMS oscillators. To be even more competitive, further improvement in
phase noise and threshold power can be achieved by further optimizing the OMO structure.
One possibility is to use diamond ring instead of polysilicon used in this thesis to further
boost the Qm. If reduction in threshold power is also required, a PSG ring can replace
the silicon nitride cavity. In fact, we pursued this avenue initially with a stacked-ring OMO
structure but had fabrication difficulties with rough diamond film heavily effecting the optical
performance since we did not employ a CMP step to yield a smooth surface for optical ring.
Later a polysilicon-silicon nitride film process was developed for an easier process and CMP
step was included. It would be interesting to see results of a successfully fabricated diamond-
PSG or diamond-silicon nitride OMO structure, which should have better performance.

Of course a demonstration of OMO-based CSAC would be the most interesting one to
see. The achievements presented here already suggests that it should be doable.

On the optical receiver side, much higher data rates can be pursued using OMO’s operat-
ing at higher oscillation frequencies. This would require high electromechanical coupling to
reduce the motional resistance that tends to increase at higher frequencies due to increased
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stiffness. A high frequency stacked-ring OMO would serve very well for this purpose. In the
meantime, even higher data rates can be achieved by going to WDM communication scheme
instead of OOK, where the optical frequency selectivity of the OMO can be exploited to use
multiple channels each being decoded by a separate OMO.
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Appendix A

Coplanar Ring OMO Process Traveler

1. Start with 4 blank 6” n-type Si wafers. Scribe wafers near major flat on the front

2. Pre-furnace cleaning

• Tool: msink6

• Step: piranha clean. Temp: 120◦C

• Quick dump rinse: 4 cycles. Spin rinse dry

3. Isolation oxide deposition

• Tool: tystar11

• Recipe: 11SULTOA

• Temp: 450◦C

• Time: 04:30:00

• Goal: 3000 nm

4. Isolation oxide densification

• Tool: tystar2

• Recipe: 2N2ANNLA. Temp: 950◦C

• Time: 00:30:00

5. Isolation silicon nitride deposition

• Tool: tystar 17

• Recipe: LSNTD.017. Temp: 835◦C

• Time: 02:05:00

• Goal: 350 nm
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6. Polysilicon interconnect deposition

• Tool: tystar 16

• Recipe: 16SDPLYA. Temp: 615◦C

• Time: 04:00:00

• Goal: 350 nm

7. Alignment mark and interconnect layer lithography

• Spin resist. Tool: svgcoat6. Recipe: 1-2-1 (1.48 krpm spin speed). Temp: 130◦C

• Expose PM marks. Tool: ASML. Mask: PM Mark

• Develop. Tool: svgdev6. Recipe: 1-1-9. Temp: 130◦C

• Expose interconnect. Tool: ASML. Mask: POLY1

• Develop. Tool: svgdev6. Recipe: 1-1-9. Temp: 130◦C

• Hard bake resist. Tool: UVBake. Recipe: U

8. Polysilicon interconnect etch

• Tool: lam8

• Recipe: 8001

• Time: Obtain from test wafer (00:01:20 approximately)

9. Pre-furnace cleaning

• Tool: msink8

• Step: piranha clean. Temp: 120◦C

• Quick dump rinse: 4 cycles. Spin rinse dry

• Tool: msink6

• Step: piranha clean. Temp: 120◦C

• Quick Dump Rinse (QDR): 4 cycles. Spin Rinse Dry (SRD)

10. Sacrificial oxide deposition

• Tool: tystar12

• Recipe: 12SULTON. Temp: 450◦C

• Time: 04:00:00

• Goal: 2500 nm

11. Sacrificial oxide densification
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• Tool: tystar3

• Recipe: 3N2ANNLA. Temp: 1000◦C

• Time: 00:30:00

12. Sacrifical oxide CMP

• Tool: cmp

• Recipe: 8 psi DF, 6 PSI BP, 33 rpm table and 14 rpm chuck spin.

• CMP until all the topography on oxide is removed (Time: 00:01:00 approxi-
mately).

• Wafer clean. Tool: sinkcmp. Recipe: QDR water rinse. Manual cleaning with
sponge. Ultrasonic bath with 5% NH4OH in DI solution for 10 minutes.

13. Metrology: surface topology

• Tool: asiq

• Verify removal of topography with surface profile.

14. Cavity silicon nitride deposition

• Tool: tystar9

• Recipe: 9SNITA. Temp: 800◦C

• Time: 02:15:00

• Goal: 400 nm

15. Cavity silicon nitride lithography

• Spin resist. Tool: svgcoat6. Recipe: 1-2-1 (1.48 krpm spin speed). Temp: 130◦C

• Expose sacrificial oxide. Tool: ASML. Mask: OPTICAL1

• Develop. Tool: svgdev6. Recipe: 1-1-9. Temp: 130◦C

• Hard bake resist. Tool: UVBake. Recipe: U

16. Cavity silicon nitride etch

• Tool: ptherm

• Recipe: CHF3 at 50 sccm and O2 at 2 sccm with 200 W power

• Time: Obtain from test wafer (00:14:00 approximately)

17. Pre-furnace cleaning

• Tool: msink8
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• Step: piranha clean. Temp: 120◦C

• Quick dump rinse: 4 cycles. Spin rinse dry

• Tool: msink6

• Step: piranha clean. Temp: 120◦C

• Quick Dump Rinse (QDR): 4 cycles. Spin Rinse Dry (SRD)

18. Protective oxide deposition

• Tool: tystar12

• Recipe: 12SULTON. Temp: 450◦C

• Time: 00:09:30

• Goal: 130 nm

19. Protective oxide densification

• Tool: tystar3

• Recipe: 3N2ANNLA. Temp: 1000◦C

• Time: 01:00:00

20. Protective oxide lithography

• Spin resist. Tool: svgcoat6. Recipe: 1-2-1 (1.48 krpm spin speed). Temp: 130◦C

• Expose sacrificial oxide. Tool: ASML. Mask: OPTICAL2

• Develop. Tool: svgdev6. Recipe: 1-1-9. Temp: 130◦C

• Hard bake resist. Tool: UVBake. Recipe: U

21. Protective oxide etch

• Tool: centura-mxp

• Recipe: mxp-ox-var

• Time: Obtain from test wafer (00:01:00 approximately)

• Remove PR. Tool: matrix. Time; 00:02:30

22. Anchor lithography

• Spin resist. Tool: svgcoat6. Recipe: 1-2-1 (1.48 krpm spin speed). Temp: 130◦C

• Expose sacrificial oxide. Tool: ASML. Mask: ANCHOR

• Develop. Tool: svgdev6. Recipe: 1-1-9. Temp: 130◦C

• Hard bake resist. Tool: UVBake. Recipe: U
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23. Anchor etch

• Tool: centura-mxp

• Recipe: mxp-ox-var

• Time: Obtain from test wafer (00:09:30 approximately)

24. Pre-furnace cleaning

• Tool: msink8

• Step: piranha clean. Temp: 120◦C

• Quick dump rinse: 4 cycles. Spin rinse dry

• Tool: msink6

• Step: piranha clean. Temp: 120◦C

• Step: Quick Dump Rinse (QDR): 4 cycles. Spin Rinse Dry (SRD)

• Step: quick (∼ 5 sec) 10:1 BHF dip to remove native oxide

• Step: Quick Dump Rinse (QDR): 4 cycles. Spin Rinse Dry (SRD)

25. Polysilicon structure and electrode deposition

• Tool: tystar 16

• Recipe: 16SDPLYB. Temp: 615◦C

• Time: 22:40:00

• Goal: 2000 nm

26. Hard-mask oxide deposition

• Tool: tystar12

• Recipe: 12SULTON. Temp: 450◦C

• Time: 01:40:00

• Goal: 1200 nm

27. Hard-mask oxide densification

• Tool: tystar3

• Recipe: 3N2ANNLA. Temp: 1000◦C

• Time: 01:00:00

28. Polysilicon structure and electrode lithography

• Spin resist. Tool: svgcoat6. Recipe: 1-2-1 (1.48 krpm spin speed). Temp: 130◦C
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• Expose structure and electrodes. Tool: ASML. Mask: POLY2

• Develop. Tool: svgdev6. Recipe: 1-1-9. Temp: 130◦C

• Hard bake resist. Tool: UVBake. Recipe: U

29. Hard-mask oxide etch

• Tool: centura-mxp

• Recipe: mxp-ox-var

• Time: Obtain from test wafer

30. Polysilicon structure and electrode etch

• Tool: lam8

• Recipe: 8001

• Time: Obtain from test wafer

31. Dice wafers

• Tool: disco

32. Release structures wafers

• Tool: msink18

• Recipe: 49% HF. Time: According to sample size

33. PROCESS COMPLETE




