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ABSTRACT OF THE DISSERTATION

Lattices of minimal covolume in real special linear groups

by

François Thilmany

Doctor of Philosophy in Mathematics

University of California San Diego, 2019

Professor Alireza Salehi Golsefidy, Chair

The objective of the dissertation is to determine the lattices of minimal covolume in

SLn(R), for n ≥ 3. Relying on Margulis’ arithmeticity, Prasad’s volume formula, and work of

Borel and Prasad, the problem will be translated in number theoretical terms. A careful analysis

of the number theoretical bounds involved then leads to the identification of the lattices of minimal

covolume. The answer turns out to be the simplest one: SLn(Z) is, up to automorphism, the

unique lattice of minimal covolume in SLn(R). In particular, lattices of minimal covolume in

SLn(R) are non-uniform when n ≥ 3, contrasting with Siegel’s result for SL2(R). This answers

for SLn(R) the question of Lubotzky: is a lattice of minimal covolume typically uniform or not?
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Chapter 1

Introduction

A brief history

The study of lattices of minimal covolume in SLn (or for that matter, in Lie groups in

general) originated with Siegel’s work [Sie45] on SL2(R), which in turn can be traced back to

Hurwitz’s work [Hur92]. Siegel showed that in SL2(R), lattices of minimal covolume are given by

the conjugates of the (2, 3, 7)-triangle group (the stabilizer in SL2(R) of a (2, 3, 7)-triangle tiling).

He used the action of SL2(R) on the hyperbolic plane to relate the covolume of the lattice to the

area of its Poincaré fundamental domain, which tiles the plane. The result then follows from the

fact that the (2, 3, 7)-triangle is the (ideal) polygon with smallest area which tiles the hyperbolic

plane. In particular, lattices of minimal covolume in SL2(R) are arithmetic and uniform. Siegel

raised the question of determining which lattices attain minimum covolume in groups of isometries

of higher-dimensional hyperbolic spaces.

For SL2(C), which acts on hyperbolic 3-space, the minimum among non-uniform lattices

was established by Meyerhoff [Mey85]; among all lattices in SL2(C), the minimum was exhibited
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more recently by Gehring, Marshall and Martin [GM09, MM12] using geometric methods, and is

attained by a (unique up to conjugacy) uniform lattice.

Using the action of SL2

(
Fq((t))

)
on its Bruhat-Tits tree and Bass-Serre theory, Lubotzky

established the analogous result [Lub90] for SL2

(
Fq((t))

)
, where this time SL2

(
Fq[t−1]

)
attains the

smallest covolume. Lubotzky observed that in this case, as opposed to the (2, 3, 7)-triangle group

in SL2(R), the lattice of minimal covolume is not uniform; he then asked whether, for a lattice of

minimal covolume in a semi-simple Lie group, the typical situation is to be uniform, or not.

Progress has been made on this question. By proving a quantitative version of the

Kazhdan–Margulis theorem, Salehi Golsefidy showed [SG09] that for most Chevalley groups G of

rank at least 2, G
(
Fq[t−1]

)
is the unique (up to automorphism) lattice of minimal covolume in

G
(
Fq((t))

)
. Using Prasad’s formula, Salehi Golsefidy also obtained [SG13] that for most simply

connected simple groups over Fq((t)), a lattice of minimal covolume will be non-uniform (provided

Weil’s conjecture on Tamagawa numbers holds).

On the other side of the picture, when the rank is 1, Belolipetsky and Emery [Bel04,

BE12] determined the lattices of minimal covolume among arithmetic lattices in SO(n, 1)(R)

for n ≥ 5, and showed that they are non-uniform. For SU(n, 1)(R), Emery and Stover [ES14]

determined the lattices of minimal covolume among the non-uniform arithmetic ones, but to the

best of the author’s knowledge, this has not been compared to the uniform arithmetic ones in this

case. Unfortunately, in the rank 1 case, it is not known whether a lattice of minimal covolume is

necessarily arithmetic. A summary of the advances made in this case (along with references) can

be found in [Bel14].

The most recent results concerning lattices of minimal covolume are due to Emery and

Kim [EK18], who determined the lattices of minimal covolume in Sp(n, 1)(R) for n ≥ 2, both

2



among uniform lattices and among non-uniform lattices. For n ≥ 3, lattices of minimal covolume

in Sp(n, 1)(R) are again non-uniform.

The above results give a partial answer to the question of Lubotzky. In this document,

we work out the case of SLn(R). We show that for n ≥ 3, up to automorphism, the non-uniform

lattice SLn(Z) is the unique lattice of minimal covolume in SLn(R). This is in sharp contrast

with Siegel’s lattice in SL2(R).

Some open questions and further directions

Describing the lattices of minimal covolume in an arbitrary (real) Lie group is likely an

unreasonably difficult question, namely because of the groups of rank 1. A more reasonable task

would be to identify the lattices of minimal covolume in all (remaining) split real Lie groups,

although this might be very tedious for groups of small rank.

In the mean time, Lubotzky’s question remains open. The evidence stemming from the

present work leads to the following conjecture (which is a particular case of Lubotzky’s question).

Conjecture. There exists a number N ∈ N with the following property. Let G be any real

(semi)simple Lie group of real rank at least N . If Γ is a (irreducible) lattice of minimal covolume

in G, then Γ is not uniform.

As was reported above, arithmeticity holds for all known lattices of minimal covolume

in simple real Lie groups of rank 1. An illustration of how control on the covolume might force a

lattice to be arithmetic can be seen in the work of Klingler [Kli03], who proved the arithmeticity of

fake projective planes (see also Yeung [Yeu04]). This justifies the following very hard conjecture.

Conjecture (Folklore). Let G be a simple real Lie group. Then any lattice of minimal covolume

in G is arithmetic.
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Somehow, p-adic Lie groups have been mostly left out from the study of lattices of

minimal covolume. The only p-adic Lie groups for which a lattice of minimal covolume is known

are SL2(K) for K a finite extension of Qp (p 6= 2), for which Lubotzky and Weigel [LW99]

classified all lattices of minimal covolume using their action on the Bruhat-Tits tree of SL2(K)

and Bass-Serre theory, and SL3(Q2), in which Allcock and Kato [AK13] found the two (up to

conjugacy) lattices of minimal covolume using geometric arguments also coming from the action

on the Bruhat-Tits building. A good point to resume would thus be to study lattices of minimal

covolume in SLn(Qp).

It should be noted that in semisimple p-adic Lie groups, lattices are always uniform (see

for example [Tam65]). Thus Lubotzky’s question has an immediate (unenlightening) answer in

this case.

4



Chapter 2

Background material

2.1 Affine algebraic groups

In this section, we recall what affine algebraic groups are, and briefly describe their

structure and properties. We refer the reader to [Bor91], [PR94, ch. 2], [Spr98] or [Spr79] for

proofs, examples and more on this topic and on the topic of section 2.2.

Let k be a field (which we will later on assume to be perfect) and k denote its algebraic

closure.

2.1.1 Definition (Algebraic group). An algebraic group over k (or simply a k-group) consists

of the datum (G,m, i, e), where G is an algebraic variety defined over k, m : G × G → G and

i : G → G are morphisms of varieties (called multiplication or product, and inversion), and

e : {∗} → G is a distinguished point of G (called identity), subject to the usual group axioms:

(i) Identity: m ◦ (e× id) ◦ q1 = id = m ◦ (id× e) ◦ q2 as morphisms G→ G (here q1 and q2 are

the isomorphisms G→ {∗} ×G and G→ G× {∗}).

(ii) Associativity: m ◦ (m× id) = m ◦ (id×m) as morphisms G×G×G→ G
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(iii) Inverse: m ◦ (id× i) ◦ δ = e ◦ p = m ◦ (i× id) ◦ δ as morphisms G→ G (here δ : G→ G×G

is the diagonal embedding g 7→ (g, g) and p the unique morphism G→ {∗}).

In other words, G is a group object in the category of algebraic varieties over k. Almost always,

m, i and e will be dropped from the notation: we will say G is an algebraic group, m(g, h) will

be abbreviated gh, i(g) abbreviated g−1, the identity element will be denoted e or id regardless

of the group, etc.

When the underlying variety G is affine, we say that G is an affine algebraic group. In

virtue of the anti-equivalence of the categories of affine k-varieties and of reduced k-algebras of

finite type, (G,m, i, e) is an algebraic group if and only if (k[G],m∗, i∗, e∗) is a Hopf algebra. Here

and in the following, k[G] denotes the ring of k-regular functions on G, m∗ : k[G]→ k[G]⊗k k[G]

and i∗ : k[G] → k[G] denote the ring morphisms induced by m and i, and e∗ : k[G] → k is the

evaluation map at e. We leave as an exercise for the interested reader to determine k[G], m∗, i∗

and e∗ in the examples below.

2.1.2 Remark (Affine group schemes). In the definition above, we can replace k by an arbitrary

ring R, G by a scheme over SpecR and require m, i and e to be morphism of schemes over SpecR,

to obtain the definition of a group R-scheme. The group scheme is called affine (resp. smooth) if

the underlying scheme G is so.

2.1.3 Examples.

(i) If G and H are affine algebraic groups, then the product variety G×H is an algebraic group

for componentwise multiplication and inversion.

(ii) If H is a closed subvariety of G which is a subgroup with respect to the operations m and i

of G, then H endowed with the restrictions of m and i is an algebraic group, called a closed

subgroup of G.
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(iii) Any finite group can be seen as an (affine) algebraic k-group of dimension 0. Such group,

unless trivial, will not be connected.

(iv) The affine line can be identified with k and endowed with the corresponding additive group

structure. The resulting affine algebraic group is called the additive group and is denoted

Ga. Combined with the previous example, we see that affine n-space kn is an algebraic

group whose product coincides with the usual componentwise addition.

(v) The hyperbola {(x, y) ∈ k2 | xy = 1}, endowed with the morphisms m : ((x, y), (x′, y′)) 7→

(xx′, yy′) and i : (x, y) 7→ (y, x), is an algebraic group, called the multiplicative group and

denoted Gm.

(vi) The special and general linear groups. Let Mn(k) denote the set of n × n matrices with

coefficients in k. Mn(k) has a canonical structure of k-variety, obtained by identifying it with

affine n2-space kn2 componentwise. Moreover, as multiplication of matrices is polynomial

in terms of the entries, we see that the multiplication map m : Mn(k) ×Mn(k) → Mn(k)

is a morphism of k-varieties. For the same reason, the determinant det : Mn(k) → k is a

morphism of varieties, and in consequence, the set SLn(k) = {g ∈ Mn(k) | det g = 1} is a

closed subvariety of Mn(k). Of course,m restricts to a morphism SLn(k)×SLn(k)→ SLn(k),

and in virtue of Cramer’s rule, g 7→ g−1 defines a morphism of varieties i : SLn(k)→ SLn(k).

Altogether, (SLn(k),m, i, id) is an affine algebraic group, called the (n × n) special linear

group over k.

Similarly, the group GLn(k) of invertible n× n matrices is an algebraic group. To see this,

embed GLn(k) in SLn+1(k) via the morphism of varieties g 7→
(
g 0
0 det(g)

)
. It is then clear

that its image is a closed subgroup of SLn(k).
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(vii) Extension of scalars. Let l be an extension of k and G be an algebraic group over k. Then

the variety Gl obtained from G by extending scalars to l is again an algebraic group (over

l now), with the corresponding morphisms ml and il. This follows immediately from the

functoriality of the extension of scalars. In terms of rings of regular functions, we have

l[Gl] ∼= l⊗k k[G], and m∗l , i
∗
l are induced from m∗ and i∗ in the obvious way. In particular,

if G is given as a closed subvariety of affine space kn, we see that Gl is simply the closed

subvariety of ln given by the same equations, seen over l.

If G and H are two k-groups, we will say that G and H are isomorphic over l, or that G

and H are l/k-forms of each other, if the groups Gl and Hl are isomorphic as algebraic

l-groups. If there exists some field l such that G and H are isomorphic over l, we simply

say that G and H are k-forms of each other.

(viii) Special unitary groups. Let l be a separable quadratic extension of k, and let us denote

σ the non-trivial automorphism of l fixing k. Let h : ln × ln → l be a non-degenerate

hermitian form (i.e. h is σ-sesquilinear and symmetric, and no non-zero vector is orthogonal

to the whole space). The special unitary group SUh(k) = {g ∈ SLn(l) | h(gx, gy) = h(x, y)}

associated to h can be endowed with the structure of an algebraic k-group as follows. Pick

a basis of l over k, and use it to identify Mn(l) with Mn(k2) (as vector k-spaces). In view

of the properties of h and the fact σ is k-linear, we see that the conditions defining SUh(k)

can be translated into polynomial equations on Mn(k2), which means that SUh(k) can be

identified with a closed k-subvariety of Mn(k2). (SUh(k) is however not a l-subvariety of

Mn(l), because σ : l→ l is not polynomial over l; hence SUh(k) is not an algebraic l-group.)

It remains to observe that matrix multiplication in Mn(l) is given by polynomials when

translated to Mn(k2), but this is clear once we observe that the product map l × l → l

8



induces a bilinear (hence polynomial) map k2 × k2 → k2.

It is interesting to see what happens to G = SUh(k) when extending scalars from k to

l. Let J be the matrix of the hermitian form h in the canonical basis (J is invertible and

σ(J) = J t). In view of the discussion above, we can identify the l-points of Gl with matrices

A ∈ SLn(l⊗k l) satisfying AJσ(A)t = J , where σ acts componentwise on A and acts (say) on

the first tensor component of l⊗ l. If l = k(α) and f ∈ k[t] denotes the minimal polynomial

of α over k, we see that as rings,

l ⊗k l ∼= (k[t]/f)⊗k l ∼= l[t]/f = l[t]/(t− α)(t− σ(α)) ∼= l ⊕ l,

with the action of σ translating to switching both components of l ⊕ l. Thus, we can

identify SLn(l ⊗k l) ∼= SLn(l ⊕ l) ∼= SLn(l)× SLn(l) and the action of σ again translates to

switching both components of SLn(l)×SLn(l). Using this identification, we are now looking

for matrices A = (A1, A2) ∈ SLn(l) × SLn(l) satisfying A(J, J t)σ(A)t = (J, J t); in other

words, A1 and A2 satisfy A1JA
t
2 = J and A2J

tAt1 = J t. All solutions to these equations

are given by (A1, J
tA−t1 J−t) with A1 ∈ SLn(l), so that projecting on the first component

yields an isomorphism between the underlying groups Gl → SLn(l). By examining the

above argument more carefully, one can show that this morphism is in fact an isomorphism

of algebraic l-groups. In short, SUh is a l/k-form of SLn.

2.1.4 Remark (The functor of points). Although most of it will be hidden behind the notation,

it is important to emphasize that an algebraic k-group G has more structure than just the under-

lining group G and its Zariski topology. The extra structure is captured by the structure sheaf

of G, and m, i are given to be morphisms of ringed spaces. If G is affine, the ring k[G] of regular

functions and the maps m∗, i∗ capture this structure.
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This is especially crucial if the base field is not algebraically closed. For example, consider

the Hopf Q-algebra Q[T, T−1] with coproduct T 7→ T ⊗ T and antipode T 7→ T−1 (this is the

Hopf algebra of the multiplicative group Gm, see 2.1.3 (v)). The two quotient Hopf Q-algebras

Q[T, T−1]/(T 2− 1) and Q[T, T−1]/(T 4− 1) correspond to two algebraic Q-groups that we denote

µ2 and µ4. It is readily seen that each of these have an underlying group consisting of 2 elements

(with the discrete topology); hence both underlying groups µ2(Q) and µ4(Q) are isomorphic.

Nevertheless, µ2 and µ4 are not isomorphic as algebraic groups. This is immediate from the fact

that their Hopf algebras are not isomorphic, but can also be seen by computing the Q[i]-points

(introduced below): µ2(Q[i]) has two elements, and µ4(Q[i]) is cyclic of order 4.

With this in mind, we introduce the functor of points. Given an affine algebraic k-

group G and a k-algebra A, one can form the group G(A) of A-points of G by setting G(A) =

Homk-alg(k[G], A). The group structure comes from the Hopf algebra structure of k[G]: if g, h ∈

G(A), then gh is the element of Homk-alg(k[G], A) given by the composition

k[G]
m∗−−→ k[G]⊗k k[G]

g⊗h−−→ A⊗k A
multiplication−−−−−−−−→ A

and similarly, g−1 ∈ Homk-alg(k[G], A) is given by

k[G]
i∗−→ k[G]

g−→ A.

When G is given as a closed subvariety of affine space kn, this precisely amounts to looking for

solutions in An of the equations defining G. The group operations in these coordinates are in turn

given by the same polynomials as for G over k, but seen over A. Given a morphism f : A→ B of

k-algebras, one obtains a morphism of groups G(A) → G(B) by sending g 7→ g ◦ f . One readily

checks that this is well behaved with respect to composition, hence G(−) is a representable functor

from the category of k-algebras to the category of groups. In virtue of Yoneda’s lemma, one can
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recover k[G], hence the affine algebraic group G, from the knowledge of this functor.

This construction should be reminiscent of extension of scalars (see 2.1.3 (vii)): indeed,

the group Gl(l) of l-points of Gl is nothing but the group G(l) of l-points of G. More generally,

the functor of points of Gl is simply the functor of points of G restricted to the category of

l-algebras, which can be canonically seen as a subcategory of the category of k-algebras. Thus,

in what follows, we will simply drop the extension l from the notation Gl.

Affine algebraic groups are also called linear algebraic groups because of the following

important theorem.

2.1.5 Theorem (Embedding in GLn). Let G be an affine algebraic k-group. There exists a

positive integer n and an embedding G→ GLn(k) of G onto a closed subgroup of GLn(k).

Jordan decomposition

In this subsection, and therefore in any future statement relying on it, we will assume

out of simplicity that all fields involved are perfect. This is not a restriction, as the fields that we

will be concerned with later on are of characteristic zero.

2.1.6 Definition (Semisimple and unipotent elements). Let G be an affine algebraic k-group.

An element g ∈ G is called semisimple (resp. unipotent) if the image of g under some (hence any)

embedding ρ : G → GLn(k) is a diagonalizable matrix (resp. is a unipotent matrix, i.e. has 1 as

only eigenvalue).

2.1.7 Theorem (Jordan decomposition). Any element g ∈ G can be written uniquely as g =

gsgu with gs ∈ G is semisimple, gu ∈ G is unipotent, and gs and gu commute. Moreover, this

decomposition is preserved by morphisms of algebraic groups: if f : G→ H is such a morphism,
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then f(g)s = f(gs) and f(g)u = f(gu). An element g ∈ G is semisimple (resp. unipotent) precisely

when g = gs (resp. g = gu).

2.1.8 Definition (Unipotent, reductive, semisimple and simple groups).

(i) An affine algebraic k-group G is called unipotent if every element of G is unipotent.

(ii) The (solvable) radical R(G) of G is the largest connected solvable (closed) normal subgroup

of G.

(iii) The unipotent radical Ru(G) of G is the largest connected unipotent (closed) normal sub-

group of G. It coincides with the set of unipotent elements of the radical R(G).

(iv) A connected affine k-group G is called reductive if Ru(G) is trivial. If further R(G) is trivial,

then G is called semisimple.

(v) A connected affine k-group G is called (almost) simple if G has no non-trivial proper closed

normal k-subgroups. A simple k-group is necessarily semisimple. If G remains simple over

any extension l of k, we say that G is absolutely (almost) simple.

If k has characteristic 0, then any affine algebraic k-group G admits a Levi decomposition,

meaning that there exists a k-subgroupM , called a Levi subgroup of G, whose identity component

is reductive and is such that G is the semidirect product of M by the unipotent radical Ru(G).

Moreover, any two Levi k-subgroups of G are conjugate under Ru(G)(k); in particular they are

k-isomorphic. We may thus call M the reductive part of G, and the semisimple k-group [M,M ]

is called the semisimple part of G.
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The Lie algebra of an algebraic group

2.1.9 Definition (Lie algebra, adjoint map). Let G be an affine algebraic group defined over k.

The tangent space of G at the point e is called the Lie algebra of G and is denoted Lie(G) or

g. It can be identified with the space of left-invariant derivations of k[G] and, as such, endowed

with the usual bracket for derivations. With this operation, Lie(G) is a Lie k-algebra, and Lie(−)

defines a functor from the category of algebraic k-groups to the category of Lie k-algebras.

The group G acts on itself via conjugation: if g ∈ G, we denote cg : G→ G : h 7→ ghg−1.

The differential dcg : g→ g is an automorphism of the Lie algebra g, called the adjoint of g and

denoted Ad(g). The assignment Ad : G→ GL(g) in turn defines a morphism of algebraic groups,

called the adjoint map. The derivative dAd of the adjoint map is a morphism of Lie algebras

g→ Lie(GL(g)). The Lie algebra Lie(GL(g)) can be canonically identified with gl(g), and under

this identification, dAd corresponds to ad : g → gl(g) : x 7→ [x,−], the adjoint map of the Lie

algebra g.

Tori and characters

2.1.10 Definition (Torus). An algebraic k-group T is called a torus if T is isomorphic to (Gm)r

over the algebraic closure k of k. The integer r (which is also the dimension of T ) is called the

absolute rank of T . The rank of T over k (or k-rank) is the largest integer r′ such that there is

an embedding (Gm)r
′ → T defined over k. If T is isomorphic to (Gm)r over k, we say T is a split

torus.; this happens precisely when r = r′. On the other hand, when r′ = 0, we say that T is

k-anisotropic.

Over an algebraically closed field, tori can be characterized as those connected affine al-

gebraic groups which are abelian and have trivial unipotent radical (i.e. consist only of semisimple
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elements).

2.1.11 Example. The closed R-subgroup S of GLn(R) consisting of diagonal matrices is a R-split

torus of rank n.

The set of matrices
{(

x −y
y x

)
∈ GL2(R)

}
defines a closed subgroup T of GL2(R). As is

readily seen, this subgroup can be diagonalized over C:

(
1 i
i 1

)−1 ( x −y
y x

) (
1 i
i 1

)
=
(
x−iy 0

0 x+iy

)
,

and is isomorphic to (Gm)2 over C. Thus, T is a torus. However, the R-points of T are isomorphic

(as an abstract group) to C×, whereas the R-points of (Gm)2 are (R×)2. The torus T is thus not

split over R.

Nevertheless, T does contain a R-split torus of rank 1, namely the closed subgroup C of

T consisting of diagonal matrices. This shows that the rank of T over R is precisely 1. The kernel

T1 of the determinant
(
x −y
y x

)
7→ x2 + y2 is a closed connected subgroup of T , hence a torus, but

it is R-anisotropic. The product map C × T1 → T is a surjective morphism of R-groups, with

kernel µ2.

2.1.12 Definition (Characters and cocharacters). Let G be an algebraic k-group. A k-character

of G is a morphism of algebraic groups G → Gm defined over k. The set Xk(G) of k-characters

of G forms an abelian group under pointwise multiplication, called the group of characters of G.

The group Xk(G) of characters of G defined over k is abbreviated X(G).

A k-cocharacter of G (or sometimes a one-parameter multiplicative subgroup of G) is a

morphism of algebraic k-groups Gm → G. If G is an abelian group, the set X∨k of k-cocharacters

forms an abelian group under pointwise multiplication, called the group of cocharacters. As above,

we abbreviate X∨
k
by X∨.
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There is a pairing 〈 , 〉 : Xk(G) ×X∨k (G) → Z defined as follows. Given a k-character

χ and a k-cocharacter λ, the composition χ ◦ λ is a k-endomorphism of the group Gm. There is

thus an integer n such that χ ◦ λ is the map x 7→ xn; we set 〈χ, λ〉 = n. When G is abelian, this

pairing is bilinear.

2.1.13 Examples. (i) det : GLn → Gm is a character. One can show that in fact Xk(GLn) is

generated by det.

(ii) If T is a torus of k-rank r′, the groups Xk(T ) and X∨k (T ) are free abelian groups of rank r′

and the pairing 〈 , 〉 defined above is a perfect pairing.

The following theorem is crucial to understand the structure of simple groups, and allows

us to define the rank for an arbitrary affine algebraic group.

2.1.14 Theorem. Let G be a connected affine algebraic k-group. All maximal k-split tori of G

are conjugates under G(k). In particular, they all have the same rank.

2.1.15 Definition (Rank). Let G be a connected affine algebraic k-group. The rank of any

maximal k-split torus of G is called the rank of G over k (or simply k-rank of G). The absolute

rank of G is the rank of G over the algebraic closure k of k (note that over k, all tori split). If

the k-rank equals the absolute rank (i.e. if some maximal torus contained in G splits over k), we

say that G splits over k or that G is k-split. On the other hand, if the k-rank of G is 0, we say

that G is k-anisotropic, and G is called k-isotropic if its k-rank is at least 1.

Borel and parabolic subgroups

2.1.16 Definition. Let G be a connected affine algebraic k-group. A k-subgroup P is called a

parabolic subgroup if the quotient variety G/P is complete. If B is a parabolic subgroup of G

which is solvable, then B is called a Borel subgroup.
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Parabolic subgroups always exist (for example, G itself is a parabolic k-subgroup, but it

may be the only one). However, Borel subgroups need not exist (or rather, be defined over k) in

general. When G is k-split (in particular, if k is algebraically closed), Borel k-subgroups exist. If

Borel k-subgroups do exist, the group G is called quasisplit over k. In this case, one shows that

the Borel k-subgroups are precisely the minimal parabolic subgroups, and are also precisely the

maximal connected solvable subgroups of G. It is easy to see that if a closed subgroup P contains

a parabolic subgroup of G, then P itself is parabolic. Thus, if G admits a Borel k-subgroup, the

parabolic k-subgroups of G are characterized as those k-subgroups of G which contain a Borel

subgroup.

2.1.17 Theorem (Conjugacy of minimal parabolics). The minimal parabolic k-subgroups of G

are conjugate under G(k). In particular, if Borel k-subgroups exist, they are all conjugate under

G(k).

2.2 The structure of absolutely simple groups

In this section, G is an absolutely simple group defined over a perfect field k.

Let S be a maximal k-split torus of G. We let S act on g via the adjoint map. Since

S, hence Ad(S) consists of commuting semisimple elements, g splits as a (finite) direct sum of

eigenspaces for Ad(S), that we index by their weights α ∈ Φk(S) ∪ {0} ⊂ Xk(S):

g = g0 ⊕
⊕

α∈Φk(S)

gα where gα 6= 0 and Ad(s)(x) = α(s) · x for any s ∈ S, x ∈ gα.

One shows that g0 is the Lie algebra of the centralizer ZG(S) of S in G.

2.2.1 Definition (Roots). The set Φk(S) of non-zero weights of Ad(S) is called the set of k-roots

of G with respect to S. When the torus S is fixed, we write Φk instead of Φk(S) (this is acceptable
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in view of 2.1.14). When k = k, we drop k from the notation and write Φ(S) or Φ.

2.2.2 Theorem. The set Φk is an irreducible root system in (its span in) the vector space Xk⊗ZR.

Moreover precisely, there exists a set Φ∨k ⊂ X∨k of k-cocharacters called coroots, and a bijection

Φk → Φ∨k : α 7→ α∨ with the property that (Xk,Φk, X
∨
k ,Φ

∨
k ) is a root datum. (In particular, one

has 〈α, α∨〉 = 2.) This root system (resp. root datum) is reduced if G is k-split.

For the definition, properties and classification of root systems, we refer the reader to

[Bou07a]. As an illustration, we reproduce the list of all Dynkin diagrams of irreducible (reduced)

root systems in table 2.2.3. The Dynkin diagram of a root system has a vertex representing each

element of a basis of the root system, and two vertices α and β are connected by an edge, a double

edge pointing to the shortest vector, or a triple edge pointing to the shortest vector depending

whether 〈α, β∨〉 · 〈β, α∨〉 = 1, 2 or 3.

Table 2.2.3. Dynkin diagrams of the irreducible reduced root systems.

An E6

Bn E7

Cn E8

Dn F4

G2

Root groups, Weyl group and Bruhat decomposition

For each α ∈ Φk, there exists a unique unipotent k-subgroup Uα of G, called the root

group associated to α, whose Lie algebra is gα⊕g2α (= gα if 2α is not a root). The root groups are

normalized by S and their commutators are subject to the rule [Uα, Uβ] ⊂ Uα+β (by convention,

if χ ∈ Xk is not a root, we set Uχ = {e}).

The normalizer NG(S) acts on g via the adjoint action, and (equivalently) on the set

of root groups via conjugation, with its subgroup ZG(S) acting trivially. The induced map
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NG(S)(k)/ZG(S)(k)→Wk is an isomorphism onto the Weyl group Wk of the root system Φk. In

particular, we can find representatives in NG(S)(k) for the action of the Weyl group.

There is a Wk-equivariant bijection between bases of the root system Φk and minimal

parabolic k-subgroups of G containing S: given a basis α1, . . . , αr, the subgroup of G generated

by ZG(S) and the root groups Uα1 , . . . , Uαr is a minimal k-parabolic containing S. Conversely, if

P is a minimal k-parabolic containing S, its unipotent radical Ru(P ) is normalized by S, hence

Lie(Ru(P )) decomposes as a sum
⊕

α∈Φ+
k
gα of root spaces. The index set Φ+

k defines a set of

positive roots in Φk, or equivalently, a basis. In consequence, Wk acts simply transitively on the

set of minimal parabolics containing S.

Let P0 be a minimal parabolic k-subgroup containing S and let ∆ be the associated basis

for Φk. There is correspondence between parabolic subsets I of Φk containing ∆ and parabolic

subgroups P containing P0. To a parabolic subset I, one associates the group P = P0Wk,IP0,

whereWk,I is the subgroup ofWk generated by the reflections along the roots −I∩∆. Conversely,

given a parabolic P containing P0, its Lie algebra decomposes as Lie(P ) =
⊕

α∈I gα for some

parabolic subset I containing ∆. In particular, one has the Bruhat decomposition: G(k) =

P0(k)WkP0(k), where, in fact, the sets P0(k)wP0(k) are disjoint for different w ∈Wk.

2.2.4 Example. Let G = SLn(k). The k-subgroup S consisting of diagonal matrices is a maximal

k-split torus. As S is maximal among all tori (S is its own centralizer), we note that SLn(k) is

split. The characters

χi : a =

 a1 0 ··· 0
0 a2 ··· 0
...

...
. . .

...
0 0 ··· an

 7→ ai

for i = 1, . . . , n− 1 form a basis of the free abelian group Xk(S). The cocharacters

λi : x 7→ diag(1, . . . , 1, x, x−1, 1, . . . , 1) (with x in the ith position, i = 1, . . . , n− 1)
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form a basis of X∨k .

The Lie algebra of SLn(k) can be identified with sln(k), the Lie algebra of matrices with

trace zero. If we denote by eij the ijth elementary (nilpotent) matrix (which belongs to sln(k) as

soon as i 6= j), we see that Ad(a)(eij) = χi(a)χj(a)−1. In consequence, the set of roots is precisely

Φk(S) = {χiχ−1
j | i 6= j}. One can show that the set of coroots is Φ∨k (S) = {(λiλi+1 . . . λj)

±1 |

i < j} and check that Φk(S) is the root system of type An−1.

For i 6= j, Let uij(x) denote the elementary unipotent matrix with x as its ijth entry.

Then uij defines a isomorphism Ga → Uij : x → uij(x) onto the root group associated to the

root αij = χiχ
−1
j . The parabolic subgroups containing S can then be obtained as the groups

generated by S and some appropriate subset of the root groups {Uij | i 6= j}. For example, the

following subgroups are Borel subgroups containing S:{( ∗ ∗ ··· ∗
0 ∗ ··· ∗
...
...
. . .

...
0 0 ··· ∗

)
∈ SLn(k)

}
,

{( ∗ 0 ··· 0
∗ ∗ ··· 0
...
...
. . .

...
∗ ∗ ··· ∗

)
∈ SLn(k)

}
,


 ∗ 0 ∗ ··· ∗
∗ ∗ ∗ ··· ∗
0 0 ∗ ··· ∗
...
...
...
. . .

...
0 0 0 ··· ∗

 ∈ SLn(k)

 .

The spherical building

2.2.5 Definition (Spherical building). The spherical building of G over k is the abstract simplicial

complex B = B(G/k) constructed as follows. The simplices of B are the proper parabolic k-

subgroups of G. A simplex P is a facet of a simplex P ′ if and only if P ′ ⊂ P . The maximal

simplices of B are called chambers, and the facets of codimension 1 of a chamber are called panels.

The group acts on B by conjugation, and in virtue of 2.1.17, this action is transitive on the

chambers. In particular, all chambers have the same dimension d. The rank of B is the integer

d+ 1; it equals the k-rank of G.

Thus, the vertices of the building B are the maximal proper parabolic k-subgroups,

and a set {P1, . . . , Pm} of simplices determines a simplex of B if and only if the intersection
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P1 ∩ · · · ∩ Pm (contains, hence) is a parabolic subgroup. Conversely, the vertices of a given

simplex P are uniquely determined: they are exactly the maximal proper parabolics containing

P . Since parabolic subgroups are self-normalizing, the stabilizer of any simplex P is precisely P .

As a consequence, if an element g ∈ G(k) stabilizes a simplex P , it fixes P pointwise.

The simplicial complex B(G/k) defined above is a building, in the sense that there exists

a collection of subcomplexes called apartments such that

(i) each apartment A is a Coxeter complex,

(ii) B is the union of all its apartments,

(iii) any two simplices P and Q of B are contained in a common apartment, and

(iv) if P and Q are contained in two apartments A and A′, there exists an isomorphism A→ A′

fixing P and Q pointwise.

The spherical building B(G/k) has a canonical system of apartments, indexed by the set of

maximal k-split tori of G: to each k-split torus T of G, one associates the subcomplex A consisting

of all the k-parabolics containing T . In view of the relation between parabolics containing T and

parabolic subsets of Φk described previously, this apartment A is a Coxeter complex of the same

type as the root system Φk. In particular, the Coxeter group associated to A is precisely the Weyl

group Wk of Φk. The normalizer NG(T ) of T stabilizes the apartment A, the centralizer ZG(T )

of T fixes it, and the quotient NG(T )(k)/ZG(T )(k) acts on A through Wk.

Towards a classification

2.2.6 Definition (Isogeny). LetH1,H2 be affine algebraic k-groups. A k-isogeny is a k-morphism

φ : H1 → H2 which is smooth, surjective and has finite central kernel. Isogenies induce a poset

structure on the set of affine algebraic k-groups (up to isomorphism) in the obvious way, and
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connected components of this poset are called isogeny classes. When there is an isogeny between

H1 and H2 (in any direction), we say that they are isogenous.

2.2.7 Theorem (Classification: the split case). If the group G is k-split (in particular, if k

is algebraically closed), the absolutely simple group G is uniquely determined by its root datum

(Xk,Φk, X
∨
k ,Φ

∨
k ). Conversely, for each root datum (X0,Φ0, X

∨
0 ,Φ

∨
0 ) with Φ0 reduced and irre-

ducible, there exists an absolutely simple split k-group G and a torus in G with this quadruple

as its root datum. The isogeny class of G is uniquely determined by the type of the root system

Φk. Moreover, given a reduced irreducible root system Φ0, there is an order-preserving bijection

between the isogeny class associated to Φ0 and the poset of subgroups of the fundamental group of

Φ0.

2.2.8 Definition (Simply connected and adjoint groups). G is said to be simply connected

(resp. of adjoint form) if G is maximal (resp. minimal) in its isogeny class. In virtue of the last

part of theorem 2.2.7, each isogeny class has a unique (up to isomorphism) maximal (resp. min-

imal) element G, and every group H in this isogeny class is a quotient of G (resp. has G as a

quotient) by a finite central subgroup.

2.2.9 Example. Since its coroot lattice equals its cocharacter lattice (see 2.2.4), SLn(k) is simply

connected. Hence any split k-group of type An−1 is a quotient of SLn(k) by a subgroup of its

center, C, which is isomorphic to the group µn of n-th roots of unity. On the other hand,

PGLn(k) is of adjoint form, and the quotient of any split k-group of type An−1 by its center will

be isomorphic to PGLn(k).

If the field k is not algebraically closed and the group G is not split, the root datum

alone is not sufficient to pin down the structure of G. Two additional ingredients that we briefly
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describe below (see [Tit66]) are required: the knowledge of the anisotropic kernel of G and the

Tits index of G.

As before, we fix a maximal k-split torus S of G. The anisotropic kernel of G over

k (with respect to S) is the derived subgroup DZG(S) of the centralizer ZG(S) of S. It is an

anisotropic, semisimple k-subgroup of G.

Let T be a maximal torus of G containing S which is defined over k (such a torus exists

by a theorem of Grothendieck). Pick a basis for the absolute root system Φ(T ) of G and let ∆

denote the Dynkin diagram of Φ with respect to this basis (so that vertices of ∆ correspond to

simple roots). Let ∆0 denote the subdiagram of ∆ consisting of those simple roots which vanish

on S, and let ∆k be the Dynkin diagram associated to the basis of Φk(S) obtained by restricting

the vertices of ∆ to S. The ∗-action of Γ = Gal(k/k) on ∆ is constructed as follows: Γ permutes

the conjugacy classes of maximal parabolic k-subgroups of G, and these classes are in canonical

bijection with the vertices of ∆. When the ∗-action is trivial (resp. non-trivial), the group G is

said of inner (resp. outer) type, and G is called an inner (resp. outer) form of the split form of

G, the split k-group with the same root datum as Gk.

The Tits index of G over k is the data consisting of ∆, ∆0 and the ∗-action of Γ on

∆. The index is often represented directly on the Dynkin diagram ∆ by adorning it as follows:

vertices belonging to the same orbits of Γ are placed close to each other, and the orbits whose

elements do not belong to ∆0 (i.e. whose restriction to S yield an element of ∆k) are circled.

Note that the group G is quasisplit over k precisely when ∆0 is empty, i.e. when all

orbits are circled, or equivalently, when the anisotropic kernel of G is trivial.

2.2.10 Example (Quasisplit special unitary group). Let l be a (separable) quadratic extension

of k and recall from 2.1.3 (viii) the special unitary group SUh(k) associated to a hermitian form
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h : ln × ln → l (n ≥ 2). Let r denote the k-rank of SUh(k) (which is also the dimension of a

largest totally isotropic subspace of ln). The Tits index of SUh(k) can be pictured as follows:

The ∗-action permutes the upper and lower branches of the diagram; in particular, SUh(k) is an

outer form of SLn(k). Here, we painted the vertices of ∆0 in black, vertices whose orbits should

be circled are painted white, and instead of circling their orbit, two white vertices which are in

the same orbit are connected by a vertical gray bar. There are n− 1 vertices and r white orbits.

When the group is quasisplit (i.e. when the hermitian form h is split), all vertices are white. If n

is even, this leaves the rightmost vertex alone in its orbit:

2.2.11 Theorem (Classification: the general case). The k-group G is uniquely determined by its

absolute root datum, its anisotropic kernel and its index.

2.2.12 Remark. The above theorem reduces the problem of classifying absolutely simple k-

groups to that of classifying the possible indices and the possible anisotropic kernels over k. The

answer to the former is detailed in [Tit66]. The latter, however, is a much more arduous task

and seems out of reach for the moment. (For example, over a given field k, the knowledge of all

anisotropic kernels of type 1A already amounts to the knowledge of all central division algebras

over k.)
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2.3 Galois cohomology

In this section, we briefly recall the basic facts about Galois cohomology that will be

needed in the sequel. A good reference is [PR94, §1.3 and ch. 6].

2.3.1 Definition (Group cohomology). Let G be a profinite group. To each G-module A (the

action of G on A is required to be continuous, which in this setting simply means that each element

of A is fixed by a finite-index subgroup of G), one associates a sequence Hn(G,A) (n ∈ Z≥0) of

abelian groups, called the cohomology groups of G with coefficients in A. The cohomology groups

Hn(G,A) have the following defining properties. The group H0(G,A) = AG is the set of fixed

points of G in A. Given any exact sequence 0 → A → B → C → 0 of G-modules, the higher

cohomology groups extend functorially the sequence of fixed points to a long exact sequence

0→ AG → BG → CG → H1(G,A)→ H1(G,B)→ H1(G,C)→ H2(G,A)→ H2(G,B)→ · · ·

in a universal way, i.e. any other exact extension on the right of the the sequence 0→ AG → BG →

CG factors uniquely through the long exact sequence of cohomology groups above. (In particular,

the assignment A 7→ Hn(G,A) is functorial in A, and so are the connecting homomorphisms

δn : Hn(G,C)→ Hn+1(G,A).)

The cohomology groups measure the failure of exactness of the functor H0(G,−) : A 7→

AG in the following sense: H0(G,−) is exact if and only if H1(G,−) = 0. More generally, if

0 → AG → BG → CG → 0 is not exact, the kernel of the map H1(G,A) → H1(G,B) measures

the failure of exactness at CG.

Since AG can be identified with HomZG(Z, A) (where Z is endowed with the trivial ZG-

module structure), one sees that Hn(G,A) is naturally isomorphic to ExtnZG(Z, A). Hence the

cohomology groups Hn(G,A) can be computed using a projective resolution of the ZG-module Z.
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2.3.2 Definition (Galois cohomology). Let l be a Galois extension of a field k, and let A be a

Gal(l/k)-module. The cohomology groups Hn(Gal(l/k), A) are denoted Hn(l/k,A) and called the

Galois cohomology groups of l/k with coefficients in A. When l = ks is the separable closure of

k, they are simply denoted Hn(k,A).

We will also need Galois cohomology with coefficients in a non-commutative algebraic

group. Let thus A be a (not necessarily commutative) group on which the profinite group G acts

continuously and by automorphisms. We will denote the image of a ∈ A under g ∈ G by ga. As

before, we set H0(G,A) = AG. A continuous map f : G→ A is called a 1-cocycle with values in

A if f(gh) = f(g) g(f(h)) for any g, h ∈ G. Two 1-cocycles f1 and f2 are called equivalent if there

exists an element c ∈ A such that f1(g) = c−1f2(g) gc. This defines an equivalence relation on the

set Z1(G,A) of all 1-cocycles with values in A, and the set of equivalence classes for this relation

is called the first cohomology set of G with coefficients in A and is denoted H1(G,A). The class

of the trivial cocycle g 7→ e is distinguished, so that H1(G,A) becomes a pointed set.

When A is an abelian group, H1(G,A) is also an abelian group and we recover the

standard construction of the first cohomology group.

Let B be a normal subgroup of A stable under the action of G, so that G also acts on

the group A/B. As in the abelian case, associated to the sequence 1 → B → A → A/B → 1

there is a long exact sequence of pointed sets, but this time the sequence stops at the sixth term,

0→ BG → AG → (A/B)G → H1(G,B)→ H1(G,A)→ H1(G,A/B),

unless B happens to be an abelian group, in which case the sequence can be extended by one

more term, the standard cohomology group H2(G,B).

Typically, A will be the set of l-points of an algebraic group H defined over some field k,
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endowed with the canonical action of G = Gal(l/k), in which case we will also use the notations

Hn(l/k,A) and Hn(k,A) introduced above, or even write Hn(l/k,H) and Hn(k,H).

2.3.3 Examples. Here are a few common interpretations of some of the Galois cohomology

groups.

(i) By definition, H0(l/k,A) is the set of fixed points of Gal(l/k) in A, i.e. the elements of A

defined over k. If H is a k-group, then H0(l/k,H) is identified with H(k), and a k-morphism

H1 → H2 induces a map H0(l/k,H1)→ H0(l/k,H2) which corresponds to the the morphism

H1(k)→ H2(k) between k-points.

(ii) Hilbert’s Satz 90 (which was originally due to Kummer) is equivalent to the vanishing of

H1(l/k,Gm) for a cyclic extension l of k. Noether generalized this result to H1(l/k,Gm) =

{1} for any Galois extension l of k.

(iii) Let ϕ be the k-morphism of k-groups Gm → Gm defined by x 7→ xn and let µn denote its

kernel, so that for any field extension l of k, µn(l) is the group of nth roots of unity in l×.

The exact sequence of algebraic k-groups 1 → µn → Gm
ϕ−→ Gm → 1 yields a long exact

sequence

1→ µn(k)→ k×
ϕ−→ k× → H1(l/k, µn)→ H1(l/k,Gm) = 1,

whose last term vanishes in view of the previous example. In consequence, we read that

H1(l/k, µn) ∼= k×/k×n.

(iv) The group H2(l/k,Gm) can be identified with the subgroup Br(l/k) of the Brauer group

Br(k) of k consisting of those central simple k-algebras which split over l. In particular,

H2(k,Gm) = Br(k) is the full Brauer group.
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2.4 Bruhat-Tits theory

In this section, K will be a non-archimedean local field, O its ring of integers, p the

characteristic of its residue field f, and G will be an absolutely simple simply connected algebraic

K-group. We will describe the Bruhat-Tits building of G over K and how its geometry relates

to the structure of the locally compact group G(K). The main references are [Tit79] and [PR94,

§3.4].

There exists a simplicial complex A = A(G/K) endowed with an action of G(K) by

simplicial automorphisms called the Bruhat-Tits or affine building of G over K, which has the

following properties.

(i) A is a building (in the sense described after 2.2.5), whose apartments are affine Coxeter

complexes. The type of these complexes is obtained by extending the type of the group G.

We will denote ∆̃K the local or affine Dynkin diagram associated to the type of G. It is

obtained from the Dynkin diagram ∆K of G by adding a suitable vertex and connecting it

to ∆K with suitable edges (see table 2.4.1, where the added vertex is painted white).

(ii) There is a labeling of the vertices of A by vertices of ∆̃K , which, restricted to any apartment,

is the usual type. Under this labeling, a simplex P in A corresponds to a unique subset of

∆̃K , called its type. The action of G(K) on A is type-preserving.

(iii) The affine Weyl group W̃K of G(K) is the Coxeter group of any of the apartments of A. It

is the semidirect product of the (spherical) Weyl group WK of G by a free abelian group of

rank equal to the rank of G.

(iv) Given a maximal K-split torus T of G, the maximal compact subgroup Zc of ZG(T )(K) is

the fixator of an apartment A of A. The group NG(T )(K) stabilizes A and the quotient
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NG(T )(K)/Zc acts on A through the affine Weyl group W̃K . With this identification,

ZG(T )(K)/Zc corresponds to the translation subgroup Λ of W̃K .

(v) Stabilizers in G(K) of chambers in A are called Iwarori subgroups; they are exactly the

normalizers of the maximal pro-p subgroups of G(K). The group G(K) acts transitively on

the set of chambers, and equivalently, all Iwahori subgroups are conjugate under G(K).

(vi) Stabilizers in G(K) of simplices in A are called parahoric subgroups; they are precisely the

compact open subgroups of G(K) containing an Iwahori subgroup. This correspondence

between simplices and parahoric subgroups is bijective and reverses inclusions. We will

often denote a simplex and its stabilizer by the same letter (typically P ). The type of a

parahoric subgroup is then the type of the associated simplex.

(vii) The stabilizers in G(K) of vertices in A are the maximal compact subgroups of G(K).

(viii) The geometric realization of A is a contractible space.

Table 2.4.1. Irreducible Affine Dynkin diagrams.

A1
1 A2

2

A1
n A2

even

B1
n A2

odd

C1
n D2

n

D1
n E2

6

E1
6 D3

4

E1
7

E1
8

F1
4

G1
2

2.4.2 Definition (Special and hyperspecial vertices). A vertex x ∈ A is called special if, with

respect to any apartment A containing x, the affine Weyl group W̃K is the semidirect product
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of the stabilizer W̃K,x of x by the translation subgroup Λ. If so, then W̃K,x is isomorphic to the

(spherical) Weyl group WK . If G splits over the maximal unramified extension K̂ of K, and x,

seen as a vertex of A(G/K̂), is special, then x is called hyperspecial. Hyperspecial vertices are

special. If P is the stabilizer in G(K) of a special (resp. hyperspecial) vertex, then P is called a

special (resp. hyperspecial) parahoric subgroup.

Special vertices can be detected using the affine Dynkin diagram: a vertex P is special

if and only if the Weyl group associated to the diagram obtained from ∆̃K by removing the

type of P is the Weyl group of the diagram ∆K . When G is quasi-split over K and splits over

K̂, hyperspecial parahoric subgroups exist. When hyperspecial parahorics exist, they are the

parahoric subgroups of G(K) of maximal volume.

For each parahoric subgroup P of G(K), there exists a smooth affine group scheme GP

defined over O, called the Bruhat-Tits group scheme associated to P , whose group of O-points

GP (O) is isomorphic to P , whose generic fiber GP ×O K is isomorphic to G over K and whose

special fiber GP = GP ×O f is called the residual group at P . The ring of O-regular functions of

GP can be described as the O-subalgebra of K[G] consisting of the K-regular functions whose

values on P̂ lie in Ô (here P̂ is the parabolic subgroup of G(K̂) associated to P and Ô is the ring

of integers of K̂). The reduction homomorphism P = GP (O)→ GP (f) is surjective, and because

G is simply connected, GP is a connected f-group. Moreover, GP admits a Levi decomposition

over f.

The link in A of a simplex P is a building, which is isomorphic to the spherical building

of (the reductive part of) the f-group GP . The group P then acts on the latter through the

reduction homomorphism P → GP (f). In particular, one can obtain the Dynkin diagram of the

semisimple part of GP by removing the type of P from ∆̃K . Fix a Borel f-subgroup B of a Levi f-
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subgroup M of GP . The inverse image I of B(f) ·Ru(GP )(f) under the reduction homomorphism

P → GP (f) is an Iwahori subgroup of G(K). The reduction homomorphism induces a type-

preserving, index-preserving bijection between parahoric subgroups Q such that I ⊂ Q ⊂ P and

parabolic subgroups of M containing B. In particular, [P : I] = [M(f) : B(f)].

2.4.3 Example (SLn(Qp)). Let G = SLn over K = Qp, so that O = Zp, f = Fp. Denote by v

the p-adic valuation on Qp. Since G is split of type An−1, the affine diagram ∆̃ of G is

Let T denote the maximal (split) torus consisting of diagonal matrices, and let N denote

its normalizer in G. Since G is split, T is its own centralizer. The maximal bounded compact

subgroup of T is the subgroup Tc of T (K) consisting of diagonal matrices with entries in O×;

it is precisely the kernel of the valuation map T (K) ∼= (K×)n−1 → Zn−1. In consequence,

T (K)/Tc ∼= Zn−1. The affine Weyl group W̃ = N(K)/Tc then fits in the split exact sequence

1→ T (K)/Tc → W̃ → N(K)/T (K) = W → 1.

Let P = SLn(O); one can show that P is a maximal compact subgroup of G(K). Thus,

P is a maximal parahoric subgroup. The Bruhat-Tits group scheme associated to P is easy to

describe in this case: it is simply SLn defined over O. Its special fiber G is then SLn defined

over f (which was expected from the diagram), and the reduction homomorphism is the usual

reduction mod p map SLn(Zp)→ SLn(Fp), which is indeed surjective. Note that in this example,

G is already reductive (even simple); this is because G is split and P is maximal. Since SLn(f)

and SLn(K) have the same Weyl group, we see that P is a special parahoric; since G splits over

K, P is in fact hyperspecial.
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In view of the symmetry of the affine Dynkin diagram, this would also hold if we had

chosen P to be any other maximal compact subgroup of G(K), i.e. in this example, all maximal

parahorics are hyperspecial. (Note that we do not claim that this symmetry comes from G(K):

the group G(K) acts trivially on ∆̃ since its action on A is type-preserving. Nonetheless, one can

show in this case that the adjoint group PGLn(K) does act vertex-transitively on A, i.e. permutes

the hyperspecial parahorics. This would imply that, in fact, the Bruhat-Tits group schemes

associated to the different maximal parahorics are isomorphic.)

The preimage I under the reduction map of the Borel subgroup B(f) of G of upper

triangular matrices consists of matrices in SLn(O) of the form
O O O · · · O
pO O O · · · O
pO pO O · · · O
...

...
...

. . .
...

pO pO pO · · · O

 ,

where O, resp. pO denotes an entry in O, resp. pO. More generally, all the parahorics Q ⊂ P are

obtained as the preimages under the reduction map of parabolic subgroups Q of G, and can be

described similarly. Using this description, one can show that the maximal parahoric subgroups

containing I are given by the stabilizers Pi in SLn(Qp) of the lattices
⊕n−i Zp ⊕

⊕i pZp in Qn
p ,

for i = 0, . . . , n− 1. Notice that P0 = P .

When n = 2, i.e. G(K) = SL2(Qp), the apartments, hence the building have dimension

1. In view of the fact that the geometric realization of building is contractible, it must be a tree.

Moreover, the number of edges d at a vertex P of this tree is the number of Iwahori subgroups

of G(K) contained in P , which is in turn the number of Borel subgroups B of P (Fp) ∼= SL2(Fp).

Now Borel subgroups are self-normalizing and conjugate, hence d = [SL2(Fp) : B(Fp)] = p + 1.

In conclusion, the Bruhat-Tits building of SL2(Qp) is a p+ 1-regular tree. As an illustration, we

depicted the building of SL2(Q5) below. The two different types of vertices are painted black and
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white.

The Bruhat-Tits tree of SL2(Q5).

2.5 Lattices in locally compact groups

Let G be a locally compact group, so that G can be endowed with a left-invariant

Radon measure λ and a right-invariant Radon measure ρ, called (left or right) Haar measures;

both invariant measures are unique up to a positive scalar (see for example [Bou07b] for the

construction and properties of these measures). Left- and right-invariant measures need not

coincide in general. In fact, the discrepancy is measured by the modular function ∆ of G, defined

as follows. For any g ∈ G, the measure gλ : A 7→ λ(Ag) is obviously regular and left-invariant. In

virtue of the uniqueness property, there exists a scalar ∆(g) such that gλ = ∆(g)λ. One shows

that the modular function ∆ is a continuous group homomorphism G → R>0. The group G is

callled unimodular if this homomorphism is trivial, which happens precisely when gλ = λ for all

g ∈ G, i.e. when λ is also right-invariant.
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2.5.1 Definition (Lattice). (i) A discrete subgroup Γ of G is called a lattice if the homoge-

neous space G/Γ can be endowed with a finite, regular, G-invariant measure.

(ii) A measurable subset F ⊂ G is called a coarse fundamental domain for Γ (on the right) if

FΓ = G. If in addition ρ(F ∩ Fγ) = 0 when γ ∈ Γ − {e}, then F is called a fundamental

domain. (If further, F ∩ Fγ = ∅ when γ ∈ Γ − {e}, then F is sometimes called a strict

fundamental domain.)

One shows that Γ is a lattice in G if and only if there exists a (coarse) fundamental

domain F for Γ such that ρ(F ) is finite. If this is the case, the group G is necessarily unimodular

and a finite invariant measure on G/Γ can be induced from an invariant measure on G via the

local homeomorphism G→ G/Γ (and reciprocally). Having fixed a bi-invariant measure µ on G

and the induced measure on G/Γ (which we will abusively also denote using the same symbol),

the measure of G/Γ equals the measure of any fundamental domain F for Γ.

(iii) The covolume of a lattice Γ in G is the quantity µ(G/Γ) = µ(F ) just described.

(iv) A lattice Γ for which the quotient G/Γ is compact is called a uniform or cocompact lattice.

In fact, if Γ is a discrete subgroup for which the quotient G/Γ is compact, one can pick a

compact rough fundamental domain K for Γ. The regularity of the measure ρ then automatically

implies that ρ(K) is finite, hence that Γ is a lattice.

2.5.2 Examples.

(i) If G is compact, lattices in G are precisely finite subgroups.

(ii) If G is discrete, lattices in G are precisely subgroups of finite index.

(iii) Zn is a lattice in Rn. The quotient Rn/Zn is the n-torus; it is compact and has measure

1 for the Lebesgue measure. Any lattice Λ in Rn is the image of Zn under some element
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g of GLn(R), the group of automorphisms of Rn. The covolume of gZn for the Lebesgue

measure is det g. In consequence, SLn(R) acts transitively on the set of lattices in Rn with

a given covolume.

(iv) Let Nn(R) denote the group of n×n upper unitriangular matrices with coefficients in a ring

R. The discrete Heisenberg group N3(Z) is a lattice in the continuous Heisenberg group

N3(R). Since Z is discrete in R, it is clear that N3(Z) is a discrete subgroup. To check

that N3(Z) is a lattice, it suffices to show that the quotient N3(R)/N3(Z) is compact. One

readily checks that the map

N3(R)/N3(Z)→ (R/Z)3 :
(

1 a c
0 1 b
0 0 1

)
·N3(Z) 7→ (a+ Z, b+ Z, c+ Z)

is a homeomorphism. In fact, precomposing this map with the quotient map N3(R) →

N3(R)/N3(Z) sends the canonical Haar measure µ on N3(R) (given by dµ = da db dc in the

coordinates above) to the Lebesgue measure. This shows that the covolume of N3(Z) for

the measure µ is 1.

This example immediately generalizes as follows. Let R be a locally compact topological

ring and let S be a subring of R which is a lattice as an additive subgroup of R. Then

Nn(S) is a lattice in the locally compact group Nn(R), and the quotient Nn(R)/Nn(S) is

homeomorphic to (R/S)n(n−1)/2 in a way which preserves the canonical measures.

(v) Recall that SL2(R) acts isometrically on the upper half planeH via Möbius transformations.

Let T be a tiling of H by (possibly ideal) polygons, and suppose that the stabilizer Γ of

T acts transitively on the tiles of T . Then Γ is a lattice in SL2(R), which is uniform if

and only if the tiles of T are (pre)compact. If moreover Γ/{±1} acts simply transitively on

the tiles of T (which can be achieved by subdividing the tiling), then for the appropriate

34



normalization of the Haar measure, the covolume of Γ equals the area of a tile of T .

(vi) SLn(Z) is a lattice in SLn(R). Again, it is clear that SLn(Z) is a discrete subgroup of

SLn(R). Constructing a coarse fundamental domain with finite volume is the subject of

reduction theory, and goes back to the work of Siegel [Sie39]. We will briefly describe here

the construction of these Siegel sets. See [PR94, ch. 4] for more details.

The Iwasawa decomposition for SLn(R) yields that the product map K×A×N → SLn(R) :

(k, a, n) 7→ kan is a homeomorphism, where K = SOn(R), A is the subgroup of diagonal

matrices in SLn(R) with positive entries, and N is the subgroup of upper unitriangular

matrices. The Siegel set of parameters t, r is Σt,r = KAtNr, where At = {a ∈ A | ai/ai+1 ≤

t for 1 ≤ i ≤ n− 1} and Nr = {n ∈ N | |nij | ≤ r for 1 ≤ i < j ≤ n}.

Using a Gram-Schmidt process, one shows that if t ≥ 2/
√

3 and r ≥ 1/2, the set Σt,r is a

coarse fundamental domain for SLn(Z). To prove that SLn(Z) is a lattice, it then remains to

show that Σ2/
√

3,1/2 has finite measure. This can be done easily by writing an appropriate

Haar measure in the coordinates given by the Iwasawa decomposition. Determining the

covolume of SLn(Z) (for an appropriate measure) is more complicated, and is also due to

Siegel [Sie45]. We will come back to this matter with more advanced tools (cf. chapter 3).

The covolume of lattices in nilpotent groups is usually not bounded from below (we have

already observed this for Rn). Moreover, lattices in nilpotent groups are always cocompact. The

situation for simple groups is rather different. Borel and Harder [BH78] showed that in every

simple Lie group, there is always a uniform and a nonuniform lattice. Concerning the covolume,

we have the following result due to Wang [Wan72].

2.5.3 Theorem. Let G be a simple Q-group not locally isomorphic to SL2(R) or SL2(C) (endowed
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with a fixed Haar measure) and c be a positive constant. There are only finitely many conjugacy

classes of lattices in G(R) with covolume less than c. In particular, there exists a lattice of minimal

covolume in G(R).

2.6 Arithmetic groups

In this section, k will be a number field (that is, a finite extension of Q), and Ok will

denote its ring of integers. V (resp. V∞, Vf ) will denote the set of places (resp. archimedean

places, non-archimedean places) of k. For v ∈ V , we write kv for the completion of k at the place

v, and we abbreviate k∞ =
∏
v∈V∞ kv. The main reference is [PR94, ch. 4].

2.6.1 Definition (Integer structures). Let G be an algebraic k-group. An integer structure, or

Ok-structure for G is simply the datum of a k-embedding ι : G → SLn. Given an Ok-structure

for G, the Ok-points G(Ok) of G are defined by ι−1(ι(G(k)) ∩ SLn(Ok)).

Borel and Harish-Chandra proved the following far-reaching generalization of the fact

that SLn(Z) is a lattice in SLn(R) (cf. 2.5.2 (vi)).

2.6.2 Theorem (Borel, Harish-Chandra). Let G be a k-group endowed with a Ok-structure. If

G has no k-characters (in particular, if G is semisimple), then G(Ok) is a lattice when embedded

diagonally in the locally compact group G(k∞) =
∏
v∈V∞ G(kv).

Moreover, Godement’s criterion tells us precisely when this lattice is uniform:

2.6.3 Theorem (Godement’s criterion). In the setting of theorem 2.6.2, the lattice G(Ok) is

uniform if and only if G has no k-cocharacters (i.e. G is k-anisotropic).

Borel and Harish-Chandra’s theorem motivate the following definition.
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2.6.4 Definition (Arithmetic group). We keep the setting of theorem 2.6.2. Any subgroup Γ of

G(k∞) commensurable to the lattice G(Ok) is called an arithmetic subgroup of G or an arithmetic

lattice in G(k∞), or simply an arithmetic group when the embedding of Γ in G(k∞) is either clear

or irrelevant. More generally, any subgroup commensurable to the image of an arithmetic group

Γ under a surjective morphism (of locally compact groups) with compact kernel G(k∞)→ H will

also be called an arithmetic group, or an arithmetic lattice in H.

2.6.5 Examples. (i) SLn(Z) is an arithmetic subgroup of SLn(R). Since SLn(R) is isotropic,

SLn(Z) is a nonuniform lattice.

(ii) SLn(Z[i]) is an arithmetic subgroup of SLn(C). Similarly, SLn(Z[
√

2]) is an arithmetic

subgroup of SLn(R) × SLn(R) via the embedding g 7→ (σ1(g), σ2(g)), where σ1, σ2 are the

two embeddings Q[
√

2]→ R. Both these lattices are nonuniform.

(iii) Let k = Q(α) be a totally real quadratic extension of Q and suppose (without loss of

generality) that α2 ∈ Q. Let l be the quadratic extension of k obtained by adjoining a

square root of α to k, and denote by its non-trivial automorphism fixing k. Consider the

hermitian form h : ln × ln → l defined by h(x, y) = x1y1 + · · ·+ xn−1yn−1 + xnyn and the

associated special unitary group SUh defined over k. Using the description of SUh made

in example 2.1.3 (viii), it is easy to construct a k-embedding SUh → SL2n and thus endow

G = SUh with an Ok-structure. By Borel and Harish-Chandra’s theorem, Γ = G(Ok) is a

lattice in the locally compact group G(kv0)×G(kv1), where v0, v1 are the two embeddings

k → R. Let us say that v0(α) is positive (hence v1(α) is negative).

Observe that since v0(α) is positive, the embedding v0 : k → R extends to two embeddings

l → R. In particular, kv0 contains l, and thus, as in example 2.1.3 (viii), we see that SUh

is isomorphic to SLn over kv0 (i.e. splits over kv0) . On the other hand, the embedding
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v1 : k → R extends to two conjugate embeddings l → C, under which is induced by

complex conjugation. Consequently, given that h (seen over kv1) is positive definite, we

see that SUh(kv1) is the usual compact real special unitary group. In conclusion, G(kv0)×

G(kv1) → G(kv0) ∼= SLn(R) is a surjection with compact kernel G(kv1), and the image of

Γ under this morphism is thus an arithmetic lattice in SLn(R). It is a uniform lattice by

Godement’s criterion: the group SUh must be k-anisotropic, since when extending scalars

to kv1 , it is anisotropic.

(iv) Let D be a central division algebra over Q of degree n, which splits over R, i.e. D ⊗Q R ∼=

Mn(R) as R-algebras. Let O be an order in D, i.e. a subring of D for which the map

O⊗ZQ→ D is an isomorphism. Let us pick an isomorphism D⊗QR ∼= Mn(R) and identify

D and O with their images in Mn(R). (With this convention, O is a lattice in the additive

group of Mn(R).) One can show that O1 = O ∩ SLn(R) is lattice in SLn(R). This lattice is

arithmetic; indeed, it is possible to endow D× with the structure of an algebraic Q-group

with a Z-structure in such a way the following holds. The setD×1 of elements ofD of reduced

norm 1 form a closed Q-subgroup, that we denote SL1(D). Under the identification above,

SL1(D) corresponds to D ∩ SLn(R), SL1(D)(R) corresponds to SLn(R), and SL1(D)(Z) is

commensurable to O1. Since SL1(D) is Q-anisotropic, O is a uniform lattice.

In general, given a number field k and a central division algebra D over k of degree d, one

constructs for any n ≥ 1 a k-group SLn(D) whose k-points will form the group of elements

of reduced norm 1 in Mn(D). The group SLn(D) is an inner k-form of SLnd, and it is

anisotropic if and only if n = 1.

In the 1970’s, relying on his superrigidity results, Margulis proved the following spec-

tacular partial converse to Borel and Harish-Chandra’s theorem.
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2.6.6 Theorem (Margulis’ arithmeticity). Let G be a simple Q-group whose rank over R is at

least 2, and let Γ be a lattice in G(R). Then Γ is arithmetic.

Although the statement above will be sufficient for our needs, there are more general

versions of the arithmeticity theorem available, namely for semisimple groups of real rank ≥ 2,

over arbitrary number fields, for the S-arithmetic setting, etc. We refer the reader to [Mar91] for

further background, proofs and these variants of the arithmeticity theorem (see namely chapter

IX).

The arithmeticity theorem will be the cornerstone of our approach to classify lattices of

minimal covolume in SLn(R). It allows us to describe (up to commensurability) a lattice Γ in

SLn(R) in terms of some arithmetic data. The covolume of Γ can then be computed from this

arithmetic data using Prasad’s celebrated volume formula.
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Chapter 3

Prasad’s volume formula

In this chapter, we introduce the volume formula due to Prasad. We refer the reader to

[Pra89] for the proof.

As in section 2.6, k will be a number field (that is, a finite extension of Q), and Ok

will denote its ring of integers. We denote by Dk the absolute value of the discriminant of

k. V (resp. V∞, Vf ) will denote the set of places (resp. archimedean places, non-archimedean

places) of k. For v ∈ V , we write kv for the completion of k at the place v, and we abbreviate

k∞ =
∏
v∈V∞ kv. For v ∈ Vf , Ov denotes the ring of integers of kv.

3.1 Tamagawa numbers

3.1.1 Definition (Adeles). The ring of adeles of k is the restricted product

Ak =
∏
v∈V

′
kv
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with respect to the family {Ov}v∈Vf of distinguished subrings of the fields {kv}v∈Vf . This means

that elements of Ak are tuples (xv)v∈V such that xv ∈ Ov for all but finitely many v ∈ Vf .

The operations in Ak are performed componentwise. Ak is endowed with the restricted product

topology; that is to say{∏
v∈V

Uv

∣∣∣ Uv is open in kv, and Uv = Ov for all but finitely many v ∈ Vf

}

forms a basis of open sets for the topology on Ak. With this, Ak becomes a locally compact ring.

The number field k embeds diagonally into Ak (in this way, Ak is a k-algebra), and each

completion kv embeds (as a topological ring) in Ak in the vth component. We will almost always

omit these embeddings from the notation and identify k and kv with their images in Ak.

Let dxv denote the Haar measure on kv such that Ov has measure 1 for dxv if v ∈ Vf ,

dxv = dx is the Lebesgue measure if kv = R, and dxv = idz ∧ dz = 2dx ∧ dy if kv = C. The

product measure dxA =
∏
v∈V dxv is a Haar mesure for the additive group of Ak. The following

proposition is a consequence of Minkowsky’s geometry of numbers.

3.1.2 Proposition. The image of k is a lattice in the additive group Ak, whose covolume for the

measure dxV defined above is D1/2
k .

Let now G be an absolutely simple algebraic k-group. The Ak-points G(Ak) of G form

a locally compact group with the topology induced by Ak. We may identify G(Ak) with the

restricted product
∏′
v∈V G(kv) as follows. Pick a k-embedding of ι : G → SLn, and for v ∈ Vf

set G(Ov) = ι−1(G(kv) ∩ SLn(Ov)). Of course, the groups G(Ov) depend on the choice of ι, but

it turns out that a different choice for ι will only alter finitely many of the G(Ov). Thus, the

restricted product
∏′
v∈V G(kv) with respect to the family {G(Ov)}v∈Vf is defined unequivocally.

41



The group G(k) embeds in G(Ak) as a discrete subgroup, and in the identification just described

this embedding corresponds to the diagonal embedding.

Let ω be an invariant exterior form on G defined over k, and denote by ωv the Haar

measure on G(kv) induced by ω after extending scalars to kv. The product measure ωA =
∏
v∈V ωv

is a Haar measure on G(Ak) which is independent of the choice of ω. Indeed, ω is unique up to

a scalar a ∈ k, and in virtue of the product formula, the measure induced by aω is

∏
v∈V
|a|vωv =

∏
v∈V
|a|v ·

∏
v∈V

ωv = ωA.

3.1.3 Definition (Tamagawa measure and Tamagawa number). The measure D−
1
2

dimG

k ωA is

called the Tamagawa measure on G(Ak). The Tamagawa number of G over k is the quantity

τk(G) = D
− 1

2
dimG

k ωA(G(Ak)/G(k)).

Using Borel and Harish-Chandra’s theorem (2.6.2), one can show that the Tamagawa

number of G is finite. Weil conjectured that in fact τk(G) = 1 when G is simply connected. This

conjecture was proved following a proposal of Jacquet and Langlands [JL70] by the combined

work of Lai [Lai80] and Kottwitz [Kot88]. Many cases of the conjecture had already been verified

in previous works of Demazure, Lai, Langlands, Mars, Ono, Tamagawa and Weil (see Ono’s

appendix to [Wei82]).

3.2 The volume formula

3.2.1 Definition (Principal arithmetic subgroup). A collection of parahoric subgroups {Pv}v∈Vf

of the groups {G(kv)}v∈Vf is called coherent if
∏
v ∈V∞ G(kv)×

∏
v∈Vf Pv is an open subgroup of

G(Ak). This amounts to say that, after picking an embedding ι : G → SLn, the parahoric Pv
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agrees with G(Ov) for all but finitely many v ∈ Vf . The principal arithmetic subgroup determined

by a coherent collection of parahorics {Pv}v∈Vf is the subgroup

Λ = G(k) ∩
( ∏
v∈V∞

G(kv)×
∏
v∈Vf

Pv

)
of G(k). It is a lattice when embedded diagonally in

∏
v ∈V∞ G(kv).

3.2.2 Theorem (Strong approximation). Suppose that the k-group G is simply connected and

that G is isotropic over kv for some v ∈ V∞. Then G(k) ·
∏
v∈V∞ G(kv) is dense in G(Ak). In

consequence, if {Pv}v∈Vf is a coherent collection of parahorics, then

G(k) ·
( ∏
v∈V∞

G(kv)×
∏
v∈Vf

Pv

)
= G(Ak).

For the rest of this chapter, we will assume that G is an absolutely simple simply

connected k-group and that G(kv) is isotropic for at least one v ∈ V∞. Recall that G(k∞) =∏
v ∈V∞ G(kv). By strong approximation, there is an isomorphism

G(Ak)/G(k) ∼=
(
G(k∞)×

∏
v∈Vf

Pv

)/(
G(k) ∩

(
G(k∞)×

∏
v∈Vf

Pv

))

which composed with the projection onto the V∞-components yields a fibration

G(Ak)/G(k)→ G(k∞)/Λ

whose fibers are translates of
∏
v∈Vf Pv. In consequence, we get the following expression for the

covolume of Λ:

ω∞(G(k∞)/Λ) = ωA(G(Ak)/G(k)) ·
∏
v∈Vf

ωv(Pv)
−1 = D

1
2

dimG

k ·
∏
v∈Vf

ωv(Pv)
−1,

where ω∞ =
∏
v∈V∞ ωv and we have used the fact that τk(G) = 1.
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From this and using a clever renormalization of the measures, Prasad was able to obtain

a concise, much more practical formula for the covolume of Λ. Before describing the formula, we

fix the measure on G(k∞) as follows.

We fix a left-invariant exterior form ωqs defined over k on the quasi-split inner k-form

G of G. As before, ωqs induces for each v ∈ V∞ an invariant form on G(kv), and in turn on any

maximal compact subgroup of G(C) through their common Lie algebra. For each v ∈ V∞, we

choose cv ∈ kv such that the corresponding maximal compact subgroup has measure 1 for the

Haar measure determined in this way by cvωqs. Let ϕ : G → G be an isomorphism defined over

some Galois extension K of k, such that ϕ−1 ◦ γϕ is an inner automorphism of G for all γ in the

Galois group of K over k. Then ϕ induces an invariant form ω∗ = ϕ∗(ωqs) on G, defined over

k. Once again, ω∗ induces for each v ∈ V∞ a form on G(kv) and then a form on any maximal

compact subgroup of G(C) through their Lie algebras. It turns out [Pra89, §3.5] that the volume

of any such maximal compact subgroup for the Haar measure determined in this way by cvω∗

is again 1. We denote by µv the Haar measure determined on G(kv) by cvω∗, and by µ∞ the

product measure
∏
v∈V∞ µv.

3.2.3 Theorem (Prasad’s volume formula). For the measure µ∞ described above and Λ the

principal arithmetic subgroup associated to the collection of parahorics {Pv}v∈Vf , we have

µ∞(G(k∞)/Λ) = D
1
2

dimG

k (Dl/D
[l:k]
k )

1
2
s(G)

(
r∏
i=1

mi!

(2π)mi+1

)[k:Q] ∏
v∈Vf

e(Pv).

Here,

• l is the splitting field of the quasi-split inner k-form G of G,

• r is the absolute rank of G,

• s(G) = 0 if G is split, otherwise s(G) is a positive integer which depends only on the relative
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root system of G,

• the mi’s are the exponents of the compact form of G, and

• the local factor e(Pv) = q
(dimMv+dimMv)/2
v

#Mv(fv)
is the inverse of the volume of Pv for a particular

measure. It can be computed from the fv-groups Mv andMv which are defined as follows. Let

Gv be the smooth affine Ov-group scheme associated to the parahoric Pv of G(kv), and let Gv

denote its special fiber, i.e. the fv-group Gv ×Ov fv. We pick Mv to be a Levi fv-subgroup of

Gv (which exist, see [Tit79]), meaning that Mv is a connected reductive fv-subgroup such that

Gv = Mv · Ru(Gv). The group Mv is defined in the analogous way after fixing a coherent

collection of parahoric subgroups Pv of G(kv), which are chosen hyperspecial when possible,

and otherwise Pv is a specific choice of special parahoric.

We refer to [Pra89] for the unexplained notation.

3.2.4 Example (Covolume of SLn(Z)). Let k = Q (hence V∞ = {∞}, Vf = {p ∈ N | p is prime})

and let G = SLn. The parahorics Pv = SLn(Zv) for v ∈ Vf form a coherent family, and the

principal arithmetic subgroup associated to it is SLn(Q) ∩
∏
v∈Vf SLn(Zv) = SLn(Z). We will

write µ0 for the measure µ∞ constructed above. Since SLn is split over Q, Prasad’s formula reads

µ0(SLn(R)/ SLn(Z)) =

(
r∏
i=1

i!

(2π)i+1

)
·
∏
v∈Vf

e(Pv)

and it remains to compute the local factors e(Pv). We have Mv = Mv = SLn defined over the

finite field fv with qv elements. Using the formula for the order of SLn(fv), we find

e(Pv) =
(qv − 1)qn

2−1
v∏n−1

i=0 (qnv − qiv)
=

n∏
i=2

1

1− q−iv
,

and thus
∏
v∈Vf e(Pv) =

∏n
i=2 ζ(i). Altogether,

µ0(SLn(R)/ SLn(Z)) =

(
r∏
i=1

i!

(2π)i+1

)
·
n∏
i=2

ζ(i).
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Chapter 4

Lattices of minimal covolume in SLn(R)

This chapter is dedicated to the proof of the main result of this thesis:

Theorem. Let n ≥ 3 and let Γ be a lattice of minimal covolume for some (any) Haar measure

in SLn(R). Then σ(Γ) = SLn(Z) for some (algebraic) automorphism σ of SLn(R).

Before outlining the strategy of the proof, we (re)introduce some notation.

• N, Q, R, C respectively denote the sets of strictly positive natural, rational, real and complex

numbers. For p a place or a prime, Qp denotes the field of p-adic numbers and Zp its ring of

p-adic integers. Fp denotes the finite field with p elements.

• In what is to follow, we will fix a number field k of degree m, and V , V∞ and Vf will always

denote the set of places, archimedean places and non-archimedean places of k. We will always

normalize each non-archimedean place v so that im v = Z.

• For v ∈ V , kv will denote the v-adic completion of k. For v ∈ Vf , k̂v is the maximal unramified

extension of kv, fv denotes the residue field of k at v and qv = #fv is the cardinality of the

latter.
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• Ak denotes the ring of adeles of k, and the adeles of Q will be abbreviated A.

• When working with the adele points G(Ak) (or variations of them, e.g. finite adeles) of an

algebraic group G, we will freely identify G(k) with its image in G(Ak) under the diagonal

embedding, and vice-versa.

• For l a finite extension of k, we denote Dl the absolute value of the discriminant of l (over Q)

and dl/k the relative discriminant of l over k; hl is the class number of l. The units of l will

be denoted by Ul, and the subgroup of roots of unity in l by µ(l).

• G will be a simply connected absolutely almost simple group (of type Ar) defined over k. We

denote r = n− 1 its absolute rank, and for v ∈ Vf , rv is its rank over k̂v.

• G denotes the quasi-split inner k-form of G, l will denote its splitting field.

• SUn denotes the special unitary group defined over R associated to the positive-definite her-

mitian form x1y1 + · · · + xnyn on Cn. Its group SUn(R) of real points is the usual special

unitary group, the unique compact connected simply connected almost simple Lie group of

type An−1.

• ζ denotes Riemann’s zeta function.

• For n ∈ Z, we set ñ = 1 or 2 if n is respectively odd or even.

• For x ∈ R, dxe denotes the ceiling of x, that is the smallest integer n such that n ≥ x.

• Vn will denote the quantity
∏n−1
i=1

i!
(2π)i+1 .

4.1 A brief outline of the proof

The argument relies in an indispensable way on the important work of Prasad [Pra89]

and Borel and Prasad [BP89] (there will be multiple references to results contained in these two
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articles). We will proceed as follows.

We start with a lattice Γ of minimal covolume in SLn(R). Using Margulis’ arithmeticity

theorem and Rohlfs’ maximality criterion, we find a number field k, an archimedean place v0

and a simply connected absolutely almost simple k-group G for which Γ is identified with the

normalizer of a principal arithmetic subgroup Λ in G(kv0). The latter means that there is a

collection of parahoric subgroups {Pv}v∈Vf such that Λ consists precisely of the elements of G(k)

whose image in G(kv) lies in Pv for all v ∈ Vf . This allows us to express the covolume of Γ as

µ(G(kv0)/Γ) = [Γ : Λ]−1 µ(G(kv0)/Λ).

The factor µ(G(kv0)/Λ) can be computed using Prasad’s volume formula [Pra89], and

the result depends on the arithmetics of k and of the parahorics Pv, as well as on the quasi-split

inner form of G.

On the other hand, the index [Γ : Λ] can be controlled using techniques developed by

Rohlfs [Roh79], and Borel and Prasad [BP89]. The bound depends namely on the first Galois

cohomology group of the center of G and on its action on the types of the parahorics Pv.

Once we have an estimate on the covolume of Γ, we can compare it to the covolume of

SLn(Z) in SLn(R). We argue that for the former not to exceed the latter, it must be that k is Q,

G is an inner form of SLn, and all the parahorics are hyperspecial. This is carried out in sections

4.4-4.6.

Finally, using local-global techniques, we conclude that Γ must be the image of SLn(Z)

under some automorphism of SLn(R).
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4.2 The setting

Let Γ be a lattice of minimal covolume for µ0 (see 3.2.4) in SLn(R); in particular, Γ is a

maximal lattice. By Margulis’ arithmeticity theorem [Mar91, ch. IX §1.5] (see 2.6.6) and Rohlfs’

maximality criterion [BP89, prop. 1.4] combined, there is a number field k, a place v0 ∈ V∞,

a simply connected absolutely simple group G defined over k, and a parahoric subgroup Pv of

G(kv) for each v ∈ Vf , such that:

(i) kv0 = R

(ii) there is an isomorphism ι : SLn → G defined over kv0 (in particular, SLn(R) ∼= G(kv0))

(iii) G(kv) is compact for any archimedean place v 6= v0

(iv) the collection {Pv}v∈Vf is coherent

(v) ι(Γ) is the normalizer of the lattice Λ = G(k) ∩ ι(Γ) in G(kv0), and Λ = G(k) ∩
∏
v∈Vf Pv

is the principal arithmetic subgroup determined by the collection {Pv}v∈Vf .

This already imposes the signature of k and of the splitting field l of the quasi-split

inner form G of G. Indeed, we have kv ∼= R for v ∈ V∞ − {v0}, otherwise G(kv) ∼= SLn(C) is not

compact; hence k is totally real. Note that in fact, for each v ∈ V∞−{v0}, G(kv) is isomorphic to

SUn(R), the unique compact connected simply connected almost simple Lie group of type An−1.

Recall that sinceG is of type A, either l = k or l is a quadratic extension of k. Regardless,

if v ∈ V∞ −{v0}, it may not be that l embeds into kv: indeed, if this happens, then G splits over

kv, and thus G would be an inner kv-form of SLn. This prohibits G(kv) from being compact, as

inner kv-forms of SLn are isotropic when n ≥ 3. Thus, in the former case, when G is an inner

k-form, it must be that V∞−{v0} is empty, i.e. l = k = Q. In the latter case, when G is an outer

k-form, for each v ∈ V∞ − {v0} the real embedding k → kv extends to two (conjugate) complex
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embeddings of l. On the other hand, G, hence G, splits over kv0 , thus l embeds in kv0 . Combined,

we see in this case that the signature of l is (2,m− 1).

On G, we pick a left-invariant exterior form ω of highest degree which is defined over

k. The form ω induces a left-invariant form on G(kv0), also to be denoted ω, which in turn

induces a left-invariant form on SUn(R) through their common Lie algebra. Let c ∈ R be such

that SUn(R) has volume 1 for the Haar measure determined in this way by cω; we denote µ the

Haar measure determined by cω on G(kv0). By construction, µ agrees with the measure induced

from µ0 through the isomorphism ι. In what follows, we will freely identify SLn(R) with G(kv0),

Γ with its image ι(Γ) and µ0 with µ. With this, we have

µ0(SLn(R)/Γ) = µ(G(kv0)/Γ) = [Γ : Λ]−1 µ(G(kv0)/Λ).

If F is a fundamental domain for Λ in G(kv0), then F∞ = F ×
∏
v∈V∞−{v0}G(kv) is a fundamental

domain for Λ inG∞. Therefore, in view of the normalization of the measures µv (see the paragraph

preceding 3.2.3),

µ∞(G∞/Λ) = µ∞(F∞) = µv0(F ) ·
∏

v∈V∞−{v0}

µv(G(kv)) = µv0(F ) = µ(G(kv0)/Λ).

Using Prasad’s volume formula (3.2.3), we can compute

µ(G(kv0)/Λ) = µ∞(G∞/Λ) = D
1
2

dimG

k (Dl/D
[l:k]
k )

1
2
s(G)

(
r∏
i=1

i!

(2π)i+1

)[k:Q] ∏
v∈Vf

e(Pv). (4.1)

We recall that l is the splitting field of the quasi-split inner k-form G of G, r = n−1 is the absolute

rank of G, s(G) = 0 if G is split, otherwise s(G) = 1
2r(r+ 3) if r is even or s(G) = 1

2(r− 1)(r+ 2)

if r is odd, and e(Pv) are the local factors associated to the collection {Pv}v∈Vf .
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4.3 An upper bound on the index

For the convenience of the reader, we briefly recollect the upper bound on the index

[Γ : Λ] developed by Borel and Prasad. The complete exposition, proofs and references are to be

found in [BP89, §2 & §5] (in the present setting, S = {v0}, G′ = G, Γ′ = Γ, etc.).

For each place v ∈ Vf , we fix a maximal kv-split torus Tv of G; we also fix an Iwahori

subgroup Iv of G(kv) such that the chamber in the affine building of G(kv) fixed by Iv is contained

in the apartment corresponding to Tv. We denote by ∆v the basis determined by Iv of the affine

root system of G(kv) relative to Tv.

The group Aut(G(kv)), hence also the adjoint group G(kv), acts on ∆v; we denote by

ξv : G(kv)→ Aut(∆v) the corresponding morphism. Let Ξv be the image of ξv.

Let C be the center of G and ϕ : G→ G the natural central isogeny, so that there is an

exact sequence of algebraic groups

1→ C → G
ϕ−→ G→ 1.

This sequence gives rise to long exact sequences (of pointed sets), which we store in the following

commutative diagram (v ∈ V ).

1 C(k) G(k) G(k) H1(k,C) H1(k,G)

1 C(kv) G(kv) G(kv) H1(kv, C) H1(kv, G)

ϕ δ

ϕ δv

(4.2)

When v ∈ Vf , we have that H1(kv, G) = 1 by a result of Kneser [Kne65] and thus δv induces an

isomorphism

G(kv)/ϕ(G(kv)) ∼= H1(kv, C).
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Recall that ξv is trivial on ϕ(G(kv)). Thus ξv induces a map H1(kv, C)→ Ξv, which we abusively

denote by ξv as well.

Let ∆ =
∏
v∈Vf ∆v, Ξ =

⊕
v∈Vf Ξv and Θ =

∏
v∈Vf Θv, where Θv ⊂ ∆v is the type

of the parahoric Pv associated to Λ. Ξ acts on ∆ componentwise, and we denote by ΞΘv the

stabilizer of Θv in Ξv and ΞΘ the stabilizer of Θ in Ξ. The morphisms ξv induce a map

ξ : H1(k,C)→ Ξ : c 7→ ξ(c) = (ξv(cv))v∈Vf

where cv denotes the image of c in H1(kv, C). With this, we define

H1(k,C)Θ = {c ∈ H1(k,C) | ξ(c) ∈ ΞΘ}

H1(k,C)′Θ = {c ∈ H1(k,C)Θ | cv0 = 1}

H1(k,C)ξ = {c ∈ H1(k,C) | ξ(c) = 1}.

Borel and Prasad [BP89, prop. 2.9] use the exact sequence due to Rohlfs

1→ C(kv0)/(C(k) ∩ Λ)→ Γ/Λ→ δ(G(k)) ∩H1(k,C)′Θ → 1.

Since kv0 = R, C(kv0) = {1} or {1,−1} depending whether n is odd or even. In particular,

it follows that C(kv0) = C(k) ∩ Λ and Γ/Λ ∼= δ(G(k)) ∩ H1(k,C)′Θ. Also, it is clear that the

kernel of ξ restricted to δ(G(k)) ∩ H1(k,C)′Θ is contained in δ(G(k)) ∩ H1(k,C)ξ, implying that

#
(
δ(G(k)) ∩H1(k,C)′Θ

)
≤ #

(
δ(G(k)) ∩H1(k,C)ξ

)
·
∏
v∈Vf #ΞΘv , and in turn,

[Γ : Λ] ≤ #
(
δ(G(k)) ∩H1(k,C)ξ

)
·
∏
v∈Vf

#ΞΘv ≤ #H1(k,C)ξ ·
∏
v∈Vf

#ΞΘv . (4.3)

In the next two subsections, we try to control the size of δ(G(k)) ∩ H1(k,C)ξ. We

distinguish the case where G is an inner k-form of SLn from the case G is an outer k-form. For

the former, we follow the argument of [BP89, prop. 5.1]. In the latter, we will adapt to our setting
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a refinement of the bounds of Borel and Prasad due to Mohammadi and Salehi Golsefidy [MSG12,

§4]. Except for minor modifications, all the material in this section can be found in these two

sources.

4.3.1 The inner case

Although in the inner case we have already established that k = Q, we will discuss it for

an arbitrary (totally real) field k, as this will be useful to treat the outer case as well. Let us thus

assume G is an inner k-form, i.e. (by the classification) G is isomorphic to SLn′ D for some central

division algebra D over k of index d = n/n′. Similarly, over kv, G is isomorphic to SLnv Dv for

some central division algebra Dv over kv of index dv = n/nv. The center C of G is isomorphic to

µn, the kernel of the map GL1 → GL1 : x 7→ xn, and thus for any field extension K of k, H1(K,C)

may (and will in this paragraph) be identified with K×/K×n (where K×n = {xn | x ∈ K×}).

With this identification, the canonical map H1(k,C) → H1(kv, C) corresponds to the canonical

map k×/k×n → k×v /k
×n
v .

The action of H1(kv, C) on ∆v can be described as follows: ∆v is a cycle of length nv,

on which G(kv) acts by rotations, i.e. Ξv can be identified with Z/nvZ. The action of H1(kv, C)

is then given by the morphism

k×v /k
×n
v → Z/nvZ : x 7→ v(x) mod nv.

From this description, we see that x ∈ k×v /k×nv acts trivially on ∆v precisely when v(x) ∈ nvZ;

in particular, if G splits over kv, x acts trivially if and only if v(x) ∈ nZ. We can form the exact

sequence

1→ kn/k
×n → H1(k,C)ξ

(v)v∈Vf−−−−−→
⊕
v∈Vf

Z/nZ,
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where kn = {x ∈ k× | v(x) ∈ nZ for all v ∈ Vf}. By the above, the image of H1(k,C)ξ lies in

the subgroup
⊕

v∈Vf nvZ/nZ. Let T be the set of places v ∈ Vf where G does not split over kv,

i.e. for which nv 6= n. Then the exact sequence yields

#H1(k,C)ξ ≤ #(kn/k
×n) ·

∏
v∈T

dv.

The proof of [BP89, prop. 0.12] shows that #(kn/k
×n) ≤ hkñn

[k:Q]−1, where ñ = 1 or 2 if n is

respectively odd or even. In the case k = Q, which will be of interest later, it is indeed clear that

#(Qn/Q×n) = ñ.

4.3.2 The outer case

Second, we assume G is an outer k-form. The centers of G and of the quasi-split inner

form G of G are k-isomorphic, hence there is an exact sequence

1→ C → Rl/k(µn)
N−→ µn → 1, (4.4)

where µn denotes the kernel of the map GL1 → GL1 : x 7→ xn as above, Rl/k denotes the

restriction of scalars from l to k, and N is (induced by) the norm map of l/k. The long exact

sequence associated to it yields

1→ µn(k)/N(µn(l))→ H1(k,C)→ l0/l
×n → 1 (4.5)

where l0/l×n denotes the kernel of the norm map N : l×/l×n → k×/k×n. The Hasse principle for

simply connected groups allows us to write

G(k) H1(k,C) H1(k,G)

∏
v∈V∞ G(kv)

∏
v∈V∞ H1(kv, C)

∏
v∈V∞ H1(kv, G).

δ

∼

(δv)v

(4.6)
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If n is odd, we can make the following simplifications: µn(k) = {1} and thus H1(k,C) ∼=

l0/l
×n in (4.5); using the analogous sequence for kv, we also have H1(kv, C) ∼= {1} for v ∈ V∞.

Thus, in (4.6), we read that δ is surjective and conclude δ(G(k)) ∼= l0/l
×n.

If n is even, a weaker conclusion holds provided l has at least one complex place, i.e. if

V∞ 6= {v0}. Indeed, if v1 ∈ V∞ − {v0}, so that l⊗k kv1 = C, then (l⊗k kv1)×/(l⊗k kv1)×n = {1}

and the long exact sequences associated to (4.4) read

1 {±1} H1(k,C) l0/l
×n 1

1 {±1} H1(kv1 , C) 1 1.

∼

∼

(4.7)

The first row splits, and thus we may identify H1(k,C) ∼= {±1}⊕l0/l×n; then l0/l×n is precisely the

kernel of the canonical map H1(k,C)→ H1(kv1 , C). Now since the adjoint map G(kv1)→ G(kv1)

is surjective (recall that G(kv1) ∼= SUn(R)), we have in (4.2) that the image of G(k) in H1(kv1 , C)

is trivial, hence δ(G(k)) ⊂ l0/l×n.

If n is even and V∞ = {v0}, then k = Q. We have, for each v ∈ Vf ,

1 µ(k)
N(µ(l)) H1(k,C) l0/l

×n 1

1 µ(kv)
N(µn(l⊗kv)) H1(kv, C) ker(N :l⊗kv→kv)

(l ⊗kv)×n 1.

We observe that µ(k)/N(µ(l)) (∼= {±1}) acts trivially on ∆v for every v ∈ Vf (see for example

[MSG12, §4]), hence the action factors through l0/l
×n. Thus #H1(k,C)ξ = 2 · #lξ/l×n, where

lξ/l
×n = {x ∈ l0/l×n | ξ(x) = 1}, so that the bound we establish below will hold with an extra

factor ñ in the case k = Q.

It remains to understand the action of l0/l×n on ∆. Let x ∈ l and let

(x) =
∏
P

PiPPiP ·
∏
p′

p′ip′ ·
∏
P′′

P′′iP′′
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be the unique factorization of the fractional ideal of l generated by x, where (P,P) (resp. p′, P′′)

runs over the set of primes of l that lie over primes of k that split over l (resp. over inert primes

of k, over ramified primes of k). When x ∈ l0, N(x) ∈ k×n and thus n divides iP + iP, 2ip′ and

iP′′ .

Observe that v ∈ Vf splits over l if and only if l embeds into kv, that is, if and only if (G

splits over kv and) G is an inner kv-form of SLn. In particular, at such a place v, G is isomorphic

to SLnv Dv for some central division algebra Dv over kv of index dv = n/nv. In [MSG12, §4], it is

shown that when v splits as PP over l, the action of x ∈ l0 is analogous to the inner case described

in 4.3.1, hence x acts trivially on ∆v if and only if n divides dviP (and thus n also divides dviP),

i.e. vP(x) = 0 mod nv (and vP(x) = 0 mod nv). When v is inert, say v corresponds to p′, then

x acts trivially on ∆v if and only if n divides ip′ [MSG12, §4].

Let T be the set of places v ∈ Vf such that v splits over l and G is not split over kv, and

let T l be a subset of the finite places of l consisting of precisely one extension of each v ∈ T , so

that restriction to k defines a bijection from T l to T . By the discussion above, we can form an

exact sequence

1→ (ln ∩ l0)/l×n → lξ/l
×n (w)

w∈Tl−−−−−→
⊕
w∈T l

Z/nZ,

where ln = {x ∈ l× | w(x) ∈ nZ for each normalized finite place w of l} and lξ/l
×n = {x ∈

l0/l
×n | ξ(x) = 1}. Moreover, the image of lξ/l×n lies in the subgroup

⊕
w∈T l nvZ/nZ. Thus, if

we assume k 6= Q (so that we may identify δ(G(k)) with a subgroup of l0/l×n),

#
(
δ(G(k)) ∩H1(k,C)ξ

)
≤ #

(
lξ/l
×n) ≤ #

(
(ln ∩ l0)/l×n

)
·
∏
v∈T

dv.

We get the concrete bound on the index

[Γ : Λ] ≤ hlñmn ·
∏
v∈T

dv ·
∏
v∈Vf

#ΞΘv
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by combining this with (4.3) and lemma 4.8.1. If k = Q, we have instead

[Γ : Λ] ≤ hlñ2n ·
∏
v∈T

dv ·
∏
v∈Vf

#ΞΘv .

4.4 The field k is Q

We set m = [k : Q] and as before, n = r+ 1. The purpose of this section is to show that

k = Q, i.e. m = 1.

We start by recalling that if Pv is special (in particular, if it is hyperspecial), i.e. Θv

consists of a single special (resp. hyperspecial) vertex of ∆v, then ΞΘv is trivial. Regardless of the

type Θv, we have #ΞΘv ≤ ñ unless G is an inner kv-form of SLn (say G ∼= SLnv(Dv)), in which

case #ΞΘv ≤ #∆v = nv, where nv − 1 is the rank of G over kv. (For example, this can be seen

explicitly on all the possible relative local Dynkin diagrams ∆v for G(kv), enumerated in [Tit79,

§4] or [MSG12, §2]. In the inner case, the Dynkin diagram is a cycle on which the adjoint group

acts as rotations.)

By a result of Kneser [Kne65], G is quasi-split over the maximal unramified extension

k̂v of kv for any v ∈ Vf . This means that over k̂v, G is isomorphic to G. The quasi-split k-forms

of simply connected absolutely almost simple groups of type An−1 are well understood [Tit66]:

either G ∼= SLn, or G ∼= SUn,l, the special unitary group associated to the split hermitian form

on ln, where l is a quadratic extension of k equipped with the canonical involution (incidentally,

l is the splitting field of SUn,l, in accordance with the notation introduced). Thus, over k̂v, only

these two possibilities arise for G. (Nonetheless, G might split over k̂v; in fact, it does so except

at finitely many places.) In particular, the rank rv of G over k̂v is either r, or the ceiling of r/2.
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4.4.1 The inner case

The case where G is an inner k-form of SLn (i.e. when l = k) has been treated in section

4.2. We observed that if G is an inner kv-form of SLn for some v ∈ V∞, then G(kv) cannot be

compact. This forced V∞ = {v0} and thus k = Q.

4.4.2 The outer case

Here we settle the case where G is an outer k-form of SLn, i.e. when [l : k] = 2. We

observed in section 4.2 that l has two real embeddings (extending k → kv0) and m − 1 pairs of

conjugate complex embeddings. Suppose that m > 1.

Let T be the finite set of places v ∈ Vf such that v splits over l and G is not split over

kv. Then, according to section 4.3.2, we have

[Γ : Λ] ≤ hlñmn ·
∏
v∈T

dv ·
∏
v∈Vf

#ΞΘv

where ñ = 1 or 2 if n is odd or even, and hl denotes the class number of l. Combined with (4.1),

we find (abbreviating Vn =
∏n−1
i=1

i!
(2π)i+1 )

µ(G(kv0)/Γ) ≥ ñ−mn−1h−1
l D

n2−1
2

k (Dl/D
2
k)

1
2
s(G)V m

n ·
∏
v∈T

d−1
v ·

∏
v∈Vf

#Ξ−1
Θv
·
∏
v∈Vf

e(Pv).

We use [Pra89, prop. 2.10, rem. 2.11] and the observations made at the begining of

section 4.4 to study the local factors of the right-hand side.

(i) If v ∈ T , then we use e(Pv) ≥ (qv − 1)q
(n2−n2d−1

v −2)/2
v to obtain d−1

v · #Ξ−1
Θv
· e(Pv) ≥

n−1 · (qv − 1)q
n2/4−1
v > 1 when n ≥ 4. When n = 3, then dv = 3 and we also have

d−1
v ·#Ξ−1

Θv
· e(Pv) ≥ n−1 · (qv − 1)q

n2/3−1
v > 1 (lemma 4.8.2).

(ii) If v /∈ T but Pv is special, then #ΞΘv = 1 and e(Pv) > 1, thus #Ξ−1
Θv
· e(Pv) > 1.
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(iii) If v /∈ T , Pv is not special and G is not split over kv, then we use that e(Pv) ≥ (qv+1)−1qrv+1
v

to obtain #Ξ−1
Θv
· e(Pv) ≥ ñ−1 · (qv + 1)−1q

d(n−1)/2e+1
v > 1 (lemma 4.8.3).

(iv) If v /∈ T , Pv is not special butG splits over kv, then Pv is properly contained in a hyperspecial

parahoric Hv. There is a canonical surjection Hv → SLn(fv), under which the image of Pv

is the proper parabolic subgroup P v of SLn(fv) whose type consists of the vertices belonging

to the type of Pv in the Dynkin diagram obtained by removing the vertex corresponding

to Hv in the affine Dynkin diagram of G(kv). In particular, it follows that [Hv : Pv] =

[SLn(fv) : P v] and we may compute using lemma 4.8.14

e(Pv) = [Hv : Pv] · e(Hv) > [Hv : Pv] > qn−1.

Hence #Ξ−1
Θv
· e(Pv) > n−1qn−1 > 1.

Multiplying all the factors together, we have that

∏
v∈T

d−1
v ·

∏
v∈Vf

#Ξ−1
Θv
·
∏
v∈Vf

e(Pv) > 1

and we can thus write

µ(G(kv0)/Γ) > ñ−mn−1h−1
l D

n2−1
2

k (Dl/D
2
k)

1
2
s(G)V m

n . (4.8)

Recall that Dl/D
2
k is the norm of the relative discriminant dl/k of l over k; in particular,

Dl/D
2
k is a positive integer. Note also that s(G) ≥ 5 if n ≥ 3. We combine this with two

number-theoretical bounds: from the results in [BP89, §6], we use that

h−1
l Dl ≥

1

100

(
12

π

)2m

;

from Minkowski’s geometry of numbers (see for example [Sam70, §4.3]), we recall (k is totally

real)

D
1
2
k ≥

mm

m!
.
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Altogether, we obtain

µ(G(kv0)/Γ) >
1

100ñm

(
12

π

)2m

D
n2−5

2
k (Dl/D

2
k)

1
2
s(G)−1V m

n n−1 (4.9)

≥ 1

100ñm

(
12

π

)2m(mm

m!

)n2−5

V m
n n−1.

We consider the function M : N× N→ R defined by

M(m,n) =
1

100ñm

(
12

π

)2m(mm

m!

)n2−5
(
n−1∏
i=1

i!

(2π)i+1

)m−1

n−1.

(As Vn appears once as a factor in the covolume of SLn(Z), we dropped its exponent above by

one.) The function M is strictly increasing in both variables, provided m ≥ 2 and n ≥ 6 (lemma

4.8.4). In consequence, if m ≥ 2, n ≥ 9,

µ(G(kv0)/Γ)

µ(SLn(R)/ SLn(Z))
>
M(m,n)∏n
i=2 ζ(i)

>
M(2, 9)∏∞
i=2 ζ(i)

> 1,

(cf. lemma 4.8.13) and Γ is not of minimal covolume.

In a similar manner, we would like to show that m cannot be large. To this end,

Odlyzko’s bounds on discriminants [Odl76, table 4] are well-suited. We have

D
1
2
k > Am · E, with A = 29.534

1
2 and E = e−4.13335.

Combining with (4.9), we obtain

µ(G(kv0)/Γ) >
1

100ñm

(
12

π

)2m

(AmE)n
2−5 V m

n n−1.

We consider the function M ′ : N× N→ R defined by

M ′(m,n) =
1

100ñm

(
12

π

)2m

(AmE)n
2−5

(
n−1∏
i=1

i!

(2π)i+1

)m−1

n−1.
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M ′ is also strictly increasing in both variables, provided m ≥ 4 and n ≥ 4 (lemma 4.8.6). This

means that if m ≥ 6, n ≥ 4,

µ(G(kv0)/Γ)

µ(SLn(R)/ SLn(Z))
>
M ′(m,n)∏n
i=2 ζ(i)

>
M ′(6, 4)∏∞
i=2 ζ(i)

> 1,

(cf. table 4.8.7 and lemma 4.8.13) and Γ is not of minimal covolume.

We may thus restrict our attention to the range 4 ≤ n ≤ 8 and 2 ≤ m ≤ 5 (we will

treat the case n = 3 with a separate argument at the end of this section). By further sharpening

our estimates on the discriminant, we will show that all these values are excluded as well, forcing

m = 1.

From the bound (4.9) and the estimate µ(G(kv0)/Γ) ≤ µ(SLn(R)/ SLn(Z)) < 2.3 · Vn

(4.8.13), we deduce an upper bound on the discriminant of k:

Dk <

(
230ñm

( π
12

)2m
(Dl/D

2
k)

1− 1
2
s(G)V 1−m

n n

) 2
n2−5

(4.10)

≤
(

230ñm
( π

12

)2m
V 1−m
n n

) 2
n2−5

=: C(m,n).

As can be seen by comparing the values of C (table 4.8.8) with the smallest discriminants (table

4.8.9), this bound already rules out n ≥ 7. We use these two tables to obtain information about

Dk. A lower bound on Dk in turn will give us a bound on the relative discriminant: using (4.9)

again,

Dl/D
2
k <

(
230ñm

( π
12

)2m
D

5−n2
2

k V 1−m
n n

) 2
s(G)−2

. (4.11)

We proceed to rule out all values of m. In what follows, unless specified otherwise, any bound

on Dk is obtained using (4.10), (4.8.8) or (4.8.9), and any upper bound on Dl/D
2
k using (4.11).

Claims made on the existence of a field l satisfying certain conditions are always made with the

underlying assumption that l is a quadratic extension of k of signature (2,m− 1).
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m = 5 gives 14641 ≤ Dk ≤ 15627 (and n = 4). A quick look in the online database of number fields

[JR14] shows1 that there is only one such field (with Dk = 14641). Now for l, Odlyzko’s

bound [Odl76, table 4] reads

Dl > (29.534)2 · (14.616)8 · e−8.2667 ≥ 4.66756 · 108

and in particular, we compute that Dl/D
2
k ≥ 2.177 (hence Dl/D

2
k ≥ 3). On the other hand,

(4.11) yields

Dl/D
2
k < 1.271,

ruling out this case.

m = 4 gives 725 ≤ Dk ≤ 1741 (and n = 4). A quick look in the database [JR14] shows that there

are three fields satisfying this requirement, with discriminants respectively 725, 1125, 1600.

(i) If Dk = 1600, then Dl/D
2
k < 1.365, hence Dl = D2

k = 2560000. But, as observed in

the database, there are no fields l of signature (2, 3) with Dl ≤ 3950000.

Unfortunately, the database has no complete records for fields with signature (2, 3) and

discriminants past 3950000. We will thus need to refine our bounds to be able to treat the

two other possible values for Dk. First, we go back to our bound on the class number hl:

as in [BP89, §6], we use Zimmert’s bound Rl ≥ 0.04 · e2·0.46+(m−1)·0.1 on the regulator of l

along with the Brauer-Siegel theorem (with s = 2) to deduce

hl ≤ 100 · e−0.82−0.1·m · (2π)−2m · ζ(2)2m ·Dl ≤ 29.523 ·
( π

12

)8
·Dl.

1The database [JR14] provides a certificate of completeness for certain queries. All allusions made here refer to
searches that are proven complete. However, it is important to note that in [JR14], class numbers are computed
assuming the generalized Riemann hypothesis (the rest of the data being unconditional). The class numbers
referred to in this paper were therefore all verified using PARI/GP’s bnfcertify command. A PARI/GP script
of this process is available on the author’s page (math.ucsd.edu/~fthilman/).
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Using this, we may rewrite the bound (4.11) as

Dl/D
2
k <

(
67.9029ñ4

( π
12

)8
D

5−n2
2

k V −3
n n

) 2
s(G)−2

.

(ii) If Dk = 1125, then our new bound yields Dl/D
2
k ≤ 2, hence Dl ≤ 2D2

k = 2531250 and

this is ruled out by the database.

(iii) If Dk = 725, then our new bound yields Dl/D
2
k ≤ 11, hence Dl ≤ 11D2

k = 5781875.

Selmane [Sel99] has computed all fields of signature (2, 3) that possess a proper subfield

and have discriminantDl ≤ 6688609. It turns out that among those, only the field with

discriminant −5781875 can be an extension of k. As observed in the online database,

this field has class number 1. Substituting this information in (4.8), we see that the

right-hand side exceeds 2.3 · Vn.

m = 3 gives 49 ≤ Dk ≤ 194 (and n = 4 or 5). A quick look in the database [JR14] shows that

there are four fields satisfying this requirement, with discriminants respectively 49, 81, 148,

169.

(i) If Dk = 169, then Dl/D
2
k < 1.661 hence Dl = D2

k = 28561. There are no fields l with

Dl ≤ 28000.

(ii) If Dk = 148, then Dl/D
2
k ≤ 2. There are no fields l with Dl/1482 = 1 or 2.

(iii) If Dk = 81, then Dl/D
2
k ≤ 24. An extensive search in the database shows that this

can only be satisfied by one field l, with discriminant Dl = 812 · 17. It has class

number hl = 1, hence we may substitute this information in (4.8) and compute that

the right-hand side exceeds 2.3 · Vn.

(iv) If Dk = 49, then Dl/D
2
k ≤ 155. An extensive search in the database shows that there

are 6 fields l satisfying this condition. They correspond to Dl/D
2
k = 13, 29, 41, 64, 97
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or 113, and all have class number 1. Then, in (4.8), the right-hand side again exceeds

2.3 · Vn (note that it suffices to check this for the smallest value of Dl/D
2
k).

m = 2 gives 5 ≤ Dk ≤ 21 (and 4 ≤ n ≤ 6). It is well known (and can be observed in the database

[JR14]) that there are 6 fields satisfying this requirement, with discriminants respectively

5, 8, 12, 13, 17, 21. From (4.11), we see that Dl/D
2
k ≤ 214, 38, 8, 6, 2, 1 respectively.

(i) If Dk = 21 or 17, we observe that Dl ≤ 578. There are no fields with Dl ≤ 578 that

can be extensions of k in these cases.

(ii) If Dk = 13, then the database exhibits only one possible field l with Dl = 132 · 3.

This field has trivial class group, and using this information in (4.8), we see that the

right-hand side exceeds 2.3 · Vn.

(iii) If Dk = 12, then there are again no fields with Dl ≤ 8D2
k.

(iv) If Dk = 8, then there are 11 candidates l with Dl ≤ 38 · 82, and all have trivial class

group. The one with smallest relative discriminant has Dl/D
2
k = 7. For this field

(hence for all of them), the right-hand side of (4.8) is again too large.

(v) If Dk = 5, there are 25 candidates l with Dl ≤ 214 ·52, and all have trivial class group.

The one with smallest relative discriminant has Dl = 11. This field (hence all of them)

is one more time excluded by (4.8).

It remains to deal with the case n = 3. First, we proceed as above, using lemma 4.8.6,

M ′(16, 3) ' 4.6751..., and ζ(2) · ζ(3) < 1.97731 to see that

µ(G(kv0)/Γ)

µ(SL3(R)/ SL3(Z))
>

M ′(m, 3)

ζ(2) · ζ(3)
> 1

provided m ≥ 16. Hence we may restrict our attention to the range 2 ≤ m ≤ 15.
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Unfortunately, this bound on the degree of k is too large to allow us to work with a

number field database. Of course, the reason this bound is large is that the powers of Dk and Dl

appearing in (4.8) are very small. In turn, the bound we used for the class number hl was very

greedy in terms of Dl, aggravating the situation. In fact, we can use (4.8) and one of Odlyzko’s

bounds [Odl76] for Dl to obtain a lower bound on hl:

hl ≥
D−1
k D

5
2
l V

m−1
3

3 · ζ(2) · ζ(3)
≥

D2
l V

m−1
3

3 · ζ(2) · ζ(3)
>

(25.4652 · 13.3162m−2 · e−7.0667)2 · V m−1
3

3 · ζ(2) · ζ(3)
. (4.12)

We record the values of this bound in table 4.8.10 (for small values of m, we used the actual

minimum for Dl to obtain this lower bound for hl).

To solve this issue, we use the following trick. The Hilbert class field L of l has degree

[L : Q] = 2mhl, signature (2hl, (m − 1)hl) and discriminant DL = Dhl
l . Hence, when the class

number is large, we can use Odlyzko’s bounds [Odl76] for DL in order to improve our bounds on

Dl. Namely, we have

Dl = D
1
hl
L > 60.0152 · 22.2102m−2 · e

−80.001
hl .

We record this bound for Dl in table 4.8.11.

Now using Dl ≥ D2
k, we may rewrite (4.9) as

ζ(2) · ζ(3) · V3 > µ(G(kv0)/Γ) >
1

300

(
12

π

)2m

Dl · V m
3

and check that this inequality contradicts the bound in table 4.8.11 as soon as m ≥ 4. For m = 3

and m = 2, the bound reads respectively Dl ≤ 4578732 and Dl ≤ 13643.

Finally, to treat the remaining two cases, we can use the online database [JR14]. If

m = 3, we observe that all fields of signature (2, 2) with discriminant Dl ≤ 4578732 have class

number either hl = 1 or hl = 2; this contradicts (4.12) and table 4.8.10. Similarly, if m = 2, we
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observe in the database that all fields of signature (2, 1) with discriminant Dl ≤ 13643 also have

class number either hl = 1 or hl = 2. This is again a contradiction to (4.12) and table 4.8.10.

Table 4.4.1. Below is a summary of the various discriminant bounds that were used in this

section to exclude a given pair (m,n) from giving rise to a lattice of minimal covolume.

m
n

3

4

5

10

1 2 3 4 5 10 15

4.
8.
9

M
in
ko
w
sk
i

Odlyzko

(s
ec
ti
on

s
4.
5
an

d
4.
6)

Case by case

Class field + Odlyzko

4.5 G is an inner form of SLn

The purpose of this section is to show that G is an inner k-form of SLn, i.e. that G splits

over k. Let us thus suppose, for contradiction, that [l : k] > 1.

We have shown in section 4.4 that k = Q, so that the bounds (4.8) and (4.9) obtained

in 4.4.2 can be adapted as follows: (the extra factor ñ is due to the correction in the index bound

when k = Q, cf. section 4.3.2)

µ(G(kv0)/Γ) > ñ−2n−1h−1
l D

1
2
s(G)

l Vn

≥ 1

100ñ2

(
12

π

)2

D
1
2
s(G)−1

l Vnn
−1.
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First, let us assume that hl 6= 1. Since l is totally real, this implies Dl ≥ 40. Note that

s(G) ≥ 1
2(r2 + r − 2) = 1

2(n2 − n− 2). Therefore

µ(G(kv0)/Γ) >
1

100ñ2

(
12

π

)2

40
1
4

(n2−n−6)Vnn
−1.

We consider the function N : N→ R defined by

N(n) =
1

100ñ2

(
12

π

)2

40
1
4

(n2−n−6)n−1.

The function N is strictly increasing, provided n ≥ 2 (lemma 4.8.12). In consequence, if n ≥ 4,

then N(n) ≥ N(4) ' 2.30692... and thus

µ(G(kv0)/Γ)

µ(SLn(R)/ SLn(Z))
>

N(n)∏n
i=2 ζ(i)

>
N(4)∏∞
i=2 ζ(i)

> 1,

hence Γ is not of minimal covolume. For n = 3 we notice that s(G) = 5, so that

µ(G(kv0)/Γ) >
1

300

(
12

π

)2

40
3
2 · V3 > 12.3035 · V3

and Γ is not of minimal covolume.

Second, if hl = 1, then at least Dl ≥ 5 and we may consider the function N ′ : N → R

defined by

N ′(n) = ñ−2n−15
1
4

(n2−n−2).

The function N ′ is strictly increasing (lemma 4.8.12) and N ′(4) ' 3.49385..., thus

µ(G(kv0)/Γ)

µ(SLn(R)/ SLn(Z))
>

N(n)∏n
i=2 ζ(i)

>
N(4)∏∞
i=2 ζ(i)

> 1,

and Γ is not of minimal covolume. For n = 3, we use again that s(G) = 5 to see that

µ(G(kv0)/Γ) >
1

3
· 5

5
2 · V3 > 18.6338 · V3

and Γ is not of minimal covolume. This forces l = k and G to be an inner form.
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4.6 The parahorics Pv are hyperspecial and G splits at all places

So far, we have established that k = l = Q and G is an inner k-form of SLn; thus, G is

isomorphic to SLn′ D for some central division algebra D over k of index d = n/n′. Similarly, over

kv, G is isomorphic to SLnv Dv for some central division algebra Dv over kv of index dv = n/nv.

Recall that T is the finite set of places v ∈ Vf where G does not split over kv, and let T ′ be the

finite set of places v ∈ Vf where Pv is not a hyperspecial parahoric; of course, T ⊂ T ′. The goal

of this section is to show that T ′ is empty.

According to section 4.3.1, we have

#H1(k,C)ξ ≤ ñ ·
∏
v∈T

dv,

with dv ≥ 2 if v ∈ T . Also, as we noted at the begining of section 4.4,

#ΞΘv ≤ nv if v ∈ T , #ΞΘv ≤ r + 1 = n if v ∈ T ′, #ΞΘv = 1 otherwise.

Combined with (4.1) and (4.3), we obtain

µ(G(kv0)/Γ) ≥ ñ−1Vn ·
∏
v∈T

d−1
v ·

∏
v∈T

n−1
v ·

∏
v∈T ′−T

n−1 ·
∏
v∈Vf

e(Pv)

= ñ−1Vn ·
∏
v∈T ′

n−1 ·
∏
v∈Vf

e(Pv). (4.13)

Recall that for any v ∈ Vf , e(Pv) > 1. If v ∈ T , then according to [Pra89, remark 2.11],

we have

e(Pv) ≥ (qv − 1)q
1
2

(n2−n2d−1
v −2)

v ≥ (qv − 1)q
1
4
n2−1

v .

Now if T is not empty, then by looking at the Hasse invariant of D, it appears that dv ≥ 2 for

at least two (finite) places. This means that T has at least two elements, and using lemma 4.8.2,

68



we see that if n ≥ 4,

∏
v∈T

n−1e(Pv) ≥ (n−1(2− 1) · 2
1
4
n2−1) · (n−1(3− 1) · 3

1
4
n2−1) ≥ 27.

If n = 3, then actually dv = 3 for at least two (finite) places, and

∏
v∈T

n−1e(Pv) ≥ (n−1(2− 1) · 2
1
3
n2−1) · (n−1(3− 1) · 3

1
3
n2−1) = 8.

In particular, it is clear from (4.13) that Γ is not of minimal covolume. Hence it must be that T

is empty and G splits everywhere.

On the other hand, if v ∈ T ′ − T , then Pv is properly contained in a hyperspecial

parahoric Hv. As discussed previously, there is a canonical surjection Hv → SLn(fv), under which

the image of Pv is the proper parabolic subgroup P v of SLn(fv) whose type consists of the vertices

belonging to the type of Pv in the Dynkin diagram obtained by removing the vertex corresponding

to Hv in the affine Dynkin diagram of G(kv). In particular, it follows that [Hv : Pv] = [SLn(fv) :

P v] and thus using lemma 4.8.14,

e(Pv) = [Hv : Pv] · e(Hv) ≥ qn−1
v · e(Hv).

Of course, as G splits everywhere, we have that e(Hv) is equal to the corresponding factor

e(SLn(Zv)) =
∏n
i=2

1
1−q−iv

for SLn(Qv). In consequence,

µ(G(kv0)/Γ)

µ(SLn(R)/ SLn(Z))
≥
ñ−1

∏
v∈T ′ n

−1 ·
∏
v∈Vf e(Pv)∏

v∈Vf e(SLn(Zv))
≥ ñ−1

∏
v∈T ′

(n−1qn−1
v ) ≥ 1

with equality only if n = 4, T ′ = {2} and #ΞΘ2 = 4. Notice however that this bound is rather

rough; by examining the types of the parahorics carefully, one obtains much better bounds. For

example, to achieve #ΞΘv = n, Pv must be an Iwahori subgroup, in which case [Hv : Pv] ≥

q
(n2−n)/2
v in lemma 4.8.14. This rules out the equality case above and thus T ′ must be empty as

well.
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4.7 Conclusion

As we have shown in section 4.6, G splits over kv for all v ∈ Vf and thus for all v ∈ V .

As before, let D be a central division algebra over k (= Q) of degree d such that G ∼= SLn′(D)

over k. Now since G splits at all places, we have for any v ∈ V that G(kv) ∼= SLn(kv), or in other

words, that the group of elements of reduced norm 1 in Mn′(D)⊗k kv is isomorphic to SLn(kv).

This implies that Mn′(D)⊗k kv ∼= Mn(kv), i.e. Dv = D⊗k kv splits over kv. It then follows from

the Albert–Brauer–Hasse–Noether theorem that D = k and in turn G(k) ∼= SLn(k) and G is split

over k. From hereon, we will thus identify G with SLn through this isomorphism, to be denoted

η.

Since each parahoric Pv is hyperspecial, for each v ∈ Vf there exists gv ∈ GLn(Qv) such

that gvPvg−1
v = SLn(Zv). As the family {Pv} is coherent, we may assume that gv = 1 except for

finitely many v ∈ Vf . In this way, g = (1, (gv)v∈Vf ) determines an element of the adele group

GLn(A). The class group of GLn over Q is trivial [PR94, ch. 8], therefore

GLn(A) = (GLn(R)×
∏
v∈Vf

GLn(Zv)) ·GLn(Q),

and we can write g = (1, (g′vh)v∈Vf ) for g′v ∈ GLn(Zv) and h ∈ GLn(Q). In consequence,

hPvh
−1 = g′−1

v SLn(Zv)g′v = SLn(Zv), and thus

hΛh−1 = hSLn(Q)h−1 ∩
∏
v∈Vf

hPvh
−1 = SLn(Q) ∩

∏
v∈Vf

SLn(Zv) = SLn(Z).

In turn, hΓh−1 = SLn(Z), as SLn(Z) (or equivalently Λ) is its own normalizer in SLn(R). One

way to obtain this fact is using Rohlfs’ exact sequence (see section 4.3). Indeed, clearly C(kv0) =

C(k) ∩ Λ, and on the other hand, since Λ is given by hyperspecial parahorics, we may identify

H1(k,C)′Θ = {x ∈ Q×/Q×n | v(x) ∈ nZ for v ∈ Vf , and x ∈ R×n} = {1}.
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Hence Γ/Λ is trivial as claimed.

Finally, retracing our identifications, we find that SLn(Z) is the image of Γ under the au-

tomorphism σ : SLn(R)
ι−→ G(kv0)

η−→ SLn(R)
ch−→ SLn(R) of SLn(R) (here ch denotes conjugation

by h). This concludes the proof of the

Theorem. Let n ≥ 3 and let Γ be a lattice of minimal covolume for some (any) Haar measure

in SLn(R). Then σ(Γ) = SLn(Z) for some (algebraic) automorphism σ of SLn(R).

4.8 Bounds for sections 4.4 through 4.6

4.8.1 Lemma. Let k be a totally real number field of degree m and let l be a quadratic extension of

k of signature (2m1,m2), so that m = m1 +m2. Let n ∈ N and set l0 = {x ∈ l× | Nl/k(x) ∈ k×n}

and ln = {x ∈ l× | w(x) ∈ nZ for each normalized finite place w of l}. Then

#
(
(ln ∩ l0)/l×n

)
≤ # (µ(l)/µ(l)n) · ñm−1nm1 ·#Cn,

where µ(l) is the group of roots of unity of l, ñ = 1 or 2 depending if n is odd or even, and Cn is

the n-torsion subgroup of the class group C of l.

Moreover, if Nl/k is surjective from Ul onto Uk/{±1}, then

#
(
(ln ∩ l0)/l×n

)
≤ # (µ(l)/µ(l)n) · nm1 ·#Cn.

Proof. According to [BP89, prop. 0.12], there is an exact sequence

1→ Ul/U
n
l → ln/l

×n → Cn → 1,

where Ul denotes the group of units of the ring of integers of l, and Cn is the n-torsion subgroup

of the class group C of l. Intersecting with l0/l×n yields

#
(
(ln ∩ l0)/l×n

)
≤ # ((Ul ∩ l0)/Unl ) ·#Cn.
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Dirichlet’s units theorem [Sam70, §4.4] states that Ul is the internal direct product

Fl×µ(l) of Fl, the free abelian subgroup of Ul (of rank 2m1 +m2− 1) generated by some system

of fundamental units, and µ(l), the subgroup of roots of unity in l×. Since µ(l) ⊂ l0, we also have

that Ul ∩ l0 is the internal direct product of Fl ∩ l0 and µ(l). Additionally, it is clear that under

this identification, Unl corresponds to the subgroup Fnl ×µ(l)n of (Fl ∩ l0)×µ(l). In consequence,

# ((Ul ∩ l0)/Unl ) = # ((Fl ∩ l0)/Fnl ) ·# (µ(l)/µ(l)n) ,

and it remains to study (Fl ∩ l0)/Fnl ; to this end, we switch to additive notation.

We write L for the free abelian group Ul/µ(l) (canonically isomorphic to Fl) in additive

notation, and M for its free subgroup Uk/{±1} (of rank m − 1) consisting of units lying in k.

The norm Nl/k induces a map N : L→M , and in turn a map L/nL→M/nM also denoted by

N , whose kernel L0/nL corresponds precisely to (Fl ∩ l0)/Fnl . In other words, the sequence

0→ L0/nL→ L/nL
N−→M/nM

is exact. It is clear that #(L/nL) = n2m1+m2−1 and #(M/nM) = nm−1. If N is surjective, then

it follows that #(L0/nL) = nm1 . In any case, we have 2M ⊂ N(L) hence we may write

#

(
N(L) + nM

nM

)
= #

(
N(L) + nM

2M + nM

)
·#
(

2M + nM

nM

)
.

As 2M + nM = ñM , we have #
(

2M+nM
nM

)
=
(
n
ñ

)m−1 and the lemma follows.

4.8.2 Lemma. The function N× N→ R defined by E(n, q) = n−1 · (q − 1)qn
2/4−1 is increasing

in both n and q provided n, q ≥ 2. In consequence, n−1 · (q − 1)qn
2/4−1 > 1 provided n ≥ 4.

Similarly, n−1 · (q − 1)qn
2/3−1 > 1 provided n ≥ 3.

Proof. We compute, for n, q ≥ 2,

E(n, q + 1)

E(n, q)
=
q(q + 1)

1
4
n2−1

(q − 1)q
1
4
n2−1

=
q2(q + 1)

1
4
n2

(q2 − 1)q
1
4
n2
> 1.
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and

E(n+ 1, q)

E(n, q)
=

n

n+ 1
· q

1
4

(2n+1) ≥ 2

3
· 2

5
4 > 1.

Thus E is strictly increasing in n and q if n, q ≥ 2, and E(4, 2) = 2. The proof of the second

inequality is analogous.

4.8.3 Lemma. Let n, q ∈ N with q ≥ 2. Then ñ−1 · (q + 1)−1qd(n+1)/2e > 1 provided n ≥ 3.

Proof. Observe that E(n, q) = qd(n+1)/2e

(q+1)ñ is increasing in n and strictly increasing in q, as

E(n+ 1, q)

E(n, q)
=

ñ

ñ+ 1
q2−ñ ≥ 1

and

E(n, q + 1)

E(n, q)
=

(q + 1)(q + 1)d(n+1)/2e

(q + 2)qd(n+1)/2e =
(q2 + 2q + 1)(q + 1)d(n+1)/2e−1

(q2 + 2q)qd(n+1)/2e−1
> 1.

Finally E(3, 2) = 4
3 .

4.8.4 Lemma. The function M : N× N→ R defined by

M(m,n) =
1

100ñm

(
12

π

)2m(mm

m!

)n2−5
(
n−1∏
i=1

i!

(2π)i+1

)m−1

n−1

(where ñ = 1 or 2 if n is odd or even) is strictly increasing in both m and n, provided m ≥ 2 and

n ≥ 6.

Proof. For F a function of two integer variables m and n, we denote ∂mF (resp. ∂nF ) the

function defined by ∂mF (m,n) = F (m+1,n)
F (m,n) (resp. ∂nF (m,n) = F (m,n+1)

F (m,n) ). In order to show that

M increases in m (resp. in n), we intent to show that ∂mM > 1 (resp. ∂nM > 1).

We have

∂mM(m,n) =
144

π2ñ

(
(m+ 1)m

mm

)n2−5

·
n−1∏
i=1

i!

(2π)i+1

∂nM(m,n) =

(
ñ

ñ+ 1

)m
· n

n+ 1
·
(
mm

m!

)2n+1( n!

(2π)n+1

)m−1
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and thus

∂m(∂nM)(m,n) = ∂n(∂mM)(m,n) =
ñ

ñ+ 1
·
(

(m+ 1)m

mm

)2n+1

· n!

(2π)n+1
.

Now if m ≥ 2 and n ≥ 4, then (m+1)m

mm ≥ 9
4 and we have

∂m(∂nM)(m,n) ≥ 1

2

(
9

4

)2n+1 n!

(2π)n+1
=

9

16π
·
(

81

16π

)n
· n!

2n
≥ 9

16π
·
(

81

16π

)4

> 1.

This means that provided m ≥ 2 and n ≥ 4, ∂mM increases in n and ∂nM increases in m.

Finally, assuming m ≥ 2 and n ≥ 6 respectively, we have

∂mM(m, 6) =
144

2π2

(
(m+ 1)m

mm

)31

·
5∏
i=1

i!

(2π)i+1
≥ 144

2π2

(
9

4

)31

·
5∏
i=1

i!

(2π)i+1
> 1

∂nM(2, n) =

(
ñ

ñ+ 1

)2 n

n+ 1
· 22n+1 · n!

(2π)n+1
≥ 3

14
· 2n n!

πn+1
≥ 3

14
· 26 · 6!

π7
> 1

hence ∂mM(m,n) > 1 and ∂nM(m,n) > 1 provided m ≥ 2 and n ≥ 6, completing the proof.

Table 4.8.5. The table below contains some values of the function M from lemma 4.8.4.

(n,m) 1 2 3 4 5 6 7 8

2 0.0364756 0.00337012 0.000276781 0.0000215771 1.63315× 10−6 1.21281× 10−7 8.88761× 10−9 6.44933× 10−10

3 0.0486342 0.00231876 0.000177084 0.0000166585 1.76356× 10−6 2.01469× 10−7 2.42731× 10−8 3.04153× 10−9

4 0.0182378 0.000214239 9.19392× 10−6 6.99962× 10−7 7.37412× 10−8 9.57798× 10−9 1.43998× 10−9 2.41175× 10−10

5 0.0291805 0.000860260 0.000267434 0.000235765 0.000375160 0.000873531 0.00265357 0.00980934

6 0.0121585 0.000715847 0.00162363 0.0185268 0.528020 27.1489 2107.97 221884.

7 0.0208432 0.0374453 11.9823 37981.0 4.41409× 108 1.18530× 1013 5.71337× 1017 4.24155× 1022

8 0.00911891 0.556912 35451.1 4.88495× 1010 3.84324× 1017 9.29477× 1024 4.92580× 1032 4.65827× 1040

9 0.0162114 685.655 2.23863× 1011 3.83726× 1021 6.20398× 1032 4.26138× 1044 8.04066× 1056 3.19899× 1069

10 0.00729513 306071. 9.29184× 1017 3.98641× 1032 2.82701× 1048 1.22281× 1065 1.87055× 1082 7.27033× 1099

11 0.0132639 1.40574× 1010 1.27888× 1028 4.91209× 1048 5.79785× 1070 6.22507× 1093 3.12510× 10117 4.89869× 10141

4.8.6 Lemma. The function M ′ : N× N→ R defined by

M ′(m,n) =
1

100ñm

(
12

π

)2m

(AmE)n
2−5

(
n−1∏
i=1

i!

(2π)i+1

)m−1

n−1
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(where ñ = 1 or 2 if n is odd or even, and A = 29.534
1
2 , E = e−4.13335) is strictly increasing

in both m and n, provided m ≥ 4 and n ≥ 4. Moreover, M ′(m,n) is strictly increasing in m

provided n ≥ 3.

Proof. In order to show that M ′ increases in m (resp. in n), we intend to show that ∂mM > 1

(resp. ∂nM > 1); the notation is as in lemma 4.8.4.

We have

∂mM
′(m,n) =

144

π2ñ
·An2−5 ·

n−1∏
i=1

i!

(2π)i+1

∂nM
′(m,n) =

(
ñ

ñ+ 1

)m
(AmE)2n+1

(
n!

(2π)n+1

)m−1( n

n+ 1

)

and thus

∂m(∂nM
′)(m,n) = ∂n(∂mM

′)(m,n) =
ñ

ñ+ 1
·A2n+1 · n!

(2π)n+1
.

As clearly A2 > 2π, we have (if n ≥ 3)

∂m(∂nM
′)(m,n) >

1

2
·A · n!

2π
> 1.

This means that ∂mM ′ increases in n and ∂nM ′ increases in m. Assuming respectively m ≥ 1

and n ≥ 4, we have

∂mM
′(m, 3) =

144

π2
·A4 · 2

(2π)5
> 1

∂nM
′(4, n) ≥ 1

24
·
(
A4E

)2n+1 · (n!)3

(2π)3n+3
· 4

5

≥ 1

24
·
(
A4E

)9 · (6!)3

(2π)21
· 4

5
> 1

hence ∂mM ′(m,n) > 1 and ∂nM ′(m,n) > 1 providedm ≥ 4 and n ≥ 4. Moreover, ∂mM ′(m,n) >

1 if n ≥ 3, completing the proof.
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Table 4.8.7. The table below contains some values of the function M ′ from lemma 4.8.6.

(n,m) 1 2 3 4 5 6 7 8

2 0.418729 0.0142379 0.000484124 0.0000164615 5.59732× 10−7 1.90323× 10−8 6.47149× 10−10 2.20047× 10−11

3 2.80041× 10−6 7.27880× 10−6 0.0000189190 0.0000491740 0.000127813 0.000332209 0.000863474 0.00224433

4 3.99708× 10−14 2.79970× 10−11 1.96100× 10−8 0.0000137356 0.00962086 6.73878 4720.08 3.30611× 106

5 1.84711× 10−23 2.62212× 10−16 3.72231× 10−9 0.0528412 750123. 1.06486× 1013 1.51165× 1020 2.14591× 1027

6 1.68676× 10−35 2.85139× 10−23 4.82016× 10−11 81.4827 1.37743× 1014 2.32849× 1026 3.93621× 1038 6.65400× 1050

7 4.80891× 10−49 1.09207× 10−29 2.48000× 10−10 5.63189× 109 1.27896× 1029 2.90442× 1048 6.59571× 1067 1.49783× 1087

8 2.65506× 10−65 6.66279× 10−38 1.67200× 10−10 4.19583× 1017 1.05293× 1045 2.64229× 1072 6.63074× 1099 1.66396× 10127

9 4.52005× 10−83 1.88536× 10−45 7.86407× 10−8 3.28019× 1030 1.36821× 1068 5.70695× 10105 2.38043× 10143 9.92906× 10180

10 1.47804× 10−103 1.08376× 10−54 7.94662× 10−6 5.82681× 1043 4.27247× 1092 3.13276× 10141 2.29707× 10190 1.68431× 10239

11 1.48182× 10−125 3.59121× 10−63 0.870337 2.10928× 1062 5.11187× 10124 1.23887× 10187 3.00243× 10249 7.27644× 10311

Table 4.8.8. The table below contains some values of C(m,n) =
(

230ñm
(
π
12

)2m
V 1−m
n n

) 2
n2−5 .

(n,m) 1 2 3 4 5 6 7 8

3 6.87691 125.979 2307.81 42276.9 774473. 1.41876× 107 2.59904× 108 4.76120× 109

4 2.40966 21.6241 194.053 1741.42 15627.4 140239. 1.25850× 106 1.12937× 107

5 1.54762 8.80582 50.1044 285.090 1622.14 9229.86 52517.2 298819.

6 1.40247 6.73460 32.3393 155.292 745.707 3580.86 17195.1 82570.5

7 1.23838 4.82334 18.7864 73.1708 284.992 1110.01 4323.37 16839.0

8 1.20619 4.19700 14.6037 50.8142 176.811 615.221 2140.69 7448.64

9 1.13928 3.44306 10.4054 31.4468 95.0368 287.215 868.006 2623.24

Table 4.8.9. The table below contains the absolute value of the smallest discriminant Dk of a

totally real number field of degree m (see for example [Voi08] or [JR14]).

m 1 2 3 4 5 6 7 8

minDk 1 5 49 725 14641 300125 20134393 282300416
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Table 4.8.10. The tables below contains some values of H(m) =
(A2B2m−2E)2Vm−1

3
3·ζ(2)·ζ(3) for A =

25.465, B = 13.316, E = e−7.0667 if m ≥ 5, and otherwise H(m) is obtained from (4.12) using

the smallest discriminant for the signature (2,m− 1) (see [JR14, Sel99]).

m 2 3 4 5 6 7 8 9

H(m) 2.603 5.527 26.39 87.71 563.2 3616.4 23222.2 149118.

m 10 11 12 13 14 15

H(m) 9.58× 105 6.15× 106 3.95× 107 2.54× 108 1.63× 109 1.05× 1010

Table 4.8.11. The table below contains some values of 60.0152 · 22.2102m−2 · e
−80.001
H(m) , where

H(m) is as in table 4.8.10.

m 2 3 4 5 6 7 8

Dl > 8.05× 10−8 454.01 2.08× 1010 8.57× 1013 9.13× 1016 5.08× 1019 2.55× 1022

m 9 10 11 12 13 14 15

Dl > 1.26× 1025 6.23× 1027 3.07× 1030 1.52× 1033 7.48× 1035 3.69× 1038 1.82× 1041

4.8.12 Lemma. The function N : N→ R defined by

N(n) =
1

100ñ2

(
12

π

)2

40
1
4

(n2−n−6)n−1.

(where ñ = 1 or 2 if n is odd or even) is strictly increasing provided n ≥ 2. The same holds for

N ′(n) = ñ−2n−15
1
4

(n2−n−2).

Proof. We compute

N(n+ 1)

N(n)
=

ñ2

ñ+ 1
2 · 40

1
2
n · n

n+ 1
≥ 1

4
· 40 · 2

3
> 1.

The proof for N ′ is analogous.
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4.8.13 Lemma.
∞∏
i=2

ζ(i) < 2.3

Proof. We have

ln

∞∏
i=9

ζ(i) =

∞∑
i=9

ln(1 + (ζ(i)− 1)) ≤
∞∑
i=9

(ζ(i)− 1) =

∞∑
i=9

∞∑
j=2

1

ji

=
∞∑
j=2

1

j9

∞∑
i=0

1

ji
=
∞∑
j=2

1

j9

j

j − 1
≤ 2

∞∑
j=2

1

j9
= 2(ζ(9)− 1);

hence
∏∞
i=2 ζ(i) ≤ exp(2ζ(9)− 2) ·

∏8
i=2 ζ(i) < 2.3

4.8.14 Lemma. Let P be a parabolic subgroup of SLn(Fq) and let n1, n2, . . . , n#θ+1 be integers

such that the complement of the type θ of P in the Dynkin diagram of SLn(Fq) consists of k′

connected components of respectively n1 − 1, n2 − 1, . . . , nk′ − 1 vertices and nk′+1 = nk′+2 =

· · · = n#θ+1 = 1. Then [SLn(Fq) : P ] ≥ q
1
2

(n2−
∑#θ+1
i=1 n2

i ). In particular, if P is a proper parabolic

subgroup, then [SLn(Fq) : P ] ≥ qn−1.

Proof. Set k = #θ+ 1. Without loss of generality, we may assume that P contains the subgroup

B of upper triangular matrices and that elements of P are of the form

n1
∗ · · · ∗ ∗ ∗ ∗
∗ · · · ∗ ∗ ∗ ∗

0 0 n2 · · · ∗ ∗ ∗ ∗
...

...
...

. . .
...

...
...

...
0 0 0 · · ·

nk−1

∗
0 0 0 · · · ∗
0 0 0 · · · ∗
0 0 0 · · · 0 0 0 nk


where ni indicates a block in GLni(Fq), ∗ indicates an arbitrary entry in Fq, and the determinant

of the whole matrix is 1. Hence

#P =

∏n1−1
j=1 (qn1 − qj) · · ·

∏nk−1
j=1 (qnk − qj) · q

1
2

(n2−
∑k
i=1 n

2
i )

q − 1
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and

# SLn(Fq)
#P

=

∏n−1
j=0 (qn − qj)∏n1−1

j=0 (qn1 − qj) · · ·
∏nk−1
j=0 (qnk − qj) · q

1
2

(n2−
∑k
i=1 n

2
i )

=
q
n(n−1)

2 ·
∏n
j=1(qj − 1)

q
1
2

(n2−
∑k
i=1 n

2
i )q

1
2

∑k
i=1 ni(ni−1) ·

∏n1
j=1(qj − 1) · · ·

∏nk
j=1(qj − 1)

=

∏n
j=1(qj − 1)∏n1

j=1(qj − 1) · · ·
∏nk
j=1(qj − 1)

= q
1
2

(n(n−1)−
∑k
i=1 ni(ni−1)) ·

∏n1
j=1(qj − 1) ·

∏n2
j=1(qj − q−n1) · · ·

∏nk
j=1(qj − q−

∑k−1
i=1 ni)∏n1

j=1(qj − 1) · · ·
∏nk
j=1(qj − 1)

.

Of course, n(n− 1)−
∑k

i=1 ni(ni − 1) = (n2 −
∑k

i=1 n
2
i ). Now the ratio in the right-hand side

is clearly greater then 1, as, taken in order, each factor in the numerator is bigger than the

corresponding one in the denominator.

Finally, we observe that if P is proper, k ≥ 2 and n2 −
∑k

i=1 n
2
i ≥ 2(n− 1).

This chapter contains material from Lattices of minimal covolume in SLn(R), Proc.

Lond. Math. Soc., 118 (2019), pp. 78–102. The dissertation author was the primary investigator

and author of this paper.
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