UC Irvine

UC Irvine Previously Published Works

Title

The engineering of developmental regulation

Permalink

https://escholarship.org/uc/item/3b57z5hr

Journal

DEVELOPMENTAL BIOLOGY, 319(2)

ISSN

0012-1606

Author

Lander, Arthur D

Publication Date

2008

DOI

10.1016/j.ydbio.2008.05.032

Copyright Information

This work is made available under the terms of a Creative Commons Attribution License, available at https://creativecommons.org/licenses/by/4.0/

Peer reviewed

Contents lists available at ScienceDirect

Developmental Biology

journal homepage: www.elsevier.com/developmentalbiology

Abstracts

Symposium 4: Signaling pathways and networks

Program/Abstract # 30 The engineering of developmental regulation

Arthur D. Lander

Department of Developmental and Cell Biology, University of California, Irvine, USA

Center for Complex Biological Systems, University of California, Irvine, USA

In recent years, the gathering and mining of massive datasets (genomes, proteomes, interactomes, phenomes, etc.) has prompted attempts to re-envision biological phenomena as emerging from complex networks and systems, rather than just being the consequence of linear genetic and biochemical pathways. This seems like a step forward, but exactly how it advances understanding is not always easy to see. I will argue that one of the great advantages of the "systems approach" is that it enables one to assign importance to components (e.g. genes, proteins, network circuits) by how they contribute to system-level performance objectives (tasks selected for by evolution), and not merely by how striking or severe the phenotypes are when they are deleted. I will illustrate this by discussing several developing systems in which patterning and growth are the targets of complex regulation. Drawing from recent experimental, mathematical and computational results, I will make the case that only by taking into account selection for engineering objectives-things like robustness, adaptability, response time, and noise-suppression-can we make sense of the molecular and genetic networks we observe. In this regard, biology seems finally to be coming around to a viewpoint articulated over 50 years ago by one of the first presidents of the SDB.

doi:10.1016/j.ydbio.2008.05.032