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Abstract

Background: Artificial intelligence (AI) models applied to 12-lead electrocardiogram (ECG) 

waveforms can predict atrial fibrillation (AF), a heritable and morbid arrhythmia. However, the 

factors forming the basis of risk predictions from AI models are usually not well understood. We 

hypothesized that there might be a genetic basis for ECG-AI-based risk estimates.

Correspondence: Steven A. Lubitz, MD, MPH, Demoulas Center for Cardiac Arrhythmias and Cardiovascular Research 
Center, Massachusetts General Hospital, 55 Fruit Street, GRB 109, Boston, MA 02114, Tel:617-643-7339, Fax:617-726-3852, 
slubitz@mgh.harvard.edu. 

Disclosures: Dr. Lubitz is a full-time employee of Novartis as of July 18, 2022. Dr. Lubitz has received sponsored research support 
from Bristol Myers Squibb, Pfizer, Boehringer Ingelheim, Fitbit, Medtronic, Premier, and IBM, and has consulted for Bristol 
Myers Squibb, Pfizer, Blackstone Life Sciences, and Invitae. Dr. Anderson receives sponsored research support from Bayer AG and 
Massachusetts General Hospital and has consulted for ApoPharma. Dr. Weng receives sponsored research support from IBM to the 
Broad Institute. Dr. Ho has received sponsored research support from Bayer AG and research supplies from EcoNugenics, Inc. Dr. 
Ellinor has received sponsored research support from Bayer AG and IBM Health, and he has consulted for Bayer AG, Novartis and 
MyoKardia. Dr. Batra, Dr. Reeder and Dr. Friedman have received sponsored research support from Bayer AG and IBM Health, and 
Dr. Batra has consulted for Novartis and Prometheus Biosciences.

HHS Public Access
Author manuscript
Circ Genom Precis Med. Author manuscript; available in PMC 2024 August 01.

Published in final edited form as:
Circ Genom Precis Med. 2023 August ; 16(4): 340–349. doi:10.1161/CIRCGEN.122.003808.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Methods: We applied a validated ECG-AI model for predicting incident AF to ECGs from 

39,986 UK Biobank participants without AF. We then performed a genome-wide association study 

(GWAS) of the predicted AF risk and compared it to an AF GWAS and a GWAS of risk estimates 

from a clinical variable model.

Results: In the ECG-AI GWAS, we identified three signals (P < 5×10−8) at established AF 

susceptibility loci marked by the sarcomeric gene TTN and sodium channel genes SCN5A and 

SCN10A. We also identified two novel loci near the genes VGLL2 and EXT1. In contrast, 

the clinical variable model prediction GWAS indicated a different genetic profile. In genetic 

correlation analysis, the prediction from the ECG-AI model was estimated to have a higher 

correlation with AF than that from the clinical variable model.

Conclusions: Predicted AF risk from an ECG-AI model is influenced by genetic variation 

implicating sarcomeric, ion channel, and body height pathways. ECG-AI models may identify 

individuals at risk for disease via specific biological pathways.

Introduction

Atrial fibrillation (AF) is a heritable arrhythmia associated with substantial morbidity, 

including stroke, heart failure, dementia, and mortality.1-3 Identifying individuals at high risk 

of developing AF may enable early detection via cardiac rhythm monitoring and treatment, 

or behavioral modification to prevent AF altogether. Artificial intelligence (AI) algorithms 

applied to 12-lead electrocardiogram (ECG) waveforms can predict AF.4-6 Algorithms that 

predict AF risk from ECGs have practical appeal given the ubiquity and inexpensive nature 

of ECGs, and lack of requirement for manual data input for risk estimation. Whether risk 

estimates derived from AI algorithms reflect specific underlying genetic pathways that 

increase susceptibility to AF is unclear.

Understanding the biological basis for risk estimates from machine learning models could 

aid model interpretability, rationalize model outputs, promote clinician confidence, and 

potentially enable identification of individuals with specific mechanistic pathways that lead 

to AF. We recently developed and validated an AI algorithm for predicting the 5-year risk of 

new-onset AF using 12-lead ECGs (“ECG-AI”).7 In the present study, we conducted genetic 

association testing with AF risk estimates generated from the ECG-AI model to assess the 

genetic underpinnings reflected by the output. As a comparator, we assessed the genetic 

basis of a widely validated clinical risk factor model for predicting AF, the CHARGE-AF 

score (Cohorts for Aging and Research in Genomic Epidemiology–AF).8

Methods

The study overview is presented in Figure 1. Full methods are available in Supplemental 

Material. The data and code that support the findings of the present study are available from 

the corresponding author upon reasonable request. We used data from the UK Biobank9,10 

for the analysis in this article. All participants provided electronic signed consent at 

recruitment, and the study protocol was approved by the UK Biobank Research Ethics 

Committee (reference number 11/NW/0382). Use of data (under UK Biobank application 
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7089) for the current study was approved by the Mass General Brigham (MGB) Institutional 

Review Board.

Results

Sample characteristics

A flowchart showing the process of selecting participants in the derivation (39,986) and 

validation (424,411) analysis is presented in Figure 1. The mean age of the 39,986 

participants included in the GWAS was 64.0 +/− 7.7 years at the time of ECG acquisition 

and 52% were female. The median follow-up time (starting from ECG visit) for this subset 

was 2.8 years (quartile 1: 1.9, quartile 3: 4.3). 510 individuals developed incident AF within 

5 years of follow-up, corresponding to a cumulative incidence of AF of 2.12%. The mean 

age of the 424,411 participants included in the polygenic risk score application analysis who 

did not have ECGs was 57.1 +/− 8.1 years at the time of study enrollment and 55% were 

female. The median follow-up time (starting from study enrollment) for this subset was 11.1 

years (quartile 1: 10.4, quartile 3: 11.8). 7,077 individuals developed incident AF within 

5 years of follow up, corresponding to a cumulative AF incidence of 1.70%. Participant 

characteristics are presented in Table 1.

Genome-wide association analyses

The GWAS of ECG-AI predicted AF risk did not demonstrate any inflation (λgc=1.04). 

Four genome-wide significant (P < 5×10−8) loci were identified (Figure 2 and Supplemental 

Table I). Two of the top SNVs were in close proximity to genes previously reported to be 

associated with AF, including TTN and SCN10A.11,12 The nearest genes at the other two 

loci were VGLL2 and EXT1. A conditional analysis detected an additional independent 

association signal at the SCN5A locus (Supplemental Table I), which has also been reported 

to be associated with AF in previous studies.11,13 We provide the summary statistics from 

a prior AF GWAS11 for SNPs in high LD (r2 >= 0.8) with the top SNPs at the two novel 

loci implicated in our ECG-AI GWAS (rs9689288 for VGLL2 and rs35186392 for EXT1) in 

Supplemental Table II. Additionally, we show LocusZoom plots for the two loci comparing 

between our ECG-AI GWAS and the reference AF GWAS in Supplemental Figure I. Finally, 

we present the results of an exploratory expression association analysis in which we tested 

associations between predicted expression of EXT1 and VGLL2 with AF, separately (see 

Supplementary Methods). We observed a nominal association between the expression levels 

of EXT1 and AF (P=0.04) and a nonsignificant association between VGLL2 expression and 

AF (P=0.17; Supplemental Table III).

In the GWAS of CHARGE-AF predicted risk, minimal genomic inflation was observed 

(λgc=1.10) which was likely due to polygenicity rather than population stratification, as 

implicated by the LD score regression intercept (1.0107). Nineteen loci were identified in 

the GWAS of CHARGE-AF predicted risk (Figure 2 and Supplemental Table IV), none of 

which have previously been reported in association with AF. Traits associated with lead 

SNVs at these loci mainly consist of body size measurements and phenotypes related to 

the clinical factors included in the CHARGE-AF score calculation (Supplemental Table IV 
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and Supplemental Table V). No secondary association signals were detected in a conditional 

analysis.

The LocusZoom plots for risk loci identified in the two GWAS are presented in 

Supplemental Figure II and Supplemental Figure III, respectively. We also compared the 

summary statistics of the independent significant lead SNVs in the ECG-AI risk GWAS to 

that in the CHARGE-AF risk GWAS, and vice versa (Supplemental Table VI). No variants 

exceed the genome-wide significance threshold in the GWAS of 5-year incident AF with the 

same covariates (Figure 2).

Heritabilities and genetic correlations

Using individual level genomic and phenotypic data, the estimated heritability (h2) was 

13.0% (s.e. 1.4%) for ECG-AI risk and 36.5% (s.e. 1.4%) for CHARGE-AF risk. Genetic 

correlations with AF were estimated to be 35.3% (s.e. 13.7%) for ECG-AI risk and 18.9% 

(s.e. 8.6%) for CHARGE-AF risk. We further estimated the genetic correlation between 

the predicted AF risks from ECG-AI and CHARGE-AF, and found a significant correlation 

of 39.3% (s.e. 4.5%). As a comparator, we also calculated the heritabilities and genetic 

correlations using GWAS summary statistics with LD score regression,14 and the estimates 

were similar in magnitude to those calculated from individual-level data. Detailed results are 

provided in Figure 3 and Supplemental Table VII.

Polygenic risk scores and incident AF

We calculated two polygenic risk scores (PRS) for the 424,411 eligible participants using 

predicted AF risk GWAS results. Each one standard deviation (SD) increase in the PRS 

of rank-based inverse normal transformed (R-INT) ECG-AI risk (PRSECG-AI) and the PRS 

of R-INT CHARGE-AF risk (PRSCHARGE-AF) were significantly associated with 5-year 

incident AF (PRSECG-AI hazard ratio [HR] 1.07, 95% CI 1.04 - 1.09, P = 3.0×10−8; and 

PRSCHARGE-AF HR 1.12, 95% CI 1.09 - 1.14, P = 3.4×10−19). When included in the same 

model, both remained significantly associated with 5-year incident AF (PRSECG-AI HR 1.06, 

95% CI 1.04 - 1.09, P = 1.1×10−6; and PRSCHARGE-AF HR 1.11, 95% CI 1.08 - 1.14, P = 

1.1×10−17). The C-index of models testing the performance of PRSECG-AI, PRSCHARGE-AF, 

and the two scores together are presented in Supplemental Table VIII. We observed that 

the C-index was comparable using PRSECG-AI and PRSCHARGE-AF and was highest when 

including the two scores; the pattern of discrimination is similar to that reported in the 

original report of the derivation of the ECG-AI score.7

We did not observe a significant interaction between the two PRSs (P = 0.97). We also 

plotted the cumulative risk of AF stratified by high (10%), middle (80%), and low (10%) 

groupings of the PRS distributions and observed separation between groups (Supplemental 

Figure IV). Due to a difference in the ancestral composition of the GWAS discovery set 

(White British: 96.6%) and PRS testing set (White British: 87.2%), we repeated the above 

analysis in the subset of the PRS testing set comprising White British participants only. We 

observed similar results (Supplemental Table IX and Supplemental Figure V).
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Contributing components of ECG-AI predicted AF risk

Informed by the genetic signals from our common variant analysis, we tested the causal 

effects of P wave duration and body height on ECG-AI predicted risk using a two sample 

Mendelian Randomization (MR) approach. We extracted GWAS summary statistics from 

studies that did not include UK Biobank samples for P wave duration and body height (see 

Supplemental Methods). The P wave was selected because (1) it had the greatest impact 

on ECG-AI predicted risk indicated by saliency maps and a median waveform analysis in 

our previous study,7 (2) previous literature suggests an association between ECG P-wave 

duration and AF risk,15 and (3) it has been linked to SCN5A/SCN10A in previous genetic 

studies16 and an overlap between genetic variants associated with the P-wave and AF has 

been reported.17 Body height was selected because (1) it has been linked to VGLL2 and 

EXT1 loci,18,19 (2) is an established risk factor for AF,20,21 and (3) there is published 

evidence showing that neural networks applied to 12-lead ECGs can predict body size 

measurements.22

A significant and plausible causal effect of P wave duration on ECG-AI risk was supported 

by four out of the five methods we used, with MR effect sizes ranging from 0.017 to 0.023. 

The causal effect of height on ECG-AI risk was supported by all five methods, with MR 

effect sizes ranging from 0.085 to 0.123. Results are presented in Figure 4.

Additionally, to discern what ECG features were responsible for associations with observed 

genes, in exploratory analyses we plotted the median ECG waveforms for individuals in the 

highest and lowest 1% of the regional PRS for top loci (Supplemental Figure VI). We note 

that differences are observable but are subtle between risk groups. Given that ECGs were 

only available for a subset of the UK Biobank participants (N=39,986 in the current study), 

we anticipate this approach will be more informative as the ECG sample size increases.

Discussion

To facilitate the interpretability of a validated deep-learning model that predicts AF risk 

from 12-lead ECGs, we assessed the genetic basis of risk predictions generated from the 

ECG-AI model. Despite the fact that individuals did not have AF at the time of ECG 

acquisition, we identified variants at three established AF susceptibility loci – TTN, SCN5A, 
and SCN10A – and at two novel loci that implicate body size measurements – VGLL2 and 

EXT1. In contrast, our GWAS of CHARGE-AF derived AF risk did not identify any signals 

previously reported in a GWAS for AF, but identified loci linked to component clinical risk 

factors for AF that are included in the risk model. Our MR analyses provide supporting 

evidence that P wave duration and body height are predictive factors for AF that were 

captured by the ECG-AI model. Broadly, our findings imply that estimates of disease risk 

from deep learning models that use raw physiologic data, and risk scores more generally, 

are influenced by genetic susceptibility. In turn, such deep learning models may have the 

potential to identify individuals at risk for disease via specific genetic pathways.

Deep learning models of 12-lead ECGs for the identification of individuals with a high 

likelihood of AF have been reported5-7 but the interpretability and representations that 

underlie the risk estimates generated by the models have not been explained. We previously 

Wang et al. Page 5

Circ Genom Precis Med. Author manuscript; available in PMC 2024 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



observed that ECG-AI estimates for AF risk are largely influenced by the P wave, 

a period corresponding to atrial depolarization and repolarization.7 Moreover, we have 

previously reported that both ECG-AI and clinical risk for AF are complementary.7 Here, 

we extend these observations by identifying genetic signals that have been associated with 

P wave duration,17 and documenting the distinct genetic profiles underlying risk estimates 

generated by ECG-AI and a clinical risk factor model. Our finding are consistent with the 

previous observation that ECG-AI and CHARGE-AF models are complementary in terms of 

predictive utility,7 which may be attributed to the different biological pathways captured by 

different risk prediction models.

Our findings have two major implications. First, risk estimates from the ECG-AI model 

are influenced by genetic mechanisms that are more specific to AF than are those from 

a clinical risk factor model. Specifically, loss-of-function variants in TTN have been 

associated with a substantially increased risk for AF23,24 and common variants at this 

locus have been associated with AF.11 TTN encodes titin, an integral protein involved 

in sarcomere development, structural integrity, and contractility.25 The ECG-AI GWAS 

also identified variation at the SCN5A and SCN10A loci. Both SCN5A and SCN10A 
encode the alpha subunits of voltage gated sodium channels and SCN5A is essential for 

myocyte depolarization. Genetic variants at these loci have been described in association 

with AF and ECG traits in prior GWAS11,16,26,27 and in rare familial forms of AF.13,28-30 

VGLL2 encodes for the vestigial like family member 2a protein, is critical for skeletal 

muscle development and contains a interacting domain for TEAD1, a member of the 

Hippo signaling pathway.31 EXT1 encodes a protein involved in the production of heparan 

sulfate32, and has been implicated in the development of the outflow tract.33 We note that the 

EXT1 and VGLL2 loci are relative gene-dense loci, and we have focused here on the nearest 

genes as a means of prioritization.

In contrast, the genetic signals for CHARGE-AF risk were not specific to AF but reflected 

the diverse genetic mechanisms underlying the component risk factors in the model, 

including body height, body weight, blood pressure, and smoking status. Notably, the ECG-

AI model loci linked to body size – VGLL2 and EXT1 – differ from the CHARGE-AF 

model loci linked to body size, implying that the manifestation of body size on the ECG 

may reflect different dimensions of body size from those measured conventionally using 

height and weight. The relative specificity of the ECG-AI model for genetic mechanisms 

underlying AF is further supported by our observation that the genetic correlation with 

AF from a prior GWAS was greater with ECG-AI predicted risk than with CHARGE-AF 

predicted risk.

Overall, our finding that predicted risk of AF from an ECG-based deep learning model 

is influenced by inherited susceptibility raises the possibility that an individual’s genetic 

predisposition to AF is inferable using their raw ECG data alone, even prior to disease onset. 

Indeed, the GWAS of incident AF did not identify any significant genetic susceptibility 

loci, underscoring the power of performing a GWAS of models trained to predict risk of 

a disease, rather than of the disease itself. Future analysis is warranted to assess whether 

ECG-AI, and other risk models more broadly, can be used to specifically predict which 

individuals are predisposed to diseases via particular biological mechanisms. Such insights 
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could theoretically have important implications for the personalization of prevention and 

therapeutics, identification of individuals with genetic disorders, and the use of deep 

learning or other risk models as digital biomarkers in addition to general risk prediction 

models.

Second, the genetic analysis of risk estimates generated by AI models may facilitate the 

interpretation of output, and underlying representations, of the models which may otherwise 

be difficult to interpret. Our GWAS, and MR analyses, highlight the fact that our ECG-AI 

model is influenced by heritable factors related to the P-wave and body size. The fact that 

ECG-AI can infer anthropometric traits22 suggests that deep learning model estimates from 

raw physiologic data can be influenced by numerous variables which manifest on the data 

modality under study. Height has been causally linked to AF risk previously.20,21 Future 

work is warranted to understand which specific ECG features reflect risk factors for AF 

and how artificial intelligence models learn and predict risk factors for AF. We propose the 

transfer of clinically-derived models to datasets with genomic information and subsequent 

genetic association testing, as a means to explore the factors which influence risk estimates 

from deep learning models. We submit that this approach could serve as a tool for improving 

model interpretability when the prediction models are otherwise difficult to understand.

We further note that whereas our approach focused on a single model task – the predicted 

risk of AF – examining the genetic architecture of the model latent space itself may 

reveal the genetic basis for the ECG representations learned by the model. As the 

number of samples with both ECG and genomic data increase, we anticipate greater 

statistical power to identify genetic signals underlying predicted disease risk, including 

rare large-effect variants. Given the fact that the ECG-AI GWAS implicated known AF 

risk loci in individuals without AF, the approach we employed may have the potential to 

identify novel disease-related pathways as sample sizes grow. Moreover, we submit that 

the increasing availability of large-scale biobank data with raw data acquisition amenable 

to deep learning will enable examination of the genetic basis of other disease predictions. 

We anticipate that improved understanding of the relations between biological pathways 

and deep learning models may facilitate model application in clinical practice by enhancing 

clinician confidence in model outputs, and facilitating the inference of biological pathways 

that lead to disease risk in specific individuals.

Our study should be interpreted in the context of the design. First, our phenotyping 

algorithm used hospitalization and death records to ascertain disease status, which may lead 

to disease misclassification. However, before applying the ECG-AI model in UKBB, we 

omitted individuals that were not identified as prevalent AF by the phenotyping algorithm 

but were indicated as AF by their diagnostic statement accompanying ECG data, to reduce 

the impact of misclassification. Second, the MGH dataset we used to train the ECG-AI 

model and the UKBB dataset we used to perform genetic analyses consist predominantly 

of White British participants, which may limit the generalizability of our findings to 

populations of other ancestries. It is unclear if the results of the GWAS of ECG-AI reflect 

the underlying composition of the sample in which it was trained – future analysis of 

other ECG-AI models for AF prediction are warranted. Third, as additional and larger 

biorepository datasets emerge, replication of the ECG-AI GWAS will be necessary to 
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support the utility of our approach for understanding disease prediction models. Functional 

validation will be required to support the mechanisms by which genetic loci predispose to 

disease risk. Fourth, risk discrimination of the ECG-AI model in UKBB is moderate. A 

model with greater discrimination in the discovery sample may increase yield of genetic 

associations. Fifth, given roughly three years of follow-up after ECG in the UK Biobank, 

the power of our incident AF analysis may be limited. Sixth, we note that neither the 

GWAS of the ECG-AI model nor the CHARGE-AF model identified some established 

AF susceptibility loci, including that upstream of PITX2, the predominant AF common 

variant susceptibility locus. We note that PITX2 is not identified in any ECG trait GWAS, 

which implies that the mechanism underlying association with AF for this risk locus does 

not prominently involve factors that impact the ECG. Our findings highlight the fact that 

specific genetic susceptibility loci identified when performing association testing using a 

particular modality will reflect the risk pathways which manifest on that modality. Seventh, 

when interpreting the genome-wide associations with disease risk estimates generated from 

prediction models, the signals may reflect confounders rather than causal risk factors for 

the disease. However, instead of discovering novel causal genes for AF, the current study 

aims to understand the factors forming the basis of predictions generated from the ECG-

AI model. Our analysis identified factors that manifest on the ECG and are interpreted 

by the neural network to contribute to disease risk. Lastly, 2,000 individuals among the 

39,986 participants in the discovery set were related (3rd degree or closer), which may 

impact the GWAS results generated by the REGENIE software. While REGENIE includes a 

genetic relatedness matrix in its analysis, which may address this issue to some extent, it is 

important to note that other factors, such as the degree of relatedness, the size of the dataset, 

and the underlying genetic architecture of the trait of interest, may still affect the results.

In conclusion, we have shown that ECG-AI predicted AF risk reflects inherited 

predisposition to AF with a genetic background that is more specific for AF risk loci when 

compared to that for a clinical model. A polygenic risk score constructed using common 

variants associated with ECG-AI risk was significantly associated with incident AF in a 

prospective cohort. The interpretability of the ECG-AI model was improved by genetic 

analyses indicating that P wave duration and body height are likely to be two contributing 

factors forming the basis of AF risk predictions.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Nonstandard Abbreviations and Acronyms

CHARGE-AF: Cohorts for Aging and Research in Genomic 

Epidemiology–Atrial Fibrillation.

CNN: convolutional neural network.

ECG-AI: an artificial intelligence algorithm for predicting the 5-year 

risk of new-onset atrial fibrillation using 12-lead ECGs.

LD: linkage disequilibrium

R-INT: Rank-based inverse normal transformation.

SNPs: single nucleotide polymorphisms

SNVs: single nucleotide variants
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Figure 1. 
Study overview. We applied our validated ECG-AI model to samples with ECG data in the 

UK Biobank. After excluding participants who withdrew consent, had missing CHARGE-

AF components, were diagnosed with atrial fibrillation (AF) before ECG examination, did 

not have follow-up information or failed sample QC procedures, 39,987 remained in the 

discovery set, in which we performed GWAS and post-GWAS analyses. Among the 446,963 

remaining genotyping samples, 424,411 did not withdraw consent, were not < 3rd-degree 

relatives with individuals in the GWAS set, were not diagnosed with AF before enrollment, 

had follow-up information, and did not fail sample QC procedures. We calculated polygenic 

risk scores (PRS) using the GWAS results and associated the PRS with incident AF in this 

subset.
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Figure 2. 
Manhattan plots of genome-wide association studies of ECG-AI and CHARGE-AF 

predicted risk of AF, and observed 5-year incident AF in the UK Biobank. Chromosomal 

variant positions are plotted on the x-axis. The −log10(P values) are plotted on the y-axis. 

The genome-wide significance threshold (5×10−8) is indicated by the horizontal dotted line. 

Variants are colored red near loci that have been reported in a prior atrial fibrillation (AF) 

GWAS,21 and are colored dark blue near loci that have not been reported previously in 

association with AF. Panels display associations with (a) ECG-AI predicted 5-year risk of 

AF, (b) CHARGE-AF predicted 5-year risk of AF, and (c) observed incident AF at 5-years 

in the UK Biobank. 5-year AF risk estimates were rank-based inverse normal transformed 

prior to analysis (see text).
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Figure 3. 
Heritability and genetic correlation estimates for model predicted 5-year atrial fibrillation 

(AF) risk. Heritability (h2) derived from the ECG-AI and CHARGE-AF GWAS are 

displayed on the left panel. Genetic correlation (rg) comparing both the ECG-AI and 

CHARGE-AF GWAS with a prior independent large-scale GWAS of AF,21 is displayed on 

the right panel. ‘Individual-level’ refers to estimates generated from individual-level genetic 

and phenotypic data. ‘Summary statistics’ refers to estimates generated from GWAS results. 

Summary statistics for ECG-AI risk and CHARGE-AF risk were extracted from the GWAS 

in the present study.
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Figure 4. 
Mendelian Randomization analysis between P wave duration, body height, and atrial 

fibrillation (AF). The figure displays Mendelian randomization results assessing ECG P 

wave duration (top panel) and body heigh (bottom panel) for relations with genetically 

predicted ECG-AI risk. Mendelian randomization effect sizes are graphed on the x-axis. 

Dots represent point estimates and bars represent 95% confidence intervals. Dashed gray 

lines represent zero effect sizes. The five Mendelian randomization methods used in this 

analysis are shown in the y-axis.
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Table 1.

Characteristics of the UK Biobank cohort participants.

Variable GWAS discovery 
set 
(N=39,986)

PRS testing set 
(N=424,411)

Enrollment age 55.6 (7.6) 57.1 (8.1)

ECG age 64.0 (7.7) Not applicable

Female 20,809 (52.0%) 232,654 (54.8%)

Race (White British) 38,617 (96.6%) 370,121 (87.2%)

Height (cm) 169.1 (9.2) 168.3 (9.3)

Weight (kg) 76.0 (15.2) 78.0 (16.0)

Systolic blood pressure 138.3 (18.6) 138.1 (18.7)

Diastolic blood pressure 79.1 (10.1) 82.4 (10.2)

Smoking (current) 1,446 (3.6%) 46,433 (11.0%)

Antihypertensive medication use (Yes) 4,275 (10.7%) 88,887 (18.6%)

Diabetes (Yes) 1,546 (3.9%) 11,089 (2.6%)

Heart failure (Yes) 186 (0.5%) 1,701 (0.4%)

Myocardial infarction (Yes) 916 (2.3%) 9,657 (2.3%)

Clinical variables were ascertained at baselines. For the genome-wide association studies (GWAS) discovery set, baseline refers to the time of 
electrocardiogram (ECG) visit. For the polygenic risk scores (PRS) testing set, baseline refers to the time of study enrollment. Descriptive statistics 
of enrollment age, female, race, and history of diabetes, heart failure and myocardial infarction for the PRS testing set were calculated using the 
complete sample (N=424,411). Height, weight, systolic blood pressure and diastolic blood pressure were summarized in a subset with the data 
available (N=423,044). The sample size for participants who self-reported their smoking status and medication use were 423,919 and 477,644, 
respectively.
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