
UC Santa Barbara
UC Santa Barbara Electronic Theses and Dissertations

Title
Analyses and Robustness Quantification of Underactuated Biped Robot Locomotion

Permalink
https://escholarship.org/uc/item/3b08n70v

Author
Talele, Nihar Suresh

Publication Date
2020

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/3b08n70v
https://escholarship.org
http://www.cdlib.org/

University of California
Santa Barbara

Analyses and Robustness Quantification of

Underactuated Biped Robot Locomotion

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy

in

Electrical and Computer Engineering

by

Nihar Suresh Talele

Committee in charge:

Professor Katie Byl, Chair
Professor Andrew Teel
Professor João Hespanha
Professor Linda Petzold

December 2020

The Dissertation of Nihar Suresh Talele is approved.

Professor Andrew Teel

Professor João Hespanha

Professor Linda Petzold

Professor Katie Byl, Committee Chair

December 2020

Analyses and Robustness Quantification of Underactuated Biped Robot Locomotion

Copyright c© 2020

by

Nihar Suresh Talele

iii

To my family and friends without whom this would not have

been possible

iv

Acknowledgements

There are many people who have helped me on this journey to get here but first

and foremost, I would like thank my advisor Professor Katie Byl whose guidance has

been invaluable throughout my research and my time in the lab. I am grateful for the

opportunity to do research and be a part of very exciting and friendly atmosphere at

the UCSB robotics lab which would not have been possible without her. Her continued

support for the last five years has been invaluable in progress that I have made in my

research.

I would also like to thank Professor Andrew Teel, Professor Joao Hespanha and

Professor Linda Petzold for being a part of my committee and giving me valuable feedback

on my research. In addition, the control courses they taught and the research discussions

provided me with valuable insights on some promising directions in which to pursue my

research. I would also like to acknowledge various faculty members from the electrical

engineering department for offering interesting courses that I was glad to attend.

I would like to thank all my lab members past and present: Pat Terry, Chelsea Lau,

Guilia Piovan, Sebastian Sovero, Cenk Oguz Saglam, Guillaume Bellegarda, Sean Gillen,

Roman Aguilera, Thomas Ibbetson, Asutay Ozmen, Tom Strizic, Brian Satzinger for

all their help over the years and making the UCSB robotics lab a fun and an exciting

research environment. I would also like to thank my friends and colleagues outside the

lab for making this journey at UCSB memorable.

Finally, I would like to thank Chitra for being a pillar of support and helping me to

finish this journey.

v

Curriculum Vitæ
Nihar Suresh Talele

Education

2020 Ph.D. in Electrical and Computer Engineering (Expected), Univer-
sity of California, Santa Barbara.

2014 M.S. in Electrical Engineering, University of Southern California.

2011 B.E. in Electronics and Telecommunication Engineering, University
of Pune.

Publications

• Nihar Talele. & Katie Byl. Mesh-based Tools to Analyze Deep Reinforcement Learn-
ing Policies for Underactuated Biped Locomotion. arXiv.

• Nihar Talele. & Katie Byl. Mesh-based Methods for Quantifying and Improving
Robustness of a Planar Biped Model to Random Push Disturbances. In Proc. American
Control Conference (ACC), 2019.

• Nihar Talele. & Katie Byl. Methods and Performance Analyses for Design and
Feedback Control of Efficient and Robust Planar Biped Walking. In Proc. American
Control Conference (ACC), 2019.

• Guillaume Bellegarda, Nihar Talele. & Katie Byl. Exploring Nonintuitive Optima
for Dynamic Locomotion. In Proc. ICRA, 2018.

• Sebastian Sovero, Nihar Talele, Collin Smith, Nicholas Cox, Tim Swift & Katie Byl.
Initial Data and Theory for High Specific Power Ankle Exoskeleton Device. In Proc.
ISER, 2016.

vi

Abstract

Analyses and Robustness Quantification of Underactuated Biped Robot Locomotion

by

Nihar Suresh Talele

Humanoid locomotion control is challenging due to the presence of underactuated

dynamics, with constraints at the ground-foot contact imposing dynamic limitations on

feasible motions. At the same time, deliberate underactuation in bipeds can potentially

provide more energy efficient locomotion, making trade-offs between efficiency and sta-

bility a particularly interesting problem in biped control. Two approaches have become

prominent in recent times for the control of legged locomotion. Model-based trajec-

tory optimization has shown impressive results, for example in its application within the

DARPA Robotics Challenge. Also, with the advent of improved computational capabil-

ities, the field of deep reinforcement learning (DRL) is now being successfully applied to

generate control policies for complicated systems like humanoids.

In the first part of this dissertation we use trajectory optimization methods to gen-

erate trajectories for a 5 link planar biped walker and control them via partial feedback

linearization based controller. We perform experiments to demonstrate the importance

of (a) considering and quantifying not only energy efficiency but also robustness of gaits,

and (b) optimization not only of nominal motion trajectories but also of robot design

parameters and feedback control policies.

In the second part we apply meshing tools to improve and analyze the performance

of a 5-link planar biped model to random push perturbations. Creating a mesh for

a 14-dimensional state space would typically be infeasible. However, as we show in

this dissertation, low level controllers can restrict the reachable space of the system

vii

to a much lower dimensional manifold, which makes it possible to apply our tools to

improve the performance. We demonstrate the effectiveness of our tools by performing

simulations on both: trajectories generated via optimization and policies generated using

deep reinforcement learning.

viii

This thesis includes the following publications:

• Sovero S., Talele N., Smith C., Cox N., Swift T., Byl K. (2017) Initial Data and The-

ory for a High Specific-Power Ankle Exoskeleton Device. In: Kulić D., Nakamura

Y., Khatib O., Venture G. (eds) 2016 International Symposium on Experimental

Robotics. ISER 2016. Springer Proceedings in Advanced Robotics, vol 1. Springer,

Cham.

• c©IEEE. Reprinted, with permission, from Nihar Talele and Katie Byl, Methods

and Performance Analyses for Design and Feedback Control of Efficient and Robust

Planar Biped Walking, American Control Conference (ACC), July 2019.

• c©IEEE. Reprinted, with permission, from Nihar Talele and Katie Byl, Mesh-based

Methods for Quantifying and Improving Robustness of a Planar Biped Model to

Random Push Disturbances, American Control Conference (ACC), July 2019.

• Nihar Talele and Katie Byl, Mesh-based Tools to Analyze Deep Reinforcement

Learning Policies for Underactuated Biped Locomotion, arXiv.

ix

Contents

Curriculum Vitae vi

Abstract vii

List of Figures xii

List of Tables xv

1 Introduction 1
1.1 Literature Review . 2
1.2 Contributions and Goals . 7
1.3 Organization of Thesis . 8

2 Trajectory Optimization 10
2.1 Control as an Optimization Problem . 10
2.2 Polynomial Trajectories . 12
2.3 Single Shooting Methods . 13
2.4 Multiple Shooting Methods . 14
2.5 Cost of Transport . 16
2.6 Control of Optimal Trajectories . 18
2.7 Gradients . 19

3 High Specific-Power Ankle Exoskeleton Device 21
3.1 Augmentation Factor . 22
3.2 Simulation Model and optimization . 22
3.3 Added Mass Study . 24

4 Co-Dependence of Energy Optimality, Robustness and Design Param-
eters 29
4.1 Five Link Planar Biped Model . 30
4.2 Trajectory Optimization . 31
4.3 Motion Characteristics . 33

x

4.4 Effect of System Parameters on Energy 38
4.5 Effect of System Parameters on Stability 41
4.6 Energy Optimality and Robustness Trade-off 42
4.7 Conclusion . 44

5 Metastable walking for push disturbances 46
5.1 Dynamic Model . 47
5.2 Trajectory Optimization Problem Formulation 48
5.3 Meshing for Metastable Systems . 51
5.4 Dimensionality Analysis . 58
5.5 Single Support Phase Walking . 60
5.6 Double Support Phase Walking . 63
5.7 Sensitivity Analysis . 67
5.8 Conclusion . 67

6 Robustness Quantification of DRL based Policies for Biped Locomotion
70

6.1 5 link Biped Model in MuJoCo . 72
6.2 Control Policy . 73
6.3 Meshing . 74
6.4 Experiments and Results . 75
6.5 Dimensionality analysis . 85
6.6 Conclusion . 89

7 Conclusion and Future Work 91

A Biped Model 95

B Direct transcription Methods 98

C Deep Reinforcement Learning for 5 Link Planar Biped Model 103

Bibliography 105

xi

List of Figures

1.1 Humanoid robot Asimo by Honda. Image taken from [1] 3
1.2 Atlas robot by Boston Dynamics. Image taken from [2] 4

2.1 Parameterization of a polynomial used for representing a trajectory. . . . 13
2.2 Parameterization of a traracectory for optimization using direct transcrip-

tion method. 16

3.1 7-link planar walker model. 23
3.2 7-link planar walker model with locations of added mass indicated by red

dots. 24
3.3 Variation of COT vs mass added at the lower shank. 25
3.4 Variation of COT vs mass added at the lower thigh. 25
3.5 Variation of COT vs velocity of walking for a constant mass added at the

lower shank. 26
3.6 Variation of COT vs velocity of walking for a constant mass added at the

lower thigh. 26
3.7 Variation of COT vs added mass at lower shank. The top figure shows the

variation for simulation data and the bottom figure shows the variation
for the actual human experimental data. 27

4.1 5-link biped model. At left, q5 is an absolute angle, measured with respect
to vertical, while all other angles are relative. The lefthand image is drawn
to clearly illustrate angles are positive in the counter-clockwise direction,
throughout. At right, a typical pose, while walking to the right. 30

4.2 Typical motion for the 5-link walker, using trajectories generated from the
optimization framework. The figure on the left shows snapshots of motion.
On the right, trajectories of the COM and the end of the swing foot are
overlaid. 33

4.3 Detailed trajectory of the swing foot and the center of mass of the 5 link
walker. 34

xii

4.4 Angle trajectories for the walking shown in Fig. 4.2. The top plot shows
the positions of the swing and the stance thighs, while the bottom plot
shows the positions of the stance knee, swing knee and torso. 35

4.5 Velocity trajectories for the walking motion shown in Fig. 4.2. At top
are velocities of the swing and the stance thigh; bottom plot shows the
velocities of the stance knee, swing knee and torso 36

4.6 Torques for the walking motion in Fig. 4.2. 36
4.7 Cost of Transport (COT) as a function of ωn. 39
4.8 Variation of energy as ωn changes. 40
4.9 COT variations as upper or lower leg mass varies. 41
4.10 Rate of convergence, λ, as a function of ωn, for push recovery. 41
4.11 Error plots to calculate rate of convergence, λ, for different values of ωn,

for push recovery. 43
4.12 Cost of Transport vs rate of convergence λ(ωn), for push recovery. Each

line sweeps across results from ωn = 60 to ωn = 100. 44

5.1 Model of the 5-link biped system used in simulations. 47
5.2 Disturbance profile used in the simulations. Disturbance is applied at two

different locations namely the hip and the top of the torso. 54
5.3 Fractional Dimensionality. (a) Uniform meshing examples [3], (b) Koch

snowflake segment, (c) Non-uniform meshing example (see text for details),
(d) slope of a loglog plot of “Distance Threshold” versus “Number of Mesh
Points” is -1.26, which is correspondingly an estimate for the negative of
the dimensionality of the Koch snowflake. 59

5.4 Plot of position trajectories for a 0.5m stride length trajectory having only
single support phase . 60

5.5 Dimensionality of mesh growth for Single Support trajectories. 62
5.6 Plot showing the MFPT for various disturbance probabilities. The top

figure shows the MFPT as a function of both the magnitude as well as
the time of disturbance. The middle and bottom plot show the MFPT vs
magnitude and time respectively. 63

5.7 Plot of position trajectories for a 0.5m stride length trajectory having both
double support (DS) and single support (SS) phase. The transition from
double support to single support happens at 0.12s mark. 64

5.8 Dimensionality of mesh growth for trajectories having both double support
and single support phase. 66

5.9 Sensitivity of optimal policy (left) and MFPT variability (right) to changes
in probability of disturbances. 68

6.1 The 5-link biped model used in simulations. At left, the planar model in
MuJoCo’s simulation engine, used for our simulations. The stick figure on
the right shows the degrees of freedom of the model on the left. 72

xiii

6.2 Plot of the post impact states on the Poincaré section for policy trained
in case 1. The top figure plots the positions and the bottom figure plots
the velocities. 77

6.3 A principal component analysis (PCA) is used to visualize post-impact
states visited for DRL-trained flat-ground locomotion, subject to no dis-
turbances. See text for a detailed explanation. 78

6.4 A 3D section of the full 13D Poincaré mesh states for Case 1. Subplots
show two viewpoints of the same data. “Dangerous” states, with greater
than 99% probability of failure on the next step, are circled in red. 81

6.5 Disturbance profile for 20 push types. The dotted red line indicates the
half gait cycle where the right leg makes contact with the ground 83

6.6 MFPT variations as one disturbance of interest becomes more likely. The
MFPT is shown on log scale to make the plot more readable. 84

6.7 A 3D slice of the full 13D Poincaré states generated to mesh the policy
trained in Case 2, when all but disturbance profiles 14, 16, 18 and 20 are
included, i.e., excluding pushes occurring before 0.1 seconds. 86

6.8 A 3D slice of the full 13D Poincaré states generated to mesh the policy
trained in Case 2, when all 20 timing and magnitude combinations shown
in Fig. 5.2 are included. As in Fig. 6.4, the subplot at right highlights
states from which immediate failure has probability greater that 99%. . . 87

6.9 Dimensionality of policies trained with deep reinforcement learning with
no noise (top) and with noise (bottom) 88

xiv

List of Tables

4.1 Length and COM parameters used in simulation experiments 38
4.2 Mass parameters used in simulation experiments 38

5.1 COT for Single Support(SS) and Double Support(DS) trajectories, for
different stride lengths. 51

5.2 COT for single support phase trajectories. 61
5.3 Number of points for different threshold values for mesh generated with

single support phase trajectories . 61
5.4 COT for trajectories having both double support and single support phase

before and after PFL is applied. 65
5.5 Number of points for different threshold values for, trajectories having

double as well as single support phase . 65

6.1 Disturbance Profile . 79
6.2 N versus dtr, showing n ≈ 4.23 for Case 1. 80
6.3 N versus dtr, showing n ≈ 3.25 for Case 2. 82

A.1 Length and COM parameters used in simulation experiments 96

B.1 Lower and Upper bounds on variables for optimization performed in Chap-
ter 4 for a stride length of 0.6m . 99

B.2 Problem statistics for optimization experiments in Chapter 4 100
B.3 Lower and Upper bounds on variables for optimization performed in Chap-

ter 5 for a stride length of 0.6m . 101
B.4 Problem statistics for optimization experiments in Chapter 5 102

C.1 Hyperparameters used for training of the 5 link planar Walker in MuJoCo. 104

xv

Chapter 1

Introduction

Practical robot locomotion needs to be both energy efficient and robust to variability

and uncertainty. Both energy efficiency and robustness have long been goals for robot

walking, and both mechanical design and control strategy play important roles in each

objective. Even though walking may appear to be a trivial task for human beings, hu-

manoid locomotion control is challenging due to the presence of underactuated dynamics,

with constraints at the ground-foot contact imposing dynamic limitations on feasible mo-

tions. At the same time, deliberate underactuation in bipeds can potentially provide more

energy efficient locomotion, making trade-offs between efficiency and stability a particu-

larly interesting problem in biped control. Flat footed walking is easier to achieve due to

lack of underactuated motion, at the same time, the motion generated is very inefficient

as is evident by their significantly higher cost of transport. On the other hand, motions

that involve underactuation are harder to control in practice and they are much more

sensitive to external disturbances.

When it comes to energy, wheeled locomotion is much more efficient as compared

to biped locomotion. So why study biped locomotion? The most important advantage

offered by legged locomotion is the versatility in terms of the terrain that can be traversed.

1

Introduction Chapter 1

Wheels can’t be used to traverse rough terrain or climb mountains or even stairs. Humans

can traverse a wide variety of terrain where only intermittent footholds are possible.

The society around us has been built with humans in mind and if we want robots to

assist us and operate efficiently in this environment, it would be advantageous to equip

them with the capability of legged locomotion. Robots capable of legged locomotion

could also be used for safety critical and hazardous tasks such as rescue operations and

space exploration which can be very risky for humans. Humanoid robots would also

be more effective in assisting the elderly. Advances in legged locomotion also enable

physically disabled people to regain their lost motion through the use of prosthetic limbs

and exoskeletons. Because of these, legged locomotion continues to be an active and an

exciting area of research in robotics. The two most popular humanoids currently are

shown in Fig. 1.1 and 1.2. Asimo is a humanoid robot by Honda and Atlas is made by

Boston Dynamics.

While most of the research in this thesis focuses on biped locomotion, the tools and

techniques developed are applicable to a wide variety of dynamical systems. The study

of underactuated systems is an interesting area of research as such systems possess less

actuators than the number of degrees of freedom to be controlled making it a challenging

problem. This thesis focuses on analyzing the trade-off between energy efficiency and

robustness for such underactuated systems as well as the quantification of robustness for

such systems with limit cycle behavior.

1.1 Literature Review

Toward improved mechanical design, biped robots built on passive dynamic prin-

ciples drew significant attention over a decade ago [4], but their success at reducing

required energy has seemed to be coupled with fragile dynamics, yielding susceptibility

2

Introduction Chapter 1

Figure 1.1: Humanoid robot Asimo by Honda. Image taken from [1]

.

to falls. Design of mechanical properties, i.e., lengths and mass distribution, clearly play

an important role in enabling efficient legged locomotion, but they also arguably affect

stability.

To improve controlled walking strategies, a range of work has focused on both tra-

jectory optimization and control theory. Trajectory optimization through direct colloca-

3

Introduction Chapter 1

Figure 1.2: Atlas robot by Boston Dynamics. Image taken from [2]

.

tion [5] is one promising approach. In 1999, for example, Hardt et al. formulated the

problem of minimizing energy of a planar 5-link biped, both with and without ankle

torque, using DIRCOL software [6] to solve a nonlinear optimization subject to contact

constraints. Two years later, Paul et al. looked at simultaneous optimization of both

mass distributions (robot design) and nominal motion trajectories, to be tracked via a

simple proportional controller (with saturation limits), using simple neural networks to

learn efficient locomotion [7].

In 2002, Westervelt and Grizzle highlighted the importance of optimizing walking

motions while simultaneously guaranteeing asymptotic stability [8], as opposed to a still-

dominating paradigm of sequential design, first optimizing a nominal trajectory and

4

Introduction Chapter 1

subsequently adding feedback control in a more ad hoc way. As in [6], they also use

DIRCOL, and they solve a sequential quadratic programming (SQP) problem to optimize

the sum of u2 across all four actuators. Note that [8] uses a hybrid zero dynamic (HZD)

approach, which parameterizes joint trajectories on a monotonic, geometric variable. In

a similar spirit, [9] produce energy-optimal gaits for the 5-link walker using polynomial

trajectories in which the gait is defined as q(s), as a function of geometry rather than

time, by solving for optimal polynomial coefficients.

Various works have instead focused on optimizing robustness. Dai and Tedrake [10]

optimized a measure of robustness that quantifies variation from a nominal trajectory

during rough terrain locomotion, for both the spring-loaded inverted pendulum (SLIP)

and compass gait (CG) walker planar legged locomotion models. In [11] Kuindersma et

al. use quadratic programming to incorporate constraints in the feedback policy. In [12],

Majumdar and Tedrake use the concept of funnel libraries to increase the robustness of

optimal trajectories. In [13], Nguyen, Grizzle, Sreenath et al. use 2-step gait optimization

and gait interpolation to navigate across rough terrain. In [14], Byl and Tedrake use the

concept of metastability to quantify the robustness of simple rough-terrain walking mod-

els, proposing mean time to falling, or mean first-passage time (MFPT), as an important

metric of merit. In [15], Saglam and Byl build on the previous work by analyzing the

trade-offs between energy and robustness for a 5-link biped model using once-per-step

switching between low-level sliding mode controllers for walking on rough terrain. As the

approach models a discretized approximation of the resulting dynamics as a Markov de-

cision process (MDP), feasibility of the methods in [15] depends upon the “meshability”

of the resulting system; i.e., the stochastic system dynamics must visit only a relatively

low-dimensional manifold within the full (i.e., 10-D set of positions and velocities, in [15])

state space, to avoid the curse of dimensionality.

Recent work by Hamed, Buss and Grizzle also focuses on robustness, tuning control

5

Introduction Chapter 1

parameters to ensure not only stable eigenvalues of the Jacobian of the period-one return

map of limit-cycle walking but also reduced sensitivity of this Jacobian to parameter

variation [16]. Here, they decouple the selection of a nominal periodic orbit from that of

optimizing a parameterized controller, e.g., torques include both the necessary feedfor-

ward terms exactly compatible with the limit cycle of interest, along with some flavor of

feedback law (e.g., perhaps but not necessarily HZD) that has no effect along the exact

limit cycle trajectory.

Finally, a few other recent works emphasize applicability of legged locomotion opti-

mization to an expanding range of problems. Recent work by Ma, Hereid, Hubicki and

Ames on the DURUS robot employs the HZD framework to optimize energy efficiency

for stable 3D walking [17]. Xi, Yesilevskiy and Remy employ direct collocation (DC) to

optimize energetic cost for gaits without a prescribed sequence of foot contacts with the

grounds [18], and within our own group, we have used trajectory optimization to predict

the theoretical cost of added mass in exoskeleton design [19] and to discover nonintuitive

locomotion strategies for an underactuated, acrobot-based rolling system [20].

With the advent of improved computational capabilities, the field of deep reinforce-

ment learning (DRL) is now being successfully applied to generate control policies for

complicated dynamical systems like humanoids [21]. Recent advances in the deep rein-

forcement learning algorithms [22], [23] have shown the potential of this tool in generating

robust control policies for a wide variety of tasks for complex underactuated systems. Al-

though successful, deep reinforcement learning methods that use a simple reward function

generate motions very non-human like and highly sterotyped. In [24], Merel, Tassa et.

al. use limited demonstrations consisting only of partially observed state features to

generate more human like movement patterns. OpenAI Baselines [25] is a collection of

various deep reinforcement learning algorithms like PPO [23] that have been used to

generate robust control policies for humanoid locomotion in the presence of diturbances.

6

Introduction Chapter 1

Some recent works like [26] combine both trajectory optimization as well as learning

approaches to obtain an overall improvement in robustness of the control policies for

locomotion. Within our own group we have combined trajectory optimization and deep

reinforcement learning [27] to leverage the advantage of both approaches to obtain an

overall better control policy.

1.2 Contributions and Goals

Although significant research has been done in the field of legged locomotion, there

are still quite a few issues that need to be addressed before walking robots become com-

monplace in real life. The most primary among them is the quantification of robustness

for a robotic system with biped locomotion capabilities. In [14] Byl and Tedrake try to

address this issue using the concept of metastability. This is done by completely explor-

ing the reachable state space of the system on a Poincaré section and building a Markov

Decision Process.

In this thesis, we focus on several related, open challenges in simultaneously optimiz-

ing for energetics and robustness. We highlight important choices made in differentiation

and integration that improve speed and accuracy, since local optimization provides only

approximate results. With an aim toward improving both energetics and robustness, we

explore how variations in mass distribution affect metrics for each of these goals and ob-

serve a natural trade-off (between metrics) that results from tuning of feedback control.

Our results demonstrate that choice of both mass distribution and feedback control struc-

ture have important, and apparently coupled, effects on both energy use and stability,

providing evidence for the hypothesis that more comprehensive frameworks are needed

for simultaneous optimization across system parameters and desired metrics.

We also extend the applicability of meshing tools to analyze the effects not only of

7

Introduction Chapter 1

“noise” in the terrain height, which determines when an otherwise-deterministic continuous-

time trajectory ends (i.e., with swing leg impact at an unknown ground height), but also

of more general perturbation disturbances typical of real-world scenarios, such as push

disturbances that can happen at any time during the gait cycle, as opposed to only deter-

mining when an otherwise-deterministic continuous-time trajectory ends (i.e., with swing

leg impact at an unknown ground height). Additionally, we demonstrate applicability of

these tools for other low-level control schemes, aside from sliding mode control (SMC),

to explore whether the finite-time convergence of SMC to lower-dimensional manifolds is

a critical key to meshability; we conclude that it is not.

Finally, we also demonstrate the applicability of our tools to quantify the robustness

of deep reinforcement learning control policies for biped systems. The field of deep

reinforcement learning is expanding rapidly and is becoming increasingly popular as

a tool to obtain control polices for dynamical systems. However, there are very few

tools available to quantify the performance of these policies. We show how our meshing

tools can be applied for such purposes by analyzing and quantifying the performance

of DRL trained control policies for 5 link planar biped model in the presence of push

disturbances.

1.3 Organization of Thesis

The next chapter focuses on the optimization tools on which most of the motion

planning in this thesis is based and an explanation on the implementation of the optimal

trajectories on system using a low level controller. Chapter 3 focuses on the simulation

studies of added mass on human body and their effects on the cost of transport to

validate the human studies that were performed to analyze the optimal location to place

the exoskeleton on humans. In Chapter 4 we present results on the effect of system

8

Introduction Chapter 1

design parameters and choice of feedback control policies on the energy consumption and

robustness for biped locomotion. Chapter 5 focuses on the extension of our meshing tools

to more real world noise scenarios such as push disturbances that can happen at anytime

during the gait cycle. In Chapter 6 we see how our meshing tools can be used to quantify

the performance of DRL control polices for biped locomotion. We conclude in Chapter

7 by outlining the tasks for future experiments.

9

Chapter 2

Trajectory Optimization

2.1 Control as an Optimization Problem

Control of underactuated systems like legged robots is not trivial. Traditional control

techniques such as partial feedback linearization can generate motions for such systems,

however, the kind of motions that can be generated are very restrictive. Because of

which, motion planning for such systems can be split into two parts: Generating the

reference signal and controlling the system to this reference signal. Biped robots are

complicated non linear dynamical systems due to the complex interconnection of various

links. This makes it harder to come up with a reference trajectory for such systems.

To solve this problem, numerical methods such as trajectory optimization are applied.

Trajectory optimization poses the problem of finding a control trajectory for a system

as a long term optimization of a certain specific scalar cost function. This function

can be any function of the system dynamics under consideration. The structure of this

formulation makes it applicable to a wide variety of problems. Biped robots are systems

with a large number of DOF and complicated non linear dynamics because of which it

becomes difficult to obtain globally optimal solutions. For this reason, the optimization

10

Trajectory Optimization Chapter 2

techniques used in this thesis focus on locally optimal solutions.

Of the vast majority of solvers available for solving optimization problems, the two

most popular solvers for non linear optimization are the interior point solvers and se-

quential quadratic programming(SQP) solvers. These methods are covered in detail in

[28] and [29] so we will just provide a brief overview here. Sequential quadratic pro-

gramming involves solving a series of QP problems sequentially by doing a second-order

approximation for the objective function and a first order approximation for the con-

straints. Interior point methods, on the other hand, work by iteratively solving a series

of unconstrained problems by making the constraints a part of the cost function with

help of barrier functions. The name ’Interior point methods’ stems from the fact that all

the successive solutions of the optimization problem are always inside the feasible region.

This may prove useful for systems with unstable modes to avoid those operating regions

with the help of constraints. Both interior point and SQP methods have shown to work

well on large scale nonlinear optimization problems in practice. There are some situations

however where one may perform better than the other. SQP methods are more robust to

scaling issues as compared to Interior point methods. On the other hand, SQP methods

less efficient if the number of active constraints are significantly less than number of open

variables. Interior methods show their strength in large scale applications where they

often though not always outperform SQP methods.

In order to apply these numerical optimization techniques to generate motion for

dynamical systems, it is necessary to discretize the system dynamics on time. This

means that the entire trajectory is split into a series of knot points. This discretization

determines the accuracy of the solution as well as the speed of computation. The choice

of integration scheme used also plays an important factor in the accuracy of the solution.

Higher order integration schemes will lead to more accurate results but might be to

expensive from computation standpoint. Another important consideration is the use of

11

Trajectory Optimization Chapter 2

implicit vs explicit integration schemes. Implicit methods are inherently stable however

difficult to implement. However, some formulations allow for easier implementations of

implicit methods as we shall see in the next sections. From a practical standpoint, once

we obtain the trajectory we then have to use a low-level controller in order to implement

this trajectory on the system. Details about the low-level controller will be covered in

the next chapter.

2.2 Polynomial Trajectories

The most straight forward way to formulate control as an optimization problem is

to represent the trajectories as an nth degree polynomial and have the coefficents of

the polynomial as an open variables. A slight modification of this approach would be

to represent the trajectories using polynomials but instead of leaving the coefficients as

open variables, the parameters that determine the coefficients such as the start and end

conditions can be left as the open variables. An example of such parameterization is

shown in Fig. 2.1. Here, a 4th degree polynomial is used to represent a trajectory for a

specific joint on a robot. As this is a 4th degree polynomial, there are 5 open variables

but instead of coefficients the five open variables were the starting and ending positions

q0, q2, the starting and ending velocities q̇0, q̇2 and the peak position q1. This approach

was used in our optimization for the human simulation data that will be discussed in

detail in chapter 3. In practice we observed that this approach works better than the

straight forward way of having coefficients as the open variables.

The simplicity of this approach makes it easy to implement without any hassle. There

are however quite a few drawbacks of using this approach. Having a low degree of

polynomial representing a trajectory reduces the number of open variables the optimizer

needs to solve for which makes the optimization faster but at the same time it results

12

Trajectory Optimization Chapter 2

Figure 2.1: Parameterization of a polynomial used for representing a trajectory.

in a very restrictive solution. Higher-degree polynomials can be used to circumvent the

issue but there are other more efficient methods of doing so as we will discuss in the next

section.

2.3 Single Shooting Methods

In single shooting methods, we parameterize the inputs to the system using a first-

order hold method and then use these values of the inputs at each knot point as the open

variables for optimization. The optimization problem is then formulated as

min
u

N∑
n=0

g(xn, un) (2.1)

such that Φ(x, u) ≤ 0. (2.2)

Here, the objective function is some scalar cost function of system dynamics such as

energy and Φ(x, u) is set of constraints under which we want the optimizer to find the

solution. The constraints can be both linear as well as non linear. The important thing

to note is that the open variables for optimization are the input values at each instant

13

Trajectory Optimization Chapter 2

of time. This formulation is very simple and allows the trajectories to be less restrictive

without over complicating as would be the case with higher-degree polynomials. This

method works well in practice for a large variety of systems. There is however a class

of systems for which this method is not always successful. In order for the optimizer to

calculate the gradient of the objective function and constraints w.r.t the open variables,

it has to first evaluate the entire trajectory which is a function of the input u. If the

system has any unstable modes, the system states might escape to infinity before the

entire trajectory is rolled out. This in turn would make it infeasible to calculate the

value of the gradient at the given point or iteration resulting in non convergence of the

optimizer. Even if we impose constraints to prevent the system from going into unstable

modes, the optimizer would need to calculate the gradient of those constraints for which

it is necessary to evaluate the entire trajectory. To avoid these problems, we use multiple

shooting and direct transcription methods.

2.4 Multiple Shooting Methods

In single shooting methods, the only open variables to the optimization are the inputs

to the system. In direct transcription and multiple shooting methods, in addition to

inputs we also have the states as open variables. This changes the problem formulation

to

min
x,u

N∑
n=0

g(xn, un) (2.3)

such that xn+1 = xn + f(xn, un)dt ∀n ∈ [0, N] (2.4)

Φ(x, u) ≤ 0. (2.5)

14

Trajectory Optimization Chapter 2

As we see, the objective function is now a function of both the state as well as the

input to the system. In addition, we also need to apply an extra constraint as shown

in equation 2.4. This is to ensure that all the states are physically consistent with the

system dynamics. This increases the size of the optimization problem due to many more

constraints and open variables.

Even though adding states as open variables increases the problem size significantly,

this method works very well in practice. The advantage of having the states as open vari-

ables is that now we can upper bound and lower bound the states and thereby prevent

the system from operating in any unstable modes. This is very important for systems

which are inherently unstable such as legged robots. Another advantage provided by this

formulation is that it results in matrices that are sparse. This makes the computation of

the underlying linear system of equations very efficient. Single shooting methods on the

other hand lead to matrices which are very dense. A third advantage provided by this

formulation is that it makes it very convenient to used implicit methods of integration.

Implicit methods calculate next state as a function of the current state and the next

state. In multiple shooting and direct transcription methods, the entire state informa-

tion is readily available making the implementation of implicit methods very convenient.

Implicit methods are stable which is important for optimizer to converge at a solution.

The constraint equation 2.4 is an example of a simple forward Euler integration which is

an explicit method. In practice for our experiments in this thesis we have made use of

the following integration scheme.

xk+1 = xk +
dt

2
[f(xk, uk) + f(xk+1, uk)] (2.6)

This is a zero order hold trapezoid integration scheme which is an implicit method

15

Trajectory Optimization Chapter 2

Figure 2.2: Parameterization of a traracectory for optimization using direct transcrip-
tion method.

because we see that the next state is a function of the current state as well as the next

state. Empirically, we observed that zero-order hold for input worked better than first-

order hold as the latter resulted in trajectories which were very non smooth. It was

possible to achieve smooth trajectories using first-order hold method but in practice the

zero-order hold method still worked better.

An example of direct transcription parameterization for a trajectory is shown in

Fig. 2.2, The red dots represent the values of position, velocity and input at the knot

points. The blue arrows indicate the constraints applied to the system to make it feasible.

2.5 Cost of Transport

Trajectory optimization calculates the solution of the problem by iteratively reducing

a certain scalar cost function. This cost function can be any function of the system

dynamics. The most commonly used cost function for trajectory optimization is energy.

Another popular cost function is the squared input to the system. A smooth cost function

is necessary for the optimization to converge to a good solution. For most of our results

16

Trajectory Optimization Chapter 2

in this thesis, the cost function we have used is the cost of transport or COT. Cost of

transport is defined by

COT =
E

Mgd
(2.7)

Here E is the energy expended for the resulting motion, M is the mass of the system,

g is the acceleration due to gravity and d is the distance travelled as a result of the

locomotion. As we discretize the system dynamics on time in order to generate motion

using trajectory optimization, we implement the COT using trapezoid rule as follows

COT =

∑N−1
k=0

∑m
n=1 P̃n(k)∆t

Mgd
(2.8)

where there are N discrete time steps t(k), d is the stride length M is the mass of the

model and m is the total number of joints on the robot. Rate of work (power) at joint n

during time step k is approximated as

P̃n(k) =
P̃n,1(k) + P̃n,2(k)

2
n = {1, 2, ...,m} , (2.9)

where P̃n,1(k) is the regularized version of Pn,1(k) = τn(k)ωn(k) and P̃n,2(k) is the reg-

ularized version of Pn,2(k) = τn(k)ωn(k + 1). Also, P̃n,i(k) is defined to penalize both

the positive as well as the negative mechanical work. We take the absolute value of the

power at each joint however, this results in a non smooth cost function. To solve this

problem, we instead smooth the cost function by using a regularization factor, so that

P̃n,i =
√
P 2
n,i + ε2 i = {1, 2} (2.10)

as suggested in [30]. Unless otherwise mention, we use ε2 = 0.01, which works well for

our optimization. Lower values of ε led to stability issues with the solver. Even though

17

Trajectory Optimization Chapter 2

the regularization introduces minor inaccuracies in the calculation of the energy, the

smoothness obtained as a result is worth the tradeoff.

2.6 Control of Optimal Trajectories

The trajectories obtained from optimization are open loop trajectories. Ideally, these

trajectories should work on the actual system to generate the desired motion. However,

even with perfect knowledge of system dynamics, this would not be the case. This is due

to the discretization introduced during the optimization process.

The most popular approach in recent times to implement the optimal trajectories

on the system is by using LQR controller. In order to implement the LQR controller,

we linearize the system dynamics at the curent operating point. In practice we found

that, this type pf control approach works very well for systems that don’t have impacts.

But for our experiments on the 5 link planar biped model as described in Appendix A,

this approach did not work well. Specifically, we linearized about each “knot point” of

the optimal solution, and then controlled motions using the nominal feedforward torque

(Uff) added to feedback of the form Ufb = −K(X−Xnom), where K = K(t) and Xnom =

Xnom(t) were interpolated between their values at the discrete points of the optimal

solution. During continuous motion, the trajectories definitely converged toward the

nominal trajectories as expected, but the effects through impacts were too destabilizing,

resulting in falls after 3 to 6 steps.

In order to stabilize the optimal trajectories on the model, we use partial feedback

linearization (PFL) based control scheme. The total input to the system is U = Uff +Ufb

where

Ufb = (SD−1B)−1(v + SD−1(Cq̇ +G)), (2.11)

18

Trajectory Optimization Chapter 2

and S is given by

S =



0 1 0 0 0

1 0 1 0 0

0 0 0 1 0

0 0 0 0 1


(2.12)

and uff contains the feedforward torques compatible with the nominal dynamics. Our

point foot walker is an underactuated model. We formulated our PFL control law using

this structure in order to control all the degrees of freedom using only 4 actuators. The

matrix S gives us this flexibility to control all the degrees of freedom in the way we want.

Given a passive contact of the stance leg with the ground, PFL allows us to directly

set the accelerations of 4 out of 5 angles using v. We set v = [q̈2des, q̈1des+q̈3des, q̈4des, q̈5des]
T

where q̈des = −Kp(q − qdes)−Kd(q̇ − q̇des). We set Kp = ω2
n and Kd = 2ζωn. For all our

simulations we set ζ = 1 and test across a range of ωn values. We get Uff , qdes, q̇des by

interpolating the trajectories from the optimization framework.

2.7 Gradients

An important consideration for these gradient based methods is the availability of

good quality gradients. Non gradient based methods such as Nelder-Mead algorithms

work relatively well for smaller problems. But as the dimensionality of the problem

increases, gradient based methods perform much better as compared to search based

methods. As mentioned though, the performance of gradient based methods is very sen-

sitive to the quality of the derivatives. Most solvers these days are capable of numerically

calculating the gradients using finite differencing methods. These methods are not that

accurate however and can lead to inaccurate results or even in many cases fail to con-

verge to a solution. To avoid this problem we use CasADi [31] which uses algorithmic

19

Trajectory Optimization Chapter 2

differentiation to calculate accurate gradients to machine precision. For our solver we

use IPOPT [32], [33] which is an interior point based solver. The choice to use IPOPT

was based on our own experimental results and the benchmarks from [34]. Based on

our experiments we saw a significant improvement in the convergence rate for the solver

when using algorithmic differentiation for gradients vs. numerical methods.

20

Chapter 3

High Specific-Power Ankle

Exoskeleton Device

Exoskeletons have been a major thrust of robotics research since quite some time now.

Even though significant progress has been made, conventional exoskeleton designs have

been unable to provide metabolic benefit for day-to-day activities such as running and in

many cases even walking as well. Recent work under DARPA’s warrior web program [35]

has made significant strides in this area. However, there are still a lot of challenges that

need to be overcome before exoskeletons reach their full potential. One important stride

in this direction came from the work at MIT [36] which has demonstrated metabolic

benefit in walking. While this by itself is a very significant result, the most valuable

output from this work is the notion of the augmentation factor equation. While this

equation does not define the full system dynamics itself, it gives a metric to measure the

performance of an exoskeleton. The equation allows us to quantify the benefit obtained

by the added power of the skeleton while taking in to consideration the penalty accrued

due to the added mass of the exoskeleton itself. In this chapter, we build off the structure

of the augmentation factor by analyzing the effects of the mass of the exoskeleton and

21

High Specific-Power Ankle Exoskeleton Device Chapter 3

the speed of the human gait on its two components: Added power and Power to carry.

Specifically, we will be focusing on the simulation studies highlighting the effect of added

mass on the human body. The main goal of this work is to corroborate the human

experimental data with simulation as the former is always prone to large variances and

inaccuracies and to provide more confidence in the validity of the hypothesis.

3.1 Augmentation Factor

The augmentation factor equation as shown below in Eq. 3.1 consists of two major

components:

AF =
p+ + pdis

η+︸ ︷︷ ︸
AP

+
∑
i

βimi︸ ︷︷ ︸
PC

. (3.1)

The first component, added power (AP) denotes the metabolic benefit provided by the

exoskeleton. It takes into account the positive power p+ added by the exoskeleton,

the dissipated power pdis and the muscle efficiency η+. The second component of the

augmentation factor is the power to carry(PC) which represents the burden incurred due

the added mass of the exoskeleton. Here mi is the mass of the exoskeleton added and i

is the location at which it is added.

3.2 Simulation Model and optimization

For our simulation studies we used the following model as shown in Fig.3.1 This is

a 7-link planar underactuated model with curved feet. The curved feet were added to

simulate the rolling motion of the human feet while walking. The model has a total of 6

actuators: 2 at the hips, 2 at the knees and 2 at the ankles. The physical parameters for

the model such as mass and inertia were taken from [37] such that the model resembles

22

High Specific-Power Ankle Exoskeleton Device Chapter 3

Figure 3.1: 7-link planar walker model.

a human being with a mass of 74.2 kg. The model was created in matlab and all our

experiments were also performed in the same. Even though the model has curved feet,

the model is still underactuatd as there is still a point contact between the feet and

ground. The model has 7 degrees of freedom as shown where the angle of the torso q5 is

taken as an absolute angle with respect to the reference and all other angles are relative

and measured w.r.t. the torso. We model the contact dynamics with the ground using an

inelastic collision, i.e., part of the energy is lost when the swing foot impacts the ground.

For trajectory optimization, we parameterize the joint angle trajectories as polyno-

mials shown in Fig. 2.1. We perform the optimization in matlab using using the interior

point method in fmincon. We optimize for the cost of transport and the trajectories were

generated with a constraint that the motion is a limit cycle i.e., the states go through

the same evolution every step.

23

High Specific-Power Ankle Exoskeleton Device Chapter 3

3.3 Added Mass Study

To understand the effect of added mass in the augmentation factor equation, we

perform a series of experiments by placing additional masses on the model during walking

and measuring the increase in the cost of transport as a result. We perform two sets of

experiments to study this effect. In the first experiment we study the effect of adding

mass on the human body and walking at a constant velocity. The red dots in the Fig. 3.2

shows the locations at which the additional mass was added. The upper red dot indicates

Figure 3.2: 7-link planar walker model with locations of added mass indicated by red dots.

a location just above the knee and the lower red dot indicates the location just above

the ankle. The masses were added bilaterally and were symmetric on both the legs. We

perform experiments for a walking speed of 1.3 m/s and the added mass ranges from 0 -

5 kg. We optimize the trajectory each time a mass is added so that the motion is optimal

for the current mass distribution. Fig. 3.3 shows the effect of adding mass at the lower

24

High Specific-Power Ankle Exoskeleton Device Chapter 3

Figure 3.3: Variation of COT vs mass added at the lower shank.

shank (lower red dot in Fig. 3.2) on the energy required to carry it. We see that as the

mass increases the cost of transport also increases significantly for mass added at lower

shank suggesting that this might not be an appropriate location for adding mass. Fig.

Figure 3.4: Variation of COT vs mass added at the lower thigh.

3.4 shows the effect of adding mass at the lower thigh on the energy required to carry

it. Note that even though the change in cost of transport is relatively flat, the energy

consumed is still increasing. This is because to calculate the COT, we normalize by the

total weight of the system. As we see, the increase in energy is significantly smaller as

compared to adding mass at lower shank.

In the second set of experiments, we add a constant mass and study the effect of

increase in energy as the velocity of walking increases. Fig. 3.5 shows the increase in

the cost of transport for increasing speeds of walking when a mass of 2.7 kg is added at

25

High Specific-Power Ankle Exoskeleton Device Chapter 3

Figure 3.5: Variation of COT vs velocity of walking for a constant mass added at the
lower shank.

the lower shank. The blue line shows the rate of change of COT vs. velocity when no

mass is added on the model and the green line shows the rate of change for added load.

Fig. 3.6 shows the change in COT for increasing speeds of walking. Here, the blue line

Figure 3.6: Variation of COT vs velocity of walking for a constant mass added at the
lower thigh.

shows rate of change of COT when no load is added and the green line shows the rate

of change when a load of 4.5 kg is added at the lower thigh. As we see, even though the

added load is much higher for lower thigh the increase in COT is lesser as compared to

that of lower shank.

Finally, we compare our simulation studies and actual human experiments in Fig. 3.7.

The figure on the top corresponds to the simulation data and the figure on the bottom

corresponds to the actual human experimental data. This figure shows the trend for a

26

High Specific-Power Ankle Exoskeleton Device Chapter 3

Figure 3.7: Variation of COT vs added mass at lower shank. The top figure shows
the variation for simulation data and the bottom figure shows the variation for the
actual human experimental data.

mass added at the lower shank. If we assume the muscle efficiency of around 25 percent

[38], we would expect that the increase in cost of transport for actual human data should

be 4 times that of the simulation data. On comparing the slopes in the two plots we

find that the ratio comes out to about 4.03. This tells us that the trend observed in the

human data is valid for analyzing the effect of added mass in the augmentation factor

equation.

Both of our simulations show an increased impact of adding mass distally, near the

ankle and foot. In contrast, the data also show a surprisingly low burden associated with

a location just above the knee. These findings deserve further study and may significantly

27

High Specific-Power Ankle Exoskeleton Device Chapter 3

influence design of future exoskeletons, particularly when power must be carried on board.

Our studies have been designed to expand and refine the augmentation factor equation.

Future revisions to the equation building upon this work should enable designers to

quantitatively balance the power and mass of an exoskeleton more effectively. This

understanding will allow exoskeleton designers to optimize performance more effectively,

minimizing the arduous prototype and test cycle.

28

Chapter 4

Co-Dependence of Energy

Optimality, Robustness and Design

Parameters

Any practical locomotion needs to be both energy efficient as well as robust to any

uncertainties in order to be viable. Underactuated locomotion is harder to control due to

fewer actuators than degrees of freedom to control. At the same time, this underactuation

also potentially reduces the amount of energy required. Hence, the trade-off between

energy efficiency and robustness is very interesting for underactuated biped locomotion.

This trade-off depends on a multitude of factors such as the design of the robot, the nature

of the motion as well as the controller used on the robot. Each of these factors affects

the robustness and energy efficiency of the system in unique ways and it is important

to quantify such effects if we hope to understand the inherent nature of the trade-off

between energy and robustness for underactuated biped locomotion. In this chapter, we

demonstrate the importance of quantifying not only energy but also robustness as well as

the significance of optimizing not only the trajectories but also feedback control policies

29

Co-Dependence of Energy Optimality, Robustness and Design Parameters Chapter 4

and the physical parameters of the robot.

4.1 Five Link Planar Biped Model

Figure 4.1: 5-link biped model. At left, q5 is an absolute angle, measured with respect
to vertical, while all other angles are relative. The lefthand image is drawn to clearly
illustrate angles are positive in the counter-clockwise direction, throughout. At right,
a typical pose, while walking to the right.

We use a 5-link model, shown in Fig. 4.1, for our simulations. The dynamics of this

system are constrained to the sagittal plane only. We study several mass distributions,

always enforcing that the total mass of the model is 70 (kg). The model has actuators

at hips and knees, and the nonlinear dynamics can be written in the matrix form as

D(q)q̈ + C(q, q̇)q̇ +G(q) = Bu. (4.1)

This well-studied model [8] has 5 degrees of freedom, corresponding to 5 joint angles

given by q := [q1 q2 q3 q4 q5]
T, but due to the passive point-foot contact at the ground, the

model still remains underactuated with u ∈ R4. We model the impact dynamics between

30

Co-Dependence of Energy Optimality, Robustness and Design Parameters Chapter 4

the swing leg and the ground as instantaneous and inelastic [39] to obtain joint velocities

just after the impact. Since the impact model we use assumes inelastic collisions, some

amount of energy is lost when the stance foot impacts the ground.

4.2 Trajectory Optimization

We discretize the dynamics and use direct collocation (DC) to generate trajectories

for the walking motion as described in Chapter 2. Our approach is close to that suggested

in [40], except that we use trapezoidal integration instead of backward Euler. Trapezoid

rule integration can potentially result in lack of convergence. However, in our work, this

had not been an issue, and results with trapezoid rule are significantly more accurate,

when comparing the discretized (and thereby approximate) solutions inherent in this

framework with subsequent high-resolution (1e-9) simulations of dynamics in Matlab.

The optimization problem is formulated as

min
q,q̇,u

COT (4.2)

such that D(q)q̈ + C(q, q̇)q̇ +G(q) = Hu (4.3)

Φ(q, q̇) ≤ 0 (4.4)

where q ∈ Rn is the vector of generalized coordinates, D(q) ∈ Rn×n is the mass inertia

matrix, C(q, q̇) ∈ Rn×n represents the Coriolis forces, G ∈ Rn contains the gravitational

forces and H ∈ Rn×n−1 is the input (torque) mapping. Φ(q, q̇) is a vector of constraints.

Constraints are imposed to make sure that the normal reaction at the point of contact

with the ground is always positive. The optimization problem is set up such that at

the end of the trajectory an impact at the ground happens. An additional constraint is

added that the state of the model after the impact should match the initial condition

31

Co-Dependence of Energy Optimality, Robustness and Design Parameters Chapter 4

in order to obtain a limit cycle behavior. The objective function is the COT which is

calculated as described in Chapter 2.

We implement this framework in Matlab making use of CasADi [41], which lets us

calculate gradients for optimization using algorithmic differentiation to machine precision.

(CasADi uses C omputer algebra system syntax to perform Algebraic Differentiation;

thus the name.) Using algebraic (and not numerical) differentiation greatly increases the

stability and convergence properties of our optimization, while also reducing run time

considerably.

Using CasADi to improve automated gradient calculation, the nonlinear programming

(NLP) optimization itself is solved using IPOPT [33]. This choice (vs. use of SNOPT,

Matlab’s fmincon, etc.) is made based both on improved speed during our own in-lab

testing experience and similar external benchmarking results [34].

The DC framework evaluates Eqs. 4.2-4.4 only at discrete time intervals, tk, resulting

in an approximation of the desired optimization problem. We use ∆t = h = 0.01 (s) and

integrate using the standard trapezoid rule. Also, we assume u(t) is held via a zero-order

hold for each time step (as opposed to a first-order hold). Our integration scheme is then

qk+1 = qk +
h

2
[q̇k + q̇k+1] (4.5)

q̇k+1 = q̇k +
h

2
[f(qk, q̇k, uk) + f(qk+1, q̇k+1, uk)] (4.6)

where f(q, q̇, u) = D(q)\(−C(q, q̇)−G(q) +Bu). We found that using a first order hold

for input, i.e., replacing uk with uk+1 at far right in (4.6) above, leads to trajectories that

are undesirably oscillatory and not smooth. This problem is easily rectified by adding

some level of regularization. However, the zero order hold method still converges more

rapidly. Also important to note is that regularization increases the optimal cost by a

small amount.

32

Co-Dependence of Energy Optimality, Robustness and Design Parameters Chapter 4

4.3 Motion Characteristics

Figure 4.2: Typical motion for the 5-link walker, using trajectories generated from
the optimization framework. The figure on the left shows snapshots of motion. On
the right, trajectories of the COM and the end of the swing foot are overlaid.

Fig. 4.2 shows a typical motion generated for the mass distribution m5 = 50 (kg),

m1 = m2 = 7 (kg), m3 = m4 = 3 (kg), which corresponds roughly to a human mass

distribution. Fig. 4.4 and Fig. 4.5 show the corresponding angle and angular velocity

trajectories for that motion, and Fig. 4.6 shows the joint torques. All the results we

present here are generated for a walking motion of stride length = 0.6 (m) over a time

interval of 0.6 (s), resulting in a velocity of 1 (m/s).

A few details in these four figures are worth pointing out. First, note that all tra-

jectories are divided into two subplots for better resolution and clarity, since q1 and q2

remain close to π, while the other joints are near 0. Upper plots correspond to upper leg

segments; solid (blue) lines correspond to stance leg segments (femur and tibia).

Several characteristics seen in this example are common among optimizations we

performed across a range of mass distributions, as itemized below:

1. The swing leg follows a very low trajectory, as depicted by the solid green line in

Fig. 4.2. We enforce a minimum ground clearance of 2 (cm), except at the first

and last 5 points of the trajectory, and the swing leg tip overshoots near the ends

33

Co-Dependence of Energy Optimality, Robustness and Design Parameters Chapter 4

Figure 4.3: Detailed trajectory of the swing foot and the center of mass of the 5 link walker.

and grazes this value mid-gait. Without adequate ground clearance (e.g., 2 (cm)),

resulting limit cycle gaits could not be stabilized.

2. The center of mass (COM) trajectory “flattens out” mid-stride, as opposed to

following an arc, which is a feature also seen in human walking. This trajectory

requires work in bending of the stance leg but results in less acceleration and

deceleration vertically (against gravity), for lower accelerations overall of COM.

3. Also, rapid changes in velocities just before impact, as seen in Fig. 4.5, deflect the

COM velocity at the end of gait slightly “upward”, reducing kinetic energy losses

at impact. The velocity vector, depicted as a solid blue line in Fig. 4.2 is close to

orthogonal with the dashed line drawn from COM to stance leg tip at the start

of the step (at 92.8◦) and more obtuse at the end (100.0◦ w.r.t. current stance

34

Co-Dependence of Energy Optimality, Robustness and Design Parameters Chapter 4

contact, and 66.0◦ w.r.t. upcoming stance leg, as a black dashed line).

4. Also, the velocity vector is longer (i.e., faster speed) at the end, showing kinetic

energy has built up, to compensate for dissipation at impact.

Figure 4.4: Angle trajectories for the walking shown in Fig. 4.2. The top plot shows
the positions of the swing and the stance thighs, while the bottom plot shows the
positions of the stance knee, swing knee and torso.

The velocity (Fig. 4.5) and torque (Fig. 4.6) trajectories also show repeatable features

that were not anticipated but are (retrospectively) intuitively in agreement with our cost

function, as noted in the rest of the list of features, below.

5. Magnitude of velocities of the stance leg segments (solid blue) increase quite rapidly

at the very end of the step, in achieving the COM deflection upward (item 3).

The “toe-off” described above has a well-known benefit for energetics [42], but it also

causes a problem:

35

Co-Dependence of Energy Optimality, Robustness and Design Parameters Chapter 4

Figure 4.5: Velocity trajectories for the walking motion shown in Fig. 4.2. At top are
velocities of the swing and the stance thigh; bottom plot shows the velocities of the
stance knee, swing knee and torso

Figure 4.6: Torques for the walking motion in Fig. 4.2.

36

Co-Dependence of Energy Optimality, Robustness and Design Parameters Chapter 4

6. We observe that rapid increases in velocity near the end of a step, required for

toe-off, also have an important (and unfortunate) negative effect on stability.

For example, when we attempted to use linear quadratic regulation (LQR) to provide

feedback control, the resulting gait was not stable. Specifically, we linearized about each

“knot point” of the optimal solution, and then controlled motions using the nominal

feedforward torque (Uff) added to feedback of the form Ufb = −K(X − Xnom), where

K = K(t) and Xnom = Xnom(t) were interpolated between their values at the discrete

points of the optimal solution. During continuous motion, the trajectories definitely

converged toward the nominal trajectories as expected, but the effects through impacts

were too destabilizing, resulting in falls after 3 to 6 steps.

This is a particularly interesting result, as it demonstrates evidence for a strong

hypothesis that trajectories and feedback policies should be optimized as a concurrent

problem, rather than planning ad hoc feedback subsequent to solving for a nominal

trajectory. Finally,

7. values of un and the corresponding relative angular velocity q̇n show a complemen-

tary behavior: when one is significant in magnitude, the other is near zero.

This makes sense, given Pn = unq̇n, from Eq. 2.9. In Figures 4.5 and 4.6, note in

particular the solid blue lines, for the stance thigh (upper) and knee joints. The relative

thigh angle (between torso and stance leg) is nearly zero while torque is at its maximum

magnitude (-100 (N·m)), with the associated bobbing motion of the torso in Fig. 4.2

during the first 0.25 (s) of the step. For the stance knee, a period of negative velocity

for q̇3 (i.e., knee bending) at mid-stance corresponds to a flat region in which u3 ≈ 0,

i.e., bending almost passively during the gait. Near the end of the step, push-off with

the stance knee is concentrated in particular at the last time step, perhaps exploiting the

approximate nature of the optimization problem somewhat.

37

Co-Dependence of Energy Optimality, Robustness and Design Parameters Chapter 4

A different choice of cost function would result in somewhat different solution charac-

teristics. We also tested a simple quadratic cost on control effort (i.e., cost = u2); here,

the “toe-off” behavior, with a spike in torque and velocity of the stance knee at the end

of the step, also occurred. Overall, the trajectories are qualitatively more smooth for this

cost function, however, and the overall COT is noticeably higher than when optimizing

for COT specifically.

4.4 Effect of System Parameters on Energy

We repeated the same trajectory optimization to generate motions for our model on

five different mass distributions. The physical parameters like link lengths and masses

are shown in Tables 4.1 and Table 4.2, respectively. Each link is modeled as a simple

rod, with COM at mid-length and the inertia is calculated accordingly.

Segment Length(m) COM(m)
L1 = L2 0.4 0.2
L3 = L4 0.43 0.215
L5 0.77 0.385

Table 4.1: Length and COM parameters used in simulation experiments

Set m1 = m2(kg) m3 = m4(kg) m5(kg) COTopt
1 7 7 42 0.0992
2 5 7 46 0.0996
3 7 5 46 0.0861
4 5 5 50 0.0853
5 7 3 50 0.0705

Table 4.2: Mass parameters used in simulation experiments

Fig. 4.7 shows how changing ωn affects COT. First, recall that discretized trajectory

optimization solutions of true dynamics are always approximate ([5, 6, 16, 18, 20, 40, 30],

38

Co-Dependence of Energy Optimality, Robustness and Design Parameters Chapter 4

etc.), and also that ωn is analogous to a “stiffness” (or proportional controller, “Kp”),

within the PFL framework. Intuitively, increasing control gains would increase control

effort, in following an arbitrary reference trajectory.

60 70 80 90 100 110
0.05

0.1

0.15

0.2

C
O

T

!n (for PFL control gains)

Set 1
Set 2
Set 3
Set 4
Set 5

60 70 80 90 100 110
1

1.5

2

C
O

T
 /

C
O

T
op

t

!n (for PFL control gains)

Set 1
Set 2
Set 3
Set 4
Set 5

Figure 4.7: Cost of Transport (COT) as a function of ωn.

However, our reference trajectories are far from arbitrary: they are precalculated to

achieve a locally optimal (i.e., minimal) cost of transport – within some approximation

errors. Therefore, increasing wn monotonically decreases resulting COT in our higher-

accuracy Matlab simulations. This suggests that the effect of following the trajectory is

more significant than the increase in power due to higher peak torques.

Figure 4.7 both illustrates how COT converges exponentially downward as ωn in-

creases and also how different parameter sets result in a range of different errors, in

comparing optimization results to more accurate simulations. For example, the lowest

COT is for Set 5 from Table 4.2, which is also closest to a typical human mass distribu-

tion. The lower subplot of Fig. 4.7 shows the ratio of “actual” COT (from simulation)

to the value output from optimization, also as a function of ωn, where Set 5 also shows

39

Co-Dependence of Energy Optimality, Robustness and Design Parameters Chapter 4

the lowest approximation error.

Figure 4.8: Variation of energy as ωn changes.

Figure 4.8 shows the evolution of energy over time for different values of ωn. The

steep rise at the start is due to high peak torques as the controller tries to pull the actual

trajectory back to the optimal trajectory.

Also, these and other simulations we have performed show that while increasing

the mass of the lower leg (with constant upper-leg mass and total mass) results in a

fairly linear increase in COT, as shown in the lower subplot of Figure 4.9, energy use

remains close to flat as mass of the upper leg increases (while holding lower-leg and

total mass constant). It is important to note that we optimize the gait for every mass

distribution which gives us the optimal COT for the corresponding mass distribution.

Corresponding trends relating mass distribution to stability are less apparent and deserve

further investigation.

40

Co-Dependence of Energy Optimality, Robustness and Design Parameters Chapter 4

Figure 4.9: COT variations as upper or lower leg mass varies.

4.5 Effect of System Parameters on Stability

Fig. 4.10 shows the change in rate of convergence (i.e., largest/slowest discrete-time

eigenvalue) as a function of ωn when recovering from push perturbations. Three impulsive

push tests were simulated for each set of parameters by applying an impulse of 10 (Ns)

60 65 70 75 80 85 90 95 100
!n

0

0.2

0.4

0.6

6
(!

n
)

Set 1
Set 2
Set 3
Set 4
Set 5

Figure 4.10: Rate of convergence, λ, as a function of ωn, for push recovery.

(e.g., effectively a pulse of 1000 (N) for 0.01 (s)) at the hip, stance knee, or torso,

41

Co-Dependence of Energy Optimality, Robustness and Design Parameters Chapter 4

respectively. The velocities post impact were calculated as

D(q)q̇+ −D(q)q̇− = E · Fext∆t (4.7)

where Fext∆t = 10 (Ns) is the applied pulse and E = ∂p(q)
∂q

where p(q) is the point at

which force is applied. We calculate the convergence rate by simulating the model with

optimal trajectory which has a limit cycle behavior and then introduce a disturbance

as mention in Eq. 4.7. The disturbance causes the biped to deviate from the optimal

trajectory. The low-level controller however, causes the model to converge to the limit

cycle again asymptotically. We calculate the deviation of states on the Poincaré section

and plot this error on a semilog scale as a function of number of steps taken. The slope

of this plot is the convergence rate shown in Fig. 4.10.

Fig. 4.11 shows some of the error plots that we use to calculate the rate of convergence

for the different mass and control parameters for disturbance introduced at one of the

three locations: torso, hip and knee. The slope of the line on these plots gives us the

rate of convergence back to to the limit cycle behavior. In some of the plots, we see that

the dominant eigen-value changes as the model goes back to the limit cycle behavior as

evident by two lines red and blue. In such cases we use the slower value as an estimate

for the rate of convergence.

4.6 Energy Optimality and Robustness Trade-off

In the previous sections we study the effects of control and design parameters on the

energy and stability of the systems. To explore their trade-offs, we presented COT vs

rate of convergence for the different physical and control parameters. in Figure 4.12,

which illustrates a Pareto frontier, formed essentially by sets 2, 3, and 5, while sets 1

42

Co-Dependence of Energy Optimality, Robustness and Design Parameters Chapter 4

Figure 4.11: Error plots to calculate rate of convergence, λ, for different values of ωn,
for push recovery.

43

Co-Dependence of Energy Optimality, Robustness and Design Parameters Chapter 4

0 0.05 0.1 0.15 0.2
Cost of Transport (COT)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

6
(!

n
)

Lower Energy Use

F
as

te
r

R
ec

ov
er

y Set 1
Set 2
Set 3
Set 4
Set 5

60 65 70 75 80 85 90 95 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

C
on

ve
rg

en
ce

 r
at

e

!n (for PFL control gains)

Set 1
Set 2
Set 3
Set 4
Set 5

Figure 4.12: Cost of Transport vs rate of convergence λ(ωn), for push recovery. Each
line sweeps across results from ωn = 60 to ωn = 100.

and 4 provide poor trade-off characteristics by comparison. We hypothesize that a more

comprehensive framework that includes energy, robustness, and physical parameters in a

single optimization can improve the limits of such performance trade-offs, and developing

such a framework is a goal for our future work.

4.7 Conclusion

Our simulation results demonstrate that although optimizing for energy alone and

then stabilizing the trajectories can work, there is a need for a more cohesive framework

that takes into account both energy as well as stability of the system for optimization

simultaneously. Furthermore, because different physical robot design parameters have

important effects on stability and energy properties, it would be prudent to include these

parameters as open variables, via appropriate optimization frameworks.

Toward better understanding the effects of system parameters on the energy and sta-

44

Co-Dependence of Energy Optimality, Robustness and Design Parameters Chapter 4

bility of biped systems, we presented simulation data for 5 different sets of parameters.

For the mass distribution sets we chose, the one which is most similar to human param-

eters (Set 5) does in fact have the lowest energy consumption. However, the set with the

fastest rate of convergence is set 2. These phenomena may in part be a result of other

factors, such as choice of feedback control structure and certainly warrant further study.

If we take a look at Figure 4.12, our goal in the future would be to build a cohesive

framework that will take into account all these trends and push the performance of the

system in the direction of the white arrow. In order for this to happen, the two challenges

that need to be addressed are the quantification of robustness for biped locomotion and

formulating a robustness metric that can be optimized simultaneously along with energy.

We address a few of these challenges in the next two chapters.

45

Chapter 5

Metastable walking for push

disturbances

In the last chapter we analyzed the effect of system parameters and feedback control

policies on the energy efficiency and robustness of the five-link planar biped model. In

this chapter we apply meshing tools to improve and analyze the performance of a five-link

planar biped model to random push perturbations. Creating a mesh for a 14-dimensional

state space would typically be infeasible. However, as we show in this chapter, low level

controllers can restrict the reachable space of the system to a much lower dimensional

manifold, which makes it possible to apply our tools to improve the performance. To

validate the effectiveness of our tools in analyzing, quantifying and improving the per-

formance of a system, we conduct simulations on two different sets of trajectories: one

consisting of trajectories having only a single support phase, and a second set consisting

of trajectories having both a double support as well as a single support phase. We use

the concept of metastability as described in [14] to quantify the robustness of the 5 link

planar biped model in the presence of push disturbances.

We perform experiments and analyze the performance for two different scenarios. For

46

Metastable walking for push disturbances Chapter 5

the first case, our trajectory set is comprised only of single support phase trajectories.

For the second case the trajectory set consists of trajectories which have both single

support, as well as double support phase. All other parameters, except the trajectory

and the structure of PFL, remain the same for both the experiments. The following

sections detail each scenario.

5.1 Dynamic Model

 q1

q2

q3q4

q5

(xe,ye)

hip

torso top

Figure 5.1: Model of the 5-link biped system used in simulations.

We use a point-footed, 5-link model as shown in Fig. 5.1 for our simulations. This

model is studied extensively in [43]. We set the mass and length parameters such that

the model has a total mass of 70 Kg and height of 1.6m. To calculate inertia values,

47

Metastable walking for push disturbances Chapter 5

we consider the links to be thin rods with uniform mass distribution. Although [43]

studies only single-support gaits, in which both feet are simultaneously on the ground

only during instantaneous impacts, we use an extended model that allows us to design

and simulate double-support trajectories, as well. Our model has 7 degrees of freedom:

q := [q1 q2 q3 q4 q5 xe ye]
T , where q1, q2, q3, q4, q5 are the five angles as shown, and xe and

ye are the x and y coordinates of the end of the stance foot respectively. The simulation

model can be compactly expressed in the following mathematical model:

D(q)q̈ + C(q, q̇)q̇ +G(q) = Bu+ EFext. (5.1)

Here, D(q) ∈ R7×7 is the mass inertia matrix, C(q, q̇) ∈ R7×7 is the Coriolis matrix,

G ∈ R7×1 is the vector of gravitational forces, B ∈ R7×4 is the input mapping and

E ∈ R7×4 is the mapping of forces acting on the stance leg and swing legs, respectively.

During single support, the system is underactuated, as the input mapping B has more

rows than columns. During double support, Fext ensures no penetration of the leg into the

ground and provides Coulumbic friction limits laterally. Sliding and/or bouncing of the

point feet can occur in this model. Note that this differs from many formulations, which

(artificially) treat such eventualities as failure modes in the dynamics, for simplicity.

Swing leg impacts at the ground are modeled as instantaneous, inelastic collisions.

5.2 Trajectory Optimization Problem Formulation

Our optimization framework here is very similar to our work in the previous chapter

with an important difference that we now have 7-DOF instead of 5 which allows the

48

Metastable walking for push disturbances Chapter 5

model to have a wider range of motion such as jumping and sliding. We have

min
q,q̇,u,Fext

COT (5.2)

such that D(q)q̈ + C(q, q̇)q̇ +G(q) = Bu+ EFext (5.3)

Φ(q, q̇, u, Fext) ≤ 0. (5.4)

Here, Φ(q, q̇, u, Fext) is the vector of constraints and COT is given by Eq. 5.8. In addition,

we also impose constraints on forces on the stance leg and swing legs. We generate

trajectories assuming the coefficient of friction is 0.2, but we simulate the trajectories

with a coefficient of friction of 0.5. A tighter bound on the friction is used because even

though the controlled trajectory deviates from the optimal trajectory by a very small

margin, it may cause slipping in certain cases. We use a Direct Collocation framework

for optimization. For the purpose of trajectory optimization, we discretize the dynamics

with a resolution of 0.01s and use the trapezoid rule for integration. For the inputs,

we use a zero-order hold instead of first-order as this provided smoother results. We

use IPOPT [33] for optimization, along with CasADi [31] to calculate the gradients for

optimization using automatic differentiation. All the trajectories are designed for a fixed

time length of 0.6s and are optimized for minimal energy use.

The cost function for our optimization is given by,

Cost =

∫ t

0

7∑
n=1

|Pn(t)|dt, (5.5)

where Pn(t) = τn(t)ωn(t). Here τn(t) is the torque and ωn(t) is the angular velocity for

the corresponding degree of freedom. We sum the absolute value of both the positive as

well as the negative mechanical power. Since absolute value functions can be problematic

for the convergence of optimization, we use the following approximation, where we have

49

Metastable walking for push disturbances Chapter 5

also taken discretization into account:

Cost =
N−1∑
k=0

7∑
n=1

P̃n(k)∆t. (5.6)

Here

P̃n =
√
P 2
n + ε, (5.7)

where ε is a smoothing factor. For our experiments, we used ε = 0.5. Experimentally,

smaller values of ε will work but also increase the time to find an optimal solution with

not much difference in the final trajectories obtained. In addition to the cost, we also add

some regularization terms to smooth the velocities and external forces. We found that

smoothing the external forces was essential in order to control the double support phase

trajectories on the model. Also of note is the fact that double support phase trajectories

have a higher cost of transport as compared to single support phase trajectories. For the

same stride length and ground clearance, the cost of transport for double support phase

trajectories was 2-3 times that of single support phase trajectories. Detailed values are

given in Table 5.1; all trajectories in this Table are for a constant time length of 0.6s.

We calculate the Cost of Transport as

COT =
Cost

mtgd
, (5.8)

where Cost is as described in Eq. 5.5, mt is the total mass of the system, g is the

acceleration due to gravity and d is the stride length.

50

Metastable walking for push disturbances Chapter 5

Stride Length(m) COT (SS) COT (DS)
0.4 0.0501 0.1385
0.5 0.0809 0.1995
0.6 0.1332 0.3133

Table 5.1: COT for Single Support(SS) and Double Support(DS) trajectories, for
different stride lengths.

5.3 Meshing for Metastable Systems

We record the state at the end of each step and use these discrete states (on a Poincaré

section) to build a mesh M, toward modeling stochastic, step-to-step dynamics. For our

current work, we build and analyze a mesh that includes random disturbances, in the

form of a push that can occur some time in the middle of the trajectory. Regardless

of when (if at all) a push occurs, we record the subsequent post-impact state with the

ground to create our mesh. We denote this post-impact state as s = x+. The mesh also

includes an absorbing failure state. All failure events transition to (and subsequently

remain in) this state, in our discrete model of the dynamics. We then build the mesh,

starting with each of the optimal limit cycles, along with the failure state. Non-failure

states are simulated, using our level controller as described in Chapter 2, for each possible

optimal trajectory found as described in the above section and for each of a finite set

of possible push disturbances γ in our uncertainty set. That is, the control action is

the choice of which reference trajectory, ξ, to use. Our meshing algorithm performs

an exhaustive search, sequentially and deterministically exploring all possible states, s,

that can be visited, to generate a mesh approximating the reachable state space of the

modeled system, for the given control and disturbance sets. New states visited are added

to the mesh if and only if they exceed a defined distance threshold from all previously

created states in the mesh. More specifically, we use a simple threshold criterion, based

51

Metastable walking for push disturbances Chapter 5

on a Euclidean distance metric given by

d(s1, s2) = min
s2∈M

√√√√ n∑
i=1

(s1(i)− s2(i))2. (5.9)

States are added to the mesh if d(s1, s2) > dthr. When any part of the biped other than

one or both of the point feet touches the ground, this is modeled as a transition to the

failure state. Because we allow for sliding and bouncing in our simulation, we pick a

threshold time limit of 0.4s after which the first impact of the swing foot with the ground

terminates the current step.

Algorithm 1 outlines our meshing procedure.

A deterministic state transition matrix Tdet(s, ξ, γ) which contains the information of

all state transitions is updated every iteration. In case of failure, the corresponding value

in the Tdet(s, ξ, γ) is set to 1. When calculating the distance, we ignore the x position of

the ground contact of the stance leg as it has no effect on the next step being taken.

For our uncertainty set, we create push scenarios, γ, with different magnitudes in

forward as well as backward directions that occur at various times throughout the tra-

jectory. For our current work, we restrict the maximum number of disturbances per

simulation to 1. Some disturbances are applied at the hip and some occur at the top

of the torso. A full profile of the disturbance set is shown in Fig. 5.2. Our goal is to

“push” the trajectories during walking away from their nominal paths in state space, to

explore the mixing effects over time of cumulative disturbances that vary in direction,

magnitude, and timing during the gait. Our underlying hypothesis is that while the

system does not converge to any particular fixed point under such conditions, it is also

limited to a relatively low-dimensional subset of the full state space, making long-term

failure probabilities calculable.

52

Metastable walking for push disturbances Chapter 5

Algorithm 1 Meshing Algorithm

Input: Initial matrix of states S, containing two states: s1 (failure) and s2 (one initial,
non-failure state).
Disturbance profile D.
Distance threshold dtr.
Set of controllers Z.

Output: Final matrix of all states S, discretely spanning the reachable state space.
Deterministic state transition matrix Tdet(s, ξ, γ).

Initialization:
Current state index: cur = 2
Total number of states: nstate = 2
while cur ≤ nstate do

xcur ← S(cur)
for all controllers ξ in Z do

for all disturbances γ in D do
x, flag ← simulatedynamics(xcur, ξ, γ)
if flag = 0 (Step taken successfully) then

if d(x, s) > dtr ∀ s ∈ S then
add x to S and set Tdet(xcur, ξ, γ) = nstate
nstate ← nstate + 1

else
set Tdet(xcur, ξ, γ) = index of s for d(xcur, s) < dtr

end if
else

set Tdet(xcur, ξ, γ) = 1 (index to failure state)
end if

end for
end for
cur ← cur + 1

end while
return S, Tdet

53

Metastable walking for push disturbances Chapter 5

Figure 5.2: Disturbance profile used in the simulations. Disturbance is applied at two
different locations namely the hip and the top of the torso.

5.3.1 Stochastic State Transition matrix

Once the mesh is complete and we have a deterministic state transition matrix as

described above, we proceed with calculating the optimal policy for the mesh, which

depends on the assumed probability distribution of the disturbances. The optimal policy

given by π(s) is a function of the state. Once we have this policy, the controller for

the next step is selected by ξ = π(s). We study a range of values for the probability

distribution, P (γ), for our uncertainty set. For each, we use value iteration to converge

to a stable policy, where the value of being in state i is given by

V (i) := max
ξ

(
∑
γ

P (γ)(Rj + αV (j))), (5.10)

54

Metastable walking for push disturbances Chapter 5

and the optimal policy is given by

π(i) := argmax
ξ

(
∑
γ

P (γ)(Rj + αV (j))), (5.11)

where α is the learning rate, which we set to 0.99 for our experiments, and Rj is the

reward function which is given by

Rj =


0, if j is 1

1, else.

(5.12)

This function rewards the control action so long as it does not lead to a failure state.

Using this optimal policy, we calculate the stochastic state transition matrix:

T (i, j) :=
∑
γ

P (γ)fj (5.13)

where

fj =


1, if Tdet(i, π(i), γ) = j

0, else.

(5.14)

That is, the action depends deterministically on the present state, each particular distur-

bance then maps deterministically to one particular future state under this control, and

the probability mass function for disturbances sets the relative weights in each possible

arrival state. Note, each row in the stochastic transition matrix correspondingly sums to

one.

55

Metastable walking for push disturbances Chapter 5

5.3.2 Mean First Passage Time

The concept of mean first passage time (MFPT) for metastable walking systems is

explained in detail in [44] and [14]. We highlight important results here that we will

be using in the rest of the paper; they focus on an eigen analysis of the transpose of

the stochastic transition matrix, T . First, we define a metastable distribution, φ, as the

stationary distribution in state space, conditioned on not having entered the failure state:

φi = lim
n→∞

Pr(X(n) = xi|X(n) 6= x1). (5.15)

The mean first passage vector m where mi is the mean time for the state i to go into

failure is given by

mi =


0, if i = 1

1 +
∑

j>1 Tijmj, else.

(5.16)

Vector m can be calculated by

m =

 0

(I − T̂)−11

 (5.17)

where T̂ is T with the first column and row (corresponding to the failure state, for which

m(1) = 0) removed. This in turn lets us calculate the system wide MFPT:

M =
∑
i

φimi. (5.18)

For a more efficient calculation of M , we use the eigenvalues of the stochastic transition

matrix. Because of the structure of T , with T (1, 1) = 1 corresponding to the absorbing

failure state, the largest eigenvalue has the value 1: failure is a persistent state. Let λ2

56

Metastable walking for push disturbances Chapter 5

be the second largest eigenvalue of T . λ2 denotes the probability of taking a successful

step, assuming initial conditions have been forgotten and the walker is in a non-failure

state; i.e., the probability of failure is 1 − λ2. The probability of taking only n steps is

then

Pr(X(n) = x1, X(n− 1) 6= x1) = λn−12 (1− λ2). (5.19)

By calculating the expectation of this probability distribution, we obtain the approximate

MFPT for the system given by

M =
1

(1− λ2)
. (5.20)

Finally, note that normalizing all the non-failure-state elements in the eigenvector asso-

ciated with the 2nd-largest eigenvalue of T T (the transpose of T) correspondingly yields

the metastable distribution, φ, in Eq. 5.15.

5.3.3 Average Cost of Transport

We can calculate the average COT for the system, based on the metastable distribu-

tion φ. To do this, we first calculate the average COT for each state in the mesh using

COT i =
∑
γ

COT (i, π(i), γ)P (γ) (5.21)

where we assume COT (i, π(i), γ)P (γ) = 0 if Tdet(i, π(i), γ) = 1, i.e., if state i transitions

to the failure state. The average COT for the whole system is then

COT =
∑
i

COT iφi. (5.22)

57

Metastable walking for push disturbances Chapter 5

5.4 Dimensionality Analysis

As the dimensionality of a system increases, discretized (e.g., mesh-based) machine

learning methods become impractical, due to Bellman’s so-called “curse of dimension-

ality”. For a D dimensional system, to make the state-state transition mappings more

accurate we can reduce the distance between mesh points. The dimensionality of the

system can be used to predict the resulting change in the mesh size. More specifically,

if we wish to change the distance between mesh points from s to s/k, then we would

expect the number of mesh points to scale as N ∝ kD. Figure 5.3(a) shows some simple

examples of this. For example, for a 3D cuboid (D = 3) if we reduce the side length (s)

of each element in a uniform grid to 1/2 of its original side, there will be N = 23 = 8

grid elements.

For some systems, this scaling is not an integer, due to some inherent structure of a

system within state space. Fractals are a common example of this. The Koch curve, also

known as the Koch snowflake, is illustrated in Fig. 5.3(b). To generate the shape, start

with a single side (or an equilateral triangle, for a true “snowflake”). Then, divide each

side into 4 new sides, each 1/3 of the previous side length; repeat forever, and you have

a Koch curve.

The Koch snowflake has a dimensionality of about 1.26. To have a better under-

standing, imagine we wish to select a non-uniform set of points to approximate the full

set. Paralleling the meshing approach used in this paper, we first pick a particular

“distance threshold”, dthr, to compare candidate new mesh points with existing one, as

in Equation 5.9. New candidate points are found and added to the mesh if and only

if they are outside a “bubble” of radius dthr of all the existing mesh points, resulting

(after an exhaustive search) in a non-uniform mesh. Figure 5.3(c) shows a resulting ex-

ample. Since N ∝ kD, and dthr is in turn proportional to 1/k, D = log(N)/log(k) =

58

Metastable walking for push disturbances Chapter 5

Figure 5.3: Fractional Dimensionality. (a) Uniform meshing examples [3], (b) Koch
snowflake segment, (c) Non-uniform meshing example (see text for details), (d) slope
of a loglog plot of “Distance Threshold” versus “Number of Mesh Points” is -1.26,
which is correspondingly an estimate for the negative of the dimensionality of the
Koch snowflake.

log(N)/(−log(dthr)), and the negative slope of a log-log plot, such as shown in Fig. 5.3(d),

gives the dimensionality, D. We use this method in the following sections to estimate

mesh dimensionality, which describes scaling of the number of discrete mesh points as

59

Metastable walking for push disturbances Chapter 5

dthr varies.

5.5 Single Support Phase Walking

We use 3 trajectories {ξ1, ξ2, ξ3} with stride lengths of 0.4m, 0.5m and 0.6m respec-

tively in our trajectory set Z to generate the mesh. All these trajectories have a time

length of 0.6s and have been optimized for energy. We then use PFL as stated above to

control these trajectories. For the trajectories in this set, matrix S as given in Eq. 2.12

sets the four acceleration terms that are directly controlled. Fig. 5.4 shows one example

gait trajectory. Because of the sensitive nature of the inelastic collision at the end of each

0 0.1 0.2 0.3 0.4 0.5 0.6

Time(s)

3

3.2

3.4

3.6

P
o

s
it
io

n
(r

a
d

)

q
1

q
2

0 0.1 0.2 0.3 0.4 0.5 0.6

Time(s)

-0.8

-0.6

-0.4

-0.2

0

0.2

P
o

s
it
io

n
(r

a
d

) q
3

q
4

q
5

Figure 5.4: Plot of position trajectories for a 0.5m stride length trajectory having only
single support phase

footstep, COT of controlled gaits using a smaller integration time step for more accu-

racy deviates from the value predicted through more coarse integration during trajectory

60

Metastable walking for push disturbances Chapter 5

optimization. Table 5.2 shows this deviation. Table 5.3 shows the number of states for

Stride Length(m) Predicted COT Controlled COT
0.4 0.0501 0.1507
0.5 0.0809 0.1021
0.6 0.1332 0.1417

Table 5.2: COT for single support phase trajectories.

different meshes that we generate. As expected, the number of states increase by an ex-

ponential factor as dthr decreases. If we plot the data in this table on a logarithmic scale,

dthr 0.3 0.4 0.45 0.5 0.6
of points 6089 2333 1856 946 779

Table 5.3: Number of points for different threshold values for mesh generated with
single support phase trajectories

the slope gives the dimensionality by which the mesh grows. Fig. 5.5 shows the said plot.

For the case of trajectories with only single support phase, the dimensionality comes out

to be approximately n ≈ 3.1 which is much less than the total 14 dimensional state space.

It is this low dimensionality that allows us to use our meshing techniques even for real

world noise scenarios like push disturbances. Once we have the mesh, we can calculate

the MFPT and other important metrics. The following results are obtained for a mesh

with dthr = 0.6, along with the following probability distribution for the uncertainty set.

P (γ) =


0.8, if no disturbance

0.2/28, else.

(5.23)

Our uncertainty set U consists of 29 scenarios which are shown in Fig. 5.6. Of the 29

cases, 1 case is a no-disturbance scenario.

Using Eq. 5.20, the MFPT for our mesh comes out to 103.25, suggesting that with our

optimal policy and the disturbance probability given, the robot would take approximately

61

Metastable walking for push disturbances Chapter 5

0.3 0.4 0.5 0.6

Threshold distance (dtr)

600

1000

2000

3000

4000

5000

6000
N

o
.

o
f

s
ta

te
s

n = |Slope| 3.0984

Figure 5.5: Dimensionality of mesh growth for Single Support trajectories.

103 steps before falling. From Eq. 5.22, we get the average cost of transport for the

metastable distribution of the system to be 0.2751. Using our tools, we can perform

various interesting analyses, such as calculating the sensitivity to disturbances. To do

so, we use the following probability distribution. Here, γi is the disturbance for which

we are calculating the sensitivity.

P (γ) =


0.7, if no disturbance

0.2, if γ = γi

0.1/27, else.

(5.24)

We then proceed to calculate the MFPT for the given probability distribution. We do

this for all the disturbances in U and the results are as shown in Fig. 5.6.

62

Metastable walking for push disturbances Chapter 5

0
10

100

M
F

P
T 200

Magnitude (N.s)

0 0.50.4

Time (s)

0.30.2-10 0.1

hip

torso

-10 -5 0 5 10

Magnitude (N.s)

0

100

200

300

M
F

P
T

hip

torso

0.1 0.2 0.3 0.4 0.5

Time (s)

0

100

200

300

M
F

P
T

hip

torso

Figure 5.6: Plot showing the MFPT for various disturbance probabilities. The top
figure shows the MFPT as a function of both the magnitude as well as the time of
disturbance. The middle and bottom plot show the MFPT vs magnitude and time
respectively.

5.6 Double Support Phase Walking

As in the previous section, we use 3 trajectories with a stride length of 0.4m, 0.5m

and 0.6m to generate our mesh. These trajectories are also optimized for energy and

have a time length of 0.6s. These trajectories differ from the trajectories of the previous

63

Metastable walking for push disturbances Chapter 5

section in that they have a double support phase for 20% of the gait duration. The gait

starts in the double support phase and ends at the end of the single support phase with

impact to the ground. These post-impact states are added to the mesh. Fig. 5.7 shows

one such trajectory. To control these trajectories, we use the same PFL structure but

0 0.1 0.2 0.3 0.4 0.5 0.6

Time(s)

3

3.5

4

P
o

s
it
io

n
(r

a
d

)

DS SS

q
1

q
2

0 0.1 0.2 0.3 0.4 0.5 0.6

Time(s)

-0.5

0

P
o

s
it
io

n
(r

a
d

)

DS SS

q
3

q
4

q
5

Figure 5.7: Plot of position trajectories for a 0.5m stride length trajectory having
both double support (DS) and single support (SS) phase. The transition from double
support to single support happens at 0.12s mark.

with a switching scheme. We divide the trajectory into 3 different time intervals 0-0.15s,

0.15-0.53s and 0.53-0.6s. For time intervals 1 and 3 we set

S =



1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0


(5.25)

64

Metastable walking for push disturbances Chapter 5

and for time interval 2 we set S as given in Eq. 2.12. We introduced the switching

scheme because the PFL scheme used in the previous section was not able to stabilize

the trajectories having both a double support and a single support phase. The choice

of the time intervals was based on the transition from double support to single support

phase and some experimental simulations.

Tables 5.4 and 5.5 show the COT for the trajectories and the number of points for

mesh generated with different dthr values respectively.

Stride Length(m) COT Stable COT
0.4 0.1385 0.2216
0.5 0.1995 0.2733
0.6 0.3133 0.3618

Table 5.4: COT for trajectories having both double support and single support phase
before and after PFL is applied.

dthr 0.4 0.45 0.5 0.6
of points 7260 5645 3925 2244

Table 5.5: Number of points for different threshold values for, trajectories having
double as well as single support phase

Fig. 5.8 shows the plot to calculate the dimensionality factor for the double support

phase trajectories. The MFPT for the case with dthr = 0.6 for the probability distribution

given in Eq. 5.23 for these set of trajectories comes out to be 496.88 with an average cost

of transport COT of 0.4993. This is significantly more robust than that for trajectories

having only single support phase but at the same time there is a trade off in terms of the

amount of energy expended. This may also be in part due to the different PFL schemes

used in both cases, however, the fact that the dimensionality in both cases comes out

nearly the same indicates that the significant performance improvement results not from

the contracting effects of the low level controllers but mostly due to the fact that double

65

Metastable walking for push disturbances Chapter 5

0.4 0.45 0.5 0.55 0.6

Threshold distance (dtr)

2000

3000

4000

5000

6000

7000

8000
N

o
.

o
f

s
ta

te
s

n = |Slope| 2.9522

Figure 5.8: Dimensionality of mesh growth for trajectories having both double support
and single support phase.

support phase introduces an over actuated phase in the simulation where we can control

all the degrees of freedom of the system.

We also build a mesh by combining the trajectories from both sections above. As

expected, this mesh provides a superior performance compared to either of the meshes

generated in the previous section. For a dthr = 0.6 this mesh has 10,603 states with

a MFPT of 2,441.58 for a probability distribution given in Eq. 5.23. This is expected

because more control policies (trajectories) allows for a higher probability of taking a

successful step after a disturbance has been introduced. We also see that this mesh has

a significantly higher number of states as compared to the mesh with just single support

phase or double support phase trajectories. This may be due the mixing effect of the

control policies leading to the exploration of previously unexplored states.

66

Metastable walking for push disturbances Chapter 5

5.7 Sensitivity Analysis

An obvious question that comes to mind is how robust the policy is to change in the

probabilities of disturbances so we analyze the sensitivity of the policy. For this, we pick

a probability value for each disturbance from a uniform distribution between 0 and 1. We

then normalize these probabilities such that the probabilities of all disturbances sum to

x. The probability for no push scenario is then 1−x. For each x we collect 10 data points.

Fig. 5.9 shows how much the performance is affected due to change in the probability

of the disturbance. The percent policy change gives the percentage of states that have a

different policy when using the optimal policy versus the standard policy. The standard

policy in this case is the optimal policy generated for the probability distribution given

by Eq. 5.23.

As we see, the optimal policy is quite robust to the changes in the probability dis-

tribution of the noise. The top figure shows that the maximum deviation in the policy

for our experiments is about 3 percent. This means that only 3% of the states have a

different control action than when using our base policy.

5.8 Conclusion

Our experiments have shown that our tools previously developed for improving and

analyzing the performance for waking on rough terrain are also applicable to more random

real world noise scenarios like push disturbances. In addition, our simulations also show

that trajectories that have a double support phase are much more robust to pushes as

compared to trajectories with only single support phase. This result is intuitive, but our

tools allow us to quantify such differences in long-term performance. Our tools also allow

us to do sensitivity analyses for different kinds of disturbances. The plots clearly indicate

67

Metastable walking for push disturbances Chapter 5

0.05 0.1 0.15 0.2
Total Probability of Disturbances

1

1.5

2

2.5

3
%

 P
ol

ic
y

ch
an

ge

0.05 0.1 0.15 0.2
Total Probability of Disturbances

10 4

10 5

M
FP

T

Optimal MFPT
True MFPT

0.05 0.1 0.15 0.2
Total Probability of Disturbances

1

1.5

2

2.5

3

%
 P

ol
ic

y
ch

an
ge

0.05 0.1 0.15 0.2
Total Probability of Disturbances

10 4

10 5

M
FP

T

Optimal MFPT
True MFPT

Figure 5.9: Sensitivity of optimal policy (left) and MFPT variability (right) to changes
in probability of disturbances.

that the combined effects of magnitude as well as time of disturbance are significant to

the performance of the system as the same magnitude disturbance accrues a different

penalty if applied at different time. In addition we have also shown that the policy is

quite robust to changes in probability distribution of the disturbances. In other words,

even if the statistics of future disturbances are not well known, the policy derived from

the wrong statistical assumptions will perform nearly as well as the true optimal policy.

In showing that our tools are applicable to random noise scenarios, we have cleared

an important criterion in applying these tools to real world systems. So far we have

68

Metastable walking for push disturbances Chapter 5

focused only on applying our tools to environmental disturbances. Future work will

focus on adapting and improving these tools so that they can cope with changing or

uncertain information about system parameters such as mass distribution and/or sensing

capabilities as well as understanding the contracting nature of the closed-loop dynamics

that allow us to apply our meshing based tools to analyze and improve the performance

of high dimensional systems.

69

Chapter 6

Robustness Quantification of DRL

based Policies for Biped Locomotion

In the last chapter we saw how meshing tools allows us to quantify robustness for high

DOF biped robots. This is due to the fact that the low level controller forces the system

dynamics to expand on a low dimensional manifold. In this chapter, we present a mesh-

based approach to analyze stability and robustness of the policies obtained via deep

reinforcement learning for various biped gaits of a five-link planar model. Intuitively, one

would expect that including perturbations and/or other types of noise during training

would likely result in more robustness of the resulting control policy. However, one

would also like to have a quantitative and computationally-efficient means of evaluating

the degree to which this might be so. Rather than relying on Monte Carlo simulations,

which can become quite computationally burdensome in quantifying performance metrics,

our goal is to provide more sophisticated tools to assess robustness properties of such

policies. Our work is motivated by the twin hypotheses that contraction of dynamics,

when achievable, can simplify the required complexity of a control policy and that control

policies obtained via deep learning may therefore exhibit tendency to contract to lower-

70

Robustness Quantification of DRL based Policies for Biped Locomotion Chapter 6

dimensional manifolds within the full state space, as a result. The tractability of our

mesh-based tools in this work provides some evidence that this may be so.

Model-based trajectory optimization methods, as described in [45, 17], involve the

generation of a trajectory for the system that optimizes a certain cost function, such as

energy minimization. This optimal solution is then used as a reference trajectory for the

actual system through the use of a low level controller. The low level controller enforces

contraction of the system onto a low dimensional manifold; e.g., for the underactuated

dynamics, some subset of directly-controlled degrees of freedom (DOFs) converge rapidly

to desired trajectories, compared to other (passive, slower, but still stable) DOF(s).

This contraction onto lower dimensional manifolds has quite some significance, as it

can correspondingly allow for the avoidance of the classic “curse of dimensionality” in

implementing discrete approximations to analyze the resulting nonlinear dynamics. In

the present work, we hypothesize that such contraction may be likely, if not required, also

to exist for policies that are (somewhat more mysteriously) derived from deep learning

algorithms. Our reasoning is simply that it would be impossible to explore, let alone

identify good control actions across, any non-trivial volume of a moderate or large di-

mensional state space. This implies that any seemingly well-behaved control policy for

such systems displays a “contraction” behavior, in which the policy shepherds the dy-

namics to remain in lower-dimensional regions of state space. In this work, we identify

and exploit such contraction, in turn applying meshing tools to evaluate the performance

of control policies for such systems.

In the previous chapters, we have used model-based trajectory optimizations to cor-

roborate human data studies with model-based energy-optimal gaits [46] and to explore

non-intuitive motions for underactuated rolling locomotion systems [47]. While relation-

ships between the cost function, constraints in the optimization, low level controller, and

the robustness of the obtained policy often have some intuitive characteristics, it is not

71

Robustness Quantification of DRL based Policies for Biped Locomotion Chapter 6

so clear what quantitative effects the choice of reward function has on the robustness of

the obtained policy. With this long-term goal in mind, and with application to quan-

tification of deep learning policies as a particular aim, we analyze locomotion control

polices obtained via deep reinforcement learning and propose the use of meshing tools to

quantify stability and robustness in terms of failure rates.

6.1 5 link Biped Model in MuJoCo

Figure 6.1: The 5-link biped model used in simulations. At left, the planar model in
MuJoCo’s simulation engine, used for our simulations. The stick figure on the right
shows the degrees of freedom of the model on the left.

We use a 5-link planar biped model with point feet as shown in Fig. 6.1 for our

72

Robustness Quantification of DRL based Policies for Biped Locomotion Chapter 6

analyses. All simulations for the results presented in this chapter are done in MuJoCo [48].

The model has a torso, two hips and two knees. Its total mass is 70 (kg), and it stands

1.6 (m) tall when fully upright. Length, mass and inertia parameters, which are chosen

to approximate a typical human, are identical to those listed for “Set 5” within [49].

The model has a total of 4 actuators (2 at hips and 2 at the knees) and 7 degrees of

freedom q := [x, y, q1, q2, q3, q4, q5]
T where [x, y] are the position coordinates of the

topmost point of the torso and [q1, q2, q3, q4, q5] correspond to the five angles shown

in the Fig. 4.1. We ignore rolling friction and set the friction model to oppose sliding

in the tangential plane of two contacting bodies only. We set all the viscous damping

coefficients to zero. All the contacts in the simulation are soft contacts: MuJoCo models

the interaction between two bodies as a soft contact, for efficient computation. We set

the integration method to Runge-Kutta (RK4) with a time step of 0.002 (s). All the

torque inputs are restricted to ± 100 (N·m).

6.2 Control Policy

We use the Proximal Policy Optimization algorithm [23] in the openAI’s baselines

package [25] to train our model and obtain the control policies. The training algorithm

models continuous time action space as a probability density distribution that it learns

for each observation or state of the environment. While training, the algorithm samples

from this distribution and then takes an action for the corresponding observation. During

evaluation of a trained policy, however, instead of sampling from the learned distribution,

we pick the action that has the maximum likelihood. Each control action is held at a

constant value for a total of 4 consecutive time steps during simulation. Thus, even

though the time step for the integration scheme we use is 0.002 (s), the action sampled

for the current observation or the environment state is applied for a total of 0.008 (s). We

73

Robustness Quantification of DRL based Policies for Biped Locomotion Chapter 6

set the maximum training episode length to 4000 time steps, and each state observation

is clipped to a maximum magnitude of 10.

6.3 Meshing

We create our mesh M as explained in Chapter 5 by deterministically mapping the

reachable state space of the system on a Poincaré section for various disturbances, γ,

which for this work are pushes of a variety of magnitudes and timing within the gait

cycle. Because there are no constraints requiring left-right symmetry of the locomotion

policy learned, we perform a Poincaré analysis on a full gait “cycle”, i.e., after two steps

are taken. A Poincaré section is taken when the left foot (an arbitrary choice) makes

an impact with the ground. We denote the post-impact state as s = x+. The mesh

has one self-absorbing state (state #1) to which all failure events transition. In general,

our meshing tools can allow us to calculate the optimal (switching) policy from a set of

controllers, but for the current work, we simply analyze the policies individually obtained

via DRL framework as explained in the section above. Once the left foot impacts the

ground, we compare the post-impact state to previously observed post-impact states

using the following metric:

d(si) = min
sj∈M

√√√√ n∑
k=1

(si(k)− sj(k))2. (6.1)

If d(si) > dtr, where dtr is some distance threshold, the state si is added to the mesh. A

deterministic state transition matrix Tdet(s, ξ, γ) which describes all state transitions is

maintained and updated at every iteration, where ξ is the particular DRL policy being

analyzed. In case of failure, the corresponding transition goes to state #1, indicating

that under the current control policy, the state has transitioned to the absorbing failure

74

Robustness Quantification of DRL based Policies for Biped Locomotion Chapter 6

state in the mesh.

Our disturbance set consists of various pushes γ happening at different times in for-

ward as well as backward directions. Each push occurs at the center of mass (COM) of the

torso link. The disturbance profile is characterized by a certain probability distribution

that we choose, and it is denoted by P (γ).

6.4 Experiments and Results

We perform analyses on two DRL-trained policies, obtained under different training

conditions. The first policy is trained with a reward function that encourages forward

velocity; there are no perturbations, and terrain is flat. At each time step, if the walker

has not fallen, the reward is incremented by the forward velocity at that instant of

time; the reward function also includes a penalty 1e-3 times the norm of the torques.

For the second scenario, we use the same reward function, but we now introduce push

disturbances while training (still on flat terrain). For both cases, we train several policies

and then pick the one that has the maximum reward at the end of the training session

for our analyses. Both cases also have the same coefficient of friction of 0.5 for contact

between the ground and the walker model. For meshing, we ignore the x coordinate of

the top of the torso, because we perform meshing for step-to-step transitions and it does

not matter from what x position the model takes the step. The mesh thus contains 13

dimensional states, of which 12 are independent. (The left foot, but not necessarily the

right one, must by definition be at y = 0 immediately post-impact, adding a constraint

and removing an independent DOF on the Poincaré section.) We explore both cases and

analyze the corresponding policies obtained in the next two subsections.

75

Robustness Quantification of DRL based Policies for Biped Locomotion Chapter 6

6.4.1 Case 1

In this scenario, we train the policy without any external perturbations, for flat ground

walking. The policy with the best reward function, chosen for our analyses, results in a

significantly asymmetric forward motion. As previously mentioned, we consider state-to-

state transitions for a full gait cycle, defined as one complete sequence of right leg and

subsequent left leg contacts with the ground. The states on the Poincaré section then

represent the post impact state of the system each time the left leg makes contact with

the ground. Fig. 6.3 illustrates a typical set of consecutive, post-impact states during

locomotion (again, with no perturbations) for 250 gait cycles.

Figure 6.3 shows a non-uniform mesh of 64 points, achieved by applying our meshing

algorithm to a set of 250 consecutive gait cycles, for the purposes of giving more intuition

both into our meshing an into the lower-dimensional nature of these points. Here, suffi-

ciently close neighbors within the full set of 250 states visited are “lumped together” at

one of 64 total mesh points. Larger markers depict more frequently visited locations. For

this particular figure, we performed a PCA analysis, to generate 3D axes to visualize the

mesh. Here, three principle components account for 94% of the variance of the normal-

ized Poincaré states. At top in Fig. 6.3, states fall near the depicted curvy, 2D surface

within the 3D PCA space. Below this, straight lines show the step-to-step transitions,

with terminal ends shown as thicker, blue segments. The gait has no observable limit

cycle, yet it appears to be both stable (never-falling) – and chaotic.

As Figure 6.3 illustrates, applying the closed-loop DRL control policy to flat-ground

walking with no noise inputs does not result in any discernable (period-n) limit cycle

but instead exhibits chaotic behavior. Based on our numeric methods for mapping the

reachable state space, post-impact states are bounded and seem to contract onto a lower-

dimensional and bounded region of the full state space.

76

Robustness Quantification of DRL based Policies for Biped Locomotion Chapter 6

0 50 100 150 200 250

steps

-1.5

-1

-0.5

0

0.5

1

1.5

P
o

s
it
io

n
 (

ra
d

)

0 50 100 150 200 250

steps

-50

-40

-30

-20

-10

0

10

20

V
e

lo
c
it
y
 (

ra
d

/s
e

c
)

Figure 6.2: Plot of the post impact states on the Poincaré section for policy trained in
case 1. The top figure plots the positions and the bottom figure plots the velocities.

To examine the robustness of the given policy to push disturbances, we proceed by

calculating a mesh. From simulations, we find the complete two-step gait cycle takes

about 0.5 (s). Based on this, for building the mesh, we define a threshold of 0.3 (s) after

77

Robustness Quantification of DRL based Policies for Biped Locomotion Chapter 6

Figure 6.3: A principal component analysis (PCA) is used to visualize post-impact
states visited for DRL-trained flat-ground locomotion, subject to no disturbances. See
text for a detailed explanation.

which any post impact (for the left foot) state of the system, si, is added to the mesh

if d(si) > dtr, as described in the section above. Unless otherwise mentioned, all the

meshing analyses presented here have been done for the threshold value of dtr = 0.6. All

push disturbances happen at the COM of the torso.

78

Robustness Quantification of DRL based Policies for Biped Locomotion Chapter 6

For illustrative purposes within Case 1, just four possible disturbance pushes are

considered: a push of either +1000 (N) or −1000 (N) is applied at the COM of the torso

for a duration of 0.008 (s), starting at either 0.1 or 0.25 (s) into the gait cycle.

The disturbance profile for the current mesh is as given in Table 6.1.

Disturbance 2 3 4 5
time (s) 0.1 0.25 0.1 0.25

magnitude (N) 1000 1000 -1000 -1000

Table 6.1: Disturbance Profile

Along with these 4 disturbances, we also consider a no-push disturbance, i.e., a push

with 0 magnitude. The probability distribution for these disturbances is given by

P (γ) =


0.4, if no disturbance

0.6/4, else.

(6.2)

For the given policy and disturbance profile, we obtain a mesh with 28,757 states when

dtr = 0.6. The mean first passage time for the system for the given probability distribu-

tion comes out to only about 32 steps. Once the mesh is generated, our tools allow us

to efficiently calculate the MFPT for any given probability distribution. For example, if

we reduce the probability of a disturbance so that

P (γ) =


0.8, if no disturbance

0.2/4, else,

(6.3)

the MFPT increases to approximately 117 steps. This is intuitive as the probability of no

push went up and since the total probability distribution has to sum to 1, the probability

of the disturbance occurring went down. We also calculate a mesh for other values of dtr,

79

Robustness Quantification of DRL based Policies for Biped Locomotion Chapter 6

to analyze how varying this threshold distance changes the number of states in the mesh.

If the mesh points occupy an n-dimensional subspace within the full state space, then

the number of mesh points, N , required to span this subspace should grow as N ∝ d−ntr ,

meaning a loglog plot of dtr vs N would have slope −n. (See [50] for details.)

dtr 0.6 0.7 0.8
N (# of mesh points) 28,757 14,891 8,517

Table 6.2: N versus dtr, showing n ≈ 4.23 for Case 1.

Table 6.2 shows this variation. A line fitting x = log(dtr) vs y = log(N) for these

data has slope −4.2, showing that as we mesh more finely, the size of the mesh grows

with dimensionality n ≈ 4.23. Intuitively, the dimensionality of reachable state space will

depend on both the sparsity of the perturbation set (recall we only include 4 non-zero

perturbations here) as well as the contracting nature of the control policy. Rather than

focusing on a more dense set of perturbations for Case 1, we instead focus on comparing

the effects of adding perturbations during training (in Case 2). Note that although a

coarse mesh is naturally less accurate than the fine mesh, it is still useful for getting a

good idea of the trends that would occur with the finer mesh. A finer mesh is required

for giving accurate guarantees on the performance, however, if only a general idea of the

trend is needed then the trade off in the accuracy might be desirable. Currently the

most time consuming part of our meshing tools is generating the mesh. Once the mesh is

generated for the parameters of interest, all other steps in the analyses are significantly

faster.

Figure 6.4 illustrates the distribution of mesh points for Case 1, using states with the

greatest variance within the mesh (q̇4, q̇5, and q̇1) as three representative axes. Recall that

even without added perturbations, the control policy results in a chaotic set of reachable

states; these points fall within the blue region. The red points show states visited due to

perturbations and from which failures are nearly certain. The step-to-step mixing effects

80

Robustness Quantification of DRL based Policies for Biped Locomotion Chapter 6

Figure 6.4: A 3D section of the full 13D Poincaré mesh states for Case 1. Subplots
show two viewpoints of the same data. “Dangerous” states, with greater than 99%
probability of failure on the next step, are circled in red.

of the perturbations push the system into the red regions shown, from which failures are

nearly certain.

81

Robustness Quantification of DRL based Policies for Biped Locomotion Chapter 6

6.4.2 Case 2

In this scenario, we include push disturbances during the training, again using a

reward function that primarily encourages forward motion, with a small penalty on energy

use. Every 0.008 (s) interval during training, there is a 5 percent chance that the model

will receive a push for the next 0.008 (s), with a 50/50 chance in either the forward

or the back ward direction. We introduce pushes only at the COM of torso, and the

magnitudes of the push are restricted to ±1000 (N). As in Case 1, the policy with the

maximum reward that we obtain for this new scenario also results in an asymmetric gait,

now with a slower average gait cycle time of approximately 0.5 (s). We pick a threshold

time of 0.45 (s) after which any post impact state (for left foot) with the ground is

considered for meshing. To examine the effects of introducing disturbances during the

training, we generate a mesh for the same disturbance profile (4 possible pushes, plus

one no-push case) used in Case 1; for dtr = 0.6, this leads to a mesh of 857 states.

For the probability distribution given in Eq. 5.23, the MFPT for the system now comes

out to about 10,467 steps, as compared with 32 steps for Case 1. An improvement in

performance is an intuitively expected result, but our focus is on illustrating that our

meshing tools allow us to quantify the improvement in robustness. We also generate the

mesh for different dtr values, shown in Table 6.3. All these meshes are also generated for

disturbance profile shown in Table 6.1

dtr 0.5 0.6 0.7
N (# of mesh points) 1705 857 574

Table 6.3: N versus dtr, showing n ≈ 3.25 for Case 2.

To analyze a more interesting disturbance profile and to check how the policy performs

for magnitudes beyond the ones used for training, we generate a more complex mesh

involving more varied disturbances, as shown in Fig. 6.5 As with the previous mesh, in

82

Robustness Quantification of DRL based Policies for Biped Locomotion Chapter 6

0 0.05 0.1 0.15 0.2 0.25 0.3

time (s)

-1500

-1000

-500

0

500

1000

1500
M

a
g
n
it
u
d
e
 (

N
)

2 3

4 5

6 7

8 9

10 11

12 13

14 15

16 17

18 19

20 21

Figure 6.5: Disturbance profile for 20 push types. The dotted red line indicates the
half gait cycle where the right leg makes contact with the ground

addition to the 20 disturbances shown, we also include a no push scenario. This mesh has

a total of 20,660 states which is significantly higher than the previous mesh but because

we explored the mesh for more disturbances, it also allows us to do much more interesting

analyses. For example, if we set the probability distribution of the disturbances such that

there is 0.6 probability (60% chance) of no push and 20% chance for disturbance 6 and

disturbance 7 each, then we get a MFPT of infinity indicating that the walker will always

recover under such disturbances. Similarly, if we set the probability disturbance such that

probability of no push is 0.6, and probability of disturbance 8 and 9 is 0.2 each, then

we get a MFPT of infinity as well. But, if we set the distribution such that probability

of no push is 0.6 and the probability of disturbance 6, 7, 8 and 9 is 0.1 each, we get an

MFPT of 32,260 showing that the mixing effects of disturbance 6, 7 and disturbance 8,

9 all combined over time will now create occasional failures, reducing the MFPT of the

system significantly. Disturbances 6 and 7 correspond to pushes in the forward direction

of magnitude 600 (N) and disturbance 8 and 9 correspond to the backward pushes of the

same magnitude. We can also study the relative sensitivity of particular disturbances in

83

Robustness Quantification of DRL based Policies for Biped Locomotion Chapter 6

the profile. For this we take an example distribution given by:

P (γ) =


0.4, no disturbance

0.5, disturbance of interest

0.1/19, else.

(6.4)

A plot showing the corresponding performance of the DRL policy for Case 2 is shown

in Fig. 6.6. This is an interesting plot because it shows the coupled effect of direction

and time of impact of the disturbance matters significantly. For example, we see that

some disturbances of higher magnitude have a better MFPT than some disturbances of

lower magnitude because they happen at different time instances.

0 5 10 15 20

disturbance of interest

10
1

10
2

10
3

10
4

M
F

P
T

100 Steps 1000 Steps

Figure 6.6: MFPT variations as one disturbance of interest becomes more likely. The
MFPT is shown on log scale to make the plot more readable.

Figures 6.7 and 6.8 show subsets of the full mesh corresponding to the reachable state

space when each of two different subsets of the disturbance profiles shown in Fig. 5.2 are

allowed. For Fig. 6.7, we exclude any pushes occurring before 0.1 seconds in the gait

cycle; i.e., profiles 14, 16, 18 and 20 are excluded. For Fig. 6.8, all 20 push disturbances

84

Robustness Quantification of DRL based Policies for Biped Locomotion Chapter 6

are included. For both figures, we assume a 2% chance of a push during each gait cycle,

with the push type drawn with uniform probability from the allowable subset of pushes.

In Fig. 6.7, both subplots show the mesh points visited for this noise case, with darker

points representing much more frequently-visited states. At right, magenta “+” symbols

are overlaid to show a set of 250 consecutive states visited (chaotically) when there is

no noise during post-training testing of the policy. The MFPT predicted by the mesh

is about 958,000 gait cycles. Once all 20 pushes are allowed (Fig. 6.8), this drops to a

MFPT of only about 4,900 gait cycles. In this latter case, we can see that the system now

visits a significant number of “unsafe” states (shown in red) that department significantly

from the chaotic variability of locomotion when there is no noise.

6.5 Dimensionality analysis

One important result we would like to analyze is the correlation between robustness

and dimensionality. The model that we analyze in this chapter has a 14 dimensional

state space. We do our meshing analysis by completely exploring the reachable state

space of the system. Ideally, it should be infeasible to explore the reachable state space

of a 14 dimensional system. But as we have seen in the previous chapter, the low level

controller forces the states to expand on a much lower dimensional manifold than the

entire state space. This makes it possible for us to apply our meshing approach to higher

dimensional systems. Even for deep reinforcement learning control policies where we

do not see an obvious limit cycle behavior on the Poincaré section, the policies still

force the system dynamics to expand on a lower dimensional manifold. Fig.6.9 shows the

dimensionality for policies trained with and without noise. We see that the dimensionality

for policy trained without noise is 4.23 and for the policy trained with noise is 3.25 which

is significantly less than 14. This is significant but another important thing to note

85

Robustness Quantification of DRL based Policies for Biped Locomotion Chapter 6

Figure 6.7: A 3D slice of the full 13D Poincaré states generated to mesh the policy
trained in Case 2, when all but disturbance profiles 14, 16, 18 and 20 are included,
i.e., excluding pushes occurring before 0.1 seconds.

here is the reduced dimensionality of the policy trained with disturbance because we

know that this policy is much more robust to disturbances. We saw similar trend in the

last chapter where the dimensionality for double support phase trajectories is slightly

lesser than that for the single support phase. This suggests that there is indeed a strong

correlation between the dimensionality and robustness of the system. More experiments

86

Robustness Quantification of DRL based Policies for Biped Locomotion Chapter 6

Figure 6.8: A 3D slice of the full 13D Poincaré states generated to mesh the policy
trained in Case 2, when all 20 timing and magnitude combinations shown in Fig. 5.2
are included. As in Fig. 6.4, the subplot at right highlights states from which imme-
diate failure has probability greater that 99%.

are definitely needed to analyze the exact nature of this relationship and the existence

of such a correlation can be useful in further quantifying and improving the performance

of the system

87

Robustness Quantification of DRL based Policies for Biped Locomotion Chapter 6

Figure 6.9: Dimensionality of policies trained with deep reinforcement learning with
no noise (top) and with noise (bottom)

88

Robustness Quantification of DRL based Policies for Biped Locomotion Chapter 6

6.6 Conclusion

We have demonstrated the effectiveness of our meshing tools in analyses of the polices

created via deep reinforcement learning. To quantify the robustness of these policies, we

create meshes for different disturbance combinations that can happen at various times in

the gait cycle and then set transitions among mesh points based on particular assumed

probability distributions of the disturbances. The policy trained for only forward mo-

tion is significantly less robust to perturbations as compared to the policy trained with

impacts, which is intuitive but our tools gave us an estimate on the actual performance

improvement. Such an estimate is important if we want to improve the performance

of training by changing various parameters that can affect the outcome of the trained

policy. In addition, by performing the analyses on various probability distributions we

show that our tools also allow us to plot performance trends which can help us to under-

stand the effect each individual disturbance in the disturbance profile has on the overall

performance of the policy. We also show how the mixing effects of these disturbances

can have significant effect on robustness.

In showing the applicability of our meshing tools to analyze the policies obtained

via deep reinforcement learning, we have also created an indirect feedback loop that

can be used to improve the performance of the policies by tuning various elements of

the training framework. A future goal is to integrate this feedback loop within the

training framework. We also plan to explore how increasing the number of discrete

perturbation types affects mesh size. Although we consider toy sets of perturbations

here, for illustrative purposes, practical use of these tools should cope with denser sets of

perturbations. Finally, another important goal is to explore how various reward functions

and/or disturbances during training may increase the degree to which a DRL policy

contracts the dynamics; reducing the dimensionality of the state space visited would

89

Robustness Quantification of DRL based Policies for Biped Locomotion Chapter 6

increase the practicality of meshing. We show some initial success in this by reducing

dimensionality from n = 4.23 to n = 3.25 when training includes pushes. Future work is

planned to investigate if this a repeatable trend and whether more extreme perturbations

during training can further improve contraction.

90

Chapter 7

Conclusion and Future Work

Legged locomotion has been a long standing area of research in robotics. While significant

strides have been made in humanoid locomotion over the past years, there are still a lot

of challenges before legged robots become viable in everyday life. In this thesis we

try to overcome some of these challenges by using optimization and deep reinforcement

learning for generating motion for a 5 link planar biped model and using meshing tools to

quantify the robustness of these policies. We also study the effects of system parameters

and control policies on the energy efficiency on robustness of the system.

In Chapter 3 our simulations show an increased impact of adding mass distally, near

the ankle and foot. Interestingly our data also show a surprisingly low burden associated

with a location just above the knee. These findings deserve further study and may

significantly influence design of future exoskeletons, particularly when power must be

carried on board. Our studies have been designed to expand and refine the augmentation

factor equation such that future revisions to the equation building upon this work should

enable designers to quantitatively balance the power and mass of an exoskeleton more

effectively. This understanding will allow exoskeleton designers to optimize performance

more effectively, minimizing the arduous prototype and test cycle and making the design

91

Conclusion and Future Work Chapter 7

and construction of exoskeletons more efficient.

In Chapter 4 we demonstrate that although optimizing for energy alone and then

stabilizing the trajectories can work, there is a need for a more cohesive framework

that takes into account both energy as well as stability of the system for optimization

simultaneously. We also see that different physical parameters have varying effects on

stability and energy and more comprehensive frameworks that take this into account are

needed. To understand the underlying nature of tradeoff between all these parameters,

we present simulation data for 5 different sets of parameters. From our experiments, we

found that the mass distribution closest to that of a human being (set 5) is the most

energy efficient but not the most robust. The most robust is mass set 2. These phenomena

may in part be a result of other factors, such as choice of feedback control structure and

certainly warrant further study. To explore trade-offs, we presented COT vs rate of

convergence in Figure 4.12, which illustrates a Pareto frontier, formed essentially by sets

2, 3, and 5, while sets 1 and 4 provide poor trade-off characteristics by comparison.

In chapter 5 we use our meshing tools for improving and analyzing the performance

for walking on rough terrain to improve the performance of the biped walker in the pres-

ence of more random real world noise scenarios like push disturbances. To demonstrate

the effectiveness of our tools, we perform experiments on single support phase and dou-

ble support phase trajectories. Intuitively, DS trajectories woulbe be more robust than

SS trajectories in the presence of disturbance, but our tools allow us to quantify this

performance gain which is very important as a metric. Our tools also allow us to do

sensitivity analyses for different kinds of disturbances. Our plots show that disturbances

with similar magnitude have different effects on the system when applied at different

time intervals indicating that the combined effects of these factors are significant. Our

sensitivity analyses also show that our policy is quite robust to changes in the proba-

bility distribution of the disturbance. Our experiments show that we can effectively use

92

Conclusion and Future Work Chapter 7

our meshing tools to analyze robustness of biped systems in the presence of real world

disturbances.

In Chapter 6, we further demonstrate the effectiveness of our meshing tools in analyses

of the polices created via deep reinforcement learning. To analyze the robustness, we

build a mesh from the states on the Poincaré section in the presence of several push

disturbances. Our experiments show that the policy trained without disturbance is not as

robust compared to the one trained with disturbances. This is expected but the important

point is that our tools allow us to quantify this improvement. Such quantification is

important if we want to build better control techniques and tools. Our tools also allow

us to study individual effects of a specific disturbance on the performance of the system

as well as the combined effect effect of a group of disturbances. This is because once the

mesh is completely constructed, we can change the probability of disturbances to analyze

particular trends. Our experiments demonstrate the versatility and effectiveness of our

tools in analysing deep reinforcement learning control policies and provide an insight into

how such policies can be analyzed.

We have studied the effect of system parameters on energy and stability of the biped

system. One of our future goal is to build a more comprehensive framework that will take

into account all these parameters for motion planning. An important step in this direction

was demonstrating the effectiveness of our meshing tools. In showing the applicability

of our meshing tools to analyze the control policies in the presence of random real world

disturbances, we have also created an indirect feedback loop that can be used to improve

the performance of the policies by tuning various elements of the control framework.

Our future goal is to integrate this feedback loop within the optimization or the training

framework. We also plan to explore how increasing the number of discrete perturbation

types affects mesh size. Although we consider toy sets of perturbations in this thesis,

for illustrative purposes, practical use of these tools should cope with denser sets of

93

Conclusion and Future Work Chapter 7

perturbations.

So far we have only focused on applying our tools to environmental disturbances.

Future work will also focus on adapting and improving these tools so that they can

cope with changing or uncertain information about system parameters such as mass

distribution and/or sensing capabilities as well as understanding the contracting nature

of the closed loop dynamics that allow us to apply our meshing based tools to analyze

and improve the performance of high dimensional systems.

Finally, another important goal is to explore how various reward functions or cost

functions and/or disturbances during training and optimization may increase the degree

to which a control policy contracts the dynamics; reducing the dimensionality of the

state space visited would increase the practicality of meshing. We show some initial

success in this in our DRL policies by reducing dimensionality from n = 4.23 to n = 3.25

when training includes pushes. Future work is planned to investigate if this a repeatable

trend and how strongly correlated is the connection between contraction onto a lower

dimensional manifold and stability.

94

Appendix A

Biped Model

The methods described in this thesis are applicable to a wide variety of systems but in

order to demonstrate their effectiveness we perform experiments on the 5 link planar

biped model as shown in Fig. 4.1. As the model is planar, locomotion is constrained

to the sagittal plane. Our model largely remains same across the experiments that we

perform with certain modifications. In Chapter 3 we use a 7 link model which was

obtained by adding curved feet to the 5 link model. It is important to note that even

though the feet are curved, the contact is a point and the model is underactuated. In

Chapter 5 we use the 5 link model with 7-DOF as we allow for more complicated motions

such as sliding and slipping. This increases the dimensionality of the state space from

10 to 14. In Chapter 6 we use a 5 link model in MuJoCo which is similar to our 5 link

model created in matlab. The mathematical model is given by 5.1. All our experiments

are performed on flat terrain and we use an inelastic collision model to calculate the post

impact states for the biped after the swing leg impacts the ground. Specifically, we use

95

Biped Model Chapter A

Eq. A.1 to calculate the post impact states.

 D(q−) −E2(q
−)

′

E2(q
−)

′
02×2


q̇+
F2

 =

D(q−)q̇+

02×1

 (A.1)

Here, E2(q) = ∂
∂q
p2(q) where p2(q) is the tip of the swing foot with respect to the inertial

frame of reference. F2 is the force applied at the tip of the swing foot. This process is

explained in detail in [43].

Paramater Label Value

Torso mass MT 50 (kg)

Femur mass Mf 7 (kg)

Tibia mass Mt 3 (kg)

Torso length lT 0.77 (m)

Femur length lf 0.4 (m)

Tibia length lt 0.43 (m)

Torso inertia IT 2.595 (kg.m2)

Femur inertia If 0.097 (kg.m2)

Tibia inertia It 0.0481 (kg.m2)

Torso radius rT 0.1 (m)

Femur radius rf 0.05 (m)

Tibia radius rt 0.05 (m)

Acceleration due to gravity g 9.8 (m/s2)

Table A.1: Length and COM parameters used in simulation experiments

Unless otherwise mentioned, table A.1 lists the parameters for the model we use in our

experiments. We calculate the moment of inertia for the links by assuming the geometry

96

Biped Model Chapter A

of a cylinder. For our actuators, we have 2 motors at the hips and 2 at the knees. For

our experiments, we ignore the damping effects at the joints. For friction, we assume a

coefficient of friction µ to be 0.5. We only assume sliding friction and ignore the rolling

friction in our simulations.

97

Appendix B

Direct transcription Methods

We have discussed our optimization approach in detail in Chapter 2. Here, we pro-

vide more specific details regarding the implementation of the actual techniques. As

mentioned in Chpater 2 we use CasADi [31] to implement our direct transcription opti-

mization techniques as it allows us to calculate accurate gradients very efficiently using

algorithmic differentiation. CasADi allows for a variety of optimization solvers to be

integrated with it. Our choice of solver for our experiments was IPOPT [33] as it gave

us the best rate of convergence and repeatability for the solution. CasADi is a library

that can be integrated with matlab, python, C++ etc. We use the matlab library as all

our simulations and analyses are performed in matlab. IPOPT calculates the required

hessian for the problem using a recursive BFGS update.

Table B.1 shows the lower and upper bounds on the variables used in optimization

experiments performed in Chapter 4. The open variables for the optimization in this case

are the 10 state variables and the 4 input variables. These bounds are imposed on the

variables at each knot point on the trajectory. The total time of the trajectory is 0.6 (s)

and we chose the integration time step to be 0.01 (s) which gives us 60 knot points along

the entire trajectory. Table B.2 lists the size of the optimization problem in terms of

98

Direct transcription Methods Chapter B

Paramater Label Lower Bound Upper Bound

Torso angle q5 -0.78 (rad) 0.78 (rad)

Stance Femur angle q1 3.14 (rad) 4.71 (rad)

Stance Tibia angle q3 -0.35 (rad) 0 (rad)

Swing Femur angle q2 1.57 (rad) 3.14 (rad)

Swing Tibia angle q4 -0.35 (rad) 0 (rad)

Torso angular velocity q̇5 -12.56 (rad/s2) 12.56 (rad/s2)

Stance Femur angular velocity q̇1 -12.56 (rad/s2) 12.56 (rad/s2)

Stance Tibia angular velocity q̇3 -12.56 (rad/s2) 12.56 (rad/s2)

Swing Femur angular velocity q̇2 -12.56 (rad/s2) 12.56 (rad/s2)

Swing Tibia angular velocity q̇4 -12.56 (rad/s2) 12.56 (rad/s2)

Input Torques u1 − u4 -100 (N.m) 100 (N.m)

Table B.1: Lower and Upper bounds on variables for optimization performed in Chap-
ter 4 for a stride length of 0.6m

various statistics. We see that the total number of variables is 855 and the total equality

constraints are 613 which are less than the variables. This is a required condition for the

optimization problem to be well defined.

The main difference between the optimization in Chapter 4 and Chapter 5 is that the

state dimension increases from 10 to 14 as we allow for more complicated motion such

as sliding and slipping. This increases the size of our optimization problem. Moreover,

because we allow for slipping and sliding, we also leave the forces at the contact point

as open variables. This is because it is easier to put bounds on the variables than add

them as constraints. To make the motion physically consistent, we add constraints on

the forces such that at the point of contact the force in the y direction is always positive

99

Direct transcription Methods Chapter B

Paramater Value

Total No. of variables 855

Variables with only lower bound 0

Variables with only upper bound 0

Variables with upper and lower bound 854

Equality constraints 613

Inequality constraints 366

Inequality constraints with only lower bound 306

Inequality constraints with only upper bound 0

Inequality constraints with lower and upper bound 60

Nonzero elements in equality constraint Jacobian 8477

Nonzero elements in inequality constraint Jacobian 1943

Nonzero elements in Lagrangian Hessian 6777

Table B.2: Problem statistics for optimization experiments in Chapter 4

and the force in the x direction is such that it satisfies the no slip condition. The no slip

condition is enforced in our optimization using the Eq. B.1

µFy + Fx > 0

µFy − Fx > 0

(B.1)

Also, it is important to note that, when imposing the conditions given by Eq. B.1, we

chose the value of µ to be much smaller than the actual value. This is to account for

deviation that occurs while implementing the optimal trajectory on the system using a

low level controller. Due to these additional variables and constraints, the size of our

optimization problem increases as is evident from Tables B.3 and B.4. Our total number

100

Direct transcription Methods Chapter B

of variables is now 1245 which is much more than 855. This added complexity increases

the computation time required but it has little effect on the convergence of the solver.

Paramater Label Lower Bound Upper Bound

Torso angle q5 -0.3 (rad) 0.3 (rad)

Stance Femur angle q1 1.05 (rad) 5.76 (rad)

Stance Tibia angle q3 -0.78 (rad) 0.05 (rad)

Swing Femur angle q2 1.05 (rad) 5.76 (rad)

Swing Tibia angle q4 -0.35 (rad) 0.05 (rad)

Stance foot tip x-location xe 0 (m) 0 (m)

Stance foot tip y-location ye 0 (m) 0 (m)

Torso angular velocity q̇5 -18.85 (rad/s2) 18.85 (rad/s2)

Stance Femur angular velocity q̇1 -18.85 (rad/s2) 18.85 (rad/s2)

Stance Tibia angular velocity q̇3 -18.85 (rad/s2) 18.85 (rad/s2)

Swing Femur angular velocity q̇2 -18.85 (rad/s2) 18.85 (rad/s2)

Swing Tibia angular velocity q̇4 -18.85 (rad/s2) 18.85 (rad/s2)

Stance foot tip x-velocity xe 0 (m/2) 0 (m/2)

Stance foot tip y-velocity ye 0 (m/2) 0 (m/2)

Force along x-axis at the contact Fx -∞ (N) ∞ (N)

Force along the y-axis at the contact Fy 200 (N) 5000 (N)

Input Torques u1 − u4 -200 (N.m) 200 (N.m)

Table B.3: Lower and Upper bounds on variables for optimization performed in Chap-
ter 5 for a stride length of 0.6m

Additionally, even though we allow for the model to slip and slide, for the purpose of

optimization, we generate the motion using no slip condition at the stance leg. This is

101

Direct transcription Methods Chapter B

Paramater Value

Total No. of variables 1245

Variables with only lower bound 0

Variables with only upper bound 0

Variables with upper and lower bound 927

Equality constraints 1107

Inequality constraints 473

Inequality constraints with only lower bound 393

Inequality constraints with only upper bound 0

Inequality constraints with lower and upper bound 80

Nonzero elements in equality constraint Jacobian 14393

Nonzero elements in inequality constraint Jacobian 1943

Nonzero elements in Lagrangian Hessian 9666

Table B.4: Problem statistics for optimization experiments in Chapter 5

evident by the bounds shown in Table B.3 where we bound the x and y velocity of the

tip of the stance foot to 0.

102

Appendix C

Deep Reinforcement Learning for 5

Link Planar Biped Model

For our experiments in this thesis, we use the openai baselines package [25] to train the

5 link planar biped model for locomotion on flat terrain. The model constructed for

the training is created in a physics simulator called MuJoCo [48] which has become one

of the most popular platforms to use for deep reinforcement learning due to its speed.

Specifically we use the Proximal Policy Optimization (PPO2) [23] algorithm to generate

the policies. The policy takes in observations from the environment and generates actions

based on these that try to maximize the reward that the policy has been trained for. The

reward in this case is the forward velocity i.e the policy has been trained to make the

model locomote as fast as possible in the x-direction. The observation for our policy is

a 13 dimensional state vector of the system where we ignore the x position of the model

as the current x position of the model should have no effect on the actions generated

if the policy is trying to maximize the speed in the x-direction. The time step for our

simulation model is 0.002 (s). For the purposes of training, we hold the actions generated

for a particular observation for a total of 4 time steps. So during training, any action

103

that is generated by the policy is applied to the model for 0.008 (s) after which a new

action set is generated based on the observation at that instant of time. Table C.1 gives

the hyperparameters used in the training.

Hyperparameter Value
Horizon 2048

Num. Environments 6
Adam step size 3 × 10−4

Num. epochs 4
Minibatch Size 3072

Discount Factor (γ) 0.99
GAE parameter (λ) 0.95

Table C.1: Hyperparameters used for training of the 5 link planar Walker in MuJoCo.

104

Bibliography

[1] Wikimedia Commons, File:asimo 4.28.11.jpg, 2011. [Online]
https://commons.wikimedia.org/wiki/File:ASIMO_4.28.11.jpg.

[2] Wikimedia Commons, File:9 pic.png, 2018. [Online]
https://commons.wikimedia.org/wiki/File:9_pic.png.

[3] Wikimedia Commons, File:fractaldimensionexample.png, 2017. [Online]
https://commons.wikimedia.org/w/index.php?title=File:

Fractaldimensionexample.PNG&oldid=247697185.

[4] S. Collins, A. Ruina, R. Tedrake, and M. Wisse, Efficient bipedal robots based on
passive-dynamic walkers, Science 307 (2005), no. 5712 1082–1085.

[5] O. Von Stryk and R. Bulirsch, Direct and indirect methods for trajectory
optimization, Annals of Operations Research 37 (1992), no. 1 357–373.

[6] M. Hardt, K. Kreutz-Delgado, and J. W. Helton, Optimal biped walking with a
complete dynamical model, in Proc. IEEE Conference on Decision and Control
(CDC), vol. 3, pp. 2999–3004, 1999.

[7] C. Paul and J. C. Bongard, The road less travelled: Morphology in the optimization
of biped robot locomotion, in Proc. IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), vol. 1, pp. 226–232, 2001.

[8] E. Westervelt and J. Grizzle, Design of asymptotically stable walking for a 5-link
planar biped walker via optimization, in Proc. IEEE International Conference on
Robotics and Automation (ICRA), vol. 3, pp. 3117–3122, 2002.

[9] D. Djoudi, C. Chevallereau, and Y. Aoustin, Optimal reference motions for walking
of a biped robot, in Proc. IEEE Int. Conf. on Robotics and Automation (ICRA),
pp. 2002–2007, 2005.

[10] H. Dai and R. Tedrake, Optimizing robust limit cycles for legged locomotion on
unknown terrain, in Proc. IEEE Conference on Decision and Control (CDC),
pp. 1207–1213, 2012.

105

https://commons.wikimedia.org/wiki/File:ASIMO_4.28.11.jpg
https://commons.wikimedia.org/wiki/File:9_pic.png
https://commons.wikimedia.org/w/index.php?title=File:Fractaldimensionexample.PNG&oldid=247697185
https://commons.wikimedia.org/w/index.php?title=File:Fractaldimensionexample.PNG&oldid=247697185

[11] S. Kuindersma, F. Permenter, and R. Tedrake, An efficiently solvable quadratic
program for stabilizing dynamic locomotion, in Proc. IEEE Int. Conf. on Robotics
and Auto. (ICRA), pp. 2589–2594, IEEE, 2014.

[12] A. Majumdar and R. Tedrake, Funnel libraries for real-time robust feedback motion
planning, The International Journal of Robotics Research 36 (2017), no. 8 947–982.

[13] Q. Nguyen, A. Agrawal, X. Da, W. C. Martin, H. Geyer, J. W. Grizzle, and
K. Sreenath, Dynamic walking on randomly-varying discrete terrain with one-step
preview, in Robotics: Science and Systems, 2017.

[14] K. Byl and R. Tedrake, Metastable walking machines, I. J. Robotics Res. 28 (2009)
1040–1064.

[15] C. O. Saglam and K. Byl, Quantifying the trade-offs between stability versus energy
use for underactuated biped walking, in Proc. IEEE/RSJ Int. Conf. on Intell.
Robots and Systems (IROS), pp. 2550–2557, 2014.

[16] K. A. Hamed, B. G. Buss, and J. W. Grizzle, Exponentially stabilizing
continuous-time controllers for periodic orbits of hybrid systems: Application to
bipedal locomotion with ground height variations, The Int. J. of Robotics Research
(IJRR) 35 (2016), no. 8 977–999.

[17] A. Hereid, E. A. Cousineau, C. M. Hubicki, and A. D. Ames, 3D dynamic walking
with underactuated humanoid robots: A direct collocation framework for optimizing
hybrid zero dynamics, in Proc. IEEE International Conference on Robotics and
Automation (ICRA), pp. 1447–1454, 2016.

[18] W. Xi, Y. Yesilevskiy, and C. D. Remy, Selecting gaits for economical locomotion
of legged robots, The International Journal of Robotics Research (IJRR) 35 (2016),
no. 9 1140–1154.

[19] S. Sovero, N. Talele, C. Smith, N. Cox, T. Swift, and K. Byl, Initial data and
theory for a high specific-power ankle exoskeleton device, in Proc. Int. Symp. on
Experimental Robotics (ISER), pp. 355–364, 2016.

[20] G. Bellegarda, N. Talele, and K. Byl, Exploring nonintuitive optima for dynamic
locomotion, 2017 (submitted).

[21] N. Heess, D. TB, S. Sriram, J. Lemmon, J. Merel, G. Wayne, Y. Tassa, T. Erez,
Z. Wang, S. M. A. Eslami, M. Riedmiller, and D. Silver, Emergence of locomotion
behaviours in rich environments, 2017.

[22] J. Schulman, S. Levine, P. Moritz, M. I. Jordan, and P. Abbeel, Trust region policy
optimization, 2015.

106

[23] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, Proximal policy
optimization algorithms, 2017.

[24] J. Merel, Y. Tassa, D. TB, S. Srinivasan, J. Lemmon, Z. Wang, G. Wayne, and
N. Heess, Learning human behaviors from motion capture by adversarial imitation,
2017.

[25] P. Dhariwal, C. Hesse, O. Klimov, A. Nichol, M. Plappert, A. Radford,
J. Schulman, S. Sidor, Y. Wu, and P. Zhokhov, “Openai baselines.”
https://github.com/openai/baselines, 2017.

[26] X. Da and J. Grizzle, Combining trajectory optimization, supervised machine
learning, and model structure for mitigating the curse of dimensionality in the
control of bipedal robots, 2017.

[27] G. Bellegarda and K. Byl, Combining benefits from trajectory optimization and
deep reinforcement learning, 2019.

[28] J. T. Betts, Practical Methods for Optimal Control and Estimation Using Nonlinear
Programming. Society for Industrial and Applied Mathematics, second ed., 2010.

[29] J. Nocedal and S. Wright, Numerical optimization. Springer Science & Business
Media, 2006.

[30] M. Srinivasan, Why walk and run: energetic costs and energetic optimality in
simple mechanics-based models of a bipedal animal. Cornell University Ithaca, NY,
2006.

[31] J. A. E. Andersson, J. Gillis, G. Horn, J. B. Rawlings, and M. Diehl, CasADi – A
software framework for nonlinear optimization and optimal control, Math.
Programming Computation (In Press, 2018).

[32] A. Wächter and L. T. Biegler, On the implementation of an interior-point filter
line-search algorithm for large-scale nonlinear programming, Mathematical
programming 106 (2006), no. 1 25–57.

[33] L. T. Biegler and V. M. Zavala, Large-scale nonlinear programming using ipopt:
An integrating framework for enterprise-wide dynamic optimization, Computers &
Chemical Engineering 33 (2009), no. 3 575–582.

[34] H. Mittleman, Decision tree for optimization software, 2017. (Benchmarking for
SQP, and other optimization problems).

[35] M. Wehner, B. Quinlivan, P. M. Aubin, E. Martinez-Villalpando, M. Baumann,
L. Stirling, K. Holt, R. Wood, and C. Walsh, A lightweight soft exosuit for gait
assistance, in 2013 IEEE international conference on robotics and automation,
pp. 3362–3369, IEEE, 2013.

107

https://github.com/openai/baselines

[36] L. M. Mooney, E. J. Rouse, and H. M. Herr, Autonomous exoskeleton reduces
metabolic cost of human walking during load carriage, Journal of neuroengineering
and rehabilitation 11 (2014), no. 1 1–11.

[37] A. Tözeren, Human body dynamics: classical mechanics and human movement.
Springer Science & Business Media, 1999.

[38] D. J. Farris and G. S. Sawicki, The mechanics and energetics of human walking
and running: a joint level perspective, Journal of The Royal Society Interface 9
(2012), no. 66 110–118.

[39] Y. Hurmuzlu and D. B. Marghitu, Rigid body collisions of planar kinematic chains
with multiple contact points, The International Journal of Robotics Research
(IJRR) 13 (1994), no. 1 82–92.

[40] M. Posa and R. Tedrake, Direct trajectory optimization of rigid body dynamical
systems through contact, in Algorithmic Foundations of Robotics X, pp. 527–542.
Springer, 2013.

[41] J. Andersson, A General-Purpose Software Framework for Dynamic Optimization.
PhD thesis, KU Leuven, 2013.

[42] A. D. Kuo, Energetics of actively powered locomotion using the simplest walking
model, Journal of biomechanical engineering 124 (2002), no. 1 113–120.

[43] E. R. Westervelt, C. Chevallereau, J. H. Choi, B. Morris, and J. W. Grizzle,
Feedback control of dynamic bipedal robot locomotion, CRC press, 2007.

[44] C. O. Saglam, Tractable Quantication of Metastability for Robust Bipedal
Locomotion. PhD thesis, UCSB, 2015.

[45] M. Posa, S. Kuindersma, and R. Tedrake, Optimization and stabilization of
trajectories for constrained dynamical systems, in Proc. IEEE Int. Conf. on
Robotics and Autom. (ICRA), pp. 1366–1373, May, 2016.

[46] S. Sovero, N. Talele, C. Smith, N. Cox, T. Swift, and K. Byl, Initial data and
theory for a high specific-power ankle exoskeleton device, in 2016 Int. Symp. on
Exper. Robotics (ISER) (D. Kulić, Y. Nakamura, O. Khatib, and G. Venture, eds.),
pp. 355–364, Springer, 2017.

[47] G. Bellegarda, N. Talele, and K. Byl, Nonintuitive optima for dynamic locomotion:
The Acrollbot, pp. 3130–3136, 05, 2018.

[48] E. Todorov, T. Erez, and Y. Tassa, MuJoCo: A physics engine for model-based
control, in 2012 IEEE/RSJ International Conference on Intelligent Robots and
Systems, pp. 5026–5033, Oct, 2012.

108

[49] N. Talele and K. Byl, Methods and performance analyses for design and feedback
control of efficient and robust planar biped walking, in 2019 American Control
Conference (ACC), pp. 4567–4572, July, 2019.

[50] N. Talele and K. Byl, Mesh-based methods for quantifying and improving
robustness of a planar biped model to random push disturbances, in 2019 American
Control Conference (ACC), pp. 1860–1866, July, 2019.

109

	Curriculum Vitae
	Abstract
	List of Figures
	List of Tables
	Introduction
	Literature Review
	Contributions and Goals
	Organization of Thesis

	Trajectory Optimization
	Control as an Optimization Problem
	Polynomial Trajectories
	Single Shooting Methods
	Multiple Shooting Methods
	Cost of Transport
	Control of Optimal Trajectories
	Gradients

	High Specific-Power Ankle Exoskeleton Device
	Augmentation Factor
	Simulation Model and optimization
	Added Mass Study

	Co-Dependence of Energy Optimality, Robustness and Design Parameters
	Five Link Planar Biped Model
	Trajectory Optimization
	Motion Characteristics
	Effect of System Parameters on Energy
	Effect of System Parameters on Stability
	Energy Optimality and Robustness Trade-off
	Conclusion

	Metastable walking for push disturbances
	Dynamic Model
	Trajectory Optimization Problem Formulation
	Meshing for Metastable Systems
	Dimensionality Analysis
	Single Support Phase Walking
	Double Support Phase Walking
	Sensitivity Analysis
	Conclusion

	Robustness Quantification of DRL based Policies for Biped Locomotion
	5 link Biped Model in MuJoCo
	Control Policy
	Meshing
	Experiments and Results
	Dimensionality analysis
	Conclusion

	Conclusion and Future Work
	Biped Model
	Direct transcription Methods
	Deep Reinforcement Learning for 5 Link Planar Biped Model
	Bibliography

