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This work describes the implementation and applications of non-Hermitian self-

consistent field (NH-SCF) theory with complex basis functions for the ab initio com-

putation of positions and widths of shape resonances in molecules. We utilize both

the restricted open-shell and the previously unexplored spin-unrestricted variants to

compute Siegert energies of several anionic shape resonances in small diatomic and

polyatomic molecules including carbon tetrafluoride which has been the subject of

several recent experimental studies. The computation of general molecular proper-

ties from a non-Hermitian wavefunction is discussed, and a density-based analysis

is applied to the 2B1 shape resonance in formaldehyde. Spin-unrestricted NH-SCF

is used compute a complex potential energy surface for the carbon monoxide anion

which correctly describes dissociation.

PACS numbers: 34.80.Bm, 34.20.-b, 32.80.Zb 33.80.Eh
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I. INTRODUCTION

Metastable electronic states, or resonances, in molecules play an important role in a

variety of chemical processes. They can be described by a Siegert energy:

E = E − i
Γ

2
(1)

where E is the position and Γ is the width of the resonance. Unfortunately, due to their

continuum nature, these states have largely eluded large-scale, reliable computation. Many

of the most promising candidates for reliable computation of Siegert energies are based on

complex-coordinate methods.1–3

Originally based on the mathematically rigorous theorems of Aguilar, Balsev, and

Combes,4,5 and Simon,6 these methods rely on the solution of a non-Hermitian effective

Hamiltonian. This effective Hamiltonian is constructed so as to contain in its spectrum

complex eigenvalues equal to the Siegert energies and corresponding to square integrable

eigenfunctions. This process, which generally involves the scaling of some of the coordi-

nates of the Hamiltonian by a complex number, is called complex-scaling. Unfortunately,

non-analyticities arising from the Born-Oppenheimer approximation make the application

to molecular systems difficult.7–9 This problem can be overcome with the mathematically

rigorous method of exterior complex scaling.8

Though difficult to apply direcctly, the exterior complex-scaling transformation can be

implicitly applied using complex basis functions.7,10 In this method, complex Gaussian func-

tions of the form

ϕθ(r) = N(θ)(x− Ax)
l(y − Ay)

m(z − Az)
n

× exp
[
−αe−2iθ(r−A)2

]
(2)

are included in the basis set. The method of complex basis functions has been applied to a

variety of diatomic molecules7,11–18 and has recently been applied to some larger, polyatomic

molecules in the static exchange (SE) approximation.10 In this study, we employ complex

basis functions in computations on electronic shape resonances in molecules.

Complex coordinate methods, as they are usually used, reduce the full scattering problem

to a variational search within a basis of square integrable functions. Unfortunately, in many

electron systems one is almost always forced to make further approximations to make the

2



many-body problem computationally feasible. In quantum chemistry, it is the self-consistent

field (SCF) wavefuction that usually serves as a first approximation and as a starting point

for more accurate methods. The SCF method was first introduced in the context of complex

coordinate methods by McCurdy et al.19 For metastable anions, these methods explicitly

treat the polarization of the target molecule or atom due to the presence of an additional

electron at a mean-field level. While these methods are usually called complex SCF or

complex-scaled SCF, we will refer to them as non-Hermitian SCF (NH-SCF) methods so as

to highlight the non-Hermitian nature of the problem and to avoid confusion with complex

Hermitian SCF methods.

NH-SCF methods have been successfully applied in the context of straight complex-

scaling to a variety of atomic shape resonances.19–24 NH-SCF methods employing com-

plex basis functions have also been applied to shape resonances in a variety of diatomic

molecules.11–13,16 Various types of non-Hermitian DFT methods have also been recently de-

veloped.25–28 While SCF-type methods are not directly applicable to Feshbach resonances,

non-Hermitian multiconfigurational self-consistent field (NH-MCSCF)29,30 or non-Hermitian

configuration interaction (NH-CI)31–33 approaches have been successfully applied to Fesh-

bach resonances in atoms. For molecules, these multi-determinental methods have also

been shown to provide a description of Feshbach resonances.14–18 Recently, complex scaled

coupled-cluster methods have also been been used for shape and Feshbach resonances in

atoms.34,35

In this study, we discuss in detail the implementation and application of NH-SCF the-

ory to molecular anionic shape resonances. After reviewing the non-Hermitian version of

restricted open-shell Hartree-Fock (NH-ROHF), we introduce the spin-unrestricted variant

(NH-UHF) and apply both to a variety of small diatomic and polyatomic molecules. This

is the first time that this method has been applied to polyatomic molecules. Additionally,

we include a discussion of the calculation and interpretation of general molecular properties

from a non-Hermitian wavefunction. A density based analysis and visualization of the elec-

tron attachment process is introduced and applied to the 2B1 resonance in formaldehyde.

Finally, we use NH-UHF to compute a complex potential energy surface for the carbon

monoxide anion. Like its Hermitian counterpart, NH-UHF theory is found to be capable of

describing full potential energy surfaces with qualitative accuracy.
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II. THEORY

The theoretical background of NH-SCF is described in detail in other works.19,20 Here we

augment these discussions with a derivation in terms of the complex variational principle36–38

which, in the context of complex basis functions, states that the Siegert energy of some trial,

c-normalizable function |Ψ),

E =
(Ψ|H|Ψ)

(Ψ|Ψ)
, (3)

is stationary with respect to small variations about the true wavefunction. In the method

of complex basis functions, the “true” wavefunction is the true exterior scaled wavefuction

evaluated in a transformed variable as discussed in Ref. 10. The brackets (. . . | . . .) are

used to denote the c-product,37 which means that the bra is not complex-conjugated. A

complex NH-SCF energy is determined by requiring that the energy functional of equation 3

is made stationary to first order with respect to variations of a single Slater determinant

trial wavefunction. This Slater determinant is constructed from molecular orbitals (MOs)

that are constrained to be c-orthonormal. This gives rise to a Lagrangian

L = (Ψ|H|Ψ)−
∑
ij

[(ϕi|ϕj)− δij]λij (4)

where the many body state |Ψ) is chosen to be a single Slater determinant of MOs ϕi(r),

and the λij are Lagrange multipliers. The MOs are c-orthonomal functions constructed

from real and complex Gaussian basis functions as described in Ref 10. As in the real case,

the specification of any constraints on the spin part of the wavefunctions, followed by the

extremization of L, gives rise to the NH-SCF equations.

A. NH-ROHF and NH-UHF equations

The NH-ROHF equations are the same as in the real case.39 Stationarity of the Lagrangian

of Equation 4 gives rise to the NH-ROHF equations presented in Ref. 19. For the Hermitian

analog, see Ref. 40. These equations are represented by a single Fock matrix of the form

F =


Rcc Fco Fcv

Foc Roo Fov

Fvc Fvo Rvv

 (5)
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where the off-diagonal parts are

Fco = Fβ (6)

Fcv = Fα + Fβ

Fov = Fα

in terms of the α and β Fock matrices from UHF theory. There is some ambiguity in the

specification of the diagonal blocks of the Fock matrix (see Refs. 39 and 41) which can be

exploited to improve convergence.40 The diagonal terms are chosen to be:

Rcc = Fα + Fβ (7)

Roo = Fβ

Rvv = Fα + Fβ.

This somewhat unconventional choice was found to have good convergence properties.

The NH-UHF equations are the same as in standard Hermitian UHF theory.42 The α and

β Fock matrices are given by

Fα = h+ Jα + Jβ −Kα (8)

Fβ = h+ Jα + Jβ −Kβ

where Jα and Kα are the Coulomb and exchange matrices generated from just the α electron

density and those operators constructed from the β density are similarly defined. h is the

basis set representation of the core Hamiltonian. These operators are distinguished from

their Hermitian counterparts in that the matrix elements are computed with the c-norm.

The c-norm, while convenient, is somewhat restrictive in that it represents an analytic

continuation of matrix elements of a real, symmetric Hamiltonian.37 However, it has long

been known that complex MO coefficients are sometimes necessary to describe certain forms

of symmetry breaking within the purely Hermitian formalism of traditional electronic struc-

ture theory.43,44 In these cases, the Fock matrix becomes complex Hermitian. In order to

include in our description the degrees of freedom relevant to complex-Hermitian Hartree-

Fock calculations, a more general bi-orthogonal space must be considered. While this would

certainly be an interesting extension, it is not relevant to the examples presented in this

study.
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FIG. 1. Representative θ-trajectories for N−
2 in the caug-cc-pVDZ(cm+) basis set. The complex

basis function parameter, θ, is varied from 10o . . . 25o in increments of 0.5o. The approximate

location of the stationary point is (2.8,−0.1) for NH-UHF, while for NH-ROHF, it is (2.9,−0.15).

B. Practical considerations in the optimization of NH-SCF wavefunctions

The NH-SCF equations, like their Hermitian counterparts, will have continuum solutions.

Special care must therefore be taken with the initial guess and the method of iteration so

as to ensure convergence to the desired resonance state. It is important to emphasize that

the desired solutions are not minima of Equation 3.

The natural starting point for an NH-SCF calculation is an SE result. Here, the procedure

described in Ref. 10 was used to generate a guess density for the metastable anion. This

is the same method employed in previous studies.11,19 In order to converge preferentially

to a Siegert energy that is stationary but not in any way a minimum, an overlap criterion

similar to that of Gilbert et al.45 was used to select the appropriate occupied space after

each iteration.

In previous applications of NH-SCF, little is reported regarding convergence properties

and simple iteration was generally found to yield convergent results. These studies differ

from this work in that the basis sets were generally smaller and the complex functions were

added only in a particular symmetry. We found that simple iteration only converged to the

desired state in very few cases even when small basis sets were used. The direct inversion

of the iterative subspace (DIIS) method of Pulay46,47 was found to be significantly more

reliable.

The DIIS method, as it is usually applied to SCF convergence, computes an extrapo-
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lated Fock matrix as a linear combination of Fock matrices from previous iterations. The

relative weights are determined by requiring that they minimize an error vector, which is

also computed at each iteration, subject to a normalization constraint. In the standard SCF

problem, this error vector (in this case a matrix) is usually taken to be

e = SPF− FPS (9)

where S, P and F indicate the overlap, density, and Fock matrices respectively. The elements

of this vector are elements of the orbital rotation gradient in the AO basis. In the non-

Hermitian case, this method can be used with little modification because the (complex)

orbital rotation gradient must still be zero at convergence which suggests that the error

vector of equation 9 is still appropriate. In the non-Hermitian case the error vector is split

into real and imaginary parts, and the real and imaginary parts of the extrapolated Fock

matrix are found in the iterative subspace. In practice, an orthogonalized error vector is

used to give a more balanced description of the error.

Unfortunately, the solution of the NH-SCF equations at a single value of θ will in general

not yield a good approximation to the Siegert energy. In practice, the NH-SCF energy is

computed at many values of θ and an analytic continuation scheme10,48 is used to compute

the energy at the optimal value of θ. An example of these θ-trajectories is shown in Figure 1.

C. Properties of NH-SCF states

In the method of complex basis functions and in other complex-coordinate techniques,

the wavefunction is not the true wavefunction of the system and is in fact not a physically

realizable state of any kind. In this section, we briefly describe how properties of the res-

onance can be extracted from the non-Hermitian wavefunction in terms of the response of

the complex Siegert energy.

Moiseyev et al.37 showed that there exists an analog to the Hellmann-Feynman theorem

in a c-normalizable space. It implies, in the context of complex basis functions, that given

some Hamiltonian perturbed by some operator V with strength α,

H(α) = H0 + αV, (10)

the derivative of the energy with respect to α is

dE

dα
= (Ψ|V |Ψ) (11)
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given that |Ψ) is variationally optimized and normalized, and that the complex basis func-

tions are independent of V (i.e. no Pulay terms49). The c-expectation value will in general

have both real and imaginary parts, but those parts are easily associated with the response

of the position and width respectively:

dE
dα

= Re(Ψ|V |Ψ)
dΓ

dα
= −2Im(Ψ|V |Ψ). (12)

Note that both these quantities are, at least in theory, observable.

For one-electron properties, the c-expectation value can be written as

(Ψ|V |Ψ) =
∑
µν

VµνP
νµ (13)

where µ and ν index AO basis functions and V and P are the AO matrix representations of

operator V and the 1-particle density respectively. The c-normalization of the wave function

implies that the 1-particle density matrix defined with the same complex inner product has

a real part with a trace equal to the number of electrons and a traceless imaginary part.

The properties of the trace of the complex 1-particle density matrix are very similar to

those of a real Hermitian density matrix. As such, it allows for similar kinds analysis. In

particular, the complex difference density can be decomposed into complex attachment and

detachment densities50 that can be visualized to give a picture of both the electron-attached

state and the polarization of the target. The difference density

∆ = Pres −Ptar (14)

is defined as the difference between the complex electron density of the resonance and the real

density of the target. This quantity can be uniquely decomposed by splitting its eigenvalues

into those with positive real part and those with negative real part:

∆ = U(a− d)UT = A−D (15)

where a and d are diagonal matrices with positive real parts. A and D are termed the

attachment and detachment densities respectively. These quantities describe the electron

density and the hole density of the resonance relative to the target. Furthermore, the

eigenvalues of these two matrices are related to the scattering process in that

Tr(A)− Tr(D) = Tr(∆) = n (16)
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where n is the number of electrons in the resonance state relative to the target; n = 1 for

an anion resonance. Therefore, the two equivalent quantities

Tr(A)− n and Tr(D) (17)

provide a measure of the magnitude of the polarization.

Two-electron properties can be expressed in terms of the 2-particle density matrix, but

the only two-electron property relevant in this study is the square of the total spin which

can be computed as51

⟨S2⟩ =
(
Nα −Nβ

2

)(
Nα −Nβ

2
+ 1

)
+Nβ −

occ∑
ij

(iα|jβ)2 (18)

where Nα and Nβ are the numbers of α and β electrons respectively. For spin-pure wave-

functions such as the NH-ROHF wavefunction, the expectation value of total spin squared

is real and equal to s(s + 1) where s is the total spin quantum number. For NH-UHF

wavefunctions, the expectation value can vary from the spin-pure value and can develop an

imaginary part. As in the Hermitian case, the computation of the square of the total spin

provides a measure of the spin contamination of the unrestricted wavefunction. In practice,

the expectation value of S2 is computed for each value of θ and the rational interpolation

scheme described in Ref. 10 was used to compute the expectation value at the optimal value

of θ.

III. RESULTS

All computations reported in this study were performed with a modified version of the

Q-Chem software package.52 Matrix elements were computed by the methods described in

Ref. 10, while the Armadillo C++ linear algebra library53 was used for all matrix manip-

ulations. All SCF calculations are converged to the extent that the maximum element of

the (orthogonalized) DIIS error is less than 10−5.

A. Small molecules and comparison to static exchange

Table I shows the computed Siegert energies of low energy shape resonances in four

different molecular systems and in three basis sets of increasing size. The geometries are
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molecule basis SEa NH-ROHF NH-UHF ⟨S2⟩

Re[E] Im[E] Re[E] Im[E] Re[E] Im[E] Re[⟨S2⟩] Im[⟨S2⟩]

N2

caug-cc-pVDZ(cm+) 3.9752 -0.6363 2.9517 -0.1566 2.8366 -0.1087 0.7580 -0.0044

caug-cc-pVTZ(cm+) 3.8818 -0.6301 2.9621 -0.1613 2.8287 -0.1159 0.7594 -0.0049

caug-cc-pVQZ(cm+) 3.8413 -0.6215 2.9525 -0.1547 2.8271 -0.1078 0.7590 -0.0041

CO

caug-cc-pVDZ(cm+) 3.4173 -0.9715 2.5253 -0.3463 2.4304 -0.2814 0.7568 -0.0015

caug-cc-pVTZ(cm+) 3.3474 -0.9407 2.4124 -0.3185 2.4216 -0.2879 0.7570 -0.0020

caug-cc-pVQZ(cm+) 3.3441 -0.9646 2.5423 -0.3534 2.4263 -0.3032 0.7574 -0.0020

CO2

caug-cc-pVDZ(cm+) 5.5268 -0.2972 4.4207 -0.0175 4.0296 0.0302 0.7620 -0.0007

caug-cc-pVTZ(cm+) 5.5035 -0.3435 4.4625 -0.0677 4.3096 -0.0516 0.7639 -0.0012

caug-cc-pVQZ(cm+) 5.4733 -0.3500 4.4553 -0.0677 4.3111 -0.0559 0.7638 -0.0011

CH2O

caug-cc-pVDZ(cm+) 2.6848 -0.8078 1.7544 -0.2245 1.6251 -0.1676 0.7613 -0.0064

caug-cc-pVTZ(cm+) 2.6459 -0.7887 1.7861 -0.2012 1.6472 -0.1541 0.7624 -0.0063

caug-cc-pVQZ(cm+) 2.5775 -0.8170 1.7467 -0.2007 1.6132 -0.1409 0.7623 -0.0065

a Also reported in Ref. 10

TABLE I. Positions and widths in eV of the lowest 2Πg resonance in N2 and CO, the lowest 2Πu

resonance in CO2 and the lowest 2B1 shape resonance in formaldehyde (CH2O). Expected values

of total spin-squared are reported for the NH-UHF calculations. The basis sets are described in

detail in Ref. 10.

molecule geometry

N2 N≡N = 1.094Å

CO C≡O = 1.128Å

CO2 C=O = 1.16Å

CH2O C-H = 1.11Å, C=O = 1.205Å, H-C-H = 116.2◦

TABLE II. Geometries used throughout the present study.
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reported in Table II. The positions from NH-SCF calculations are reported relative to the

total Hermitian RHF energy of the target in the same basis (θ = 0◦). The positions and

widths are computed at the NH-UHF and NH-ROHF levels of theory and are compared

to the SE results in the same basis sets. A recent summary of previous theoretical and

experimental positions and widths for these resonances can be found in Ref. 54. In general,

the positions computed with NH-ROHF are 0.9−1eV lower in energy than the corresponding

SE result. The positions computed with NH-UHF are 1 − 1.1eV lower in energy than the

SE result making them on average about 0.1eV lower in energy than the corresponding NH-

ROHF result. This is as expected; the extra polarization terms in the UHF wavefunction

should lower the position relative to the energy of the neutral target.

The widths are not so predictable. We would expect the widths from NH-SCF calculations

to be significantly smaller than for SE calculations due to the incorporation of polarization.

This effect is indeed observed, but the magnitude of the difference is not as constant among

different molecular systems. For similar reasons, the widths computed with NH-UHF would

be expected to be lower than those computed with NH-ROHF, and this is generally the case.

The behavior of the Siegert energies as size of the basis is increased is also generally

difficult to predict. However, despite a couple of exceptions, both the real and imaginary

parts of the energy are relatively stable with respect to an increase in the size of the basis.

The first exception is the Πu resonance in CO2 computed within the caug-cc-pVDZ(cm+)

basis set. In this case, the positions are reasonable, but the computed widths are unrea-

sonably small; the NH-UHF energy has a positive imaginary part. However, this case is a

pathological one in that the basis set contains exactly one complex function of πu symmetry.

This grossly incomplete basis cannot be expected to yield an accurate width, and it is quite

surprising that the SE result is so reasonable. A more detailed discussion of basis set effects

can be found in Ref. 10. The other slight exception is the Πg resonance in carbon monoxide

as computed with NH-ROHF in the caug-cc-pVTZ(cm+) basis set. Both the position and

width computed in this basis set differ from their values computed in the larger and smaller

basis sets. The reason for this slight deviation is unknown.

We also report the expectation values of total spin-squared for the NH-UHF wavefunctions

in Table I. The real parts of the spin-squared values are comparable to what would be

expected from a Hermitian calculation on a bound anion in that they are only slightly

different from the pure doublet, while the imaginary parts are quite small. This suggests

11
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FIG. 2. Real and imaginary parts of the α attachment and detachment densities for the 2B1

resonance in formaldehyde are plotted in the xz and yz-planes. The top row shows the real part

and the bottom row shows the negative of the imaginary part. The first four panels (a - d) show the

attachment density while the second four (e - h) show the detachment density. Note the difference

in scales. White dots are used to indicate the positions of the nuclear centers; the oxygen end

of the molecule points in the negative z-direction. The axes are in atomic units (a0). The real

and imaginary parts of the attachment density, which correspond to the extra electron in the

resonance state, are predominantly π∗ in character. The detachment density, which corresponds

to rearrangement, has largely σ character.

that for these cases, the unrestricted wavefunction is not significantly spin-contaminated.

Comparing to other theoretical and experimental results is difficult to do systematically

because of the wide range of methods/basis sets and experimental conditions. However,

the results presented here qualitatively reproduce the experimental numbers and agree with

many other theoretical results (cf. Ref. 54). Some selected literature values are shown in

Table III. In general, we can say that the positions are larger than those computed with

correlated methods. The widths fall within the range of other theoretical results, but seem

to be slightly smaller on average than widths computed at similar levels of theory.
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molecule method position width

N2

Stieltjes imaging55 2.23 0.40

Schwinger variational + ADC(3) optical potential56 2.534 0.536

NH-SCF with complex basis functions11 3.19 0.44

3rd order decouplings of dilated electron propogator57 2.11 0.18

EOM-EA-CCSD stabilization (aug-cc-pV5Z)58 2.49 0.248

CAP EOM-EA-CCSD (1st order, aug-cc-pVQZ + 3s3p3d)54 2.478 0.286

Experimental estimate59 2.32 0.41

CO

T-matrix (static-exchange)60 3.4 1.65

2nd order electron propogator61 1.71 0.08

3rd order decouplings of the electron propogator57 1.65 0.14

CAP EOM-EA-CCSD (1st order, aug-cc-pV5Z + 3s3p3d)54 1.762 0.604

Experimental estimate62 1.50 0.4

CO2

Schwinger variational (static-exchange)63 5.39 0.64

Schwinger variational (static-exchange + polarization)64 3.78 0.23

CAP EOM-EA-CCSD (1st order, aug-cc-pVTZ + 3s3p3d)54 3.997 0.198

Experiment65 3.14 0.20

CH2O

Complex Kohn (static-exchange + polarization)66 1.0 ∼0.5

2nd order decouplings of the dilated electron propogator (largest basis)67 0.887 0.076

R-matrix (static-exchange + polarization)68 1.32 0.546

CAP EOM-EA-CCSD (1st order, aug-cc-pVTZ + 3s3p3d)54 1.314 0.277

Experiment69 ∼0.86 -

TABLE III. Selected literature values (in eV) for the resonances studied here from experiment and

various levels of theory.

B. Density based analysis of formaldehyde’s B1 resonance

In this section, the attachment and detachment densities of the 2B1 resonance in formalde-

hyde are computed at the optimal value of θ in the caug-cc-pVTZ basis. Because the c-norm

does not permit a rigorous notion of matrix positivity, there are in general no restrictions
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Attachment Detachment

Re Im Re Im

α 1.3233 -0.0391 0.3233 -0.0391

β 0.3905 -0.1140 0.3905 -0.1140

TABLE IV. Traces of attachment and detachment densities for the α and β difference densities

corresponding to the B1 resonance in formaldehyde. The densities were computed at the optimal

value of θ in the caug-cc-pVTZ(cm+) basis set.
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FIG. 3. Real and imaginary parts of the β attachment and detachment densities for the 2B1

resonance in formaldehyde are plotted in the xz and yz-planes. The top row shows the real part

and the bottom row shows the negative of the imaginary part. The first four panels (a - d) show the

attachment density while the second four (e - h) show the detachment density. Note the differences

in scales. White dots are used to indicate the positions of the nuclear centers; the oxygen end of

the molecule points in the negative z-direction. The axes are in atomic units (a0). All changes in

the β space are due to electron-rearrangement which is mostly of σ character.

on the signs of the real and imaginary parts of these densities, though the real parts are

generally observed to be mostly positive while imaginary parts are observed to be primarily

negative.

The attachment and detachment densities, by definition, obey the relations of Equa-

14



tion 17. This is confirmed in Table IV where the real and imaginary parts of the traces of

the attachment and detachment densities are shown. Note that the attached electron has α

spin in this case. These values provide an approximate, but quantitative, description of the

polarization during the electron attachment process: approximately 0.32 α electrons and

0.39 β electrons are rearranged. The larger polarization of the β density is consistent with

the nature of the exchange interaction.

The α and β attachment and detachment densities for formaldehyde’s B1 resonance are

plotted in Figures 2 and 3 respectively. Note that it is the negative of the imaginary part

that is plotted in the bottom rows of Figures 2 and 3 (c,d,g,h). The real part of the α

attachment density has very little magnitude in the plane of the molecule and therefore

resembles the density arising from attachment to a state with π character. The small σ

character in the attachment density is likely the result of electron rearrangement.

Comparing the β attachment and detachment densities, it is clear that the rearrangement

in the β space involves the movement of electron density from orbitals localized around the

oxygen atom to the two hydrogen atoms. It is also interesting to note that the β attachment

density is significantly delocalized in comparison with the detachment density.

C. A1 and T2 resonances in carbon tetrafluoride

Carbon tetrafluoride has been observed to have two low energy shape resonances of A1

and T2 symmetry. These two resonances have been the subject of some recent interest

due to their role in dissociative electron attachment.76–78 Computed positions and widths

of these two shape resonances are shown in Table V. The positions and widths computed

at the SE, NH-ROHF, and NH-UHF levels of theory are shown along with literature values

from various theoretical calculations. The spin-squared values for the UHF wavefunctions

are shown in Table VI and a summary of experimental results can be found in Refs. 79,80.

This case is interesting in that the NH-ROHF and NH-UHF values agree quite closely.

The spin squared values (shown in Table VI) show that there is very little spin contamination

in the NH-UHF wavefunction, but the similarity is still quite striking when compared to

similar calculations on small molecules. Furthermore, while the positions calculated with

NH-UHF are smaller than those computed with NH-ROHF, the widths are slightly larger

in several cases. This is contrary to the trends observed in other molecules, though it is in

15



reference T2 resonance A1 resonance method

Position Width Position Width

Huo70 6.6 4.1 11.7 22.8 Schwinger Variational(SE)

Modelli et al71 8.95 - 8.70 - Multiple Scattering-Xα

Modelli et al71 8.58 - 8.98 - Continuum Multiple Scattering-Xα

Winstead et al72 11.5 - 13.0 - Schwinger Multichannel (SE)

Isaacson et al73 ∼ 9a - ∼ 9a - Complex Kohn

Curik et al74 8− 10a - 8− 10a - Close-coupling (model potential)

Varella et al75 9.9 - 11.0 - Schwinger Multichannel (SEP)

present workb 10.6301 2.0553 12.7184 2.0902 SE/caug-cc-pVDZ

present workb 11.0816 1.9737 12.0561 1.9617 SE/caug-cc-pVTZ

present work 8.6421 0.8530 9.7906 1.8189 NH-ROHF/caug-cc-pVDZ

present work 9.0738 0.7813 10.0711 1.1740 NH-ROHF/caug-cc-pVTZ

present work 8.5996 0.9139 9.5236 1.8346 NH-UHF/caug-cc-pVDZ

present work 8.8851 0.8191 9.9862 1.1490 NH-UHF/caug-cc-pVTZ

TABLE V. Calculated positions and widths (eV) of low energy shape resonances in CF4. Static-

exchange plus polarization is abbreviated SEP.

a overlapping resonances not separately resolved
b Also reported in Ref. 10

resonance basis ⟨S2⟩

Re[⟨S2⟩] Im[⟨S2⟩]

A1

caug-cc-pVDZ(cm+) 0.7542 -0.0032

caug-cc-pVTZ(cm+) 0.7551 -0.0017

T2

caug-cc-pVDZ(cm+) 0.7515 -0.0010

caug-cc-pVTZ(cm+) 0.7588 -0.0018

TABLE VI. Spin-squared of the A1 and T2 shape resonances in CF4 computed using NH-UHF.
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no way prohibited by the theory.

For these resonances in CF4, like those of many polyatomic molecules, very few ab initio

calculations have been performed. The results of the present study agree well with the

previous theoretical results shown in Table V excluding the calculation of Huo.70 Though

Huo is the only author to report a width, all other studies report the computed cross-section

which shows the widths of the two, not always resolveable, resonances to be on the order

of 1eV which agrees well with the present study. The results presented here offer the most

complete picture of these two resonances: the T2 resonance clearly appears approximately

1eV lower energy and with a slightly narrower width, though both widths are on the order

of 1eV. It is possible that this picture is significantly different when electron-correlation is

explicitly included in the theory.

D. Carbon monoxide potential energy curve

One of the great attractions of Hermitian UHF theory is that, in many situations, it

provides a qualitatively correct description of dissociation processes. NH-UHF theory should

be able to describe potential energy curves of resonances with the same qualitative accuracy.

As an example, we examine the potential energy curves of anionic and neutral carbon

monoxide at the NH-UHF and UHF level of theory respectively. The anion, metastable

at the equilibrium geometry of the neutral, becomes bound as the molecule is stretched,

eventually dissociating to oxygen neutral and carbon anion.

The potential energy curves at the UHF/NH-UHF level of theory are shown in Figure 4.

The behavior is qualitatively what would be expected: the anion curve crosses that of the

neutral and the width goes to zero. However, the point at which the width goes to zero

occurs about 0.1Å before the curves cross. This is consistent with previous calculations12,13

and typical of cases where the same uncorrelated level of theory is used on the closed-

shell neutral and open-shell anion. Higher levels of theory may be able to remove this

discrepancy.81 In the region where the anion is bound, the NH-UHF energy almost exactly

reproduces the Hermitian UHF energy of the bound anion, but with a very small positive

imaginary part. In the region where the anion is unbound and Hermitian UHF is not useful,

NH-UHF provides a qualitatively correct complex potential. Such complex potential curves

could be useful in calculations of vibrational structure in electron scattering experiments.82–84
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FIG. 4. Carbon monoxide potential energy curves at the UHF/NH-UHF level of theory in the

caug-cc-pVTZ(cm+) basis set.

The real and imaginary parts of the expectation value of total spin squared are plotted in

Figure 5. In this case, the Hermitian UHF solution was obtainable throughout the recoupling

region. The expectation value of total spin-squared of the NH-UHF agrees remarkably well

with that of the Hermitian UHF solution. This is not surprising, because the anion is bound

for much of this region. It is, however, worthy of note that the NH-UHF does essentially

reproduce the Hermitian UHF solution in the region where the width is zero.

This potential energy curve was not easy to obtain. Only by reading in orbitals from

previous calculations and taking small (0.02Å) steps in internuclear distance and similarly

small (0.5◦) steps in θ was convergence achieved at enough points so that the analytic con-

tinuation scheme could be confidently applied. Also, at some geometries multiple stationary

points were observed, and great care had to be taken to make sure that we followed a single

stationary solution.

18



1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7

0.8

1.0

1.2

1.4

1.6

1.8

R
e
S
2

UHF

NH-UHF

1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7

Internuclear Distance (Å)
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FIG. 5. Total spin squared on the carbon monoxide PES in the caug-cc-pVTZ(cm+) basis set.

The black line indicates a pure doublet.

IV. CONCLUSIONS

In this study complex basis functions were employed in the implementation of the NH-

ROHF method, and the novel NH-UHF method. These methods were described in detail and

applied to a variety of small diatomic and polyatomic molecules including carbon tetraflu-

oride. The computation and interpretation of molecular properties from non-Hermitian

wavefunctions was discussed and a density-based analysis was applied to the 2B1 resonance

in formaldehyde. This analysis of the complex analogs of the attachment and detachment

densities allows for an intuitive discussion of target polarization during the process of res-

onant electron attachment. The NH-UHF method was also utilized in the computation

of a NH-UHF potential energy surface for the metastable carbon monoxide anion. These

promising results make it worth investigating the possibility of using an NH-SCF reference

for highly accurate correlated calculations on small molecules.
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However, it is also important to be aware that there are significant challenges in extending

NH-SCF methods to larger systems than reported here. First, NH-SCF with complex basis

functions often suffers from slow convergence. Second, there are serious numerical problems

associated with linear dependence in very large basis sets, associated for instance with diffuse

complex Gaussians on multiple atomic centers. Third, the occasional appearance of multiple

stationary points can make the identification of the Siegert energy ambiguous, though we

have not yet seen a case where the difference is significant. Finally, the θ-trajectories are

a significant burden relative to conventional SCF. More effort is necessary to remedy these

problems so that the method can be applied confidently to large molecules.
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Appendix A: Optimal theta values

Optimal values of the scaling factor for all single point energy calculations are provided

in Table VII. The optimal values for the carbon monoxide PES are shown in Table VIII.

Note that the scaling factor is defined as

s ≡ eiθ.
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molecule basis SE NH-ROHF NH-UHF

|s| phase[s] |s| phase[s] |s| phase[s]

N2

caug-cc-pVDZ(cm+) 1.0989 20.864 1.0187 13.746 1.0338 10.930

caug-cc-pVTZ(cm+) 0.9604 23.427 0.9787 9.7308 0.9620 8.8183

caug-cc-pVQZ(cm+) 1.1052 21.120 1.0005 9.0439 0.9989 12.264

CO

caug-cc-pVDZ(cm+) 0.9638 25.628 0.9310 19.862 0.9544 14.889

caug-cc-pVTZ(cm+) 1.0264 23.195 0.9935 25.186 0.9518 11.023

caug-cc-pVQZ(cm+) 1.0167 27.888 0.9855 17.874 1.0126 17.255

CO2

caug-cc-pVDZ(cm+) 0.9067 10.560 1.0010 14.383 1.0043 17.380

caug-cc-pVTZ(cm+) 1.0687 19.233 1.0654 14.960 1.0720 15.507

caug-cc-pVQZ(cm+) 1.0025 20.992 0.9208 25.423 1.0284 14.639

CH2O

caug-cc-pVDZ(cm+) 1.0359 23.459 0.9934 19.944 0.9938 19.765

caug-cc-pVTZ(cm+) 0.9742 18.154 1.0790 4.799 1.0626 17.062

caug-cc-pVQZ(cm+) 1.0880 26.177 1.0021 22.736 1.0227 24.807

CF4(T2)

caug-cc-pVDZ(cm+) 0.94872 24.188 1.0838 6.0529 1.0299 15.164

caug-cc-pVTZ(cm+) 1.0060 16.176 0.9877 10.535 1.0247 15.479

CF4(A1)

caug-cc-pVDZ(cm+) 1.0010 14.521 1.0916 11.890 1.1124 18.417

caug-cc-pVTZ(cm+) 0.9807 19.842 1.0154 15.300 1.0120 15.265

TABLE VII. Optimal values of θ for all single point energy calculations. θ is reported in polar

form with the phase in degrees.
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R(Å) |s| phase[s]

1.08 0.9277 11.639

1.10 1.0998 15.963

1.12 0.9498 11.797

1.14 0.9849 10.117

1.16 1.0154 8.9519

1.18 0.9346 11.334

1.20 0.9495 10.702

1.22 0.9204 11.089

1.24 0.9598 10.566

1.26 0.9655 10.324

1.28 0.9738 9.4073

1.30 1.0000 9.9328

1.32 0.9808 10.255

1.34 0.9981 9.9255

1.36 1.0000 4.0001

1.38 0.9822 9.2917

1.40 1.0051 9.1503

1.42 0.9710 8.7806

1.44 1.0036 9.2459

1.46 0.9799 8.9373

1.48 0.9950 8.8133

1.50 0.9972 8.9010

1.52 0.9981 8.9202

1.54 1.0010 8.9371

1.56 1.0011 8.9626

1.58 1.0009 8.9886

1.60 1.0016 9.0031

1.62 1.0016 9.0394

1.64 0.9983 9.0643

1.66 0.9958 9.0609

1.68 0.9946 9.1075

1.70 0.9907 8.9882

TABLE VIII. Optimal values of θ for all points on the carbon monoxide PES. θ is reported in polar

form with the phase in degrees.
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