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ABSTRACT OF THE DISSERTATION

Capturing and Animating Hand and Finger Motion for 3D Communicative Characters

by

Nkenge Safiya Wheatland

Doctor of Philosophy, Graduate Program in Computer Science
University of California, Riverside, August 2016

Dr. Victor B. Zordan, Chairperson

The process of animating detailed motion for virtual characters is a difficult task and re-

searchers and animators work tirelessly to bring life to these characters. Though many

methods have been developed over the years to facilitate aspects of 3D character anima-

tion, creating realistic virtual humans is still a challenge. This is partly because of the way

virtual characters move. People are highly sensitive to human motion and that sensitivity

can influence how a person feels about a character they are viewing in a video or a movie.

Though the motion of hands is on smaller scale than that of the full body, hand motions

also contribute to how people feel about the “realness” of a character. This is especially

true for communicative characters. Many people gesticulate when speaking and virtual

characters should as well to appear natural. Also, there are many people who communicate

using sign languages, gesture-based languages that use specific hand shapes and full-body

body motions to convey complex thoughts and ideas. American Sign Language (ASL) is

used in the United States. Characters that can naturally perform ASL would be beneficial

to the many deaf Americans whose first language is ASL. Deaf adults who communicate
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primarily using ASL tend to read English at a middle school level. Therefore, a virtual

signing character can be useful for many applications, such as computing, where much of

the information is presented to the user as text or sound.

Optical marker motion capture is the industry standard for recording human mo-

tion to be applied to virtual characters. But this form of motion capture has many draw-

backs, notably in its ability to capture detailed full body and hand motion simultaneously.

A benefit of motion capture is its ability to record the rhythm and timing of a person’s

motions. Timing contributes to how natural a virtual character appears and is also an

important aspect of conversational hand motions.

We propose methods to capture and animate hand motion for the purposes of ges-

tural communication and sign language. We have developed techniques to construct high-

dimensional hand animations from low-dimensional captures using tools such as nearest

neighbor selection from a clustered set, principle component analysis, and locally weighted

regression. These methods allow for simultaneous capture of the hands and full body of

a communicative person. We also present a model to automatically produce natural tim-

ing and rhythm for the synthesis of ASL fingerspelling. The data driven model employs a

näıve Bayes classifier to predict the length of each letter hold and a simple linear regres-

sion to predict the length of each inter-letter transition. We analyze the results of this

approach quantitatively and also qualitatively by performing a perceptual study. Our goal

is to contribute to the ongoing research of creating compelling 3D characters for computer

applications aimed at the sign language community.
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Chapter 1

Introduction

The human hand is a biological system with a complex anatomical structure that

is used to perform a multitude of intricate tasks. These tasks often require a high level of ac-

curacy. An important subset of tasks that hands are used for is communication, specifically

gestural communication and sign language. These forms of digital motion are important

for everyday communications between people in both hearing and deaf communities. We

have come to understand that certain gestures have specific meanings. Creating these un-

derstandable hand motions for virtual characters is an important task that can lead to

helpful future applications. Gestures can give virtual conversational agents an amount of

expressiveness that can improve how they are perceived by other humans. Methods for

recording and animating these specific types of motions are the focus of this dissertation

research. Our work in capturing and synthesizing general hand gestures led to an interest

in developing similar methods for American Sign Language, gestural motions with explicit

meanings.

1



Legibility and naturalness of hand gestures is necessary for a 3D character to be

understood and liked. In sign language, where each hand pose explicitly means something,

this is even more true. American Sign Language (ASL) fingerspelling is a method of spelling

out words using one hand to form the letters of the alphabet. A 3D character that can

fingerspell naturally would be a useful tool for people for whom ASL is their primary

language. By producing accurate ASL pose animations and ASL fingerspelling animations

with natural timing, we can contribute to the ongoing research in this field that is trying

to make certain aspects of computing simpler for members of the sign language community.

Producing quality sign language for 3D ASL avatars has been a field of growing interest

(see the works of Huenerfauth [48, 86, 87, 49, 50, 88], Adamo-Villani [2, 1], and Gao et al.

[37, 36], the DePaul University ASL Project [121], and the survey paper by Clymer [21]),

but creating motion and character realism has been challenging.

We study both the spatial and temporal domain of gesture based hand motions

and present methods to address how hand motion is recorded and animated. Our findings

show that the dimensionality of the hands can be exploited to simplify and improve current

approaches of recording detailed full body motion that includes movement of the hands.

We also find that specific hand gestures, namely ASL fingerspelling, are performed with a

certain rhythm that can be applied to virtual characters to make their hand movements

appear more natural. Lastly, we conduct a perceptual study to qualitatively determine how

natural these motions appear to people who sign.
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1.1 Background

We have performed experiments and have collected preliminary data to explain

why we have chosen to focus on these specific issues related to the spacial and temporal

domains of hand motion. We also provide motivation for the methods used to address these

problems.

1.1.1 Hand Motion Dimensionality and PCA

Figure 1.1: Dimensionality reduction for ASL database. PCA is capable of using as few as
ten components with relatively small average errors.

At the core of our pose reconstruction techniques is the assumption that hand

motion is relatively low-dimensional. Even though a full resolution skeleton of the hand

can have several dozen degrees of freedom (DOF), many of the DOFs of the hand show

correlations while others show barely any motion, so that the inherent dimensionality of

the hand motions is much lower [120, 10, 60]. In our first approach, we cluster together

similar poses to reduce pose redundancy in our reference database. This way, only gross

3



Figure 1.2: ASL sample motion with and without PCA employed. Note the error for six
markers without PCA is larger than that of three markers with it.

motion differences are represented and used for reconstruction. In our second approach,

PCA is used to exploit the hand’s low dimensionality as we assume that PCA will allow

us to capture the important features of the whole-body hand motion in a small number of

principle components.

To support these assumptions, we perform various tests to study the power of

PCA for capturing the desired reduced dimensionality of hand motion. In Figure 1.1, we

show that PCA can indeed help us reduce the dimensionality of the joint angle motion from

the database, revealing low average errors for simple reconstruction with reduced numbers

of components. This figure shows errors applied to our ASL database, which represents a

diverse expression of poses for the hand. We see that PCA shows significant reduction in

reconstruction error after around 10 components. While this is larger than reported findings

for finger motion (see [120, ?]), the rich full hand gestures of ASL are still well-represented
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with a relatively small number of components. Similar findings are reported using a small

set of components from PCA to encapsulate the motion of full-body motion [116] and our

results here support similar observations made over hand motions.

Next, to compare the power of PCA for our particular application, we experiment

with two pose reconstruction methods with and without PCA. The details of the reconstruc-

tion appear in Section 3.2.2, however, we include the plot in Figure 1.2 here to support that

PCA is very effective in producing higher quality hand motion. In the figure, we clearly see

the benefit of employing PCA to aid in the reconstruction of ASL poses. When we attempt

to reconstruct without it the error remains large, even as the number of markers originally

recorded is doubled.

1.1.2 Timing in Fingerspelling

In addition to ASL pose reconstruction, we aim to animate ASL fingerspelling, the

act of spelling words using ASL letter poses, with natural timing. We have formed some of

the initial hypotheses regarding fingerspelling speed and rhythm from both the literature

and also from video recordings we requested from a teacher at the Maryland School for the

Deaf who was born deaf and communicates using ASL. These hypotheses were formed prior

to recording our own data and our data is used to verify or dispute these claims.

In the teacher’s video, it appears that on average, letters in the middle of words

are spelled faster than both the first and last letters in the word. While some literature

agrees with this statement with regard to rapid (normal) fingerspelling, differing results have

also been found regarding careful or slow fingerspelling. Patrie and Johnson [108] state that

careful fingerspelling, a form of spelling where all of the letters are fully realized, has an even
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Figure 1.3: A plot that shows the average amount of frames spent holding the first, middle,
and last letters of the words signed by a deaf teacher. This plot shows that less time is
spent on middle letters in the video and also that the longer the word, the faster all of the
letters are signed.

rhythm. According to these initial videos, we have not found this to be the case. In videos

of the teacher fingerspelling, though each letter is fully realized, the letters in the middle

still occupy fewer frames than the letters on the ends. In contrast, the first letter of each

word signed is held much longer than the other letters in the words we asked the teacher to

sign (approximately 2x longer than the middle letter, approximately 1.5x longer than the

last letter). Therefore, with regard to individual speed, we hypothesize that middle letters

are performed faster than letters on the ends of words, with most emphasis and time being

spent on performing the first letter. Figure 1.3 is a plot of these findings and annotations

of each word can be found in Appendix D.

The next hypothesis comes from the findings of David Quinto Pozos [113], who

states that longer words, or words with more letters, are signed at a faster rate than short
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words. This means that less time is devoted to each letter the longer a word is. We would

like to confirm this.

The following hypothesis comes from findings in Deborah Wager’s Masters Thesis

from the University of Utah [138]. She states that words appear to be spelled faster the

more often they are spelled in conversational or speech-like settings. This finding seems

straightforward, because if we think of fingerspelling as a representation of written English,

often times the same holds true for words that are infrequently written. The first time

writing the word may take longer, but the more often it is written, the less you need to

think about how to write it. Muscle memory could also play a part in this finding.

Lastly, Brentari [11] states that if letters with similar hand shapes are placed

together in a rapidly fingerspelled word, one of the letters has a high chance of being

dropped (not being signed at all). This is not a phenomenon that we have witnessed

in the teacher’s fingerspelling, but it is something we believe can be expected in more

conversational examples.

1.2 Goal and Contribution

The main goal of our work is to contribute to the ongoing research of creating

more natural 3D characters that communicate with their hands. To accomplish this task,

we describe methods for capturing, reconstructing, and animating hand motions used for

communication. Our methods produce accurate hand poses and natural signing rhythm.

We explore detailed hand motion data, specifically gestures and ASL.
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We establish methods for determining the best reduced marker set to take advan-

tage of the power of dimensionality reduction realized by pose clustering and PCA. Further,

our approaches are simple and lend themselves to ease-of-use and re-implementation. Our

approaches also have notable advantages over other related papers for hand-over animation,

such as the work of Hoyet et al. [45], in that we compute the best reduced marker set au-

tomatically, rather than selecting it manually. Our second approach improves upon sparse

marker selection by selecting the markers directly rather than through a brute-force search.

Compared to other techniques, ours are both simple to implement and fast to compute,

striking a valuable compromise which is likely to lead to greater adoption for commercial

use.

We study how ASL fingerspelling is performed and build a system to automatically

produce natural timing for fingerspelled words. Our model is directly informed by recorded

fingerspelling data. It has advantages over previously proposed constant timing models

in that is it closer to the natural timing found in fingerspelling which is not performed

at a constant rhythm. Our model addresses both letter pose holds as well as inter-letter

transitions, an equally important aspect of fingerspelling that has not been explored in

previous 3D synthesis work.

Our key contributions are as follows:

1. Novel approaches for determining low-dimensional motion capture marker sets to be

used on the hands for simultaneous hand and full body capture sessions of gesture

and sign language motions.

8



2. Methods to reconstruct low-dimensional marker recordings into high dimensional hand

animations and comparisons of these methods.

3. A detailed analysis of fingerspelling rhythm and speed.

4. An explanation of how to extract information such has letter pose hold length and

transition length from motion capture data.

5. Data-driven methods to automatically produce natural timing for fingerspelling ani-

mations.

6. A perceptual study evaluating fingerspelling performed by a 3D virtual hand.

The results from this work will be useful for the research community dedicated to

making computing more accessible to the deaf/ASL community. These researchers are in

many fields including virtual reality (VR), robotics, and linguistics.

1.3 Overview of Chapters

The remainder of this dissertation is organized as follows:

Chapter 2 contains the previous research related to this work. This includes methods to

capture and animate hand motion. We also highlight research on dimensionality reduction

and ASL synthesis for 3D characters.

In Chapter 3, we present two techniques for automatically synthesizing full-resolution,

high quality free-hand motion based on the capture of a select small number of markers.

We explain the benefit of using a smaller marker set and describe how we build our data-

driven approaches. The techniques employ nearest neighbor selection from a clustered set,
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principle component analysis, and locally weighted regression. We use these techniques to

reconstruct gestures and ASL.

In Chapter 4, we present a data-driven timing model to produce natural ASL fingerspelling

synthesis. The model is informed by findings that we extract from motion capture recordings

of a fluent ASL signer.

In Chapter 5, we qualitatively analyze the fingerspelling timing model presented in Chapter

4 to determine if it appears more natural than the common approach of using a constant

timing model.

Chapter 6 summarizes our methods and findings and also presents future work to be

investigated.
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Chapter 2

Literature Review

The following literature review comes primarily from the Eurographics 2015 STAR

report, State of the Art in Hand and Finger Modeling and Animation [146].

Everyday, we use our hands and fingers to perform complex tasks. They can move

with delicacy or force, executing a multitude of activities such as writing, eating, playing in-

struments, handling tools, and communicating (see Figure 2.1). Roman rhetorician Marcus

Fabius Quintilianus wrote:

As for the hands, without which all action would be crippled and enfeebled, it is
scarcely possible to describe the variety of their motions, since they are almost
as expressive as words. [64]

We touch, pick up, hold onto, and manipulate objects with our hands and fingers. We also

gesture and sign, complementing or replacing linguistic cues. This report summarizes the

many research efforts aimed at synthesizing hands and fingers that appear natural as they

perform the myriad of behaviors seen in their real-world counterparts.
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Figure 2.1: Examples of hand poses synthesized for various types of motion [59, 4, 156, 57].

People are keen observers of hand motion. Jörg et al. [57] showed that small

synchronization errors between hand and finger motions can be detected for delays as little

as 0.1s and that such errors can alter the interpretation of a scene. Wallbott [139] showed

that hand motion contributes to our perception of emotion. Gestures furthermore can

convey an individual’s personality [103, 102], and people can be recognized based on their

gesture style alone [150, 101]. Careful and detailed hand animation is thus essential in the

creation of convincing virtual characters.

The function of the hand follows from its remarkable structure, comprised of 27

bones, not including the sesamoid bone, in a compact space with an intricate arrangement

of muscles and tendons [99]. And so, this report begins with a discussion of hand anatomy

and how it has been modeled and simplified in computer animation (Section 2.1). A diverse

set of techniques have been proposed to animate said models, and we organize and highlight
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these next (Section 2.2). Specifically, the high bar for animation quality motivates the use

of capture techniques to record precise movement. Unfortunately, hands are difficult to

capture due in large part to frequent occlusions and changing contacts. In Section 2.2, we

discuss capture technologies along with data-driven algorithms that have been developed

to best take advantage of such recordings.

Due to the practical importance of hands, many application-driven techniques have

been proposed which often cut across methods and offer hybrid approaches to accomplish

the goals of a specific domain. We collate and summarize research in relevant applications

of hand animation in Section 2.3. Specifically, significant attention has been paid to the

creation of hand motion in gestural communication and sign language animation.

2.1 Virtual Hand Creation

To discuss the complexities of the many methods used to model hand and finger

animations, we must begin with a review of the basic biological structure of the hand. This

section describes the key anatomical elements and presents methods for modeling these

elements to create virtual hands.

2.1.1 Anatomy

The key components that comprise the basic structure of most animation models

include (a subset of) the bones of the hand and the joints that link those bones together.

Naming conventions for bones and joints are adopted from anatomical systems like the one

shown in Figure 2.2. Building upon this basic foundation, the real hand has ligaments
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Figure 2.2: The bones of the forearm, wrist, and hand [9].
Acronyms: CMC – Carpometacarpal joint, MCP – Metacarpophalangeal joint, PIP – Prox-
imal interphalangeal joint, DIP – Distal interphalangeal joint

that hold the bones and cartilage together and provide the hand skeleton’s flexibility while

muscles and tendons connect the bones and, through activation, create contractile forces

that torque and bend the joints (Figure 2.3). These structures appear as abstract (simple

joint torques) or more explicitly represented depending on the goals and purposes of the

hand model. Further details beyond those presented here can be found in anatomy reference

books or in work focused on the hands [106, 99].

The dexterity of the human hand is derived from the unique configuration of

bones, joints, and muscles. Namely, movement comes in the form of joint rotations: flexion,

bending in the anterior direction (for the hand this means that the fingers form a fist);

extension, straightening or bending in the posterior direction; abduction, movement away

from the center of the body (the fingers are spread); and adduction, movement toward the

center of the body (bringing the fingers together).
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Figure 2.3: The muscles of the forearm, wrist, and hand numbers by compartment: 1
– Abductor pollicis longus, Extensor pollicis brevis; 2 – Extensor carpi radialis longus,
Extensor carpi radialis brevis; 3 – Extensor pollicis longus; 4 – Extensor indicis, Extensor
digitorum communis; 5 – Extensor digiti minimi; 6 – Extensor carpi ulnaris [39]

Anatomically, the hand has 27 bones: eight bones in the wrist or carpus, five bones

in the palm called the metacarpals, and three in each finger and two in the thumb known

as the phalanges. Technically, the word finger refers to digits 2-5, the index, middle, ring,

and little fingers, but it is in practice (and in this publication) often used to refer to all

five digits including the thumb. The cluster of bones that make up the wrist or carpus

can be split into two rows where the proximal row articulates with the head of the two

bones of the forearm, the radius and the ulna, at the radiocarpal joint while the distal

row articulates with the base of the metacarpals at the carpometacarpal joints (CMC). The

distal phalanx of the thumb opposes that of the other four fingers. This opposition plays a

crucial role in human’s ability to perform grasping motions and in dextrous manipulation

in general and is rendered possible by the shape of the trapezium, the carpal bone which

articulates at the CMC joint with the metacarpal of the thumb. The four fingers have three
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phalanges, proximal, middle, and distal, while the thumb only has a proximal and distal

phalanx. The four fingers can articulate at their three joints: the metacarpophalangeal joints

(MCP) between the metacarpals and the proximal phalanges, the proximal interphalangeal

joints (PIP) between the proximal and middle phalanges, and the distal interphalangeal

joints (DIP) between the middle and distal phalanges. Because the thumb has no middle

phalanx, it can only articulate at its MCP and DIP joints. The PIP and DIP joints act

primarily as hinge joints and perform flexion/extension and can hyperextend to a small

degree. The MCP joints are more mobile and can also perform adduction and abduction

and experience medial (internal) and lateral (external) rotation. Finally, the cupping of

the palm, called the palmar arch, occurs between the CMC and MCP joints of the fingers,

particularly those of the thumb, ring, and little fingers.

The musclotendon systems in the hand are among the most complex in the body,

with connections across several bones in the hand driven by contraction in the forearm.

Further, the movement of the palm and fingers is directly related to the flexion/extension

and abduction/adduction of the wrist. For example, strong grip is achieved when the wrist

is in a neutral pose [106]. The muscles that flex and extend the thumb are separate from the

muscles responsible for flexing and extending the digits. The extensor digitorum communis,

a dominant muscle for digit movement, contributes to the coordinated way in which some of

our fingers move [106]. The index finger has a separate extensor (extensor indicis) and the

little finger a separate flexor and extensor (extensor digiti minimi). These separate muscles

give these digits more independence in contrast to the other fingers.
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2.1.2 Dimensionality and Redundancy

The hand moves in particular ways due to its anatomy, and while its degrees of

freedom (DOF) create affordances for complex movement, the hand’s motion is structured

in a manner that suggests order. For example, Somia et al. [123] found, along with a list

of other relationships, that 83% of finger flexion and 80% of finger extension begins in a

specific joint (the DIP for the index, middle, and ring fingers and the PIP for the little

finger). While this is not surprising given the anatomical structure of the hand (for a

discussion see [154]), it suggests that reduction in the complexity of the hand is possible.

Indeed, the motions of the hand have considerable redundancy and reducing the

degrees of freedom of the hand simplifies its animation. In an early paper on finger anima-

tion, Rijpkema and Girard [115] propose the following relationship between the distal and

proximal interphalangeal joints:

θDIP =
2

3
θPIP (2.1)

This equation has been used by several researchers to simplify their animation

models [119, 84, 46].

Since, many researchers have used techniques to explore and exploit redundancy

in hand movement. For example, principal component analysis (PCA) has been shown a

valuable technique for studying lower dimensional representations of hand motion [120, 10,

20]. Braido and Zhang [10] explore finger coordination in both grasping a cylinder, where

all four fingers flex at the same time, and in individual finger flexion, where each finger is

flexed one at a time. Through PCA, they find that the first two component dimensions
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explain 98% of the variance in the recorded motion. In another study, Santello et al. [120]

conclude that the first two components of PCA from a set of grasping poses account for

over 80% of the variance. PCA has also been used to reduce features for recognition and

capture techniques [15, 145].

Jörg et al.[60] use a distance metric to study correlations between the different

DOFs of the hand. Their approach analyzes which joint rotation DOFs are irrelevant and

which are redundant based on motion captured finger motions. To determine irrelevance,

they find joints whose rotation ranges are below certain thresholds. They find that out of

50 possible joint rotation curves in two hands, the ranges of 19 are below a threshold of 5◦,

out of which 11 are below a threshold of 1◦. A rotation of 5◦ is small and a rotation of 1◦

is barely noticeable. To find redundancy, they examine the root mean squared deviations

between pairs of standardized joint rotation curves to determine how accurately one rotation

curve can be expressed as a linear transformation of another one. Their results suggest that

hand models can be reduced from 50 to 15 DOFs for both hands combined without loosing

valuable information.

Hoyet et al. [45] investigate the perceived fidelity of finger motions captured with

different reduced marker sets. They find that movements captured with a set of eight

markers per hand, one on each fingertip, two on the palm, and one on the thumb’s CMC

joint, is sufficient to be perceived as very similar to movements captured with a set of twenty

markers. They recommend to use such a reduced marker set and to reconstruct the motion

using inverse kinematics in situations where the accurate finger curvature is not crucial.
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Capture
Technology

Accuracy Sources of
Error

Capture
Volume

Main Advan-
tage

Cost in
Money and
Time

Marker-based
optical

Excellent, although skele-
ton reconstruction intro-
duces some error

Occlusions,
especially
for complex
handshapes,
and marker
mislabelings

Small with
full marker
set, large
with re-
duced set

Accuracy Expensive in $,
time intensive
marker attach-
ment and post-
processing

Bend-sensor
gloves

No spatial position mea-
sured, some calibration
techniques target finger
separation, others just gen-
eral hand shape, accuracy
may be lower than for
marker-based optical sys-
tems

Cross-coupling
between sen-
sors, misalign-
ment of sensors
and joints,
fewer sensors
than hand
DOFs

Large No occlusions,
even in large
capture volume
or for complex
hand shapes

Moderate to
high in $,
calibration
can be time
consuming,
reconstruction
is fast

Markerless Op-
tical

Depends on hand shape,
better at capturing silhou-
ettes, complex hand shapes
are difficult to reconstruct

Occlusions
and inaccu-
rate depth
estimates

Small Easy and quick
setup, cheap

Cheap in $

Depth Camera Depends on hand shape,
better at capturing silhou-
ettes, complex hand shapes
are difficult to reconstruct

Occlusions and
sensor noise

Small Easy and quick
setup, cheap

Cheap to mod-
erate in $

Table 2.1: Comparison of motion capture technologies for recording hand motions.

2.2 Animation Techniques

2.2.1 Motion Capturing Hands

Finger data can be obtained through various forms of motion capture, including

marker-based optical, video tracking systems, RGB-Depth (RGB-D) sensors, gloves, and

tactile sensors. Menache provides a good overview of common techniques [95]. Below, we

summarize the main approaches used in our work along with recent advances. A comparison

of the basic motion capture technologies can be found in Table 2.1.

Optical marker-based motion capture. Optical motion capture has become an industry

standard for acquiring motion intended for character animation. It allows for the acquisition

of natural motion directly from an actor. Marker-based optical motion capture performs

triangulation using cameras in order to track the 3D location of markers attached to an
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actor’s body. Generally, an IK problem is then solved to fit a skeleton to these tracked data

points and the joint angles of the skeleton can be used to animate a character. A typical

system has 4 to 32 cameras that can record between 30 and 2000 samples per second

[69]. Commercial marker-based optical motion capture systems and companies selling them

include Vicon [135], NaturalPoint’s OptiTrack [105], Qualisys [112], and PhaseSpace [109].

Marker-based optical motion capture offers excellent positional accuracy if the

cameras are correctly calibrated and have a clear view of the markers. It can support a

large capture space for full body capture, which permits actors to move freely and multiple

subjects to be captured simultaneously. When applied to fingers, marker-based approaches

often require a much smaller capture volume. Fingers are small and have a large number of

degrees of freedom, requiring many small markers to be placed close to one another; usually

13-20 for a high quality capture. This includes two or more markers on each finger and

at least three on the back of the hand [69]. An example marker configuration can be seen

in Figure 2.4. In a large space, cameras may not be able to discern these markers, and it

is difficult to place sufficient cameras to avoid occlusion, for example when the performer

turns the palms up. These problems are alleviated in a small volume, where cameras are

brought in close to the actor’s hands to capture the motion, isolating the hand motion from

that of the full body. Occlusion remains a problem, however, if the actor, for example, curls

his fingers to make a fist or performs certain sign language signs. Occlusion is also possible

if there are other physical objects in the capture volume, especially if the actor is interacting

with them. A substantial amount of post-processing is generally needed to clean the data,

addressing marker occlusion and mislabeling.
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Figure 2.4: Hands outfitted with a fairly comprehensive marker set for optical motion
capture. Further markers could be added to capture the motion of additional joints such as
the CMC joint.

Researchers have explored methods for addressing these limitations. A common

approach to achieve both full body capture and hand capture is the use of a reduced marker

set [14, 15, 46, 62, 145], which allows for more marker separation and will allow the system

to better identify markers correctly [69].

Glove-based motion capture. Glove-based systems provide an alternative capture tech-

nology. Gloves became popular in the late 1980s as a way for humans to interact with

virtual environments, allowing for gesture input that uses the entire hand[125]. Gloves also

enable manipulation of objects in virtual environments [32, 143]. The MIT-LED glove was

one of the first gloves specifically made for tracking the motion of the hand for computer

animation[126]. Sturman and Zeltzer [126] and DiPietro et al. [27] have both presented

surveys on the different available glove technologies and their applications.

This section will focus on gloves with bend sensors – “sensored gloves” – as they

are prevalent in current hand animation research. These gloves feature attached sensors

that directly measure hand and finger joint angles. Thomas G. Zimmerman created what is
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recognized as the first sensored glove in 1982 [27]. The glove used an optical, flex-mounted

sensor to measure the bends in fingers [157]. Current gloves are often made of Lycra and the

sensors are sewn onto the fabric. Some current sensored glove brands include CyberGlove

Systems [23], DGTech Engineering Solutions [26], Fifth Dimension Technologies (5DT) [30],

and Measurand [93]. A pair of CyberGloves is shown in Figure 2.5. The gloves use different

sensors and have different designs and sensor configurations. As a result, some may be

better at performing certain tasks than others. Many of the different designs are explained

by [95] and [27]. The CyberGlove has piezoresistive sensors that convert joint angles into

voltages. By contrast, 5DT’s Data Glove uses optical-fiber flexor sensors with LED lights

attached to one end. When light is returned to the phototransistor on the other end, the

intensity of the returned light acts as a measurement for how much a joint it bending[27].

Common design specifications for sensor placement include sensors measuring the

following motions:

• flexion/extension of each finger’s DIP, PIP, and MCP joints

• flexion/extension of the thumb’s IP, MP, and MCP joints

• abduction/adduction of each finger

• wrist flexion and abduction/adduction

• the arch of the palm

Gloves have been used in a range of applications with different accuracy require-

ments, including sign language [49, 86], gesture [51, 56], virtual environment interaction
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Figure 2.5: A pair of CyberGloves, sensored gloves made by CyberGlove Systems.

[61, 96], robotic tele-operation and object manipulation [31, 40, 47]. Sensored gloves are

appealing because they can be used in a large space or outdoors, avoid the major problem

of occlusion, and are a natural interface for hand data capture. Unfortunately, many gloves

also suffer from problems of sensor cross-coupling, where a movement may bend multiple

sensors, including some sensors intended to measure a different motion, noise and, to a

lesser degree, sensor nonlinearity. As a result, their joint angle accuracy may not be high

enough for a detailed finger capture [61]. The gloves need to be accurately calibrated to

capture data for each subject and this calibration process may need to be repeated often,

for example, between wearings.

Recently, alternative glove technologies have emerged that utilize small inertial

sensors to track hand and finger motion. Examples include the Synertial’s IGS-Gloves [127]

and the gloves included in a system from two recently funded Kickstarter projects called

Control VR [22] and Perception Neuron [104]. Inertial sensors measure the rate of change in

orientation or velocity. A limitation is that to calculate position and orientation accurately

the output of all of the sensors must be unified and integrated over time [27]. As these
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systems are in development, research will have to show how they compare to other finger

capture systems.

2.2.2 Data-driven Methods

The challenges and significant time to create finger motion notwithstanding, ac-

curately captured finger motions are very convincing and exhibit a high degree of realism.

Data-driven techniques provide methods for synthesizing new movements using previously

recorded or created motion of any style. They allow for the re-use of motion data, adapting

it to new situations.

Data-driven methods have been used to solve a range of problems, such as si-

multaneously capturing full body and detailed hand movement, synthesizing gestures for

conversational characters, or computing parameters for procedural algorithms. Many ap-

proaches employ or are inspired by existing data-driven animation methods, for example,

dynamic time warping (DTW) and motion graphs, or common data reduction or machine

learning models, such as principal component analysis and hidden Markov models, and

specifically adapt them to the creation of finger motions or gestures.

Dynamic time warping (DTW) is used to compare two temporal signals or to

adapt the timing of one signal to another [12]. Majkowska et al. [89] present a technique

that relies on DTW to capture detailed finger and body motions. As finger and body

motions are difficult to capture simultaneously due to differences in the sizes of the motions

and markers, the authors suggest capturing the motion of the body and the hands in

two separate sessions, recording the detailed finger motions in a smaller area where the

performer remains standing or seated. The positions from four markers on the hand, wrist,

24



and forearm are included in both captures, which allows for a later alignment of the hand

and body motions in their three step algorithm. First, movement phases (preparation,

stroke, hold, and retraction, further explained in Section 2.3.1) are matched using DTW

based on acceleration and velocity profiles. Then, again with DTW, the frames within the

matched phases are aligned to the frames of the full body motion. Finally, the resulting

motions are smoothed to fit together seamlessly (see Figure 2.6).

Figure 2.6: Example of full body animation with detailed hand motion from the splicing
method proposed by Majkowska et al. [89].

A class of techniques rely on motion databases. For example, to create finger

motions for arbitrary new sequences of body motions, an option is to use a database in

which both detailed finger motions and body movements are present. An inherent limitation

of this type of approach is that only finger motions that are available in the database can be

created and that there is no guarantee that the resulting finger motions correspond to the

movements intended by the performer. However, it has the advantage that such a database

only needs to be captured once and can then be reused as often as needed.
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When separate hand and body databases are used, the challenge is to select and

combine the best matching finger motion segments from the database. Jörg et al. [59] use a

database to augment the body motions of gesturing virtual characters with plausible, high-

quality finger motions. They find that, amongst the tested variables, the best predictor

for consistent finger motions is a combination of the wrist position and rotation. Once

the body motion and the database are segmented into phases, the combination of wrist

position and orientation is used to select the k best matching finger motion segments from

the database for each motion segment, adapting shorter and longer segments using DTW.

The final sequence of movements is determined by first creating a graph weighted by how

well finger and body segments match and how well consecutive finger motions blend into

each other and then finding the shortest path through it with Dijkstra’s algorithm.

Many further methods use databases as a starting point. Stone et al.’s [124]

database consists of prerecorded speech and arm motions. Based on linguistic and behav-

ioral rules they design a motion graph and find a path through it minimizing an objective

function that scores how well adjacent elements match. The result is an animated conversa-

tional character with speech and gestures. They also use a time warping approach to fit the

motions to the different speech utterances. Levine et al. [80] synthesize the arm motions of

conversational characters using speech as input. Their approach uses prerecorded motion

capture and audio data of conversations to train the model. Animations are produced by

selecting motions from the training based on prosody cues in a live speech signal. A spe-

cialized hidden Markov model (HMM) is used to perform the selection and ensure smooth

transitions between movements. This method allows the authors to generate hand and
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body motions for arbitrary audio input provided by a microphone in real time. In further

work, Levine et al. create a two layer system to model the connection between prosody and

gesture kinematics [79]. The first layer, the inference layer, infers a belief distribution over

a set of states that represent the kinematics of the motion from a training database. The

control layer then selects the appropriate gestures based on the inferred distribution. They

found that animations generated using this method are preferred over animations generated

using the HMM approach.

Other researchers take advantage of the redundancy in hand motions and combine

databases with reduced marker sets to synthesize motion. Kang et al. [62] and Wheatland

et al. [145] both use a reduced marker set on the hands to capture the hand and finger

motion and then use a reference database to reconstruct finger motions for the final an-

imation. The databases contain prerecorded high resolution finger motion similar to the

motion being reconstructed, and synthesis is performed by finding the pose in the database

that most resembles a low resolution input pose. Wheatland et al. [145] use principal com-

ponent analysis (PCA) to select a sparse marker set and to build a regression model. For

reconstruction, input marker positions from the reduced set are mapped to the joint angles

of the hand through the computed PCA in order to produce the full-resolution hand signs

as output.

Data-driven approaches have also been used with glove-based input. Wang and

Popović [141] propose a system that tracks hand motions in real-time using a glove with

a distinctive, colored pattern. For their method, shown in Figure 2.7, a pose database is

built with a large set of prerecorded 3D hand poses and then is sampled to encompass the
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full hand pose space. A nearest-neighbor algorithm is employed to search for poses in the

database that are similar to the query input from the glove, and the most similar poses

chosen are blended together to get the estimated result.

Rather than reconstructing motions, some techniques aim to extract particular

features from hand data to classify and identify the input [27]. Markov models and neural

networks have been used to classify input in multiple gesture recognition systems [98, 82,

24, 94]. Using a CyberGlove, Weissmann and Salomon [144] explore the question of how to

map the angular measurements received from sensored gloves to predefined hand gesture

poses. To this aim, they test the performance of different neural network models on set

poses. Using training sets comprised of 200 different hand poses, they find that a simply

trained back propagation neural network classifies their set of gestures better than a radial

basis function neural network. Plancak and Luzanin [110] use a low-budget glove, the 5DT

Data Glove 5 Ultra, and train a probabilistic neural network to recognize gestures of fully

open or fully closed hands. Their method uses clustering algorithms to reduce the training

data size and allow for shorter execution times without significant loss in training quality.

Finger motion data is also used as an input to drive animation and several re-

searchers have employed it to animate objects other than hands. Using data-driven ap-

proaches and approaches combining glove recordings and simulation, controllers have been

developed, for example, to animate biped characters using hand or glove input [24, 141, 53,

85].

One general drawback of data-driven methods is their lack of adaptability to dif-

ferent situations. The smaller the collection of prerecorded motion, the more limiting a pure
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Figure 2.7: The pose estimation process proposed by Wang and Popović for use with their
colored glove. The original captured image is represented as a normalized tiny image. The
image is an input query for a nearest-neighbor search algorithm that returns a corresponding
pose from a database [141].

data-driven approach is. This problem can be solved by adding simulation to the approach.

The combination of motion capture data and simulation allows the data to be augmented

with a physical model and adapted to new situations. An example is the work of Kry and

Pai [77], who synthesize hands interacting with different objects. They use motion capture

data as a reference motion and add a simulation to generate new hand motions. Ye and Liu

[151] add detailed manipulation and grasping motion to a full body character by using an

algorithm that determines the best hand shape to use based on a set of hand-object contact

positions. Inputs to the system include motion capture data of an actor’s body, including

the movement of the wrist, and the motion of each object that is manipulated by the actor.

Multiple contact positions are sampled to find a hand shape that can be reached from the

hand’s current shape and can match the motion of the wrist and the object. Zhao et al. [155]

synthesize similar interactions combining marker based motion capture data with RGB-D

cameras. A database of ten different grip shapes is captured holding a variety of objects.

Contact force information is then manually applied to the different grip shapes. Motion

captured data has also been used to compute the best parameters for physical models [111].
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2.3 Applications

2.3.1 Communication

Gesture is a key component of nonverbal communication, and an important aspect

of communication overall. Gesture animation focuses largely on the hand, considering posi-

tioning, timing, and hand shape, and represents an important application of hand animation

to support communication. The movement of individual fingers is not always considered and

is not a focus of this section. Jörg et al. [59] propose a method to automatically add finger

animation to body motions for conversational characters that can be used in combination

with approaches where this type of motion detail is not provided.

Human gesture and speech is produced together from what is commonly thought of

as a single communicative intent [64, 92]. Systems that generate conversational characters,

such as the SAIBA project [117], tend to follow this idea, combining speech and gesture to

produce high level communication. A recognized model for gesture production is the Prep,

Stroke, Retraction (PSR) model of gesture phases. The PSR model was first developed by

Efron [28], an anthropologist, and later refined by Kendon [63] and others [68]. According

to the PSR model, a gesture can be divided into a set of phases as follows:

gesture→ [ preparation ] [ hold ] stroke [ hold ][ retraction ] (2.2)

The meaning of the gesture is carried by the stroke phase. As such, a gesture should

always have a stroke phase, with the other phases being optional, except for independent

holds (stroke holds) [68, 91]. The preparation phase places the arm, wrist, hand, and fingers
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in the proper configuration to begin the stroke [68]. In the retraction phase, the arm

returns to a rest position. It is generally thought that the hold phases exist to synchronize

the motion of the gesture with speech [25, 91]. Hold phases could also convey that the

speaker maintains a state for a certain length of time. The PSR model provides the basis

for many gesture synthesis algorithms.

A large number of researchers have studied how to produce gesture animation.

The two key problems are to determine which gestures should be performed in a given

situation and to generate appropriate animation of those gestures. Animation techniques

have included procedural approaches, data-driven techniques, and physical simulation. Sig-

nificant attention has been paid to controlling the style of the motion and synchronizing it

appropriately with speech.

Modeling the style of gestural movement is necessary in order to create a sense of

character and personality. Chi et al. [16] designed the EMOTE system by using the Effort

and Shape components of Laban Movement Analysis (LMA) to define a set of animation

control parameters. Effort, for example, consists of four parameters: Weight, Space, Time

and Flow. Each parameter has two poles; for example, Weight ranges from Light to Strong.

An animator can change the Weight parameter and the resulting animation will be more

delicate or more powerful. The system is kinematic with hand tuned mappings between

the LMA parameters and spatial and temporal controls. These mappings were validated

through a user study.

Hartmann et al. [42] focus on creating believable Embodied Conversational Agents

(ECAs), specifically for information delivery. Their approach takes a user inquiry as input
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and responds with an agent trained in the specified domain of knowledge. They introduce a

kinematic animation system, the Gesture Engine. Follow-up work [43] extends this approach

to provide parametrized, expressive control of arm gestures. They model the parameters:

overall activation, spatial extent, temporal extent, fluidity, power, and repetition.

With an emphasis on creating natural motion, Kopp et al. [72] present a gesture

animation framework based on neurophysiological research to control the timing of novel

iconic gestures. Iconic gestures focus on visual representations of concrete entities, for

example, when describing an object, imitating an action, or giving directions.

Neff and Fiume [100] introduce a system that uses editing operations designed

based on the arts literature to modify the style of an animation sequence. They automate

these style modifications for complete sequences through the use of customizable character

sketches.

Gibet et al. [38] apply invariant features that should be maintained in gesturing

agents, including Fitts’ law [33], the two-third power law [137], and gesture movement

smoothing [34, 132] following motor control theory, and then give a brief discussion on how

these laws can be applied to motion generation and editing.

Data-driven techniques are popular for gesture animation as they provide high

quality, natural motion. The variation space for gestures is very large, so it can be a signif-

icant obstacle to capture data for the massive range of feasible interactions. As discussed

earlier, data-driven approaches may also offer less control over the motion, particularly if

they are limited to playing back previously recorded motion. Motion graphs have been used

in several approaches. Stone et al. [124] present a system that uses a motion graph across
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combined data of speech and animation. Generating different paths through the motion

graph provides different multimodal output sequences with synchronized gesture and speech

as feedback for a video game player. Fernandez-Baena et al. [29] develop a Gesture Motion

Graph (GMG) for generating gesture animation sequences and then use synchrony rules to

match the intensity of gestures to the intensity of the speech.

Some recent approaches have applied machine learning techniques to try to gen-

eralize gesture models from data. Based on an extension of deep belief networks, Chiu

and Marsella [18, 17] use hierarchical factored conditional restricted Boltzmann machines

(HFCRBMs) [128] (extending [129]) to generate gesture sequences from data, triggered by

prosody. Later, Chiu and Marsella [19] use dynamic Gaussian Process Latent Variable

Models (GPLVMs) [140] to learn a low-dimensional embedding of gesture data and find

smooth connections between gestures in this space.

The relationship between speech and gestures was often specified with a custom

representation language that was paired with an animation system. For example, the Ges-

ture Engine by Hartmann et al. [42] realizes an abstract scripting language for specifying

gesture definitions by synthesizing gesturing behavior. Kopp and Wachsmuth [73] generate

human-like multimodal utterances, gestures, and concurrent speech for a virtual conversa-

tional agent that interacts with humans. Later, Kopp and Wachsmuth [74] extend their

work to develop the Multimodal Utterance Representation Markup Language that is used

to specify body and hand gestures, facial expressions and prosodic speech synthesis.

These early specification languages led to the Behavior Markup Language (BML),

an XML description language for specifying the verbal and nonverbal behavior of embodied
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conversational agents [71, 136]. BML is meant to be independent of any particular system

and a BML realizer is an animation engine that can transform BML into character anima-

tions. A number of researchers have developed BML realizers, such as Elckerlyc [133], a

BML realizer for generating multimodal verbal and nonverbal behavior for virtual humans;

SmartBody [130], a BML realizer that also provides locomotion, steering, object manipu-

lation, lip syncing, and real time gaze control; EMBR [44], which supports micro-planning;

and Greta [90], which features significant facial control. BML realizers generally follow

a procedural approach and play back either key framed or motion captured examples of

gesture, sometimes with parametric variation.

Numerous techniques have been developed to determine which gesture should

be performed to accompany a given passage of text. The Behavior Expression Anima-

tion Toolkit (BEAT) [13] is an enhanced rule-based text-to-speech system that takes plain

text/script as input and uses a set of predefined rules to automatically generate prosody

and speech synthesizer intonation, facial animation, and gestures. Stone et al. [124] use a

multimodal data corpus that captures the relationship between speech and gesture. The

work of Kipp and colleagues [65, 66] and Neff et al. [101] uses a statistical model of individ-

ual speaker behavior to predict how a particular person will gesture, given input text. The

nonverbal behavior generator presented by Lee and Marsella [78] is another rule-based tool

for automatically generating believable nonverbal behaviors for embodied conversational

characters by analyzing syntactic and discourse patterns. Bergmann and Kopp [7] pro-

pose a data-driven model for integrated language and gesture generation that can account
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for systematic meaning-form mappings, where speaker preferences are learned from corpus

data. Bergmann et al. extend these approaches by also including a cognitive model [6].

Focusing on audio instead of text, Levine et al. predict the timing and type of

gesture based on the prosody of the audio signal using first hidden Markov models [80]

and then conditional random fields [79]. Chiu and Marsella follow a similar approach using

HFCRBMs [17] and then extend this approach to a two level technique that first predicts

the type of gesture from input audio using Conditional Random Fields and then generates

the required motion using GPLVMs [19]. Fernandez-Baena et al. [29] use synchrony rules

to match the intensity of gestures to the intensity of the speech. Models based purely on

prosody recognize the important correlation between gesture timing and audio changes (e.g.

explored in [67, 142] ), but cannot account for deep semantics. Newer work seeks to address

both, for example, the Cerebella system [81].

2.3.2 Sign Language

An important and challenging application for detailed hand and finger animation

is depicting sign language. Tools that can produce quality sign language animation can be

very useful for members of the deaf community. Over the years, many projects have explored

ways to recognize and create hand signs, leading to major innovations in the creation of

detailed finger animations. For example, in the 1980s, Kramer and Leifer wanted to build

a portable system for the purpose of sign recognition and for sign language to spoken word

translation [75]. Out of this research came the first CyberGlove [76], which was instrumental

in the more recent research on this topic.
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Figure 2.8: The technique used by Lu and Huenerfauth to create a motion capture ASL
corpus: (a) Motion capture setup consisting of a bodysuit with intertial and magnetic
sensors, an acoustical/inertial sensor for the head, two CyberGloves, and an eye-tracker; (b)
An animation generated from the motion capture data; (c) An animation of their character
Sign Smith performing a sign [87].

Adamo-Villani and Beni [2] created an educational tool to teach people to sign and

read finger spelling. They use a realistic hand model with a skeletal deformation system

that closely resembles the skeleton of a real hand. Their belief is that realism helps to

better identify the shape and position of the hand. The arm and hand are animated using

a combination of forward and inverse kinematics. Their tool, which runs in Maya, allows a

user to input text and the hand will spell out what was written. They also provide controls

to manage the speed of the motion, the rotation of the hand, and the camera angle.

A Chinese sign language recognition and synthesis system is proposed by Gao

et al. [37, 36]. Using a data glove to provide input data, they initially use a fast-match

algorithm to find a list of words from their vocabulary that is similar to the input. Then

they assign probabilities to the words based on context and search for the most likely word.

Their system also captures facial motion to apply it to the signing avatar.
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In 2010, Lu and Huenerfauth describe how they create a motion capture ASL

corpus [87]. They captured body movements and hand signs from native signers using a

combination of sensored gloves, motion capture, eye-tracking, and video. Figure 2.8 shows

their capture setup and an example of their animated character. The collected data is then,

for example, used to produce inflected verb signs [88]. For this type of signs the motion path

varies depending on the location in space to which the object and, if present, the subject

have been assigned on an horizontal arc-shaped space around the signers body. Huenerfauth

and Lu’s previous work uses a database created by human signers with the sign language

animation tool VCom3D Gesture Builder [50]. A third-order polynomial model is fitted to

each location parameter for each hand, keyframe, and verb. Based on this parameterization,

inflected verbs for new subject and object locations can be generated. The same method is

then applied to motion captured data [88].

Sign language has also been used for evaluation purposes or as a testbed for new

methods, for example, in the work of Adamo-Villani [1] and Wheatland et al. [145].

Fingerspelling There are cases though when words do not have a pre-defined sign. In

these cases, words are spelled verbatim using the individual signs of the ASL alphabet (see

Figure 2.9). This practice is called fingerspelling. ASL fingerspelling has also been described

as a ”signed representation of written English” [148]. Language elements often fingerspelled

include proper nouns, acronyms, and technical terms [121].

Producing fingerspelling animations is a useful practice that can likely aid in the

creation of more realistic ASL animations. This is because many of the signs used to
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Figure 2.9: The American Sign Language alphabet.
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fingerspell are hand shapes used throughout ASL as well. Also, words that are fingerspelled

can be segmented in a manner similar to that of ASL sentences and phrases [148]. Liddell

says that signs can be segmented into movements and holds, where a movement is when the

hands are in motion arriving at a pose, and a hold is when the hands maintain a pose for

some amount of time [83]. Sandler proposes a model where instead of signs going between

movements and holds, signs actually go between movements and locations [118]. In her

model, holds are a subset of location, with location being where the hands are in space as

they convey the meaning of the sign. Wilbur expands upon this model by stating that the

path movement constitutes a change in location [147]. This means that location (hold or

target positions) is directly opposed to movement or transition. These models also apply

to fingerspelling. Therefore we can look at fingerspelling as a series of path movements

between locations. For simplicity, the path movements will be called transitions and the

locations will be called holds or pose holds.

An important step in analyzing how fingerspelling is performed is understanding

how speed and timing play a part in the process. In general, three forms of fingerspelling

have been identified. Patrie and Johnson use the following terminology to describe these

different forms of fingerspelling [108]:

• Careful fingerspelling - slower spelling where each letter pose is formed

• Rapid fingerspelling - quick spelling where letter poses are often not completed and

signs/letters contain remnants of other signs/letters in the word
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• Lexicalized fingerpselling - spelling that often uses no more than two hand shapes to

convey the meaning of a word; looks more like a sign than fingerspelling [5]; used for

more common expressions (ex. ”Haha” gesture to convey laughter)

Many of the studies that have been done on fingerspelling speed have focused on

rapid fingerspelling as it is the more natural way of fingerspelling for those fluent in the

practice. Those who are fluent fingerspellers and skilled signers tend to not create each

individual letter when fingerspelling, but to instead form a ”finger configuration” [153] or a

fluid motion from one hand shape to the next. As such, sometimes certain letter signs are

actually missing from a fingerspelled word, but those that are adept to reading fingerspelling

see the fingerspelled word as an entire word and can comprehend it even if letter poses

are not completely achieved or are missing [41] [108]. Fluency in fingerspelling is more

about being able to form a steady flow of signs than it is about just speed. Some people

fingerspell with jerky or stacatto-like motions while others sign too smoothly without any

clear translation between letters [148]. The former approach usually renders slower spellings

and may show that the person is not very fluent in fingerspelling. The second approach can

result in very fast spellings, but may also show that a person lacks fluency. It also makes

the words difficult to read. Good fingerspelling has a smooth and steady rhythm [148, 108].

Various experiments have been performed over the years to extract information

about the speed of fingerspelling and verify its importance. In her dissertation work, Patrie

says that the average speed per letter in the series of fingerspelled words she looked at is 168

to 200 milliseconds (ms) [107]. Other reported average rates per letter include 162 ms/letter
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from Zakia and Harber [153], 213 ms/letter from Wilcox [148], 250 - 333 ms/letter from

Jerde et al. [54], 170 ms/letter from Hanson [41].

Quinto-Pozos looks at letter speed in relation to the length of words [113]. He

analyzes letter speed for short words (3 or fewer letters) and long words (4 or more letters)

in a speech like setting to determine if the length of the word affects the speed at which

the letters are signed. He finds that short words are signed at an average rate of 7.08

letters/second (141 ms/letter) and long words are signed at a rate of 7.65 letters/second

(130 ms/letter) meaning that longer words are fingerspelled at a faster speed than short

words. All of the words in the study had an average speed of 5-8 letters/second (125 - 200

ms/letter).

Some researchers have also investigated whether or not fingerspelling speeds change

for words that are spelled multiple times in a single setting. Patrie and Johnson state that

the first instance of a fingerspelled word is typically spelled carefully and later instances

are spelled rapidly [108]. To test this statement, Thumann conducts analysis on a single

word fingerspelled 23 times in a conversation [131]. The word is M-O-B-I-L-E, the city in

Alabama. She finds that the word experiences a reduction of frames with the first instance

occupying 34 frames and the 23rd instance occupying 14 frames at a frame rate of 29.97

frames/second.

Recent fingerspelling animation methods have focused on creating anatomically

accurate hand shapes for each letter and interpolating between these shapes. Often these

letters are presented at a constant rate, which is not consistent with how words are finger-

spelled [148]. Interpolation is a useful tool for transitioning from one pose to another, but
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Figure 2.10: Interpolation examples from Sedgwick et al. [121] where a. shows a straight-
forward interpolation between “M” and “A” with unnatural collisions occurring and b.
shows the same interpolation using an intermediate hand pose to avoid the collisions.

in fingerspelling, many pairs of letters would experience finger collisions if straightforward

interpolation were employed.

Sedgwick et al. combat the problem of straightforward letter to letter interpolation

by creating intermediate hand poses for transitions between letters with complex hand

shapes (Figure 2.10) [121]. These animations are presented to participants in a study at

varying speeds, with many participants preferring to view the animations at what they state

is a relatively high speed rate of 2.5 letters/second. This speed is noticeably slower than

the rates of speed derived in the previous fingerspelling studies. Each letter pose is fully

formed and is shown for the same amount of time.

Huenerfauth states that the timing of ASL performances is more complex than

the single variable of speed [48]. There are many other factors that are needed to determine

the timing of a natural ASL performance. This also holds true in fingerspelling. Some

letter shapes, by virtue of how they are formed or where they occur in the word, are
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fingerspelled faster or slower than others. To form animations, Huenerfauth uses a software

called SignSmith Studio made by the company Vcom3D [134]. This was a commercial

software that could be used to create sign language animations with various parameters

(Adamo-Vallani also used this software to create fingerspelling videos for [1]). To produce

fingerspelling animations, Huenerfauth applied a parameter of 243 ms per letter hold to all

of the letter poses except the last letter which was held for 800 ms for emphasis. Even at

this speed, which is slower than the speeds noted as being natural in the above studies,

participants found these fingserspelling animations difficult to understand.

Adamo-Villani and Beni use a similar method to interpolate between their keyframed

letter poses [2]. If a word involves transitioning from one letter to a different letter, the first

letter is formed fully and then the hand model begins to transition to a neutral position or

pose. It does not complete this process as it uses a blending algorithm to blend the neutral

pose with the pose of the second letter. The transition to the neutral pose is also used

to create smooth transitions without finger collisions. They also allow certain parameters

to be programmed into their system to account for some of the variable speeds found in

fingerspelling. These include pauses after the last letter of a word, speeding up the signing

of syllables, and speeding up the signing of certain double letters.

In a comparative study, Adamo-Villani produced 20 fingerspelling animation clips,

10 of words produced using keyframing and 10 of the same words produced using motion

capture [1]. The findings show that users preferred and better understood the keyframed

animation, citing jitter in the motion capture animations as a reason. The keyframed

animations used interpolation for letter transitions, but were then manually edited to remove
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collisions and the animation curves were manually edited so that the timing better matched

that of the motion capture recordings. The author compares her findings to synthesized

speech; although words are produced in a manner that can be easily understood, they are

be performed in a manner that is unnatural and robotic.
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Chapter 3

Automatic Hand-Over Animation

for Gestures and American Sign

Language from Low Resolution

Input

Producing quality whole-body motion involves the movement of the hand in rela-

tion to the rest of the body. Hand motion is a critical part of many animations in which

a full-body character is present. This is particularly true for communicative characters.

These characters must move their arms and hands to appear as if they are communicating

in a natural way. Avatars for American Sign Language (ASL) must also have accurate

hand poses and motions, because every hand pose has a specific meaning. However, as
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we’ve noted, animation of the hand can be difficult, especially where realism and natural

motion are important.

Hand-over is a term used in the animation industry to refer to the process of

adding hand animation to pre-existing full-body motion. This is often done by animating

the hand to match the full body motion instead of animating both simultaneously. Though

this approach can work with general conversational gestures, animating sign language is

more challenging. This is because sign language involves very specific poses and motions

performed by the hands and the full body. Being able to animate or record these components

simultaneously is advantageous for this type of motion.

While high-quality, full-body motion capture is a popular means for animating

realistic characters, hand animation is most often not recorded at the same time as the

motion of the full-body for a number of reasons. When using a motion capture system, it

can be difficult to record the full body of a moving person while also capturing the hand

and all of its detail because, as stated in Chapters 1 and 2, the whole-body and hand appear

at largely different scales. Though it is possible to record a high-resolution capture of the

hand through a comprehensive set of markers (typically 13 - 20 markers), this is often only

possible in a small capture region, isolating the motion of the hand. However, in a larger,

full-body capture region, the complete set of markers becomes difficult to discern and can

be plagued with occlusion. As a result, in production, this approach usually abandoned and

instead hand-over animation is applied to full-body capture sequences through a manual

post process. Another approach is to capture a reduced set of markers (2 - 6 markers)

coupled with a hand-over process for reconstructing the full hand animation.
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In this chapter, we present two robust techniques to accomplish the latter, that

both automatically select the reduced or “sparse” marker set. Each method uses a high

dimensional database of pre-recorded hand motions to produce a series of hand poses and

reconstruct the original motion. As an alternative to capturing the full-hand motion at the

same time as the body for our input motions, we capture the reduced set of markers and

subsequently produce joint trajectories for a full hand from the sparse marker set. By using

a pre-recorded database to animate the hand, the quality of the motion can be controlled

and can look as good as a full-resolution capture. However, because we only use a small

number of markers at the time of capture, recording and clean-up are much less troublesome

than a full-resolution capture.

A stand-alone goal of this chapter is to objectively determine which is the best

set of m markers to use for the hand, given that m is the size of the small number of

representative hand markers to be used. Choosing a small number for m alleviates issues

related to simultaneous hand/full-body capture. We set our sights on determining the best

set of m markers from the total M markers used for the full resolution hand. Rather than

selecting this set by hand as others have [45], we determine which marker set is best based

on specific criteria. The first method uses a brute force representative cluster-based search

and the second method uses principle component analysis (PCA) [8] to rank markers by

order of importance to the reference motion. In our results, shown in Figures 3.2 and 3.4,

we highlight sparse marker sets of three and six markers. Our hypothesis is that by using

the best m-marker set, high-quality full-resolution data can be constructed from new test

signals.
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Both techniques focus on the reconstruction of free-hand motions, those that do

not include manipulation of the hand within the environment. Animations of free hands are

prevalent in gesture, communication, and many other activities. In contrast, manipulation

tasks are more constrained, which affords a unique set of pros and cons. For example,

techniques such as the one proposed by Ye and Liu [151] exploit contact constraints to

construct hand motion when recorded data for the hand is not available. Conversely, free-

hand motion must derive its shape from other sources to remain natural. Our approaches

take advantage of a rich database to produce natural free-hand motion that includes gestures

and American Sign Languages signs.

3.1 Gesture Reconstruction from Clustered Pose Database

3.1.1 Sparse Marker Selection

To initially frame the problem of selecting the m-marker set, we assume that we

start from a given database of full-resolution markers and that some subset of the full M -

markers will be employed for the production of the hand motion in the absence of the full

marker set. Data for the hand motion database is recorded using the protocol described in

A.

For comparing frames, we define an error metric as the sum of Euclidean distances

(ED) between a given set of markers. We test every permutation of m marker configurations

by computing the nearest neighbor (NN) error from the pose database to each frame of a

test sequence of motion. We rank these trials to find the best m-marker set based on the

average error for each permutation. Note, this test sequence is not a part of the original
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corpus, likewise for all subsequent query motions, etc. in the paper. By rank ordering the

error associated with each m-marker combination, we find the best marker set for the given

inputs. We summarize this procedure in Algorithm 1.

Algorithm 1 Ordering markers based on NN error from a clustered pose database.

procedure marker set search(m, p, database)
Vector marker influence
for i = every permutation of m markers do

for k = every frame from test sequence do
i′ = extract marker set(i, k)
for j = 1 to p poses do

j′ = extract marker set(i, j)
j err = ED(i′, j′)
if j err < best j err then best j = j
end if

end for
i err + = ED(i′, extract marker set(i, best j ))

end for
if i err < best i err then best i = i
end if

end for
return best i

end procedure

3.1.2 Database Construction

One assumption built into our approach is that we start from a database that

encodes the full, rich expression of the hand that we expect to see in the final animation.

While a very large database affords this assumption, clearly the size of the database is at

odds with the efficiency and utility of the algorithm.

To produce a database of representative poses, we apply a selection process which

picks unique poses from a large source database. To this end, we employ clustering on

the large raw set of motion capture frames from a full-resolution capture of the hand and
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whittle down the large corpus (of over 10,000 samples in our case) to a small but sufficient

database of a select number of p poses. This clustering operation removes redundancy from

the raw data. In practice, we found that k −means clustering [35] worked sufficiently for

the purposes of splitting the data into like p groups and we then take a representative pose

from each cluster. We use this pose in the final dataset. The algorithm computes distances

between poses via ED of the full M -marker set and clusters into p ∈ {50, 100, 500, 1000}

groups. In the results, we use a p-pose dataset of 1000 samples. For more rich data captures,

a larger number of poses may be desirable.

3.1.3 Reconstruction

We produce the hand-over animation from low-resolution marker sequences through

a straightforward reconstruction process. Starting from a sequence of low resolution data,

the process finds the nearest example in the pose database using the wrist-aligned ED error

metric. The best pose replaces the original data as a complete substitution for the low-

resolution marker set for that frame. We opt to replace the full-hand to maintain pose

fidelity.

Since the synthesized full-resolution marker data is computed pose-by-pose, it will

be discontinuous over time. We perform a filtering pass on the marker data to smooth the

individual marker trajectories and make them continuous over time. We employ a cone-

filter for this process. We take some care to choose a width of the kernel to preserve features

and found that a 15-sample width was acceptable for our 120 hz sampling rate. Finally, we

perform the mapping of the filtered data employing the procedure described by Zordan and

Van Der Horst [158]. Note, our motivation for this choice is to create a synthetic virtual
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Figure 3.1: A selection of frames contrasting the output of our system (right - each frame)
with the original data (withheld from the database for testing).

p/m 2 4 6 Full

50 1.2 (σ = 0.38) 1.1 (0.31) 1.1 (0.32) 1.0 (0.27)

100 1.1(0.32) 1.3 (0.40) 0.88 (0.21) 0.86 (0.19)

500 1.0 (0.57) 1.0 (0.54) 0.68 (0.23) 0.65 (0.21)

1000 0.88 (0.27) 0.80 (0.35) 0.65 (0.23) 0.62 (0.20)

Table 3.1: Average error and standard deviation (cm) based on number of poses and number
of markers chosen.

marker dataset and separate this process from the fitting approach used as this method is

likely specific to existing pipelines. Sample results appear in Figure 3.1.

3.1.4 Results

Our goal is to reconstruct hand gestures for communicating characters. To build a

corresponding database, we record an actor performing common conversational gestures and

then engage the actor in conversation and record his natural gesticulations. As previously

stated, we end up with a dataset of over 10,000 frames or sample poses.

We assess the choice of the number of poses p and the number of markers m based

on their average ED marker error for all markers. Table 3.1 summarizes our findings with

the average error per marker for various database sizes. From the findings, we conclude a

marker set of six markers is sufficient, and the sets of two and four are surprisingly good.
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Figure 3.2: Marker sets (Left to right). (a) The full set of 13 markers used in the recording
of the motions in the reference database. (b), (c) Reduced marker sets of three and six
markers respectively, selected by our cluster pose error method.

From Table 1 we also see that the smaller pose databases are not as good as the larger

ones. We conclude that 500-1000 samples appear to be a sufficient amount to obtain high

quality results with our approach, based on the input corpus. Based on these results, we

conclude a marker set of three is a compromise between the number of markers and the

error realized. For the remaining results, we adopt the best marker set of three markers

with the 1000-pose database as the basic result and use it for further comparison. Figure

3.2 shows the results of the marker sets for best m of three and six markers.

To assess the quality of the best marker set found, we compare our results against

the ground truth as well as the heuristically chosen marker set proposed by Hoyet et al. [45].

In Figure 3.3, we compare results on the 1000-pose database with the original data mapped

for our test sequence. We treat the original as ground truth and showcase our found best-

six marker set against the six-marker set suggested by Hoyet and colleagues. The plot also

shows our marker set of best three which out performs their manually selected marker set

in most cases. Note, while Hoyet and his colleagues produced the remaining animation
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Figure 3.3: Trajectory of representative marker (base of index finger) for various marker
sets in contrast with the original data. Hoyet et al.’s [45] is the manually selected set of six
markers suggested for hand capture based on their findings.

heuristically for their results, we employ our reconstruction technique on their marker set

as a control.

We perform a “stress” test on the system. In the test, we use our free-hand gesture

database on a grab action. We see that the animation reconstructed is highly dissimilar

to the input motion. This is due to the fact that the poses simply do not appear in the

set of poses in the database. We conclude from this failure that the approach is best when

a representative set of motions are used in constructing the database. We suggest that,

in practice, good pre-made databases for specific sets of actions (e.g. free-hand gestures)

might be used universally across subjects and capture sessions.

3.1.5 Discussion

There are several limitations of this system. First, we are making the assumption

that the motion of the hand is free of obstacles, as we are not investigating the behaviors of
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grasping and manipulation and there are many challenging aspects of this class of behaviors

that have been addressed in previous publications. Second, we assume we have examples

of all the movements we might like to employ in the pose database. Third, we expect that

the pose dataset is fairly densely sampled and therefore the resulting motion will not be

jumpy. This assumption is likely to be the weakest of this work as the results do reveal

periodic jumping, especially as the result dithers between two poses and the hand appears

to pulse in an undesired manner between the two solutions. In practice, we do not follow

any special procedures to make the result smooth. Since the capture data itself coming from

the actor is continuous, we assume its temporal consistency will lead to the appearance of

smooth final motion. The weakness of this assumption should be addressed in future work.

However, as is, the quality of our automatic technique should be considered in comparison

to other techniques, such as that proposed by Jin and Hahn [55], and we anticipate that

there will be a need for post-clean up, but our results provide a much better starting point

than complete animation synthesis.

3.2 ASL Reconstruction using PCA

3.2.1 Sparse Marker Selection

To construct an effective sparse marker set, our method exploits the full set of 13

markers recorded in the reference database and evaluates each marker’s contribution to the

whole-hand motion. In contrast to the exhaustive search proposed in 3.1.1, this technique

computes the markers directly using PCA.
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To this end, we conduct PCA with the Cartesian positions of the markers relative

to the root link. With 13 markers, this leads to a PCA with 39 dimensions. The results

of the PCA is a covariance matrix and the eigenvectors of this matrix, which we use to

rank order the markers. Specifically, each eigenvector has 39 coefficients that describe the

influence of each marker’s Cartesian coordinate on the principle component. By adding

up the total contribution of each marker (x, y, z coordinates) to all of the principle com-

ponents, we produce a convenient way to rank-order the total influence of each marker on

the principle components. Further, from the eigenvalues we know the relative importance

of each principle component with respect to each other. By weighting the contribution of

each marker based on this importance, we can also account for this bias. In our technique,

we use the eigenvalue importance, PCA value, as a weighting to bias each eigenvector co-

efficient’s influence, PCA coeff, which is taken from the elements of the covariance matrix.

We summarize this procedure in Algorithm 2.

Algorithm 2 Ordering markers based on influence.

procedure marker rank order(PCA coeff, PCA value)
Vector marker influence
for i = each marker in M do

x, y, z = 0
for j = each component do

x+ =|PCA coeff (3 ∗ i+ 0, j)∗ PCA value(j) |
y+ =|PCA coeff (3 ∗ i+ 1, j)∗ PCA value(j) |
z+ =|PCA coeff (3 ∗ i+ 2, j)∗ PCA value(j) |

end for
marker influence(i) = sum(x, y, z)

end for
sort(marker influence)

end procedure
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In our results, we select marker sets of six and three markers, seen in Figure 3.4,

as those form the range of what can be captured and post-processed easily based on our

experience. Given the number of markers desired for the sparse set, m, we select the set

simply as the top markers based on the rank-ordering. We experimented with two methods

of producing this rank-ordering, one with the eigenvalues acting as a weighting bias and

the second treating all of the top-N principle components as equally important and simply

ignoring the remaining components. Conservatively experimenting with N to be between

one fourth and three fourths of the full dimensionality, these two approaches produced

similar results. However, if we selected N to be the value of the full dimensionality, we see

reduced quality solutions. In practice, we employ the eigenvalue weighted ranking for all

results showcased in this paper.

A nice feature of selecting the marker set in this fashion is that the rank-ordering

simply adds subsequent markers from smaller sets to produce the larger sets. Thus, the

described priority ranking reveals which are the definitively most influential markers re-

gardless of the size of the sparse marker set. And so, in practice, adding more markers for

higher quality recordings does not require a complete change of markers, only the addition

of the desired number of markers to the ones employed in the lower quality recording.

3.2.2 Reconstruction

The reconstruction process takes as input a recorded sequence of the sparse marker

set. It produces joint angle trajectories that estimate the full hand motion. To this end, we

build a regression model to construct joint angle measurements for a full motion sequence.

Specifically, our locally weighted regression (LWR) model maps marker positions in the
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recorded sequence to principle components. Next, the principle components are converted

into joint angles using the PCA covariance matrix to produce the final motion.

An LWR model is built for each individual frame, or query, taken from the recorded

sequence. In this step, each instance in the database is weighted and this weighting is

used to bias the model. The weighting is computed as the inverse of the ED from the

(root-link corrected) marker positions between the query and the samples in the database.

Then, standard regression is performed with each element given its individual weighting as

described. The LWR result is a regression model that places importance on the reference

samples that are close to the test query, while also down-weighting the influence of reference

samples which are distant from the query.

At run-time, we introduce an input sequence recorded from the sparse marker

set. The input data is put through the regression modeling step to predict the principle

components. To ensure smoothness, the trajectories of the principle components are filtered

before they are converted into joint angles. In our results, we use a cone filter with a size

of seventeen (with our sample rate for the motion recordings set at 120 hz.) We also

experiment with filtering the joint angles to produce smoothness, but find more visually

appealing results when we filter the principle components. Our assumption for this finding

is that the principle components combine to produce “crisp” motion even when they are

filtered, while the joint angle filtering dilutes the unique features of individual poses over

time. Further study of this phenomena is likely to reveal some interesting findings.
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Figure 3.4: Marker sets (Left to right). Full Marker Set (13): The full set of thirteen
markers used in the recording of the motions in the reference database. PCA Rank Order
(3) and (6): The sparse sets of three and six markers selected by our approach. Markers for
the sign language database are solid and markers for the gesture database are open circles.
Note the considerable amount of overlap between the marker sets for the two databases
which indicate that the fingertips are best for reconstructing using our method. Manual
Selection(6): A manually selected set of six markers proposed by Hoyet et al. [45] based
on perception studies. While intuition may lead us to believe one marker placement is
superior to another, this marker set revealed itself to be particularly poor for ASL, clearly
because the lack of markers on the middle digits lead to problems when reconstructing sign
language poses. Cluster Pose (6): This set of six markers selected by the cluster pose
error method presented in 3.1.4. Though also selected for “free-hand” motions, the visible
errors from this dataset reveal how sensitive the motion can be to the choice of reference
data.

3.2.3 Results

With ASL as a primary goal for us, we first describe the use for our technique in

producing ASL animations before describing our forays into other motion classes. Our ASL

database is comprised of only 52 ’letter’ sign instances, specifically two continuous runs of

the letters of the alphabet signed by the same actor. The database has 2,734 samples. We

test the database on various sequences that include “word” signs (e.g. a single sign for the

word “girl” or “walk’). Note, no word signs appear in the reference database.
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For our sparse marker set, we choose to use three and six markers as our baseline

in order to show both the power of our approach and also to compare our technique to

existing solutions. Using the method described in Section 3.2.1, we derive the marker

sets of three and six as seen in Figure 3.4. In our analysis of results, we compare this

marker set of six to those produced by our first technique, the cluster pose error method,

and one derived from the manually selected set proposed by Hoyet et al. [45]. Using the

reconstruction method described here, our marker set produces a smaller average joint angle

error per frame for several sign language sequences. Also, Figure 3.5 shows differences for

an exemplary ASL clip. Note, the manual selection process from Hoyet et al.[45] relies on an

IK-based reconstruction and as such, our reconstruction method is not a fair assessment of

the quality of their approach. Instead, their result merely provides an objective alternative

marker set from which we can compare the importance of marker selection within the scope

of our reconstruction method.

Our reconstruction method uses regression to predict principle components for

a sequence of motion. In Figure 3.6, we compare the estimated components from the

regression of a simple sign language example with the computed components derived from

the original joint angle motion.

To evaluate the regression’s power at estimating the principle components, we use

the PCA covariance matrix from the ASL database to convert the joint angles of the test

sequence to principle components. We treat this as the“ground truth” for the principle

components of this motion. Though there are differences, the motion of each component
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Figure 3.5: Comparison of three marker set selection methods that use 6 markers.

closely follows that of the ground truth for both marker sets. Further, the three distinct

poses reached in the sign language clip are also shown using the different marker sets in

Figure 3.7. Our marker selection approach is consistently close to the original pose.

To test robustness, we attempt to reconstruct motions that are not sign language.

The motions we test include counting and general gesticulations. Our sparse marker set of

six fairly successfully reconstructs counting the numbers 1 through 5, but the marker set of

three fails to reconstruct the number 5. For gesture motion, many of the general poses in

the sequence appear to be reached, but the accuracy of the joint angles is not as good as

for the sign language motions. When we test the gesture motion against the more similar

“gesture” database (a 3,000 sample version of the database developed in Section3.1), we see

drastic improvement in the gesture animations synthesized. We note, the selected sparse

marker sets are different than those reported for the ASL database. The marker sets found
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Figure 3.6: Comparison of the components of a reconstructed clip using 6 markers and 3
markers. Ground truth is the original clip recorded with 13 markers.
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Figure 3.7: Three signs not present in the ASL database, reconstructed with the different
marker sets, compared to original poses.

with the gesture database are shown in Figure 3.4. Using the gesture database results in

high quality gesture reconstructions for both marker sets of three and six.

3.2.4 Discussion

Qualitatively, PCA appears to be a good choice for capturing the hidden structure

in our hand data input. In contrast, we test fitting marker positions directly to joint angles

and, as seen in Figure 1.2, the average joint angle error per frame was notably higher. Also,

in the animations produced with these reconstructed joint angles, the hand does not reach

the extrema of the poses in the motion. That is, the hand looks much less clean. In ASL,

meaning is derived from the end poses, and PCA, while it included error, produces higher

quality poses over direct joint angle reconstruction. From this we hypothesize that there is
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a quantifiable and clear benefit to producing and using principle components to reconstruct

the joint angles of the hand.

The specific three markers the system prefers to reflect the motion is a surprising

finding, especially for ASL since it does not include index or thumb markers. However,

we are encouraged to see that the reduced marker set of three performs as well as it does.

Although the set of three has a larger average error than the marker set of six, it still

produces acceptable results in the majority of cases. We also see when looking at the

top principle components of the reconstructed motion, and comparing them to the top

principle components of the original motion, that indeed the three marker regression is

powerful enough to glean the main trends from the hand motion. Following the findings

of previous work, such as Joerg et al. [59], we anticipate that we can push even further

improvement by exploiting the motion of the full-body, which has been largely overlooked

in the current technique. A hurdle that lies ahead is dealing with the non-homogeneity of

a database with both hand and body markers. We feel this represents a good direction for

future work.

When performing the regression we map marker positions to principle components.

In our reported technique, the regression computes the full complement of principle com-

ponents, regardless of the number of input markers. We experiment with a smaller number

of components but find the full set produces a better reconstruction of the joint angle data.

Specifically, we find that mapping to the full 54 components produces the smallest average

error, although we can map as low as 35 components with very little degradation from a

full component set. We contrast this result to the described technique of Chai and Hod-
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gins [14] where they drastically reduce the number of coordinates to simplify (and speed

up) the optimization they use to perform reconstruction. While we do not employ such an

optimization and thus have the luxury of choosing the full component set, our finding seems

to imply that reducing the dimensionality in this step of the process will lead to degraded

motion quality.

Lastly, as reported, when we reconstruct motions that are different from the origi-

nal database, we get mixed results. For example, the motions for counting are close enough

to ASL assumably, because we find reasonably acceptable results from counting synthesis

using the ASL database. However, it is not completely clear why the seemingly simpler ges-

ture motion was not equally easily reconstructed by the same database. While the general

poses in the gesture sequences appear to be reached, the motion itself was not of very high

quality. From this finding, questions arise regarding the intricacies of overlap in motion

styles, between basic and more complex, between trained and more “natural” and so on.

Similarly, investigation of the effect of different subjects on the final data, as is the case

here, also remains for future work.

3.2.5 Conclusion

We present a method to capture hand motions with a sparse marker set consisting

of three to six markers. Our method first specifies an appropriate set of markers using

PCA to exploit the redundancies and irrelevancies present in hand motion data. It then

reconstructs the full hand motion based on the sparse marker set found and a LWR mapping

from marker positions to PCAs components, via a reference motion database.
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We show that our technique can reconstruct complex finger motions based on only

three markers per hand and outperforms recent similar methods, such as the cluster pose

error method described in Section 3.1 and the manual marker selection method presented

by Hoyet et al. [45], based on the marker sets they report. Our findings also clearly indi-

cate that using a regression model for mapping marker positions to principle components

leads to better results for reconstruction of the full hand motion than using regression for

mapping marker positions directly to joint angles, indicating that PCA is notably effective

at exploiting the redundant dimensionality of the hand.

Most important, for the goal of creating ASL avatars, our method allows us to

capture and automatically reconstruct specific ASL poses quickly and accurately with a

limited database size.
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Chapter 4

Natural Timing for American Sign

Language Fingerspelling

As previously stated, American Sign Language (ASL) uses a series of specific hand

poses as a method of communication. Reconstructing and representing those hand poses

accurately is an important step for building a sign language avatar. In Chapter 3, we

explain how hand motions captured in a low dimensional space can be reconstructed in a

high dimensional space due to the large amount of coordination between the joints of the

hand. This allows us to generate high quality poses for ASL. Another important step in the

process of building a sign language avatar is producing signs with the rhythm and speed of

a natural and fluent signer. People are highly sensitive to timing and rhythm in language,

whether spoken or signed. Changes in timing can appear unnatural and can impede the

comprehension of a series of signs.

66



In Section 1.1.2, we highlight some interesting findings that have been identified

with regard to how timing varies throughout the fingerspelling of words. Videos of fin-

gerspelling provided by a deaf teacher confirm these some of these findings, namely that

fingerseplling is performed with a variable timing. Because of these discoveries, we know

that the use of constant timing in figerspelling systems for virtual characters is incorrect.

We aim to create a timing model that is more representative of how fingerspelling is actu-

ally performed and hypothesize that our variable timing model will match the rhythm of

recorded fingerspelling more closely than a constant timing model.

In this chapter, we describe how we develop a timing model to animate finger-

spelling with a natural rhythm. To automatically produce natural timing for 3D finger-

spelling animations, we extract information regarding letter pose holds and inter-letter

transitions from recorded motion capture data and build data driven mathematical mod-

els. These findings are abstractions that provide a simple mathematical method to build

a timing model, not an exact model based on biology. We then describe a perceptual user

study constructed to qualitatively assess animations made using our timing model.

We choose to synthesize ASL fingerspelling because it is a well structured space

of 26 standalone characters that combine in different ways to convey a particular meaning.

Some previous models have been developed to animate fingerspelling and are described in

Section 2.3.2. Though some of these systems attempt to model some of the parameters that

inform the speed and rhythm of fingerspelling, they do not provide a detailed reason as to

why these parameters are chosen [48]. Others allow the parameters to be programmed by

the user of the system [2].

67



4.1 Letter Pose and Transition Extraction

To synthesize fingerspelling, we develop a data-driven statistical timing model to

inform an animation system. The timing and hand pose data is extracted from motion

capture recordings performed by a fluent signer. She is asked to sign the alphabet, a

collection of letter pairs, a collection of words of varying lengths, and a series of sentences

that include terms that would most likely be fingerspelled. From this recording session,

two databases are created. The first database, Database 1, contains signs of individual

letters and letter pairs. These signs are primarily used to determine the difference between

letter pose joint configurations used for synthesizing new fingerspelled words. The second

database, Database 2, contains the fingerspelled words that are analyzed to build our timing

model. We also perform time warping on many of these words to produce animations of our

timing results. Animations of these captured words are then compared to animations using

our timing model and animations using a previously reported constant timing model [48].

The full list of objectives given to our signer can be found in Appendix B. The process of

recording the data can be found in Appendix A.

To determine information about speed, we extract the following information from

our recorded data: number of frames per word, number of letters per second in words of

differing lengths, number of frames per letter hold, and number of frames per inter-letter

transition. Words of similar length have been grouped together to perform analysis on how

the lengths of words affect the speed at which the letter of the word is signed.

The first two extractions (frames per word and letters per second) are manually

extracted by looking at animated representations of the recorded data in Vicon Blade to
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determine when words begin and end. A two step approach is used to extract the number

of frames per letter hold and inter-letter transitions from this data. For the first step, the

average angular velocity of all of the joints in the hand is calculated and visualized in a

plot. Often, letter holds can be found where the average velocity reaches a minimum point

and remains below a threshold, and the frames for letter holds are manually counted. An

automatic method for letter hold identification was proposed to search for minimums and

set a threshold for changes in speed. There are many instances though where trying to

identify letters by looking for a minimum point is not possible because the hand slows and

accelerates at different points throughout the spelling of the word. This makes creating an

automatic method for letter hold identification a challenge.

The second step is to perform word decomposition. The process of word decompo-

sition involves determining how much of each letter is in a current pose during the spelling

of a word. The findings from each frame dictate the weight of each letter pose in each frame.

The basic structure of the decomposition is:

• J = set of joint angles from the frames of the spelled word (from Database 2)

• Li : 1 ≤ i ≤ n = set of joints angles from each individual letter (from Database 1),

for the alphabet n = 26

These components form the following equation:

Ji =

n∑
k=1

wi,kLk (4.1)

where Ji is the weight of letter k at frame i
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The weights are the unknown values in an overdetermined system of equations.

The goal is to find a least squares solution that can minimize the error of J − Lw. We use

the pseudo-inverse of L to compute these weights. The pseudo-inverse of L can be used in

place of L in this equation to compute a least squares solution to a linear system that may

not have a unique solution. In matrix notation, the pseudo-inverse, L+, is calculated as:

L+ = (LT × L)−1LT (4.2)

The decomposition system is only asked to identify the letters in the current word.

The calculated weights of each letter in the word are plotted. The plots produced from this

process clearly show the locations of letters as a word is being spelled. As a letter is formed,

it creates a curve with a maximum point much higher than the weights of the other letters.

Figure 4.1 is an example of the word HEAVEN decomposed.
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Figure 4.2: The aligned plots of the decomposition of the word ELEPHANT and the word’s
average angular velocity. Each pair of lines indicates where a letter ”hold” is found. During
these moments, the hand is moving so slowly that it appears to be still.
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Figure 4.1: A plot of the decomposition of the word HEAVEN.

Two important pieces of information have been discovered from this procedure.

First, we clearly see that letter holds, as we see them when we watch someone sign, do

not exist for all but the last letter. During the spelling of each letter in a word, the hand

is constantly moving, albeit very slowly at times. Secondly, when these plots are aligned

with the average angular velocity plot, locating the correct minimum points to identify

letter “holds” is simplified. Figure 4.2 shows an example of these aligned plots of the word

ELEPHANT. Once letter holds are identified, transition times can easily be extracted as

the number of frames between two letter holds. These extractions are used to build our

timing model.

Below, we present the results that we have assembled from the letter pose ex-

traction. Table 4.1 and Figure 4.3 show timing extractions related to letter holds. Other

findings we have collected from the extractions include:
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• Significantly more time on average is spent on the last letters of words when the words

are signed rapidly/at normal speed (see Figure 4.3). There is no significant difference

between the first and middle letter pose hold times. This differs from words signed

by the deaf teacher, where the first letter was held the longest.

• Words that have double letters are signed faster on average than other words of the

same length (e.g., ALL, DOOR, HOODIE). Words with double letters are signed 16%

faster in careful fingerspelling and 22% faster in rapid fingerspelling in our data. This

is likely because the transition between the two letters does not involve changing the

shape of the hand pose.

• Letters are signed faster as the numbers of the letters increase in a word. This occurs

more so with rapid fingerspelling than with careful fingerspelling (see Table 4.1).

• If the signer is not as familiar with the word, letters in the middle of longer words

are held longer because time is taken to think about the next letter. These results

were not expected. To try to understand the results better, we sent our signer a

questionnaire regarding spelling longer and more challenging words. Her responses

are in Appendix C. In general, she confirmed that words not commonly fingerspelled

are more challenging to fingerspell and words that are not spelled often in any capacity

take more time to mentally process. When we asked specifically which word is easier

to spell for her, ELEPHANT or CRYPTOGRAPHY, she answered that ELEPHANT

is easier because it is a word she has spelled more often. For rapid fingerspelling,

the middle letters of ELEPHANT were signed 29% faster than the middle letters of

CRYPTOGRAPHY.
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Number of Letters Careful Avg Hold Time Normal Avg Hold Time

Three Letters 0.16 sec (σ = 0.03) 0.10 sec (0.03)

Four Letters 0.14 sec (0.03) 0.09 sec (0.02)

Five+ Letters 0.13 sec (0.02) 0.08 sec (0.01)

Table 4.1: Finger Spelling Extractions. The findings from our signer’s careful and normal
(rapid in the literature) fingerspelling. It shows the average and standard deviation of the
amount of time spent in letter holds.

• Words are spelled faster the more often they are fingerspelled. In our examples,

words fingerspelled multiple times in paragraphs (COACHELLA spelled 5 times,

MADONNA spelled are 3 times) are spelled 20% faster for the last spelling than

the first spelling.

• Our average time per word is slower than most of the times reported in the previous

literature. This is likely because our signer had gloves on her hands which slightly

impeded her motion.

4.2 Timing Model

To build our data driven timing model, we make choices about how to use our

data. Some of these choices include what methods to use to inform our predictions and

what features of our data to use to inform our methods. Our timing model has two com-

ponents: 1) predicting the amount of time spent in each letter hold; and 2) predicting the

amount of time spent transitioning between letter holds. In our model, we address these

components separately and then combine the results to synthesize the natural timing of

fingerspelled words. Letter hold lengths and inter-letter transitions comprise the structure

of fingerspelling and are both important for the identification of fingerspelled words [148].
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Figure 4.3: The average amount of time spent holding the first, middle, and last letters of
the words signed by our signer. The bars represent the standard deviation error.
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For the first component, we employ the prerecorded reference data of letter pose

hold times and use it to populate a näıve Bayes classifier with 304 entries. The feature

vector created for this classifier is derived from information associated with each letter,

e.g., whether or not it is a vowel, the letter’s location in the word, etc. The probabilities

calculated by this classifier predict how long each letter pose should be held. For the

second component, we construct a simple linear regression using a distance metric to predict

the amount of time it takes to naturally transition between letters. The distance metric

determines the amount of difference between two letter poses.

Our timing model is built to emulate rapid or normal fingerspelling. We apply the

results of these combined components to a hand rig incorporated within a photo-realistic

hand model to complete the animation synthesis.

4.2.1 Letter Pose Holds

The Näıve Bayes classifier is a probabilistic classifier that applies Bayes’ theorem

to determined a set of features. It is a method often used in machine learning and is a fast

learning algorithms [114]. It functions by assigning data to classes, C, based on a discrete

set of n features. For each class, there is a prior probability, P (Ck), of classifying a data

point into a class, Ck. In other words, P (Ck) represents how frequently the class Ck is found

in our database. P (d|Ck) represents the conditional probability that an instance, d, would

be generated given the class Ck. This is also known as the likelihood of d given Ck. Each

instance d is described in a classifier by a number of features, n, and therefore a conditional

probability is calculated for the observed value for each feature of the instance, d1, d2, ..., dn.

It is assumed that the features are independent. This is represented as P (d1|Ck)∗P (d2|Ck)∗
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P (d3|Ck) ∗ ... ∗P (dn|Ck). The probability of the features of each instance d in the database

is also calculated and represented as P (d1) ∗ P (d2) ∗ ... ∗ P (dn). The näıve Bayes classifier

equation is constructed as follows:

P (Ck|d) =
P (d1|Ck) ∗ P (d2|Ck) ∗ P (d3|Ck) ∗ ... ∗ P (dn|Ck)P (Ck)

P (d1) ∗ P (d2) ∗ ... ∗ P (dn)
(4.3)

where P (Ck|d) is the probability that instance d belongs to class Ck.

The preliminary data we have acquired from the deaf teacher’s video (see Section

1.1) shows us that letter pose hold times vary from letter to letter throughout the spelling of

a word. This is confirmed in our motion capture recording of fingerspelling. We also know

other information about a letter pose including the word it belongs to, the length of the

word it belongs to, its location within the word, its shape (open, closed, or intermediate),

whether or not it is a vowel, and the letters that precede and follow it. Knowing that

each letter has these traits, a Bayes classifier appears to be an appropriate model to use to

predict letter hold times for new words. In our classifier, each class is a hold time ranging

from 8.33 ms to 333.33 ms, with a step size of 8.33 ms. The step is small enough to produce

results that would be no worse than a continuous model. The feature vector initially chosen

to classify the data has 10 letter traits which are shown in Table 4.2.

A näıve Bayes classifier works best when the features for classification are mean-

ingful, not necessarily when there are more features. It is also helpful to have features that

are not closely correlated to other features. The listed features are chosen because they
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Näıve Bayes Classifier Features

1) the letter 6) the letter’s index

2) the number of letters in word 7) whether the letter is vowel or consonant

3) the previous letter 8) whether the letter is from a set of double letters
(e.g., oo, ll, nn)

4) the following letter 9) the letter’s shape

5) the letter’s place in the word (e.g., first, middle,
last)

10) the word to which the letter belongs

Table 4.2: The features used in our näıve Bayes classifier to predict the letter pose hold
times for input words.

Figure 4.4: The change in accuracy and average timing error of the näıve Bayes classifier
as the number of features increases to the full original set of 10 features. The features are
added in the order presented in Table 4.2. The error bars represent one standard error of
the mean.

are traits that can be attributed to new input, given that each letter of the alphabet is

represented at least one time in our dataset.

To test the accuracy of the initial classifier and the usefulness of the listed features,

we classify each letter in the data set initially using the first feature (the letter), and then

add each subsequent feature in the order presented in Table 4.2. We employ the leave-

one-out cross validation method [70] for each data sample. Figure 4.4 shows the change in

accuracy and average timing error in milliseconds as all 10 features are added from feature 1
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Figure 4.5: The change in accuracy and average timing error of the näıve Bayes classifier as
the number of features increases to the reduced set of 9 features. The features are added in
the order presented in Table 4.2. The error bars represent one standard error of the mean.

to feature 10. Accuracy is defined as the percentage of times the classifier correctly classifies

a word’s letter to its actual hold duration.

There is a gradual decrease in error and increase in accuracy as the first four

features are added (letter, number of letters in word, previous letter, following letter). This

shows that these features are not highly correlated with each other. The addition of the

next four features shows no statistical significance to the improvement of the classifier. We

define statistical significance as p < 0.05. The ninth feature added, the shape of the letter,

increases the timing error and decreases the accuracy of our classifier. This means that

this feature is not meaningful when trying to predict how long a letter pose is held. The

last feature added is the word to which the letter belongs. This feature is only applied if

the word input by the user is present in the database. When this feature is added, the

accuracy of the classifier increases from 60.53% to 72.37%, showing that it is also not highly

correlated with the previous features. To improve the classifier’s accuracy, the letter’s shape
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Figure 4.6: The change in the average error of the näıve Bayes classifications as the size of
the training set increases.

feature is removed. In doing so, the classifier’s accuracy increases to 75.00%. Figure 4.5

shows the improved accuracy and decreased average timing error.

We also test how well our näıve Bayes classifier can predict timing information

for new input data when it has varying amounts of data. We again use the leave-one-out

cross validation method [70] to classify the letters of every word in the data set. The data

set is then randomly sorted and a certain percentage of the data is randomly removed.

For this test, we use 80% (243 samples), 50% (152 samples), and 30% (91 samples) of the

data as training sets. Figure 4.6 shows how the average error decreases as the number of

data samples increases. From this information, it can be expected that the error would

decrease further with a larger training data set, as the model would be able to make better

generalizations.

4.2.2 Inter-Letter Transitions

Based on the analysis of the word decomposition plots, it is apparent that more

time is spent transitioning from letter to letter than actually holding any letter pose. In
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fact, as previously stated, it appears that the hand never stops moving when performing

fingerspelling, it just slows to a degree that looks like a pause to a fellow communicator. We

also note from our previous video recordings, as well as from our motion capture recordings,

that the length of time for each inter-letter transition varies throughout the spelling of a

word.

When performing transitions, the joints of the wrist, hand, and fingers move in

space from one specific configuration to another. Some of these pose configurations are

similar to others (e.g., letters A, S, and T), while others have a vastly different configuration

of joint rotations (e.g., letters W and P). Some poses are almost identical with only a change

in the forearm or wrist position (e.g., letters G and Q, I and J, K and P). There are also

poses that, though similar to the previous pose, require multiple fingers to readjust their

position to avoid body collisions. In fact, it is often the case, because of the anatomical

structure of the hand, that joints of the hand move even if there is no apparent need when

transitioning from one pose to another. As noted in Chapter 3, our fingers do not work

completely independently of each other.

We choose to build a transition model based on the joint rotation difference be-

tween each set of poses. We build a database of letter pose transition times retrieved from

our transition timing extractions. We then test a series of distance metrics to build a sim-

ple linear regression. The goal is to determine which distance metric results in the highest

correlation between the amount of time it takes to translate from letter to letter and the

difference between pose configurations.
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The metrics we apply for this test are root mean-squared deviation (RMSD),

Manhattan distance (MD), Chebyshev distance (CD) to determine the maximum joint

displacement between letter poses, and Pairwise distance along paths in a Gaussian Process

Latent Variable Model space (GPLVMD). Let a = (a1, a2, ..., an) and b = (b1, b2, ..., bn)

denote two letter poses with n = 18 joints. Our distance metrics are described below and

calculated as follows:

• Root mean-squared deviation: RMSD(a, b) =

√∑n
i=1(ai−bi)2

n

• Manhattan distance: MD(a, b) =
∑n

i=1 |ai − bi|

• Chebyshev distance: CD(a, b) = maxi|ai − bi|

• Pairwise distance along paths in GPLVM space (with ca and db as points in the

GPLVM space that represent full poses a and b and x equal to the maximum path

length in the space): GPLVMD(a, b) =
∑

(ca−db)2

x

A linear regression is built using all of the data samples for each metric. The

results are presented in Figures 4.7 and 4.8. The results from these tests show that the

RMSD has the largest correlation coefficient (r = 0.44) and the lowest average error among

these metrics (err = 44.69 ms). Therefore, RMSD is the metric that we choose to use to

produce our transition results. The correlation coefficients, r, for each regression describe

a positive moderate (0.3 < r < 0.5) to low (r < 0.3) relationship between pose distance

and transition time. GPLVMD has the smallest coefficient. Since we use a single metric to
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Figure 4.8: The average error between the transition timing results produced by the different
metric regression equations and the transition times extracted from the data.

describe our transitions, transition times from one letter to another are the same when the

letters are reversed.

Some letter poses considered to be a moderate distance from another letter pose

with one metric, are considered to be much farther apart using a different metric. An

example of this is the distance between the letters E and Z. In our data, the RMSD ranges

from 0 to 1.10 radians (rad) and the GPLVMD is normalized to range from 0 to 1. In both

cases, 0 represents the least amount of error or closest distance (a double letter) and the

larger number represents the most error or largest distance. According to the RMSD, an E

pose and Z pose are a moderate distance away from each other (0.51 rad error). GPLVMD

calculates these poses to be the farthest two poses could be from one another (normalized

distance of 1).
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Another interesting observation to note is the transition from an A to a T and vice

versa. This transition involves a finger adjusting to move around another finger, which we

assume would make the transition time longer even though the two letters are considered

close by the chosen metrics. In our recorded samples, a transition from a T to an A is

the fastest recorded transition time (other than any pair of double letters) at 125 ms and

the average time to transition from an A to a T and vice versa is 150 ms. All recorded

transition times range from 83.33 ms to 391.67 ms, with the average being 216.11 ms.

Therefore, transitions between A and T are some of the fastest that were recorded, which

aligns well with how similar the metrics have found them to be. This is likely because the

movement of the rest of the hand during the transition is minimal.

4.3 Results

Using the full data and the leave-one out method with our Bayes classifier, our

classifier has an average timing error of 13.82 ms/letter hold with an average timing differ-

ence of 8.17 ms/letter, meaning our classifier tends to skew faster than what is given in the

data set. By comparison, the constant timing presented by Huenerfauth [48] is slower on

average than the our prerecorded data and has an average error of 170.9 ms/letter and an

average timing error of -167.7 ms/letter. As the results from the Bayes classifier are over an

order of magnitude closer to the original data than the constant timing model previously

presented, we present a solid argument that our classifier produces more natural timing for

letter pose holds than a constant timing model.
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Average Full Word Time Error

Timing Model Error from Original Motion Capture

Variable timing model 122.50 ms

Constant timing model 2102.50 ms

Table 4.3: The features used in our näıve Bayes classifier to predict the letter pose hold
times for input words.

We construct fingerspelling animations using the information produced by our

timing model. To make motions that appear natural, we apply our timing to motion files

originally obtained from the motion capture recordings. All of the words animated for this

procedure are words that were also performed by our signer and recorded. We apply time

warping to the originally recorded motion to fit the letter hold times and transition times

produced by our timing model. We apply the motions to a hand model and render the

animations with Autodesk Maya [3].

An initial plan was to animate the fingerspelling using straightforward linear in-

terpolation, understanding that interpenetration of the hand’s segments would occur. In-

terpenetration is a motion that cannot occur when someone fingerspells. But upon viewing

animations with straightforward interpolation, the unnaturalness of the motions is jarring.

Our goal with creating these animations is to produce natural timing for natural motion.

Using the original motion capture motion as a basis is a way to achieve this.

Though the optical motion capture data recorded is more accurate than the Cy-

berGlove data (see A), there are still drawbacks. Identifying when parts of fingers are

touching is a difficult task that is made more difficult by our marker placement. Placing

markers on top of gloves means that the markers are separated by both flesh and fabric. As

a result, many letters that require the fingertips to touch (e.g., D (see Figure 4.9), U, V) or
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Figure 4.9: The letter D rendered in Maya. (a) shows the shape of D originally captured by
the motion capture system. (b) shows the shape of D after the pose is corrected in Maya
to make the middle finger and thumb touch.

the fingers to cross (R) do not touch in the original recordings. These poses are corrected

manually using Autodesk Maya.

We compare animations using our variable timing model to the original motion

capture’s timing, a constant timing model where each letter is held for 243 ms and the last

letter is held for 800 ms [48], and the same constant model whose full length of time is

normalized to fit the length of time of our model’s animations. Time given for transitions

is not described for the chosen constant model, but is likely also a constant value for each

transition. All inter-letter transitions for the constant timing model occur over 250 ms,

the average transition time from our motion recordings. The last set of animations are

normalized to provide a better comparison of an animation with variable timing to an

animation with constant timing. The original constant animations are considerably slower

than both our motion capture data and our timing model results (see Table 4.3.
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Figure 4.10: The average joint angle trajectories for the world ELEPHANT. The top plot
in red is the trajectory of the original motion capture recording. The middle blue plot is
the trajectory of the word re-timed using our Variable timing model. The bottom green
plot is the trajectory of the word with the normalized constant timing. The last plot is
normalized to match the length of time of the Variable model’s animation.
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Figure 4.10 shows the trajectory of the word ELEPHANT produced with our

timing model compared to the original motion capture and the normalized constant timing

model. A plot of the constant timing model is not included because it appears identical to

the normalized constant plot, only the trajectory has 300 more frames.

4.4 Discussion

Word decomposition is an interesting method for letter extraction and could po-

tentially be used for general fingerspelling pose identification. It essentially acts like a filter

that spikes when it sees the pose it is to identify. Our process is aided by knowing which

letters we wish to identify. Letter poses that are very different from every other letter pose

are likely easily identifiable whereas with poses that are similar, the system would need to

make choices about which letters make more sense in certain positions.

The Bayes classifier used to predict the length of letter holds has a 75.00% accuracy

at best when using the 9 of the listed features. An ideal classifier’s accuracy is 100%, but

we expect that level of accuracy would be impossible to achieve with fingerspelling data

because there is no defined rule that determines how much time is spent on individual

letters. Instead, there is evidence that people tend to perform fingerspelling in a certain

manner that affects how much time is spent on each letter. Therefore, even if the same

word is spelled multiple times, the chances are the letter hold times would be different for

each spelling, meaning the classifier could never be 100% accurate. Also, our accuracy and

timing error is likely hindered by the small size of the dataset. We believe that the accuracy

of our model could be improved by adding more data samples. It also would be interesting
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to speak with people who sign fluently and ask them if there are specific features that they

attribute to the alphabet signs, since many of the features we have chosen appear not to

statistically influence how our classifier assigns hold times to letters.

To predict timing for letter transitions, a simple regression is done and a correlation

is found between letter pose distance and transition time. We believe that a Bayes classifier

could have also been used for this task, but the use of a Bayes classifier did not appear

practical given our limited amount of data. To predict letter holds, we do have every letter

of the alphabet represented at least one time in our classifier. We did not capture a list

of words comprehensive enough to represent every letter pair or even every common letter

pair found in words. At the time of capture, our focus was on letter hold lengths and

not on transitions. It became apparent when doing letter pose extractions that inter-letter

transitions are very important to the structure of fingerspelling, as more time is spent

performing transitions. Had we developed a Bayes classifier with our current datatset and

used pose distance as a feature, we expect that the regression lines we found would be the

same. More letter pairs would also improve the generalization of our classifier for our letter

holds as previous and following letter are classification features.

Overall, our model suffers from a lack of data, but still results in timings and a

motion trajectory that are closer to the original motion capture data than a constant timing

model. It would also be interesting to continue this work by testing new features for the

current letter hold classifier and by building another classifier for inter-letter transitions

with a larger dataset.
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To further analyze how well our timing model produces natural appearing finger-

spelling, we perform a perceptual user study. The study and its results is described in

Chapter 5.

91



Chapter 5

Perceptual Study of Fingerspelling

Animations

Perceptual studies are useful to determine how natural motion performed by vir-

tual characters appears because people are very attuned to human motion. In the case

of ASL avatars, the ability to move and sign naturally is important, or they will not be

accepted by the ASL community.

We constructed a perceptual user study to test how animations created with our

timing model are perceived by people who know and use ASL. These are people who could

potentially benefit from a natural appearing sign language avatar that, for example, make

information presented on websites easier to navigate. For the study, we compared short

clips with for animation types, our timing model, which we refer to as the Variable timing

model, the original Motion Capture animation, and two constant timing animations, which

are referred to as the Constant and Normalized constant timing models in this chapter.
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Though the animation clips were short, previous research has shown that people can notice

subtle differences in motion in very short motion clips [58].

5.1 Hypotheses

Before beginning the study, we hypothesize that animated examples of Motion

capture and our Variable timing will be considered to appear more natural than the other

animation methods. We believe that animations created using the Constant timing model

will be consistently chosen as the least natural form of fingerspelling.

5.2 Procedure

The study was presented as an online survey on SurveyMonkey.com [97]. The

survey took between 15 and 20 minutes to complete. To begin the survey, we asked the

user for their age and their ASL skill level (see Figure 5.1). The options provided were:

• I am completely fluent. / It is my native or primary language.

• I am completely fluent. / I am an ASL expert.

• I am somewhat fluent. / I have studied the language.

• I know some ASL, but I am not fluent.

• I do not know ASL.

The users could also choose to enter their name and email address. These questions

were optional. When the users advanced to the next page, they were presented with the
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Figure 5.1: The first page of the user study that gathers demographics information about
our participants.
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Figure 5.2: The second page of the user study provides instructions and a sample finger-
spelling animation clip.

95



instructions for the study and a sample fingerspelling animation clip of what they would see

during the study (see Figure 5.2). The next 48 pages presented two video clips of each word

to the user. Each clip was a fingerspelling animation of a word produced from the original

motion capture or created using a timing model. The forearm and wrist were fixed in the

animations except for instances when both were required to move to achieve a letter pose

or movement (e.g., G, H, P, the bounce between double letters RR). This was to ensure

that focus would remain on the finger formation of the letter poses and not on arm jitters.

In actul fingersspelling, the arm should remain as still as possible [148]. The videos were

hosted on YouTube [152].

There were eight words presented and four pages of each of the pairwise clip com-

parisons listed in Table 5.1. The eight words in the animations were GUITAR, HEAVEN,

ARREST, ELEPHANT, PSYCHIATRY, DAVID, MICHAEL, and VICTOR. The pages of

clips were randomly ordered. The words presented included a set of names that would likely

be fingerspelled (e.g., DAVID, MICHAEL, VICTOR) and other words that likely would not

be fingerspelled by a fluent signer. The word ARREST was included to provide an example

of a word with a double letter, which has an interesting fingerspelling property (see Section

4.1).

On each page, the user was asked the question “Which animation is the most

similar to actual fingerspelling (most natural)?”. Then they were to play the two

presented clips and select the radio button that corresponded to their choice (see Figure

5.3) Once each participant had viewed all of the clips, they were presented with a page of
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Figure 5.3: A page from user study where the user has to watch two fingerspelling animation
clips and select which animation is most natural.
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Clip 1 Clip 2

Constant Motion capture

Constant Normalized constant

Constant Variable

Motion capture Constant

Motion capture Normalized constant

Motion capture Variable

Normalized constant Constant

Normalized constant Motion capture

Normalized constant Variable

Variable Constant

Variable Motion capture

Variable Normalize constant

Table 5.1: Clip comparisons shown to participants in random order for each word. There
is one comparison per page.

closing questions where they were able to provide open ended responses. These questions

were:

• What made you select an animation as most similar to actual fingerspelling?

• Which words were you able to identify?

• If there were certain features that made some clips easier to understand than others,

please describe them.

• If there were certain features missing that would have made these animations better,

please describe them.

• Please write any further comments you have here:

From these responses, we aimed to get a clearer understanding of why the users chose certain

clips over others.

The survey was distributed via email to people who communicate using American

Sign Language (some deaf, some not), or studied ASL, and in Facebook groups for ASL
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Type 1 Type 2 # Type 1 # Type 2 % Type 1 % Type 2

Constant Motion capture 25 55 31.25% 68.75%

Constant Normalized constant 26 54 32.50% 67.50%

Constant Variable 24 56 30.00% 70.00%

Motion capture Normalized constant 47 33 58.75% 41.25%

Motion capture Variable 37 43 46.25% 53.75%

Normalized constant Variable 32 48 40.00% 60.00%

Table 5.2: Pairwise comparison results between different animation types (Type 1 vs. Type
2). The results show how often an animation type was selected as more natural when
compared to other another animation type.

communities at Clemson University, Galludet University, and the Maryland School for the

Deaf.

5.3 Participants

We had 10 participants complete the web survey. Six participants were between

the ages of 26 and 35. The other four each fell into one of the following age brackets:

18-25, 36-45, 56-65, 66+. Four participants described themselves as ASL experts and six

said that they have studied ASL. No one stated that ASL was their native language. All

participants were able to identify multiple words that were spelled in the animation clips,

adding credibility to their ability to understand ASL and read fingerspelling.

5.4 Results

We collected responses for the pairwise comparisons and summed the results for

each comparison to determine which animation type was preferred between the two. For this

analysis, pages with opposite comparisons (e.g., Constant vs. Motion capture and Motion
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Figure 5.4: Overall results for which animation type was considered most natural. There is
a significant difference between the Variable timing model and the Constant timing model
and between the original Motion capture and Constant timing model. The other differences
are not significant. The error bars represent one standard error of the mean.

capture vs. Constant) were tallied together. The results from these comparisons can be

found in Table 5.2.

We performed another analysis to determine which animation type was considered

most natural overall. These results are summarized in Figure 5.4. Each animation type

was showed 24 times. As expected, the Constant timing model was consistently considered

to be less natural, likely because of its speed, and was selected 15.63% of the times it

was shown. The Motion capture, Normalized constant, and Variable animation types were

selected 28.96%, 24.79%, and 30.63% of the times they were shown, respectively. A repeated

measure analysis of variance (ANOVA) showed that a statistically significant difference

exists in the data between the different animation types (p = 0.043). T-tests to compare

the means of the different animation types showed that the Variable timing method and
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Motion capture were selected significantly more often than the Constant timing method

(p < 0.05).

5.5 Discussion

Of the four animation types presented in our study, our Variable timing model’s

animation type was selected as more natural more frequently than all of the other animation

types. Motion capture was selected the second most frequently, with the Normalized con-

stant and Constant timing models coming in third and fourth, respectively. However, only

the Constant type was chosen significantly less than the Variable type. In the pairwise com-

parisons, the Variable timing model animations were consistently chosen more frequently

than the other animation types. Although the difference was not significant, the result that

the Variable timing model was chosen more frequently than the original Motion capture is

interesting. One reason for this could be that the two animations so closely resembled each

other that the participants thought they were the same clip. It would be interesting to run

a similar study and give the participants three options, Clip 1, Clip 2, and Cannot see a

difference. In fact, one of the participants stated in the closing open ended responses that

she found most of the clips to look the same.

When the participants were asked to identify why they made the selections they

made, many stated that speed was a factor. Most stated that they preferred the faster

forms because that is how they believe people fingerspell. One user stated that she selected

the slower spellings because they were easier to comprehend, and therefore seemed more

natural. Another user stated that though speed played a part in some of his choices,
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sometimes the faster spellings lacked co-articulation, and in those instances he considered

the slower spellings to appear more natural. Three participants mentioned making their

selections based on the speed of the inter-letter transitions and the smoothness of the

transitions. These responses show us that incorporating transitions into our Variable timing

model positively affected our resulting animations. A participant also mentioned a lack of

syllabification, the grouping together of syllables when spelling a word, especially in longer

words, as something we should consider adding. This could be addressed in a more complex

timing model for inter-letter transitions.

Lastly, we chose to include the word ARREST in the study to apply the interesting

timing case of a double letter. Some participants stated that this word appeared less natural

than others because the bounce of the hand that should occur when the double R’s were

spelled was not noticeable.

5.6 Conclusion

The results from this study showed that fingerspelling animations produced with

our Variable timing model were considered to be as good as the original motion capture.

The Constant timing model was considered to be the least natural animation type. From

our participants’ open ended responses, we have validation that addressing transitions in our

timing model is important. The participants also provided us with suggestions to improve

the timing model such as addressing syllabification. Further work is needed to understand

how syllabification plays a role in fingerspelling and how it can be accurately reproduced.
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Chapter 6

Conclusion

Producing high quality motion for virtual characters is a challenging problem that

is being addressed in many different ways. It is a challenge because of how acutely aware

people are of human motion. Motion capture has proved to be successful for recording

human motion, but there are considerable problems attempting to record the motion of

hands, a necessary component for communication. Recording complex hand motion with

optical marker motion capture systems can result in a large amount of marker occlusion,

which negatively affects the quality of the motion captured. Bend sensor gloves, such as

CyberGloves, do not suffer from occlusion, but are not as accurate as markered motion

capture technology and tend to degrade in quality during longer recording sessions. Syn-

thesizing motion is also important as it allows us to produce new animations that have not

been explicitly captured. Though the motions have not been recorded, they still need to be

animated with appropriate timing and rhythm to be perceived as natural.
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In this dissertation, we specifically address hand motions of communicative char-

acters. We present motion capture and reconstruction techniques that exploit the hand’s

complexity to produce accurate hand poses for gestures and ASL. We also present a timing

model to animate ASL fingerspelling with a natural rhythm. Our methods use pre-recorded

motion to build data-driven systems and produce natural motion, in regard to both hand

poses and timing. We show that conversational hand motion, though complex, can be

recorded in a reduced capacity and still animated with high quality. We also show that

people can identify natural ASL fingerspelling and that the timing of that motion can be

synthesized. Our research is aimed at creating better computing applications for people

who communicate using sign language.

6.1 Future work

There are many future paths that can be explored extending from this research.

First, as stated in Chapter 3, it would be interesting to explore the use of different motion

style databases and how much overlap there is between such styles. Since the ASL database

does not accurately reconstruct gesture motions and the gesture database is not able to

reconstruct ASL motions, we conclude that reconstructing certain motions with our methods

requires motion specific reference data. Determining motion overlap could potentially allow

for more general motion databases to be used to reconstruct different kinds of motion. It

would also be interesting to investigate the effect of different actors on the final data. Can

a database of one actor’s pre-recorded motions be used to reconstruct similar motions made

by a different actor?
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Another future research goal is to naturally produce the inter-letter transitions

in ASL fingerspelling. As previously stated, straightforward interpolation between some

letter poses will result in finger collisions that cannot occur when a real person fingerspells.

Therefore, a more sophisticated approach can be used to synthesize fingerspelling transi-

tions. We suggest using a path planning technique to accomplish this task. By assigning

our problem movement constraints, we can identify movement paths for the joints of the

hand that will not result in illegal finger collisions. The timing model could be applied to

this approach to determine the length of each letter-to-letter path. Syllabification can also

be addressed in regard to transitions.

6.2 Applying work to current ASL computing applications

Mobile applications are frequently used as a method to teach and reinforce ASL

signs to those who are learning the language. Applications such as The ASL App [52]

and ASL Dictionary [122] are advertised as methods to teach people new signs and

phrases. These applications use recorded video of signers to teach users new signs. Signers

in the videos are shown from the waist up. Fingerspelling applications, such as ASL:

Fingerspelling (Lifeprint.com) [149], tend to show only the hand so that the user can

focus on the the letter shapes. They also do not use video. They create words to test users

on their ability to read fingerspelling, but each letter in the word is presented as a still image.

From our research, we find that more time is spent transitioning from letter to letter than

holding letter poses when fingerspelling. These applications completely remove the effect of

inter-letter transitions, and therefore do not realistically present fingerspelling to the user.
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In the future, this work could be adapted to create mobile applications that fully represent

how fingerspelling is performed. Combining the timing model with path planning approach,

an application could be built to construct many new fingerspelled words.

Lastly, more can be done to work toward the goal of building sign language avatars.

A signing avatar can offer a visual alternative to the more common text that is presented

on computers. Current methods exist to translate to deaf people, most noticeably using

live interpreters over video conferencing software and over smart phones, but such methods

are limited in their availability. An avatar that can sign naturally and accurately would

make information more accessible to individuals who sign as their primary method of com-

munication. Many avatars exist, specifically for ASL, but many of these systems are not

viewed as visually appealing [21]. Most of the current systems present 2D avatars, which

some deaf people have said limit their perspective and reduce the clarity of the signs. They

also have noted unnatural facial expressions and body motions as reasons these avatars are

not appealing. Therefore, future work can be done to focus on 3D signing avatars that can

move and be expressive in a way that is considered more human.
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[29] Adso Fernández-Baena, Raúl Montaño, Marc Antonijoan, Arturo Roversi, David Mi-
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Appendix A

Motion Capture of Hands and Full

Body

To build the databases used in this work, we record rich hand motion with an

optical motion capture system. We employ a Vicon [135] motion capture system for capture.

The system includes a set of 12-14 cameras and the Vicon Blade software. The cameras

record at a rate of 120 frames/second. To construct our corpus, the cameras are brought in

to allow good coverage of a small capture space of approximately a one-meter cube. Within

this space, we use one of two marker configurations, shown in Figure A.1, and record the

actor’s motions. For Chapter 3, we use a 16 marker hand configuration (13 6mm markers

along the fingers and the back of the palm, three on lower forearm) and for Chapter 4, we

use a 19 marker configuration (17 markers 6mm markers along the fingers and the back of

the palm, two on the lower forearm).
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Figure A.1: Marker placement for our comprehensive marker sets of 16 and 19 markers.

In Chapter Chapter 3, the lower forearm acts as the root link for our hand skeleton

with the assumption that these same three markers will appear in full-body captures. To

account for gross body hand motion, marker positions in the database are put into the

same coordinate frame by computing the transformation of each marker relative to the root

link. The motion capture data is applied to our hand model that consists of 18 joints, (19

articulated bodies).

To capture figurespelling, the student wears a full body motion capture suit with

markers on her body, gloves with bend sensors called CyberGloves [23] along with the

comprehensive set of markers on top of the gloves. Markers are used in conjunction with

the because we are aware that CyberGloves are not as accurate as markers (see Table 2.1).

Researchers have looked into ways to improve the accuracy of CyberGloves by improving

their initial calibration techniques. We use a calibration protocol developed specifically

for ASL capture by Huenerfauth and Lu [49]. Even with the protocol, the joint angle

information we receive from the gloves is not accurate and degrades over time. The motion
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capture markers provide us with the accuracy needed to perform our analysis and produce

our final animations.
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Appendix B

Fingerspelling Capture Objectives

1. Sign the alphabet

(a) Rapidly - As you normally would

(b) Carefully - At a slower speed than normal

(c) Punctuated - Slowly, returning hand to side after each letter

2. Sign letter pairs (return hand to side after each pair)

(a) Pair these letters with the entire alphabet as the first letter and then as the

second letter (complex/closed hand shapes)

i. K

ii. M

iii. N

iv. P

v. R

vi. T
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(b) Sign these letter pairs found in the words in objective 3 - 5

• th

• he

• er

• hi

• im

• ba

• at

• ca

• ab

• al

• ll

• bu

• ut

• no

• ot

• an

• ol

• ld

• wh

• ho

• ma

• an

• ne

• ew

• si

• in

• nk

• be

• el

• do

• oo

• or

• wa

• an

• nt

• aq

• qu

• ua

• en

• nd

• ds

• gr

• ri

• ip

• va

• ai

• in

• ro

• ts

• mp

• pu

• un

• po

• rt

• ea

• av

• ve

• gu

• ui

• it

• ta

• ar

• ho

• od

• di

• ie

• el

• le

• ep

• ph

• ha

• an

• cr

• ry

• yp

• pt

• to

• og

• gr

• ra

• ap

• hy

• ps

• sy

• yc

• ch

• hi

• ia

• at

• tr

• lu

• um

• mn

• nu

• us

• pe

• ed

• da

• ti

• ic

• ar

• rr

• re

• es

• st

• po

• ot

• ta

• at

• to

• mo

• ov

• vi

• ie
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3. Three Letter Words (sign twice, first carefully and then naturally/rapidly)

(a) THE

(b) HER

(c) HIM

(d) BAT

(e) CAB

(f) ALL

(g) BUT

(h) NOT

(i) CAN

(j) OLD

(k) WHO

(l) MAN

(m) NEW

4. Four Letter Words (sign twice, first carefully and then naturally/rapidly)

(a) SINK

(b) BELL

(c) DOOR

(d) WANT

(e) AQUA

(f) ENDS

(g) GRIP

(h) VAIN

(i) THIN

(j) ROTS

(k) ROMP

(l) PUNT

(m) PORT

(n) FAST

(o) TEAM

(p) VEIN

5. Longer words (sing twice, first carefully and then naturally/rapidly)

(a) HEAVEN

(b) GUITAR

(c) HOODIE

(d) ELEPHANT

(e) CRYPTOGRAPHY

(f) PSYCHIATRY

(g) ALUMNUS

(h) PEDANTIC

(i) ARREST

(j) POTATO

(k) MOVIE
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6. Sentences (sign as you normally would)

(a) I use to search the internet.

i. Google

ii. Yahoo

iii. Bing

iv. WebCrawler

v. AOL

(b) is my favorite website.

i. Facebook

ii. Twitter

iii. Tumblr

iv. ebay

v. Airbnb

vi. The Huffington Post

(c) I like to watch at night.

i. ABC

ii. NBC

iii. CBS

iv. FOX

v. TNT

vi. MSNBC

vii. FOX NEWS

viii. CNBC

ix. TVGUIDE

x. ESPN

xi. PBS

xii. HBO

xiii. Showtime

xiv. CineMAX

xv. Netflix
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(d) Did you go to last year?

i. Bonnaroo

ii. Coachella

iii. SXSW

iv. Virgin Festival

v. Lollapalooza

vi. Glastonbury

vii. SonneMondSterne

(e) Hi, my name is .

i. Katherine

ii. Jason

iii. Coleman

iv. Jackson

v. Sophie

vi. Victor

vii. Michael

viii. David

ix. Annabelle

x. Stephanie

xi. Nkenge

xii. Roxanne

7. Paragraphs with a certain word to be fingerspelled multiple times

(a) The success of Coachella in its early years proved music festivals could work

and succeed in a destination form, as opposed to a traveling festival. The year

of Coachella’s debut was also the year of Woodstock ’99, which was marred by

riots, fires, and rapes, turning many people off of music festivals.[citation needed]
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In the years following Coachella’s success, many other festivals have followed in

its footsteps, copying its format as a destination festival with multiple stages,

attractions, art, and camping. Some of these new festivals have grown to achieve

the same success as Coachella, such as Lollapalooza in Chicago, Governors Ball

in New York City and Bonnaroo in Tennessee. According to a 2015 ranking by

online ticket retailer viagogo, Coachella was the second-most in-demand concert

ticket, trailing only the Tomorrowland festival.

(b) Madonna Louise Ciccone is an American singer, songwriter, actress, and busi-

nesswoman. She achieved popularity by pushing the boundaries of lyrical content

in mainstream popular music and imagery in her music videos, which became a

fixture on MTV. Madonna is known for reinventing both her music and image,

and for maintaining her autonomy within the recording industry. Music critics

have acclaimed her musical productions which have also been known to induce

controversy. Often referred to as the ”Queen of Pop”, Madonna is cited as an

influence among other artists around the world.
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Appendix C

Spelling Questionnaire for ASL

Signing Student

1. If a word is not commonly fingerspelled, does that make it more challenging for you

to fingerspell?

Response: It is slightly more challenging if it is not commonly fingerspelled. The

result is that the fingerspelled word will be spelled slightly slower than a word that

is fingerspelled often. Some commonly spelled words almost have a sense of muscle

memory and the brain doesnt take long to compute the spelling of it. An uncommonly

spelled word takes the brain a tad longer to compute the proper spelling and slightly

longer to spell out muscle wise.

2. If there is a word that you know, but do not commonly use/write/spell, is the word

more challenging to fingerspell?
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Response: Personally, the word is not challenging to fingerspell but may take longer

to mentally process. Everyone’s mental processing abilities are different, so a known,

but rare, word might be easier to fingerspell to some people and harder for others. If

it is a long word, it takes longer to process and the fingerspelling might slow down to

ensure proper spelling.

3. Is the word ELEPHANT easier for you to spell/write than CRYPTOGRAPHY?

Response: Elephant is easier. I assume it’s easier because I’ve spelled/written ELE-

PHANT more in the past than I have CRYPTOGRAPHY. It could also be because

ELEPHANT has more vowels spaced out and CRYPTOGRAPHY has more conso-

nants abnormally grouped together.

4. Please rank these words in the order of spelling ease (easiest word first, most difficult

to spell last).

• heaven

• guitar

• hoodie

• elephant

• cryptography

• psychiatry

• alumnus
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• pedantic

• arrest

• potato

• movie

Response: heaven, elephant, hoodie, guitar, potato, movie, arrest, pedantic, alumnus,

cryptography, psychiatry.

5. Do you believe that the more difficult words would be easier to spell and fingerspell

after spelling them multiple times?

Response: Yes, I believe they become easier to spell and fingerspell after practicing

to spell them many times. The more times you spell it the more familiar you become

with the word. Practice helps you remember how to spell it and fingerspelling it

many times starts to create a sense of muscle memory, especially if the words contain

abnormal letter order.
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Appendix D

Annotations from Fingerspelling

Videos

The words annotated in these plots were all fingerspelled by a deaf teacher whose

first language is American Sign Language.
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