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RESEARCH ARTICLE
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monitoring of accumulation of blood in the

head: A numerical study
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1 Department of Physiology and Pharmacology, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv,

Israel, 2 Department of Mechanical Engineering, University of California at Berkeley, Berkeley, CA, United

States of America

* korens@post.tau.ac.il

Abstract

Background

This theoretical study examines the use of radar to continuously monitor “accumulation of

blood in the head” (ACBH) non-invasively and from a distance, after the location of a hema-

toma or hemorrhage in the brain was initially identified with conventional medical imaging.

Current clinical practice is to monitor ABCH with multiple, subsequent, conventional medical

imaging. The radar technology introduced in this study could provide a lower cost and safe

alternative to multiple conventional medical imaging monitoring for ACBH.

Materials and methods

The goal of this study is to evaluate the feasibility of using radar to monitor changes in blood

volume in the brain through a numerical simulation of ACBH monitoring from remote, with a

directional spiral slot antennae, in 3-D models of the brain. The focus of this study is on eval-

uating the effect of frequencies on the antennae reading. To that end we performed the cal-

culations for frequencies of 100 MHz, 500 MHz and 1 GHz.

Results and discussion

The analysis shows that the ACBH can be monitored with radar and the monitoring resolu-

tion improves with an increase in frequency, in the range studied. However, it also appears

that when typical clinical dimensions of hematoma and hemorrhage are used, the variable

ratio of blood volume radius and radar wavelength can bring the measurements into the Mie

and Rayleigh regions of the radar cross section. In these regions there is an oscillatory

change in signal with blood volume size. For some frequencies there is an increase in signal

with an increase in volume while in others there is a decrease.

Conclusions

While radar can be used to monitor ACBH non-invasively and from a distance, the observed

Mie region dependent oscillatory relation between blood volume size and wavelength
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requires further investigation. Classifiers, multifrequency algorithms or ultra-wide band

radar are possible solutions that should be explored in the future.

Introduction

It is well established that “Intracerebral hemorrhage is a serious medical condition for which

outcome can be impacted by early, aggressive care.” [1]. Accumulation of blood in the brain

can be of two types: hemorrhage, which is leakage of blood outside the blood vessel and hema-

toma, which is accumulation of blood within tissue planes. This study deals with monitoring

“accumulation of blood in the head” (ACBH), in general, regardless of the mechanism of accu-

mulation. However, when relevant, we will discuss the particular modality of ACBH. Medical

imaging, including ultrasound (US) computed tomography (CT) and magnetic resonance

imaging (MRI) are essential for the diagnostics and treatment of intracranial hemorrhage and

hematomas [2–6]. In fact, neuroimaging is considered mandatory [1]. Hematoma and hemor-

rhage growth correlates with neurological deterioration and increased morbidity and mortality

[7–9]. Therefore, follow up of intracranial hemorrhage with imaging has become an important

element in treatment of brain injuries [10] and is part of the clinical routine [1]. However, not

all medical conditions benefit from medical imaging follow up. On one hand, follow up medi-

cal imaging is valuable and required [11], on the other there are circumstances in which it

does not produce added value [12, 13]. Multiple medical imaging sessions increase the cost to

the health care system and inconvenience the patients. Furthermore, multiple medical imaging

may have substantial detrimental side effect, such as increased risk for cancer, in particular to

children [14–18]. Taken as a whole, the disadvantages of repeat head imaging may surpass the

advantages. However, there are cases in which continuous monitoring is required. The radar

based technology of this study, may provide a solution.

The radar based technology introduced in this study, is an outgrow of a technology devel-

oped by us earlier, in which we used multifrequency phase shift spectroscopy to detect changes

in fluids in the body [19–23]. Multifrequency phase shift spectroscopy employs non-ionizing,

low energy multifrequency electromagnetic waves and measures the phase shift, as the waves

are transmitted between two electromagnetic coils that brace the tissue that is probed. The

technology has found applications to monitoring edema, hematoma and cerebrovascular reac-

tivity in the brain [22, 23]. Recently, a clinical version of the technology also known as “Volu-

metric Integral Phase-shift Spectroscopy (VIPS)” was able to detect intracranial fluid shifts

during hemodialysis [24]. The VIPS technology employs two coils that are positioned across

the head, in such a way as to examine the entire brain. Recent versions of the device employ

rigid connection to the skull.

The goal of this paper is to introduce and evaluate the feasibility of a new diagnostic tech-

nology that can monitor the growth of an ACBH in the brain when the location of the ACBH

is known from previous conventional medical imaging, as an alternative to continuous moni-

toring with conventional methods of medical imaging. Unlike the multifrequency phase shift

spectroscopy method, the technology introduced here uses only one spiral antenna, with a

reflector, and employs the principles of radar. This facilitates convenient and unrestricted

placement of the antenna anywhere around the head, at a location that is optimized for the

particular ACBH that is monitored. The electromagnetic energy dose is low and the electro-

magnetic waves are non-ionizing. The technology may become a convenient means to moni-

tor the change in size of a specific ACBH, when the location of the ACBH is known from
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conventional medical imaging; as an alternative to repeat medical imaging with conventional

medical imaging means.

Radar employs the reflection of electromagnetic waves from interfaces between surfaces

with different electromagnetic permittivity. It is used to probe an object of interest, without

contact, from a distance. Radar devices consist of an emitting and receiving antenna, to emit

and receive the electromagnetic waves. Radar was originally developed to detect large objects

at far distance for such applications as air traffic control and surveillance, detection of sea ves-

sels and navigation. However, the unique ability of electromagnetic waves to penetrate non-

metallic objects suggested other uses, such as ground penetrating radar [25] for applications

such as high resolution mapping of soil [26] and in construction. For example, a frequency of

2 GHz was used to monitor water seepage from a PVC pipe hidden in a concrete wall [27].

Among other applications, our group has developed radar technology to monitor human

movements, even through walls, for analysis of neurological disorders associated with motion,

such as Parkinson [28, 29].

A 1972 review on the use of electromagnetic waves in the spectrum between 1 MHz and

300 GHz in medicine, is found in [30]. Johnson and Guy, [30] reference earlier 1958 work by

Moskalenko [31] in which changes in microwave or shortwave reflectance and transmission,

caused by significant variation in parameters such as respiratory volume changes, are assessed.

Thomas McEwan, patented an implementation of (ultra-wideband) UWB radar for remote

vital signs monitoring [32]. A subsequent review on the use of radar in medical measurements

is found in a 2002 paper [33]. In a 2005 paper, Paulson et al, [34] summarize advances in UWB

for diagnostics, to that date. An excellent 2010 review of the use of radar in medical applica-

tions is found in [35]. With regards to the use of radar in the brain, Haddad et al. describes a

technology to “detect and localize” blood pooling near the surface of the body, including sub-

dural and epi-dural hematomas. The technology maps the brain with a near field microwave-

antenna [36]. Recently, a series of papers by Mobashsher et al, [37–42] describe the use of

ultra-wide band (UWB) antenna in the microwave range for developing an image of the brain,

to produce an image of a hematoma and the surrounding brain tissue.

This study explores the feasibility of using radar, as a simple means to monitor changes in

the volume of an ACBH, when it’s location is known from previous imaging with conventional

means. To this end we examine the use of a single spiral radar antenna to monitor the growth

of an ACBH, when the location of the ACBH is known, a-priori. A primary goal of the study is

to evaluate the effect of frequency on the measurements.

Materials and methods

Mathematical model

Fig 1A shows a schematic of the spiral antenna and of the placement of the antenna relative to

the head. [43, 44]. A cross section through the antenna is shown in Fig 1B. The structure of the

antenna, in the direction from the head outward is, as follows: a) a dielectric layer on top of

which rests, b) the spiral slot antenna, which is made of a thin film of copper in which the spi-

ral form slots are machined, c) a gap of air, d) a copper reflector.

The mathematical model describing the electromagnetic phenomena in this study requires

the use of the complete set of Maxwell equations; because at frequencies above about 400

MHz, the steady or quasi steady approximations fail. We have used the COMSOL RF Module

Version 5.2. For high frequency models, voltage is not a well-defined variable and it is neces-

sary to use scattering parameters (S), defined in terms of electric fields. Scattering parameters

(or S-parameters) are complex, frequency dependent variables describing the transmission

and reflection of electromagnetic waves at different ports of a device. S-parameters originate

Radar based technology for non-contact monitoring of cerebral hemorrhage
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from transmission-line theory and are defined in terms of transmitted and reflected voltage

waves.

The derivation that follows is typical to analysis of electromagnetic fields using scattering

parameters [45]. The equivalent simple diagram of the radar head model is shown 1C. The dia-

gram shows a voltage source feeding into the radar with a source impedance of Z0. If we define

a ¼ Eforwardffiffiffiffi
Z0

p and b ¼ Ereflectedffiffiffiffi
Z0

p as the square root of the forward and reflected incident electromag-

netic waves, we can define the scattering function S11 as, S11 ¼
b
a [45], and the input impedance

can be express as:

ZL ¼ Z0

1þ S11

1 � S11

� �

ð1Þ

When an external electromagnetic wave impinges on the radar antenna with an amplitude

of Erx it will lead to a change of the Ereflected, and consequently, will result in a change in the

radar input impedance, ZL. In practical situation this change can be measured with a vector

analyzer.

An expression derived from the Maxwell equations, for small changes in the radar input

impedance, is given by [46]:

DZL ¼ �
1

I2
∭½ðds � iodεÞE � Eð0Þ � ðiodmÞH � Hð0Þ�dV ð2Þ

Fig 1. Radar system for monitoring accumulation of blood in the brain. (A) Scheme of the structure of the spiral slot copper antenna and of its

placement relative to the head; (B) Magnified scheme of the antenna and the reflector. The structure of the antenna in the direction from the head

outward is, as follows: i) a dielectric layer on top of which rests; ii) the spiral slot antenna, which is made of a thin film of copper in which spiral form

slots are machined; iii) a gap of air; iv) a copper reflector. (C) Schematic diagram of radar operation.

https://doi.org/10.1371/journal.pone.0186381.g001
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Where E, H are the electric field and the magnetic field, respectively, in the presence of an

inhomogeneity (an ACBH), E(0), H(0) are the electric field and the magnetic field in the

absence of the inhomogeneity, δσ, δε and δμ are the changes in conductivity, permeability

and permittivity.

In this study, we seek to evaluate the feasibility of using the radar to monitor the change in

size of an ACBH in the head, in time and the effect of frequency on the measurement. To this

end we evaluate the changes in the radar antenna input impedance, between the original value

at the start of the measurements and values of the radar input impedance at a later time. In Eq

(3) we mark the time when the base line reading is taken, with (t1). This is the instant at which

the conventional medical image was taken. The second point in time (t2), is later; it can also be

continuous in time. We can analyze the change in size of the ACBH, by analyzing the changes

in readings at the antenna, between the time instances. These changes are a result of the

changes in amplitude and phase of the reflection from the head to the antennae, due to the

change in size of the ACBH. There are various ways to compare the readings at the different

times. Here, we use the absolute value of the changes of the impedance between t1 (the base

line) and t2:

DZ ¼ absðZL;t2 � ZL;t1Þ ð3Þ

absðZÞ ¼ absðaz þ ibzÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2
z þ b2

z

p
Þ: ð4Þ

It is important to note that our choice to use the absolute value of the changes in transmit-

ted impedance is just one of many possible ways to analyze the combined changes in both

amplitude and phase using the definition. Many other different combinations of change in

amplitude and phase with different weight for the amplitude and the phase, are possible. For

instance, it is possible to use only the phase shift, as we did in [19]. In this paper we will use Eq

(3), which weights equally both, amplitude and phase.

The antennae configuration

The schematic of the antennae used in this study is shown in Fig 1A and Fig 1B. We chose to

use a spiral slot antenna [43, 44] for several reasons. The spiral slot antenna was chosen for its

directionality and wideband properties. The directionality of the antenna, facilitates pointing

the antenna to the location of the hematoma identified by conventional medical imaging. In

addition this antennae configuration has a large gain over a wide bandwidth. Earlier studies

have shown that circular polarization improves the depth resolution of ultra-wide band micro-

wave imaging radar systems, relative to linear polarization [47]. Circular polarization provides

a good approximation of the shape and size of the objects [47].

The analysis assumes a spiral slot antenna [44]. The detailed schematic is shown in Fig 1B.

The antenna is made of two main parts. The part farthest away from the head is a reflector

made of copper, whose function is to reflect most of the energy towards the antenna and the

head. The antenna is made of a copper disk with a radius of 75 mm and a thickness of 1.5 mm.

The second part (closer to the head) is the spiral slot antenna. The part of the spiral slot

antenna, facing the head, is a dielectric 1.5 mm thick and 75 mm in diameters. It is assumed

that the dielectric plate has typical properties for its’ function[48]: εr = 3.38 (relative permittiv-

ity). μr = 1 (relative permeability) and σ = 0 (electrical conductivity). On top of the dielectric,

facing the reflector is a two-arm Archimedean spiral slot with 14 turns patterned on a thin sin-

gle-sided copper sheet. The slot follows the path of the equation x = 1.5 � s � cos(s), y = 1.5 � s �
sin(s), where s, ranges from 0 to 14 π and the width of the slots is 1.5 mm. The two parts are

along the same center line and the distance between the parts is 3 mm.

Radar based technology for non-contact monitoring of cerebral hemorrhage
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To enable comparison of the changes in impedance due to changes in ACBH size at differ-

ent frequencies we calibrated the input voltage of the lumped port so that at the location

(x = 0, y = 0 z = -3mm) the value of the normal to the electric field in free air is exactly 79.05 V/

m, for each frequency.

The models, mesh and boundary conditions

To isolate, mathematically, the effect of the changes in brain ACBH size on the antenna imped-

ance, from artifacts caused by environment effects—the boundary of the analyzed domain

must perfectly absorb incoming waves from all angles, without reflections. This is achieved

mathematically through a perfectly matched layer (PML) at the model’s boundary. PMLs are

layers that absorbs all radiated waves with small reflections[49].

Fig 2A, shows a schematic of the mesh used in analyzing the effect of a ACBH on the

impedance of a radar antennae. Fig 2A shows the PML in the form of a hollow sphere with a

radius of 30 cm and thickness of 10 cm. The air (the internal sphere inside the PML) maximum

mesh element size is 2cm. The antenna maximum mesh size is 1cm with an average value of

0.5 mm. The head, was modeled, by assigning the appropriate electromagnetic values to each

element, in what is marked as the head mesh in Fig 2A. Similarly, for the ACBH. The size of

the mesh elements used for the head ranged from 1cm to 1mm. The total number of mesh ele-

ments is 308,302 and the number of degrees of freedom in this simulation is 2,187,010.

Fig 2. Details of the analyzed configuration: Mesh structure and head segmentation. (A) Typical mesh configuration.

The analysis was performed by defined electromagnetic properties in each element of the mesh. B) The head image after

segmentation. (C) (D) and (E) The permittivity maps for 1GHz on the mesh representing the brain slices (including ACBH

simulation) in an axial coronal and sagittal orientation, respectively.

https://doi.org/10.1371/journal.pone.0186381.g002
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In the analysis whose results are presented here, we replaced the cylindrical shape of the

brain in Fig 2A with a mesh formed from a multidimensional MRI image of a real head[50],

Fig 2B. The web site provides a set of 60 images from coronal scans of MRI images of a healthy,

43 years old male. The scan was made with a 3 Tesla, GE MRI. The MR’s images voxel size is

1:1:3 mm. In order to distinguish between the different brain parts, we process and segment

the images using 3D slicer software[51]. For use with the 3D slicer we classified the brain ele-

ments into 4 types of tissue: white matter (WM), gray matter (GM), cerebrospinal fluid (CSF)

and the skull bone. For each brain’s element we coupled the appropriate electrical properties

(Permittivity and Conductivity) per frequency using ITIS’s dielectric tissue properties database

[52]. We packed the spatial dielectric properties as a Matlab 3D interpolation object and used

COMSOL Multiphysics software (RF Module 5.2) that allows the use of Matlab functions to

describe material properties. Examples of the permittivity maps in axial coronal and sagittal

slices are shown in Fig 2C, 2D and 2E, respectively.

Results and discussion

To facilitate a better understanding of the results, we will introduce an important concept in

radar analysis—the radar cross section (RCS), σ. A simplistic definition of the radar cross sec-

tion is that the RSC is a measure of how detectable an object is with radar. A more rigorous

definition is that the RCS is the ratio of backscatter power per steradian (unit solid angle) in

the direction of the radar (from the target), to the power density that is intercepted by the tar-

get[53]. A target’s RCS (σ) can define as:

s ¼ Projected cross section x Reflectivity x Directivity ð5Þ

Where reflectivity is the percent of intercepted power reradiated by the target. It is important

to note that the reflectivity is directly depend on the wave frequency. Directivity is the part of

the power scattered back in the radar’s direction and the projected cross section is the area of

the target viewed by the radar.

For a perfectly conducting sphere, the radar equation has an analytical solution. The solu-

tion has three regions, specified by the relative size of the wave length, λ, to the sphere radius,

r. The “optical region” (far field) where r� λ (or the characteristic dimension in case of other

shapes); the Rayleigh region in which the radius of the sphere is smaller than the radius of the

wavelength, r� λ and the intermediary region between the optical and Rayleigh regions,

called the Mie region or resonance region.

In the optical region, the RCS takes a maximal value and the value does not depend on the

wavelength, σmax = πr2 (λ� r) [54]. In the Rayleigh region, σ� 9πr2 (kr)2 where k ¼ 2p

l
(r�

λ). In the Mie region (resonance), the RCS is oscillating in a form prescribed by Hankel and

Bessel functions. Fig 3, is a classical diagram of the relation between RCS and wavelength[54],

brought here to facilitate a discussion of the results of this study.

ACBH change in size with time was examined in three configurations. The configurations

are:

1. A simulated ACBH in free air.

2. A simulation of ACBH in a computer model of a real head.

3. A simulation of ACBH growth from various clinical data in the literature.

The primary goal of this study is to evaluate the feasibility of monitoring of ACBH with

radar. In the problem analyzed here, the blood volume is not constant and changes in time.

The change in blood volume results in changes in RCS, which can bring the RCS through the

Radar based technology for non-contact monitoring of cerebral hemorrhage
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Mie and Rayleigh regions. The precise details of the way in which the RCS changes with

changes in blood volume is dependent on the radar frequency. To generate a fundamental

understanding of the effect of frequency on the ability of radar to monitor ACBH, we studied

each individual frequency separately. We examined three frequencies: 100 MHz, 500 MHz and

1 GHz, that were chosen because they encompass the range between frequencies in which

steady and quasi-steady models apply and those that require the solution of the complete Max-

well equations. These frequencies also illustrate the effect of changes in ACBH in the Mie and

Rayleigh regions of the radar cross section, on the radar readings.

Simulated ACBH in free air

The analysis of ACBH in free air was done to study the effect of different radar relevant param-

eters on an ACBH, isolated from the effect of the head. Fig 4A, shows the model used to study

the effect of an ACBH in air on the antennae reading. The parameters of interest are the vol-

ume of the ACBH, the cross section exposed to the incident electromagnetic waves coming

from the antenna, and the wavelength. The ACBH was modeled with the dielectric properties

of blood[52]. To examine the effect of the cross section we employed an ACBH shaped as an

ellipsoid. We placed the ACBH in two configuration relative to the antenna outer surface (x-y

plane). In Fig 4B the long axis of the ACBH is in the z direction, normal to the x-y antenna sur-

face (at the ratio of 1:1:2 between the x, y, z respectively) and in Fig 4C, the short axis of the

Fig 3. The radar cross section (RCS), σ, as a function of the wavelength, λ. The abscissa is the radius of

the conducting sphere normalized with respect to the wavelength. The ordinate is the radar cross section, σ,

normalized with respect to the conductor sphere geometrical cross section. The dependence of RCS on

wavelength exhibits three distinct patterns of behavior. Of interest to this study is the Mie region in which the

object geometrical dimension is on the order of magnitude of the wavelength, and dependence of RCS on

frequency takes an oscillatory shape.

https://doi.org/10.1371/journal.pone.0186381.g003
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ACBH is in the z direction, normal to the x-y antenna surface (where the ratio between the x,

y, z axes is 2:2:1, respectively). The volume was varied from 0 ml to 50 ml. The antenna used is

a spiral antenna with a radius of 75mm, as described in the materials and methods section.

The model was surrounded by PML (Perfect match layer). The ACBH center of gravity is

placed 5 cm below the antenna surface along the centerline axis, in air. The analysis was per-

formed for frequencies of 100 MHz, 500 MHz and 1 GHz.

Results from the analysis are displayed in Fig 5. The abscissa is the volume of the ACBH. In

this study we used the volume as the variable parameter, because volume of blood is used in

clinical practice. A more precise measure would be the geometrical cross section facing the

antenna, but this has little practical clinical applicability. Fig 5A, shows the effect of the blood

volume on the absolute antenna’s impedance change, as calculated from Eq 3. In this case the

orientation of the ellipsoid is (x,y,z– 1:1:2 as in Fig 4B). Fig 5A compares results for a frequency

of 100 MHz with those for a frequency of 1 GHz. It is obvious that the effect of volume change

is not linear and that the changes in absolute impedance at a probing frequency of 1 GHz, is an

order of magnitude larger than the changes in absolute impedance at a probing frequency of

100 MHz. This leads to an important observation and suggests that a higher frequency can

provide a greater measurement sensitivity. The concept of the radar cross section, σ, facilitates

an understanding of the results and provides insight in the use of an antenna for monitoring

ACBH. The RCS dependence on frequency (Eq 5) results from two effects: the ACBH reflec-

tion coefficient dependency on frequency and, the ratio between the wavelength and the

dimension of the object. The reflection coefficient of blood at lower frequency is higher than

the reflection coefficient at higher frequency [55]. However, for clinically relevant dimensions

of the ACBH and radiofrequency electromagnetic waves, the RSC is in the Mie and Rayleigh

regions. The RSC effect becomes dominant, leading to the results in Fig 5A.

Fig 5B and 5C, are presented to provide further insight into the effect of the RCS. The fig-

ures display results for two different configurations of the blood as shown in Fig 4B and 4C. In

Fig 4. The model used to simulate the ACBH in air. (A) The complete model, (B) and (C) The two configurations of the ellipsoid shaped ACBH

relative to the outer surface of the antenna facing it.

https://doi.org/10.1371/journal.pone.0186381.g004
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Fig 5B, the ordinate is the change in the real component of the impedance and the abscissa is

the blood volume. We display here only the real part of the change in impedance because, the

radar equation is concerned only with the real part of impedance. The two curves show results

for the same volume of blood, but with different orientations of the ellipsoid, i.e. a different

cross section is presented to the radar. It is interesting to notice that in one of the curves, the

impedance actually decreases with an increase in the volume of the ACBH. This is important

for clinical situations, where the ACBH radius/wavelength ratio places the RCS in the Mie

region. In this region the RCS is not monotonic with respect to ACBH radius/wave length

ratio, and can oscillate. Therefore, an increase in ACBH radius can result, for certain wave-

lengths, in a decrease in impedance, yielding misleading clinical information; i.e. if only the

response to a single wavelength is taken as an indication of growth or decrease in the ACBH

size. An important conclusion, with clinical relevance, is, that, when the growth of an ACBH is

monitored with measurements produced by electromagnetic waves, it will be necessary to con-

sider the radar cross sections in the analysis. One possible way is to analyze the response from

several frequencies to avoid misleading information due to measurements in the Mie region,

and to develop special frequency weighted monitoring algorithms as in [24]. This is consistent

with our experimental observations when we developed the multifrequency phase shift spec-

troscopy technology [19, 20]. Fig 5B, also shows that, for the same volume of ACBH, there are

different changes in impedance as a function of the orientation of the ellipsoid. This is the

effect of the cross section presented to the radar. A larger cross section, will produce greater

changes in impedance.

The effect of the Projected Cross Section (PCS), i.e. the surface that faces the electromag-

netic waves incident from the radar antenna on the radar measurements, is demonstrated in

Fig 5. Results obtained from the simulation of the ACBH in air. The abscissa is the volume of the ACBH.

(A) The change in absolute input impedance as a function of volume for two radar frequencies 100 MHz and

1GHz. (B) The real part of the change in input impedance as a function of the ACBH volume for the two

ellipsoid orientations, as in 4B and 4C. (C) The real part of the change in input impedance, normalized with

respect to the geometrical cross section area facing the antenna monitoring the blood, as a function of the

blood volume for the two ellipsoid orientations, as in 4B and 4C.

https://doi.org/10.1371/journal.pone.0186381.g005
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Fig 5C. Here, the changes in impedance were normalized to the radar facing PCS. It is seen

that when the change in impedance is normalized to the PCS, the two different curves in Fig

5B, become superimposed.

Fig 5B and 5C illustrate an important conclusion, that the projected cross section facing the

radar is the dominant parameter affecting the radar reading and not the volume of the ACBH.

For clinical practice, this means that it is important to place the radar antenna relative to the

ABCH in an optimal orientation relative to the PCS, to maximize detection sensitivity.

Simulated ACBH in a computer model of a real head

In this part of the study, we use mathematical modeling to examine the effects of different

parameters on monitoring ACBH in a real head, with radar. The head image used and the

mathematical model are described in Fig 2. The results in Figs 6–8 and S1–S3, were all

obtained for the brain model shown in Fig 2. The ACBH was simulated by an ellipsoid with

axes ratio of 2:2:1 (Fig 4B). The placement of the ACBH ellipsoid is shown in Fig 2, from differ-

ent view angles. The antenna was placed normal to the long axis of the ellipsoid, as in Fig 4B.

The center of gravity of the ellipsoid was set at two distances from the center of the antenna, 6

cm and 11 cm. The volume of blood ranged from 0 to 50 ml. The frequencies examined where,

100 MHz, 500 MHz and 1 GHz.

In Fig 6, we examine a situation in which the antenna is at a fixed location and the ACBH is

at different distances from the antenna. The purpose of the study in Fig 6, was to understand

the effect of the location of the ACBH in the brain on the radar reading. Panels 6A, 6B and 6C,

show the change in absolute impedance (Eq 3) for frequencies of 100 MHz, 500 MHz and

1GHz, respectively and two different distances of the center of gravity of the ellipsoid (Fig 4B)

from the center of the radar surface, 6 cm and 11 cm. Comparing the panels shows that the

higher the frequency, the larger the value of the absolute change in impedance and, obviously,

the greater the resolution. The difference between the reading at 100 MHz and 1 GHz is two

Fig 6. The change in absolute input impedance at two different distances from the antenna. The ordinate is the change in absolute input

impedance. The abscissa is ABCH volume. (A) 100 MHz, (B) 500 MHz, (C)1 GHz, D) all three frequencies (at a distance of 11 cm) on a logarithmic

scale.

https://doi.org/10.1371/journal.pone.0186381.g006
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orders of magnitude and between 500 MHz and 1 GHz is a factor of four. This aspect is more

evident in Fig 6D, where the impedance change with volume, is plotted on a logarithmic scale.

One important conclusion from Fig 6A, 6B and 6C is that higher frequencies will produce a

larger signal and therefore greater resolution.

Fig 6A, 6B and 6C, also show that the magnitude of the reading decreases with an increase

in the distance between the ACBH and the radar surface. The relative decrease is larger at

higher frequencies. Therefore, while the higher frequencies produce higher signal, they are

more sensitive to variations in the depth of the ACBH.

While higher frequencies produce a higher resolution signal, Fig 6C and 6D, illustrate the

problems with higher frequencies. The RCS of typical clinical ACBH volumes may land in the

Mie region or in the Rayleigh region, as a function of the radar frequency used. Therefore,

increase in volume may not always result in an increase in the absolute impedance. Fig 6C and

6D, show that there are realistic situations in which the absolute impedance is actually decreas-

ing, while the volume of the ACBH is increasing. This is a serious drawback of the radar

method, when a single frequency is used for monitoring. A possible solution is to use multiple

frequencies in the monitoring. For instance, while the resolution of the 500 MHz reading in Fig

6B, is lower than that of the 1 GHz reading in Fig 6C, it displays only increases in impedance

with volume. It is possible that the use of radar to evaluate ACBH will require developing multi-

frequency algorithms, in which different frequencies may be given different weights, which is a

topic that requires further research. Another possibility is to develop frequency measurements

based classifiers, as done by us with multifrequency transmission measurements in the head in

[22]. In the future, we will also examine different other combinations of the radar data, in addi-

tion to the one used in this study, to seek a way to optimize the information from the radar read-

ing. For example, measurements that give greater weight to the phase shift as in [19, 20, 22].

In Fig 7, we examine a situation in which the ACBH is at a fixed location in the brain and

the antenna moves, relative to the skull. The purpose of this analysis is to examine the effect of

possible head or antenna movements during the monitoring of the ACBH growth. The figure

is for a configuration similar to that shown in Fig 4C, i.e. an ellipsoid in which the shorter axis

is in the z direction, normal to the plane of the antenna surface. The center of gravity of the

ACBH is 4.5 cm from the outer surface of the skull. The figure lists values of the distance

between the surface of the antenna and the center of gravity of the ellipsoid. For example,

when the distance is 5 cm, the antenna surface is 0.5 cm from the surface of the skull and when

the distance is 8 cm, the antenna is 3.5 cm from the skull. The frequency is 1GHz for these

cases (similar results were obtained for all the frequencies). An important outcome is that the

value of the impedance is sensitive to distance between the antenna surface and the ACBH.

However reasonable readings can be obtained even from a distance of 3.5 cm between the

antenna surface and the skull. This should substantially simplify the clinical use of the radar

technology. The primary purpose of the radar measurement technology, whose feasibility is

examined in this study, is to monitor changes in the blood volume. We anticipate that, if a

change is observed, the physician will be alerted and conventional imaging will be used to find

the clinical details of the change. From Fig 7, it appears that as long as the distance of the

antenna to the head is maintained constant, it will detect the sought after information on the

occurrence of a change in ACBH size, independent on the exact value of the distance between

the antenna and the blood lesion. An important consideration in designing a radar based

ACBH monitoring device, is to maintain a constant distance from the head. It appears that

maintaining a constant distance from the ACBH is probably more important than the actual

distance. From the analysis in this section, it is evident that a precise and permanent position-

ing of the antenna relative to the ACBH, is important. This is possible by designing a fixture

that rigidly attached to the head, as in our previous studies [23, 24].
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In the previous studies, we have assumed that the plane of the antenna is normal to the line

connecting between the center of the ACBH and the center of the antenna. Here we evaluate

the situations in which the angle is not normal. The schematic is depicted in Fig 8 on the left

panel and the results are shown in Fig 8 on the right panel. The measurements are affected by

the angle. Until 5 degrees the changes are small and they increase at 10 degrees. Since the goal

of this technology is to monitor change in size, variations in angle will not affect the function

of the device. In fact, it seems that the resolution may increase with a change in angle, as one

part of the antenna is brought closer to the examined blood lesion.

This paper deals with a mathematical analysis of the feasibility of monitoring ACBH with

radar. In previous figures we have examined the effect of various design parameters on moni-

toring ACBH with radar, with particular emphasize on the relations between frequency, vol-

ume of blood and location. In the following figures we will examine the effects of numerical

errors in the analysis and the effects of signal to noise.

To obtain an estimate of the possible errors from modeling S1 Fig examines the effect of

adding an error to the electrical properties of blood used in the analysis. The errors were

added to the data in the literature [52], in the form of white Gaussian noise with magnitudes of

1%, 3% and 5%. The electrical properties in each modeled voxel at a location (i,j,k) were

changed according to the formula:

Propertyði; j; kÞ
¼ ð1� RandomðGaussian white noise percentageÞÞ � ðProperty from literatureÞð6Þ

In this way, each voxel experienced a different random error. The model was a ACBH

sphere with a volume ranging from 0 to 4.25 cm3. The center of gravity of the sphere was

Fig 7. The change in absolute impedance input for different distances between the antenna and the

ACBH. The ordinate is the change in absolute input impedance, when using a frequency of 1 GHz. The

abscissa is ACBH volume.

https://doi.org/10.1371/journal.pone.0186381.g007
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located at a distance of 7 cm from the center of the antenna surface. The antenna surface was

0.5 cm above the skull. The results were obtained for a 1 GHz antenna. The figure shows the

relation between the measured change in impedance and blood volume for different percent-

age errors in electrical properties estimate. It is evident that a random error as large as 5%

imposed on each voxel does not affect the overall pattern of change in impedance/ ACBH rela-

tion. The main application of the technology we evaluate here is to determine the feasibility of

monitoring ACBH in time, with radar, rather than evaluating the exact volume of the ACBH.

S1 Fig shows that even an error as large as 5% in the mathematical model will not affect the

conclusions from the analysis in this paper–in regards to evaluating the feasibility of using

radar measurements to monitor ACBH.

An important parameter in electrical circuits design is the effect of the signal to noise ratio

(SNR), defined as:

SNRdB ¼ 20 � log10

Vsignal

Vnoise

� �

ð7Þ

There, are various means to reduce the SNR in an antenna, but this is not the focus of this

study. Here we will examine the effect of SNR on the ability to monitor the growth of an

ACBH with the radar technology. The ACBH is an ellipsoid with axes ratio of 2:2:1, as shown

in Fig 4C, whose center of gravity is located 7 cm below the center of the antenna and the dis-

tance between the antenna surface and the skull surface is 0.5 cm. We examined the change in

absolute impedance, when white Gaussian SNR of 40 dB or 50 dB [56] was added to the elec-

tromagnetic wave signal value entering the antenna. S2 Fig displays the calculated impedance

when 40 dB or 50 dB SNR was added to the data for radar frequencies of 100 MHz, 500 MHz

and 1 GHz. The fuzzy data points come from different numerical experiments in which a

Gaussian signal to noise error was introduced. S3 Fig compendium, is another way to display

Fig 8. The change in absolute impedance input for different angles between the antenna and XY plan. The ordinate is the change in absolute input

impedance (for 100, 500, 1000 MHz). The abscissa is ACBH volume.

https://doi.org/10.1371/journal.pone.0186381.g008
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the data in S2 Fig by plotting on the abscissa the difference between the calculated impedance

value from an input with a signal to noise error and on the ordinate the number of data points

that have expressed this order of magnitude of the error. Obviously, it resembles a Gaussian

plot, with a peak at the origin. The observation that the effect of noise produces a Gaussian dis-

tribution error around the signal without noise suggests that multiple measurements at the

same frequency will reduce the effect of noise. In fact, in our study in [23], we have used for

this purpose 128 repeats at each frequency. S2 and S3 Figs, show that the effect of the error due

to SNR, is lower for higher frequencies. This is an advantage of using higher frequencies for

monitoring ACBH.

Simulation of ACBH growth from various clinical data in the literature

To generate a better understanding of the clinical potential of the radar technology to monitor

growth of ACBH, we have gathered images of various types of ACBH from the Internet, and

simulated monitoring the growth of the ACBH for these cases. These studies are shown in Figs

9 and 10. The figures show the actual CT image, the model of the ACBH and the calculated

change in impedance for a radar measuring at 1 GHz.

Fig 9 is for the case of a subarachnoid hemorrhage. The clinical data, shown in panel A is

taken from [57] (case 3, lobar hemorrhage). In our simulation, the hemorrhage was modeled

as a sphere, located as shown in the figure (Panels B and C). The distance from the outer sur-

face of the antenna to the skull is 0.5 cm. The location of the center of the ACBH relative to the

Fig 9. A simulation analyzing the detection of blood volume change in a subarachnoid hemorrhage

with radar. (A) Image of a lobar hemorrhage from a case study by Dr. Frank Gaillard Radiopaedia.org [57].

(B), (C) The location of the ACBH on the permeability map for the case in panel A. (D) Calculated change in

absolute input impedance as a function of hemorrhage volume.

https://doi.org/10.1371/journal.pone.0186381.g009

Radar based technology for non-contact monitoring of cerebral hemorrhage

PLOS ONE | https://doi.org/10.1371/journal.pone.0186381 October 12, 2017 15 / 20

http://Radiopaedia.org
https://doi.org/10.1371/journal.pone.0186381.g009
https://doi.org/10.1371/journal.pone.0186381


center of the antenna facing the skull is (x = -2cm, y = -3cm, z = -10cm). The change in abso-

lute impedance with volume is given in panel D. It can be observed that the 1 GHz radar tech-

nology could have monitored the growth of the hemorrhage, even though it is deep in the

brain. However, the reading of the change in impedance is not linear with the change in vol-

ume, and, in fact are regions in which there is the dip in absolute change in impedance. As dis-

cussed earlier, this is the effect of the change in volume and the consequent radius-wavelength

ratio being in the Mie region. It further emphasizes the observation that algorithms must be

developed to handle these complications. A possible solution worth exploring is the use of

multifrequency radar, an area of research we plan to pursue in the future.

Fig 10, is for a case of intraparenchymal hemorrhage [56]. In this simulation the antenna is

assumed to be 0.5 cm from the skull. The location of the center of the ACBH relative to the

center of the antenna facing the skull is (x = -3cm, y = -4cm, z = -8cm). The hemorrhage is

simulated as an ellipsoid with axes ratios of 4:1:1 and where the major axis is normal to the sur-

face of the antennae. The radar frequency is 1 GHz. An interesting observation is that for this

shape of hemorrhage the impedance in Fig 10D, grows with the growth of the lesion, unlike in

Fig 9D. This emphasizes the fact that the ratio between wavelength and lesion size is important,

because different types of results may be obtained from different ratios. It further emphasizes

the need for using multifrequency, or at least understanding the significance of the ratio

between wavelength and lesions size.

Fig 10. A simulation analyzing the detection of blood volume change in an intraparenchymal hemorrhage

with radar. (A) The image of an intraparenchymal hemorrhage is taken from a case of spade injury by Dr. Nafisa

Shakir Batta Radiopaedia.org. [56] (B), (C) The location of the ACBH on the permeability map for the case in panel

A. (D) Calculated change in the absolute input impedance as a function of hemorrhage volume.

https://doi.org/10.1371/journal.pone.0186381.g010
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Conclusion

This is a theoretical study that has examined the feasibility and attributes of radar monitoring

of the growth of a hematoma or a hemorrhage in the brain, non-invasively and from a dis-

tance, when the location of the hematoma or hemorrhage are known from conventional medi-

cal imaging. This may have value as a low cost and safe alternative to multiple conventional

medical imaging follow-up of bleeding in the brain. We have developed a radar model to simu-

late the measurement. The numerical results applied to 3-D models of real brains, demonstrate

the feasibility of using radar to monitor growth in blood volume. An important design param-

eter is the frequency used for monitoring the ACBH. Data obtained for frequencies of 100

MHz, 500 MHz and 1 GHz show that the resolution improves with an increase in frequency,

in the range studied. However, it appears that when typical clinical dimensions of hematoma

and hemorrhage are used, the variable ratio of blood volume radius and radar wavelength can

bring the measurements into the Mie and Rayleigh regions of the radar cross section. In these

regions the measurements can oscillate and produce misleading results. In these regions there

is a oscillatory change in signal with blood volume size. For some frequencies there is an

increase in signal with an increase in volume while in others there is a decrease. This is an

aspect of our findings that requires further investigation. Special algorithms must be devel-

oped, when the wavelength is at the length scale of the blood volume, possible of a type that

employs classifier technology, multifrequency algorithms or ultra-wide band (UWB) measure-

ment. This is important research for the future. The results suggest that a wide-band multifre-

quency radar is required for practical clinical application of this radar monitoring technology.

Supporting information

S1 Fig. The change in absolute impedance input for Gaussian noise type error in the elec-

trical parameters. The ordinate is the change in absolute input impedance for Gaussian noise

type error in the assumed values of electrical parameters employing 1 GHz. The abscissa is

ABCH volume.

(TIF)

S2 Fig. The change in absolute input impedance for different ratio of signal to noise

(SNR). The ordinate is the change in absolute input impedance for different ratio of signal to

noise (SNR) at the input to the antenna, at frequencies of 100 MHz, 500 MHz and 1 GHz.

Green line is the change in absolute impedance without noise, blue data points include a SNR

error of 40 dB and red data points involve a SNR error of 50 dB.

(TIF)

S3 Fig. The difference between the absolute change in impedance with SNR input and

without.

(TIF)
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