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Abstract

The thymus, a key organ in the adaptive immune system, is sensitive to a variety of insults

including cytotoxic preconditioning, which leads to atrophy, compression of the blood vascu-

lar system, and alterations in hemodynamics. Although the thymus has innate regenerative

capabilities, the production of T cells relies on the trafficking of lymphoid progenitors from

the bone marrow through the altered thymic blood vascular system. Our understanding of

thymic blood vascular hemodynamics is limited due to technical challenges associated with

accessing the native thymus in live mice. To overcome this challenge, we developed an

intravital two-photon imaging method to visualize the native thymus in vivo and investigated

functional changes to the vascular system following sublethal irradiation. We quantified

blood flow velocity and shear rate in cortical blood vessels and identified a subtle but signifi-

cant increase in vessel leakage and diameter ~24 hrs post-sublethal irradiation. Ex vivo

whole organ imaging of optically cleared thymus lobes confirmed a disruption of the thymus

vascular structure, resulting in an increase in blood vessel diameter and vessel area, and

concurrent thymic atrophy. This novel two-photon intravital imaging method enables a new

paradigm for directly investigating the thymic microenvironment in vivo.

Introduction

The thymus is a primary lymphoid organ essential for T cell development, and it is a corner-

stone of the adaptive immune system and overall human health [1, 2]. T cell development

relies on the complex interaction between thymus stromal cells (e.g., thymic epithelial cells

(TEC), blood vascular endothelial cells (EC), and fibroblasts) and thymocytes which them-

selves are dependent on the recruitment of de novo “seeding” early thymic progenitor cells

(ETPs) from the bone marrow (BM) [3, 4]. The thymus is extremely sensitive to a range of

acute and/or chronic insults, such as stress (corticosteroids), infection, sex hormones, and

many cytoreductive treatments including chemotherapy, radiotherapy, and antibody therapy

[5]. For example, the damage caused by cytoreductive treatments in patients undergoing
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hematopoietic cell transplantation (HCT) inhibits the capacity of the thymus to produce func-

tional T cells contributing to increased morbidity and mortality [4, 6–9]. Endogenous thymus

regeneration after total body irradiation depends on the engraftment of BM lymphoid progen-

itors as ETPs in the thymus. They mobilize into the bloodstream from the BM and traffic to

the thymus through the blood vascular system and enter the thymus at the cortico-medullary

junction [10–13]. ETPs then interact with thymic ECs and TECs to begin the differentiation

process into distinct T-cell subsets [10, 14–19]. The thymus vasculature and ECs play critical

roles as the highways of entry and a source of cell signaling, respectively, during the early stages

of endogenous thymic regeneration [10, 13, 18].

It was previously reported that thymic ECs are radio-resistant and that the absolute number

of ECs does not significantly decrease after sublethal total body irradiation (SL-TBI) [20]. Nev-

ertheless, visualization of the thymic blood vessel network using light-sheet fluorescence

microscopy 4 days after SL-TBI revealed significant changes to the thymus vasculature, includ-

ing decreases in the total volume of the vessel network, total number of vessel segments, aver-

age vessel length, and vessel branching [20]. Notwithstanding the critical role of ECs in thymic

regeneration, it remains unclear if changes to the vascular network occur earlier than 4 days

and whether these changes alter thymic hemodynamics or other vascular functions.

To study functional changes to the vasculature, video-rate intravital microscopy with sub-

cellular resolution is required, but direct visualization of the native thymus in live mice has

been elusive and deemed impossible with two-photon microscopy [21]. The position of the

thymus directly dorsal to the sternum and internal thoracic vein and cranial to the heart and

lungs, introduces several logistical, mechanical, and health complications when attempting to

image the thymus. Commonly used analysis methods such as flow cytometry, immunohis-

tochemistry, and imaging of excised tissue have been applied to study the thymus in preclinical

mouse models but these methods are limited to ex vivo analysis. Ex vivo culture systems [22,

23], including thymic slices [24–29] and whole organ imaging [30, 31], are very powerful sys-

tems for studying certain aspects of thymus biology such as thymocyte-stromal interactions

[32, 33] and T cell development [27, 34], but these techniques lack blood flow and may not

fully recapitulate the in vivo situation. Due to a lack of viable intravital imaging methods for

the native thymus, researchers have relied on thymus transplantation to optically accessible

sites including the kidney capsule [35–38], anterior chamber of the eye [39], and pinna of the

mouse ear [40] for intravital microscopy, but transplantation alters the native vascular connec-

tions and exposes the tissue to an aberrant microenvironment [37, 41]. Although it has been

reported that the transplanted thymus mirrors the endogenous thymus in architecture and

vascularity, direct measurement of hemodynamic parameters in the native thymus is yet to be

reported [41]. Teleost fish have been suggested as a viable alternative to mice models since the

native thymus can be directly observed in vivo [42–45]. In mammals such as mice and humans,

T cell development critically and nonredudantly depends on IL-7 and Foxn1, which is not the

case in teleost fish, however [46, 47]. Therefore, tools to directly visualize the native mouse thy-

mus are needed in order to study functional changes to the thymic vascular system after cyto-

toxic preconditioning in an immunologically similar model to humans.

Here, we developed a novel intravital imaging method using two-photon microscopy to

visualize the native thymus in live mice without transplantation. This method utilizes a thora-

cotomy to access the thymus within the chest cavity [48], followed by the placement of a cus-

tom-designed adhesion stabilization holder to reduce vertical and lateral movement from the

heart and lungs [49–54]. Using this method, we were able to directly investigate functional and

anatomical changes to the thymic blood vascular network within 24 hrs after SL-TBI in live

mice. Two-photon intravital imaging of the native thymus opens a new paradigm for studying

thymus biology which was not previously possible.
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Materials and methods

Experimental animals

Male and Female UBC-GFP (C57BL/6-Tg (UBC-GFP)30Scha/J) mice between the age of 8–12

weeks were used for intravital imaging experiments and wild-type (C57BL/6J) mice were used

for ex vivo imaging experiments. Mice were housed under pathogen-free conditions in the

University of California, Merced’s vivarium with autoclaved feed and water, and sterile microi-

solator cages. The University of California, Merced Institutional Animal Care and Use Com-

mittee (IACUC, A4561-01) gave written approval for all animal work. All mice were

euthanized in accordance with IACUC-approved methods after imaging and before tissue

collection.

Animal irradiation

Mice received SL-TBI from a Precision X-Rad 320 at a dose of 4.5 Gy ~ 24hrs before intravital

imaging or tissue extraction.

Preparation of thymus for ex vivo whole organ imaging

Mice were anesthetized with isoflurane (induction 3%, maintenance 1.5%, 100% O2 at 1L/

min). Fluorescent antibodies (anti-mouse Ly-6A (Sca-1) A647 Biolegend 108118, 6ug/100ul;

anti-mouse CD144 (VE-cadherin) A647 Biolegend 138006, 5ug/100ul; and anti-mouse CD31

A647 Biolegend 102516, 5ug/100ul) were retro-orbitally injected to label blood vessels. 20 min-

utes after injection, animals were perfused intracardially with phosphate buffered saline (1X),

followed by cold paraformaldehyde (4%, pH 7.4) for 5–10 min. The dissected thymus was post-

fixed in paraformaldehyde (4%) overnight at 4˚C. To optically clear the thymus, we modified

the ultimate 3D imaging of solvent-cleared organs (uDISCO) tissue clearing protocol by keep-

ing the sample at 4˚C for the entirety of the imaging session [55]. Postfixed thymus lobes were

dehydrated with tert-butanol (Sigma-Aldrich; SHBM5332). Dehydration solutions were pre-

pared by mixing tert-butanol and distilled water at various concentrations (30%/50%/70%/

90%/100% tert-butanol). Next, the thymus was incubated in dichloromethane (DCM; Sigma-

Aldrich, SHBJ8352) for the delipidation process. The tissue was then placed in BABB-D4, pre-

pared by mixing BABB (benzyl alcohol + benzyl benzoate 1:2, Sigma-Aldrich; 24122 and

W213802) with diphenyl ether (DPE; Alfa Aesar, A15791) at a ratio of 4:1 and adding 0.4% vol

DL-alpha-tocopherol (Vitamin E; Alfa Aesar, A17039). Cleared thymus lobes were mounted

in a custom-designed slide well filled with BABB-D4 and sealed with solvent-resistant silicone

sealant (DOWSIL™ 730).

Animal preparation for intravital thymus imaging

Mice were initially anesthetized (3–4% Isoflurane for induction, 1.5–2% for maintenance,

100% O2 at 1L/m) and then mounted to a heating pad to maintain normal body temperature.

The right thoracic and abdominal regions were shaved, and the skin cleaned with 70% alcohol

wipes. The mouse was then intubated using a laryngoscope and a 22-G angiocatheter (Exel Int,

26746). An injection of ketamine (100mg/kg) / xylazine (15mg/kg) was administered via IP

injection before the thoracotomy. To perform the thoracotomy, an incision was made through

the 2nd intercostal space above the thymus and between the internal thoracic vein and sternum

and expanded by inserting rib retractors into the intercostal space until the thymus was visible.

A cauterizer was used to stop any excessive bleeding around the surgical site. The mice were

euthanized after intravital imaging and the thymi were removed for ex vivo thymus imaging.
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Thymus holder placement

The adhesion stabilization holder consists of a stabilization ring with an inner diameter of 2.5

mm attached to an angled stabilization arm and was modeled in Openscad and 3D printed in

polylactic acid (PLA). The holder was directly attached to the exposed thymus via a tissue safe

adhesive (Vetbond, 084-1469SB) applied to the underside of the stabilization ring via a small

paintbrush. After attachment, warm methyl cellulose (Sigma-Aldrich, M0512) was applied to

the center of the holder to act as an immersion fluid for imaging.

Two-photon microscopy

Imaging was performed with a custom-built two-photon video-rate microscope (Bliq Photon-

ics) equipped with two femtosecond lasers (Insight X3 and MaiTai eHP DS, Spectra Physics).

During intravital imaging, the Insight X3 and Maitai laser wavelengths were tuned to 800 nm

and 950 nm, respectively, and for ex vivo imaging the Insight X3 and Maitai laser wavelengths

were tuned to 820 nm and 1220 nm, respectively. Three fluorescent channels were acquired

(503–538 nm, 572–608 nm, and 659–700 nm). For two-photon imaging, a 25x water immer-

sion objective (Olympus; XLPLN25XWMP2) with a 1.05 numerical aperture was used to

record video at 30/60/120 frames per second at a resolution of ~0.31 μm/pixel. To label thymus

blood vessels in vivo, Evans’s blue was injected retro-orbitally after the thymus holder was

placed.

Image analysis

For image processing and measurements of blood vessel diameter, shear rate, leakage, fre-

quency and area analysis, and manual blood flow quantification, Fiji (ImageJ 1.53f51) was

used. All ImageJ scripts used for analysis and thymus adhesion holder 3D models are available

online (https://github.com/SpencerLab-BIO/NativeThymusScripts). Image brightness/con-

trast was adjusted in Fiji for display purposes and images were cropped to remove vignetting.

A previously published MATLAB (2020a) script was used to calculate blood flow automatically

[56]. Cleared thymus datasets were stitched together using the Grid Stitching plugin in Fiji.

During intravital imaging, videos of blood flow in the thymus were recorded. Blood flow

velocity was calculated with two methods. pLSPIV was used to calculate blood flow velocity

automatically [56, 57]. However, when autmoatic blood flow measurements failed, blood flow

velocity was calculated manually by tracking the change in the position of individual red blood

cells (RBC) over time. Video frames were first aligned via the Linear Stack Alignment with

SIFT plugin in Fiji and then the displacement of the approximate RBC centroid between

frames was used to calculate blood flow per blood vessel.

Blood vessel diameters both in vivo and ex vivo were calculated via two different methods

depending on the signal-to-noise ratio and the orientation of the blood vessel relative to the

focal plane. When high contrast was observed between blood vessels and background, and ves-

sels were orientated parallel to the focal plane, a modified version of the VasoMetrics2 [58] Fiji

script was used. The only modifications made to the VasoMetrics2 script were done to

improve user experience and the function related to vessel diameter calculation was not modi-

fied. Alternatively, when there was poor contrast between the vessels and background or ves-

sels were orientated perpendicular to the focal plane, vessel diameter was measured manually

via the Straight-line tool in Fiji. Blood vessel leakage measurements were taken at least 10 min

after Evans blue injection by averaging 30 frames of blood vessel footage. Leakage was calcu-

lated as the ratio between average fluorescent intensity of a field of view (FOV) located at

approximately the center of a blood vessel vs. a FOV immediately adjacent to the blood vessel.
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The shear rate for individual vessels was approximated as (8 × velocity) / diameter as previ-

ously described [59].

To measure blood vessel diameter, frequency, and area in the optically cleared thymus, 3D

datasets of the thymus vasculature were downscaled by half, the Despeckle and Gaussian Blur

(σ = 2) filters were applied, and the brightness/contrast was adjusted in Fiji. A mask of the out-

line of the thymus was then generated by downscaling the thymus by half and then either

using a custom weka model generated by the Labkit plugin [60] or manually tracing the perim-

eter of the thymus. The mask of the thymus was then upscaled by 2 and a Euclidian Distance

Map of the thymus was generated with the 3DSuite plugin [61]. The resulting distance map

was thresholded to generate a mask corresponding to a volume ~150 μm from the edge of the

thymus. To quantify blood vessel diameter and density in the cleared thymus, twenty random

non-overlapping 300 x 300 μm FOV whose centroid was<150 μm from the edge of the thy-

mus were used. The previously mentioned ~150 μm mask was used to limit the center of the

FOV to within 150 μm from the edge of the thymus. Vessel diameter was calculated as previ-

ously described and vessel frequency was calculated as the number of vessels in the FOV

divided by the area of the thymus in the FOV. The vessel area was calculated by thresholding

the blood vessels in each FOV via the Otsu method and then calculating the % area in each

FOV occupied by blood vessels.

To measure the thymus volume, the dissected thymus was placed on a gridded reference

and the % area of the grid covered by the thymus was calculated [62].

Statistical analysis

The Mann-Whitney U-test and Student’s t-tests were performed in GraphPad Prism to test for

statistical significance, depending on whether datasets were normally distributed. A

p-value < 0.05 was considered statistically significant (Data are presented as mean ± SD;

*p<0.05, **p<0.01, ***p<0.001; ****p<0.0001).

Results

Experimental setup for intravital two-photon imaging of the native thymus

To image the native (i.e. in situ) murine thymus in vivo, we adapted methods for intravital car-

diac microscopy [51, 54] to stabilize and visualize the thymus for intravital two-photon

microscopy. Mice (8–12 weeks old) were anesthetized, ventilated, and placed in supine posi-

tion on a temperature-controlled microscope stage (Fig 1A). Next, we performed a thoracot-

omy [48] through the second intercostal space to expose the thymus for imaging, and

retractors were used to hold open the chest wall (Fig 1A and 1B). To stabilize the tissue during

intravital imaging, we designed and 3D printed a custom thymus adhesion stabilization holder

to reduce movement artifacts caused by cardiac and respiratory motion (Fig 1C). The stabiliza-

tion holder consists of a flat ring attached to a support arm mounted to the microscope stage.

The underside of the ring was covered with a thin layer of Vetbond tissue adhesive (3M Vet-

bond), which bonds to the underlying thymic tissue and provides a stable FOV for intravital

two-photon microscopy (Fig 1D). Proper placement of the stabilization holder minimizes lat-

eral and axial movement of the thymus preventing blurring and blinking artifacts during imag-

ing (S1A and S1B Fig). Using this imaging setup, it was possible to have a clear imaging field

within the thymus at a maximum diameter of 2.5 mm. To confirm thymic tissue and vascular

viability during imaging, Evans blue dye was injected retro-orbitally and visible perfusion of

the thymus was observed in vivo and ex vivo (Fig 1E and S1C Fig).
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Fig 1. Experimental setup and thymus holder design. (A) Experimental schematic of intravital two-photon imaging of the native mouse thymus. (B) Image

showing the exposed thymus through the 2nd intercostal space after surgery. Green outline: thymus. (C) 3D model of thymus adhesion stabilization holder

(top) and image of 3D-printed prototype (bottom). (D) Image showing adhesion stabilization holder attached to the exposed thymus after surgery. (E) Image

showing the Evans blue perfused thymus after intravital imaging, indicating intact blood flow in the thymus at the time of injection. Green outline: thymus.

https://doi.org/10.1371/journal.pone.0307962.g001
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In vivo imaging of the thymus

We recorded two-photon images and videos in the native thymus of live mice using the meth-

odology described above (Fig 2A–2C and S1–S3 Movies; n = 4 mice). Representative images

and videos show the functional blood vessel network and individual GFP-labeled cells within

UBC-GFP mice (Fig 2A–2C and S1–S3 Movies). UBC-GFP mice were used for imaging due to

the universal GFP expression in all cells making the thymus easy to identify during two-photon

imaging without requiring exogenous labels. In these representative images and movies of the

thymus, we can clearly see the thymus capsule, cells that compose the thymus microenviron-

ment, and the blood vessel network. The thymus capsule is visible in the upper left corner of

Fig 2A due to non-specific labeling from Evans blue and confirmed by the lack of GFP+ cells

and blood vessels. The stabilization adhesion holder minimized the motion generated by the

heart and intubated lungs, allowing for optical sectioning and clear visualization of individual

cells with subcelluar resolution (Fig 2B and S1B Fig). In addition, we confirmed the presence

of blood flow within individual blood vessels in the thymus via the movement of RBCs

revealed by negative contrast labeling (Fig 2C, S2 and S3 Movies). To confirm we imaged

within the thymus, we imaged the excised thymus ex vivo with two-photon microscopy and

detected very similar structures to the intravital images and movies (S2A Fig).

Effects of irradiation on the thymus vasculature

Next, we hypothesized that changes to the blood vessel network structure from SL-TBI would

alter hemodynamics and potentially barrier function in some microvessels of the cortex. To

investigate this hypothesis, we performed SL-TBI (4.5 Gy) on UBC-GFP mice (n = 3 mice),

imaged them 24 hours afterward, and compared them to age-matched untreated UBC-GFP

controls that were not given SL-TBI. Despite a significant reduction (difference = 27.7%,

p = 0.0043) in the size of the thymus after SL-TBI (Fig 3A and S2B Fig), we were able to con-

firm the presence of blood flow within individual vessels in the irradiated thymus (Fig 3B, S4

and S5 Movies). We observed a nonsignificant difference (p = 0.1244) in thymic blood flow

velocity between SL-TBI treated and untreated mice (mean velocity = 191.8 μm/s and

169.2 μm/s, respectively; Fig 3C). In addition, a nonsignificant difference (p = 0.890) was

observed in the shear rate between the SL-TBI treated and untreated mice (mean = 264.7 s-1

and 231.4 s-1, respectively; Fig 3D). Nevertheless, we observed a small but statistically signifi-

cant increase (p< 0.0001) in mean blood vessel diameter of SL-TBI treated vs. untreated mice

(mean blood vessel diameter = 8.9 μm and 7.3 μm, respectively; Fig 3E). Due to imaging depth

limitations inherent to intravital two-photon microscopy, most vessels measured were likely

capillaries within the thymus cortex. However, our observation of large diameter (>10 μm)

blood vessels indicates that for some animals, it may be possible to image to the cortical-med-

ullary boundary or even the medulla (Fig 3E). We also observed that the blood vessel barrier

function was altered from SL-TBI resulting in significantly higher (p< 0.0001) vessel leakage

in SL-TBI treated vs. untreated mice (mean leakage value = 0.4734 vs. 0.3278, respectively; Fig

3F). Following intravital imaging, thymi of SL-TBI mice were excised and imaged again ex
vivo, revealing noticeable damage to the thymic microenvironment with widespread edema

and an increase in autofluorescence (S2C Fig). Overall, using our novel thymic imaging

method, we demonstrated that the vascular barrier is compromised as early as 24 hrs after

SL-TBI even though the blood flow is largely unaltered at this time.

Ex vivo imaging of cleared thymus tissue

To further investigate anatomical changes to the native thymus blood vessel network, we

imaged optically cleared whole thymus lobes (n = 3 mice each for SL-TBI treated and
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Fig 2. Intravital imaging of blood flow in the native thymus. (A) Representative maximum intensity projection of the untreated thymus from a

UBC-GFP mouse in vivo. Red: blood vessels (Evans Blue)/thymus capsule; Green: GFP; Blue: autofluorescence. Scale bars ~ 50 μm. (B) Example average

intensity projection of the untreated thymus from a UBC-GFP mouse demonstrating the ability to visualize individual GFP+ cells in the thymus in vivo.

Red: blood vessels (Evans Blue); Green: GFP; Blue: autofluorescence. Scale bars ~ 25 μm. (C) Example negative contrast labeled blood flow in the

untreated thymus from a UBC-GFP mouse showing the movement of RBCs through blood vessels over time. Red: blood vessels (Evans Blue); Blue

Arrow: negative contrast labeled RBC; White Arrow: direction of blood flow. Scale bars ~ 25 μm.

https://doi.org/10.1371/journal.pone.0307962.g002
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untreated controls) using a modified uDISCO protocol, where the sample is chilled for the

entirety of the imaging session [55, 63]. Visualization of the whole cleared thymus using two-

photon microscopy 24 hrs after SL-TBI revealed widespread damage to the blood vessel archi-

tecture when compared to the untreated mice (Fig 4A–4D, S6 and S7 Movies). To quantify

these changes, we measured the blood vessel diameter in the cortex and found a significant

increase in diameter in the SL-TBI treated vs. untreated mice (mean blood vessel diameter = 7.0

and 6.3 μm, respectively; p < 0.0001) confirming our in vivo findings (Fig 4E). We did not

observe a significant difference (p = 0.3497) in thymus cortical vessel frequency (defined as the

number of vessel segments per mm2) between SL-TBI treated and untreated mice (vessel fre-

quency = 514.2 and 482.9 segments/mm2, respectively; Fig 4F). Further analysis revealed a sig-

nificant increase (p < 0.0001) in thymus cortical blood vessel area (defined as the number of

vessel pixels in a FOV over the total number of pixels in the image) between the SL-TBI treated

and untreated mice (mean % vessel area = 25.5% vs. 19.3%, respectively; Fig 4G). Taken

together, these results confirm that damage to the thymus vascular network from SL-TBI leads

to an increase in vessel diameter and vessel volume after 24 hrs even though the overarching

vascular network superstructure remains.

Fig 3. In Vivo comparison of native thymus vasculature in SL-TBI and untreated mice. (A) Quantification of thymus area from untreated and SL-TBI mice. (B)

Example negative contrast labeled blood flow in the SL-TBI thymus from a UBC-GFP mouse showing the movement of RBCs through blood vessels over time.

Red: blood vessels (Evans Blue); Blue Arrows: negative contrast labeled RBCs. Scale bars ~ 25 μm. Quantification of blood flow velocity (C), vessel shear rate (D),

vessel diameter (E), and vessel leakage (F) in the thymus of untreated and SL-TBI UBC-GFP mice.

https://doi.org/10.1371/journal.pone.0307962.g003
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Fig 4. Changes to the thymus vasculature observed ex vivo. (A) Representative average intensity projection of the untreated thymus. Grey: blood vessels

(labeled with Alexa647 conjugated antibodies against CD31, CD144, and Sca-1); Red Box: cropped FOV. Scale bar ~ 500 μm. (B) Cropped FOV of the

untreated thymus. Grey: blood vessels (labeled with Alexa647 conjugated antibodies against CD31, CD144, and Sca-1). Scale bar ~ 100 μm. (C)

Representative average intensity projection of the SL-TBI thymus. Grey: blood vessels (labeled with Alexa647 conjugated antibodies against CD31, CD144,

and Sca-1); Red Box: cropped FOV. Scale bar ~ 500 μm. (D) Cropped FOV of the SL-TBI thymus. Grey: blood vessels (labeled with Alexa647 conjugated

antibodies against CD31, CD144, and Sca-1). Scale bar ~ 100 μm. Quantification of blood vessel diameter (E), blood vessel frequency (F) and blood vessel

area (G) in the untreated and SL-TBI thymus ex vivo.

https://doi.org/10.1371/journal.pone.0307962.g004
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Discussion

Studies of T cell development and thymus regeneration have typically relied on techniques such

as flow cytometry, immunohistochemistry, transplantation [23, 27, 33, 35–40], and ex vivo imag-

ing [30–32, 34]. While these techniques provide valuable information about thymus biology and

T cell development, only direct intravital visualization of the native thymus enables accurate

characterization of the spatiotemporal dynamics of blood flow while maintaining the natural

chemical mileau. Therefore, we developed a novel intravital imaging technique to surgically

access the thymus and directly visualize it with two-photon microscopy in live mice. We were

able to record stable videos and images within the native thymus and measure blood flow veloc-

ity, blood vessel diameter, shear rate, and blood vessel leakage. Although the thymus medulla

and/or cortex were not specifically labelled during imaging, we observed several larger blood ves-

sels greater than 10 μm in diameter (up to 45 μm) deep within the thymus, indicating that our

imaging method is potentially capable of visualizing the thymus medulla. This is consistent with

the observation that the cortex is filled with primarily small capillaries where the medulla con-

tains a variety of small and large blood vessels [64–67]. In addition, we report the ability to image

as deep as 150 μm within the thymus, which would correspond to the cortico-medullary junction

and/or medulla in some locations of the thymus. Further work will help to clarify this finding.

While alterations to the thymus vascular structure have been reported 4 days after SL-TBI

[20], to our knowledge, no investigation has observed the effects of SL-TBI on native thymus

hemodynamics. Using our imaging technique, we were able to study changes to hemodynam-

ics in the thymus within 24 hours of SL-TBI. Although we observed a subtle but significant

increase in blood vessel diameter and leakage shortly after SL-TBI, we found no significant dif-

ference in either blood flow velocity or shear rate. This data suggests that although the blood-

thymus barrier has been compromised, as indicated by increased leakage, the blood flow and

shear rate are largely unaffected at this timepoint. These findings raise several questions

regarding the role hemodynamics and blood vessel integrity may play in promoting thymus

regeneration, such as creating a more open blood-thymus barrier for ETP homing and trans-

migration, and the abnormal exposure of thymocytes and stromal cells to blood plasma con-

stituents. Intravital study of the blood-thymus barrier at later time points would likely provide

additional information about the role it plays in supporting ETP homing and cellular expan-

sion, but thymus shrinkage [20] increases the difficulty of imaging at later timepoints after

SL-TBI. Future technical innovations such as endoscopic imaging [68–70] and improved stabi-

lization techniques [51, 54] may allow for the study of the thymus blood vascular system and

microenvironment across the entire thymus recovery period.

In addition, we used a modified uDISCO tissue clearing method [55] combined with whole

organ ex vivo two-photon imaging to validate the observed changes to the blood vessel net-

work following SL-TBI. We characterized the thymic blood vascular system and quantified

changes to the vessel diameter, volume, and frequency. Our imaging results revealed dramatic

changes to the overall structure of the blood vessel network with a significant increase in vessel

diameter and volume. Despite this, there were no significant differences in vessel frequency in

SL-TBI thymi compared to the untreated control group. Coupled with the observation that the

thymus undergoes significant shrinkage after SL-TBI, these results are in line with previous

studies that showed the thymus vasculature is relatively radioresistant [20].

Overall, this study demonstrates a powerful new imaging method to directly investigate the

native thymus in live mice and enables the characterization of the thymic microenvironment

in ways not previously possible. We demonstrated that shortly after SL-TBI, the thymus vascu-

lar structure undergoes rapid and significant changes which may be of clinical relevance in the

context of thymus regeneration and immune system recovery following HCT.
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Supporting information

S1 Fig. Thymus stabilization via an adhesion holder. (A) Representative diagram of an unsta-

bilized (left) and stabilized (right) thymus during imaging. Red: blood vessels/thymus capsule;

Green: GFP; Black: adhesion holder. (B) Representative montages of blood vessels in well- and

poorly-stabilized thymi. Red: blood vessels (Evans blue). Scale bars ~ 50 μm. (C) Representative

images of dissected thymi from untreated (left, shown in Fig 1E) and SL-TBI (right) mice after

receiving an Evans blue injection, demonstrating successful perfusion of the thymus.

(TIF)

S2 Fig. Dissected and ex vivo thymus. (A) Representative average intensity projection of the

thymus from an untreated mouse ex vivo. Red: blood vessels (Evans blue); Green: GFP; Blue:

autofluorescence. Scale bars ~ 50 μm. (B) Representative size difference of thymi from

untreated (left) and SL-TBI (right) mice. Black square border ~ 5 mm. (C) Representative

average intensity projection of the thymus from a SL-TBI mouse ex vivo. Red: blood vessels

(Evans blue); Green: GFP; Blue: autofluorescence. Scale bars ~ 50 μm.

(TIF)

S1 Movie. Representative intravital two-photon zstack of the native thymus. Representative

intravital two-photon zstack of the native thymus in a 10 week old UBC-GFP mouse. Red:

blood vessels (Evans blue); Green = GFP; Blue = autofluorescence. Scale bar ~ 50 μm; Zstep

size = 2 μm.

(AVI)

S2 Movie. Representative blood flow within the untreated native thymus. Representative

video showing blood flow of the thymus in vivo in an untreated 10 week old UBC-GFP mouse.

Red: blood vessels (Evans blue); Green = GFP; Blue = autofluorescence. Scale bar ~ 50 μm.

(AVI)

S3 Movie. Representative blood flow within the untreated native thymus. Red channel only

video corresponding to S2 Movie. Grey: blood vessels (Evans blue). Scale bar ~ 50 μm.

(AVI)

S4 Movie. Representative blood flow within the SL-TBI native thymus. Representative

video showing blood flow of the thymus in vivo in a SL-TBI 10 week old UBC-GFP mouse.

Red: blood vessels (Evans blue); Green = GFP; Blue = autofluorescence. Scale bar ~ 50 μm.

(AVI)

S5 Movie. Representative blood flow within the SL-TBI native thymus. Red channel only

video corresponding to S4 Movie. Grey: blood vessels (Evans blue). Scale bar ~ 50 μm.

(AVI)

S6 Movie. 3D Model of the optically cleared thymus vasculature. Representative 3D model of

the optically cleared thymus vasculature from an untreated mouse. Grey = blood vessels (labeled

with Alexa647 conjugated antibodies against CD31, CD144, and Sca-1). Scale bar ~ 250 μm.

(AVI)

S7 Movie. 3D Model of the optically cleared thymus vasculature. Representative 3D model

of the optically cleared thymus vasculature from a SL-TBI mouse. Grey = blood vessels (labeled

with Alexa647 conjugated antibodies against CD31, CD144, and Sca-1). Scale bar ~ 250 μm.

(AVI)
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61. Ollion J, Cochennec J, Loll F, Escudé C, Boudier T. TANGO: a generic tool for high-throughput 3D

image analysis for studying nuclear organization. Bioinformatics. 2013; 29: 1840–1841. https://doi.org/

10.1093/bioinformatics/btt276 PMID: 23681123

62. Wan P, Zhu J, Xu J, Li Y, Yu T, Zhu D. Evaluation of seven optical clearing methods in mouse brain.

Neurophotonics. 2018; 5: 035007. https://doi.org/10.1117/1.NPh.5.3.035007 PMID: 30155510

63. Qi Y, Yu T, Xu J, Wan P, Ma Y, Zhu J, et al. FDISCO: Advanced solvent-based clearing method for

imaging whole organs. Science Advances. 2019; 5: eaau8355. https://doi.org/10.1126/sciadv.aau8355

PMID: 30746463

64. Raviola E, Karnovsky MJ. EVIDENCE FOR A BLOOD-THYMUS BARRIER USING ELECTRON-

OPAQUE TRACERS. J Exp Med. 1972; 136: 466–498. https://doi.org/10.1084/jem.136.3.466 PMID:

4115129

65. Kato S. Thymic microvascular system. Microscopy Research and Technique. 1997; 38: 287–299. https://

doi.org/10.1002/(SICI)1097-0029(19970801)38:3<287::AID-JEMT9>3.0.CO;2-J PMID: 9264340

66. Anderson M, Anderson SK, Farr AG. Thymic vasculature: organizer of the medullary epithelial compart-

ment? International Immunology. 2000; 12: 1105–1110. https://doi.org/10.1093/intimm/12.7.1105

PMID: 10882422

67. Kato S, Schoefl GuttalI. Microvasculature of Normal and Involuted Mouse Thymus: Light- and Electron-

Microscopic Study. Acta Anatomica. 2008; 135: 1–11. https://doi.org/10.1159/000146715 PMID:

2750455

68. Jung K, Kim P, Leuschner F, Gorbatov R, Kim JK, Ueno T, et al. Endoscopic Time-Lapse Imaging of

Immune Cells in Infarcted Mouse Hearts. Circulation Research. 2013; 112: 891–899. https://doi.org/10.

1161/CIRCRESAHA.111.300484 PMID: 23392842

PLOS ONE Intravital two-photon microscopy of the native mouse thymus

PLOS ONE | https://doi.org/10.1371/journal.pone.0307962 August 1, 2024 16 / 17

https://doi.org/10.3791/57397
https://doi.org/10.3791/57397
http://www.ncbi.nlm.nih.gov/pubmed/29683463
https://doi.org/10.1038/srep04507
http://www.ncbi.nlm.nih.gov/pubmed/24676021
https://doi.org/10.1109/TRO.2007.914847
https://doi.org/10.1038/nprot.2015.119
http://www.ncbi.nlm.nih.gov/pubmed/26492138
https://doi.org/10.3389/fphys.2018.00969
https://doi.org/10.3389/fphys.2018.00969
http://www.ncbi.nlm.nih.gov/pubmed/30108510
https://doi.org/10.1073/pnas.1401316111
http://www.ncbi.nlm.nih.gov/pubmed/25053815
https://doi.org/10.1038/ncomms2060
https://doi.org/10.1038/ncomms2060
http://www.ncbi.nlm.nih.gov/pubmed/22968700
https://doi.org/10.1038/nmeth.3964
http://www.ncbi.nlm.nih.gov/pubmed/27548807
https://doi.org/10.1371/journal.pone.0255204
http://www.ncbi.nlm.nih.gov/pubmed/34351959
https://doi.org/10.1371/journal.pone.0038590
http://www.ncbi.nlm.nih.gov/pubmed/22761686
https://doi.org/10.21037/qims-20-920
http://www.ncbi.nlm.nih.gov/pubmed/33654670
https://doi.org/10.1016/j.celrep.2017.01.042
https://doi.org/10.1016/j.celrep.2017.01.042
http://www.ncbi.nlm.nih.gov/pubmed/28199850
https://www.frontiersin.org/articles/10.3389/fcomp.2022.777728
https://www.frontiersin.org/articles/10.3389/fcomp.2022.777728
https://doi.org/10.1093/bioinformatics/btt276
https://doi.org/10.1093/bioinformatics/btt276
http://www.ncbi.nlm.nih.gov/pubmed/23681123
https://doi.org/10.1117/1.NPh.5.3.035007
http://www.ncbi.nlm.nih.gov/pubmed/30155510
https://doi.org/10.1126/sciadv.aau8355
http://www.ncbi.nlm.nih.gov/pubmed/30746463
https://doi.org/10.1084/jem.136.3.466
http://www.ncbi.nlm.nih.gov/pubmed/4115129
https://doi.org/10.1002/%28SICI%291097-0029%2819970801%2938%3A3%26lt%3B287%3A%3AAID-JEMT9%26gt%3B3.0.CO%3B2-J
https://doi.org/10.1002/%28SICI%291097-0029%2819970801%2938%3A3%26lt%3B287%3A%3AAID-JEMT9%26gt%3B3.0.CO%3B2-J
http://www.ncbi.nlm.nih.gov/pubmed/9264340
https://doi.org/10.1093/intimm/12.7.1105
http://www.ncbi.nlm.nih.gov/pubmed/10882422
https://doi.org/10.1159/000146715
http://www.ncbi.nlm.nih.gov/pubmed/2750455
https://doi.org/10.1161/CIRCRESAHA.111.300484
https://doi.org/10.1161/CIRCRESAHA.111.300484
http://www.ncbi.nlm.nih.gov/pubmed/23392842
https://doi.org/10.1371/journal.pone.0307962


69. Vinegoni C, Lee S, Gorbatov R, Weissleder R. Motion compensation using a suctioning stabilizer for

intravital microscopy. IntraVital. 2012; 1: 115–121. https://doi.org/10.4161/intv.23017 PMID:

24086796

70. Kim JK, Lee WM, Kim P, Choi M, Jung K, Kim S, et al. Fabrication and operation of GRIN probes for in

vivo fluorescence cellular imaging of internal organs in small animals. Nat Protoc. 2012; 7: 1456–1469.

https://doi.org/10.1038/nprot.2012.078 PMID: 22767088

PLOS ONE Intravital two-photon microscopy of the native mouse thymus

PLOS ONE | https://doi.org/10.1371/journal.pone.0307962 August 1, 2024 17 / 17

https://doi.org/10.4161/intv.23017
http://www.ncbi.nlm.nih.gov/pubmed/24086796
https://doi.org/10.1038/nprot.2012.078
http://www.ncbi.nlm.nih.gov/pubmed/22767088
https://doi.org/10.1371/journal.pone.0307962



