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Role of Post-Translational Protein Modifications in Regulating HIV-1 and Mammalian 
Transcription 

 
Ibraheem Irfan Ali 

Abstract 

The molecular gatekeepers of nearly all gene expression in living cells are the proteins that 

function in the process of transcription. Transcription occurs when a cell must respond to a signal. 

These signals can be in the form of metabolic responses, signals for growth or differentiation, 

signals to defend against stress or pathogenic invasion, to name a few. The fundamentals of 

transcription have been extensively studied in bacterial systems and model organisms, but 

technical limitations have hindered their studies in mammalian and human systems. Recent 

developments in mass spectrometric methodologies, next-generation sequencing and techniques 

to study difficult-to-detect post-translational protein modifications are extensively reviewed here 

to highlight an important regulatory network through which gene expression is regulated. In 

addition, I present two vignettes: the first, a study of the regulatory mechanisms of 

monomethylation of the HIV-1 Tat protein in regulating HIV-1 gene expression and latency; the 

second, a study investigating the role of acetylation in regulating RNA Polymerase II protein 

modifications and gene expression in mammalian systems. Together, these studies combine new 

mass spectrometric techniques, modification-specific antibodies, protein purification methods, 

and next generation sequencing to better understand the role of these modifications in regulating 

the transcriptional response in mammalian systems. These findings can be applied to better 

understand mechanisms that regulate HIV-1 viral latency, along with fundamentally shifting the 

field of mammalian transcription by pinpointing unique modes of regulation only found in higher 

eukaryotes relevant to HIV-1 infection and cancer. 
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Chapter I: Introduction 

DNA, RNA, Protein, Post-Translational Modification? 

Transcription is a key step in the central dogma of gene expression in living systems. In 

its simplest form, cellular information is stored in the form of DNA. The information encoded in 

DNA can be transcribed into a message in the form of mRNA, then the mRNA is translated into 

a protein capable of performing actions for the cell. The structure of a protein determines its 

function, and a protein’s structure is determined by the sequence of amino-acids and their 

higher-order organization. Functioning proteins interact with a variety of partners to mediate 

cellular functions and establish homeostasis, a kind-of ~zen~ state in which cell exist. Cells 

must constantly manage many different signals: fluctuating nutrient conditions; signals for 

proliferation and adaptation; signals against stress, damage or invasion. Often the interpretation 

of these signals can be observed in live cells by looking at the behavior of specific proteins in 

the cell and specifically, many protein behaviors are marked with specific post-translational 

modifications (PTMs) that occur in functional regions of the relevant proteins. Importantly, these 

PTMs modify the structure or charge of the target protein in order to execute context-specific 

responses to signals to change their homeostasis.  

Changes in protein PTMs occur much faster than the production of proteins. This allows 

for rapid responses to changes in the cellular environment. This allows for a cell to manage an 

immediate physical response, and simultaneously prepare for follow up responses by activating 

the transcription of key genetic pathways. PTMs act as handles on proteins by changing the 

charge or bulkiness of amino acid residues on proteins. These handles can be used to move 

proteins, change their interacting partners, or influence their stability in the cell. Therefore, 

regulating the placement, removal and interpretation of PTMs is extremely important for cells to 

maintain their homeostasis.  
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Proteins that place modifications are generally referred to as “writers,” proteins that 

interpret and recognize the modifications are called “readers,” and the proteins that remove the 

modifications are referred to as “erasers.” Together, between dynamic phases of writing, 

reading and erasing; modifications can be placed, interpreted and removed to carefully control 

cellular signaling pathways. Furthermore, many environmental cues emerge in the form of small 

molecules, generally referred to as metabolites, Writers and erasers of cellular PTMs use some 

of these metabolites as essential co-factors that regulate their enzymatic function (Lin and 

Caroll, 2018). Therefore a surplus or deficiency in a key metabolite could potentially lead to 

changes in the way a cell responds to the environment. 

There are a number of very well studied PTMs but for the purposes of this discussion I 

think it will be important to name four modifications: phosphorylation, acetylation, methylation 

and ubiquitination. Protein phosphorylation is induced by a family of proteins called kinases, and 

removed by phosphatases. Kinases are energy (ATP) dependent enzymes that add a 

negatively charged phosphate group to a hydroxyl-containing amino acid, releasing energy in 

the process. The energy released from this chemical reaction can be harnessed to activate 

molecular processes, change protein structure or localization, among other things. 

Phosphatases remove the phosphate group, effectively recycling the protein or making way for 

other relevant modifications to influence the protein domain. There are many kinases and 

phosphatases in the cell and these proteins often have highly specific targets. Pharmacologists 

have taken advantage of this specificity to produce highly specific small molecule inhibitors to 

treat diseases such as cancer, which is regulated in-part by the disruption of specific cellular 

pathways (Hunter, 1995). 

Acetylation describes the transfer of an acetyl-group to the amine at the ε-position of a 

lysine residue. Writing of acetylation is regulated by lysine- or histone-acetyltranferases (KDACs 

aka, HDACs). Acetylation neutralizes the lysine’s positive charge and creates an amide group 

which can induce very stable hydrogen bonding with specific reader proteins. Removal of 
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acetylation is regulated by deacetylases. These proteins will be thoroughly discussed in 

Chapter IV. There are fewer of acetylation modulating proteins in cells relative to kinases and 

phosphatases, but they tend to have broad specificity and can simultaneously influence several 

cellular pathways and molecular functions. The regulation of protein acetylation has been 

closely associated with regulation of aging, metabolism and cancer. Furthermore, the way 

acetylation regulates protein pathways is evolutionarily conserved in eukaryotic organisms, and 

can be studied using the array of model-organisms scientists have used in the last century 

(Verdin and Ott, 2015). As a consequence, targeting protein acetylation is of great interest to 

pharmaceutical companies and healthcare providers, as they can propose long-term treatment 

courses for nearly impossible-to-treat diseases under the guise of “reducing morbidity” and 

creating hope in an aging, dying population.  

Protein methylation is a special case as it has some species specific functions and does 

not change the charge, but changes the bulkiness and hydrophobicity of lysine residues. 

Methylation occurs on lysine or arginine residues. There are residue specific methyltransferases 

(lysine methyltransferases - KMTs; protein arginine methyltransferases- PRMTs). KMTs can 

catalyze mono-, di-, or tri-methylation of lysine residues; PRMTs catalyze mono- or di- 

methylate arginine residues in a symmetric, or asymmetric pattern. Methylation of proteins is 

recognized by specific protein domains, and also known to alter specific protein-DNA 

interactions. Focusing primarily on KMTs, these proteins have more specific sets of targets and 

are more diverse than protein acetyltranferases, but also remain difficult to target, as technical 

limitations have made it difficult to study these modifications until recently. Lysine methylation is 

removed by my favorite subfamily of proteins, lysine-specific demethylases (LSDs). Protein 

acetylation and methylation are best studied in the nucleus of the cell and are known to regulate 

chromatin, the organization of DNA with histones and other regulatory proteins in this 

subcellular compartment (Lee et al., 2005).  
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Ubiquitination describes the addition of the “ubiquitin” moiety. This is a ~8.5kd protein 

that can be covalently attached by its C-terminal glycine to lysine (or other) residues. Ubiquitin 

can serve as a subunit of a larger polyubiquitin chain, as there are several lysine residues in the 

ubiquitin protein upon which an additional ubiquitin group can be added. Ubiquitylation is tightly 

regulated by layers of enzymes (E1, E2 and E3 ligases) that can independently regulate the 

recognition, initial catalysis, and polymeraization of the modifications. Ubiquitin is best known to 

regulate the degradation of proteins, but can also regulate localization, translation or function of 

proteins in different ways (Komander, 2009). Ubiquitin is removed by deubiquitinating enzymes 

(DUBs) and recognized by ubiquitin binding domains (UBDs). 

The modifications described above are typically studied in isolation, or for individual 

proteins. Recent studies have taken combinatorial approaches to understanding PTMs using 

either mass spectrometry or modification-specific antibodies in combination with functional 

assays. These works have shed light on the interconnected nature of PTMs when influencing 

protein function. For example, phosphorylation can expose a regulatory region in a protein 

normally folded to prevent activation. This regulatory region could contain a lysine residue upon 

which a methyl group can lead to the suppression of acetylation at an adjacent position. This 

may lead to ubiquitin mediated protein degradation in order to suppress its function. With this 

example alone, you can see how metabolites influencing each modification could push the 

function of a protein in many different directions. 

This document will discuss the importance of post-translational modifications for the 

mammalian transcriptional response and provide a conceptual reflection on the stochastic and 

dynamic nature of these modifications. I will report experiments conducted in two model 

systems: first, in the context of HIV-1 infection, then second, in the context of RNA Polymerase 

II response to signals or genetic perturbation. Together, these studies will build a picture of the 

transcription cycle with specific focus on observations unique to mammalian systems with the 

hope I can shed some light on HIV-1 latency and therapeutics, mammalian organismal 
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development and cancer progression. To better understand how PTMs can regulate a process 

as important as transcription I will provide a brief overview of the various layers of transcription 

regulation. 

A Master of Immune Evasion 

The challenges surrounding the eradication of HIV-1 is one of the most beautiful 

illustrations of the complexities around transcription regulation and their role in disease. As of 

2016, the World Health Organization estimates that there are approximately 36.7 million people 

infected with HIV-1, with nearly 5,000 new infections per year. This disease is particularly 

dangerous because, shortly after infection, the virus goes through a long incubation period. This 

leaves some infected individuals unaware of the infection for years despite still being 

contagious. Fortunately, in wealthy countries, kits to detect HIV-1 infection are readily available; 

and the development of (Highly Active Anti-Retroviral Therapy) HAART has reduced HIV-1 from 

a terminal disease to a manageable chronic disease, greatly limiting the disease spread. 

Despite these developments, there is no cure for HIV-1, as there is a pool of “latent” virus 

silently residing within the DNA of infected host cells, invisible to HAART, and capable of 

spontaneous reactivation and thus re-establishment of infection. Aside from HIV-1 vaccine 

development projects, investigations behind the mechanism behind the control of latent HIV-1 

are thought to be the next step towards a functional cure for this devastating disease.  

HIV-1 latency is established shortly after infection is initiated. The best evidence for this 

comes from studies of the vertical transmission of HIV-1 from mother to child during birth. The 

classical example of this is the “Mississippi baby” who contracted HIV-1 from her mother, but 

thirty hours after birth was treated with intense antiretroviral therapy. While the infant tested 

positive for HIV-1 at 30-hours after birth and throughout her first month of life, she was found to 

be HIV-1 negative at 29 days. The baby remained free from detectable infection until her 24th 

month, after several months without anti-retroviral therapy (ART) (Persaud et al., 2013). While 

the infant remained free from infection for longer than had ever been reported without ART, the 
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pool of latent virus had already been established, and her infection resurfaced. In a typical 

patient, stopping anti-retroviral therapy leads to the re-establishment of infection on the time-

scale of weeks (Dahabieh et al., 2015). As a consequence, HIV-1 infection remains an infection 

for life.  

During the HIV-1 life cycle, the virus begins by fusing with the plasma membrane of a 

CD4+ T cell. It deposits the viral nucleocapsid into the cell cytoplasm where the protein complex 

disassembles and becomes exposed to the contents of the cell. At this stage, the HIV-1 

reverse-transcriptase enzyme converts the single-stranded viral RNA genome into a double 

stranded DNA intermediate. This DNA intermediate is organized into a complex with the viral 

integrase protein, histones and other host factors to translocate into the nucleus and integrate 

into the human genome (Ali et al., 2016). In order to successfully replicate within a cell, the virus 

must be able to express the genes that its genome encodes. This can generally be 

accomplished by two means. The first is to integrate into a region of the human genome where 

gene expression is very robust (Schroder et al., 2002). This would allow host transcription 

factors attracted to specific genes to accidentally transcribe through the viral gene and initiate 

low levels of viral gene expression and kick start the viral stage of transcription. However, the 

probability of landing in the right place for this is unreasonably low, especially considering cells 

in a mature human are largely quiescent.  

Naïve CD4+ T cells that are infected by HIV-1 are not like most cells. These cells are 

typically circulating throughout the body, occasionally landing in lymph nodes where they are 

informed of the cellular immune state via antigen presenting cells. Antigen presenting cells, 

such as macrophages and dendritic cells, present protein fragments they have generated from 

surveilling their environment to T cells and other lymphocytes. If the specialized, and antigen-

specific, T cell receptor is compatible with the antigen presented, it will activate and proliferate 

to initiate an arm of the “adaptive” immune response. If the T cell receptor is not compatible, 

then the T cell will continue along. Since T cells are constantly on-the-move and interpreting 
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their environment, one must keep in mind that they will encounter many metabolic fluctuations 

and signals that must be kept in check in order to minimize unnecessary activation.  

Through sexual transmission, HIV-1 is first taken in by dendritic cells and macrophages 

(Granelli-Piperno et al., 1998). Replication in these cells is very inefficient, but the virus can 

stably reside on the surface of these cells until they encounter a CD4+ T cell with the 

appropriate receptors to transfer the infection. In addition, some fraction of HIV-1 is able to 

stably integrate into macrophages or dendritic cells, even if they cannot sustain productive 

infection (Kumar et al., 2014). This leads me to the second strategy of viral infection. Where the 

proviral DNA ends up in a suboptimal region of the host cell where it can initiate both an acute 

and chronic program for infection (Jordan et al., 2001). The decision between acute versus 

chronic infection is made based on stochastic fluctuations in viral transcription factor expression, 

and host transcription (Dar et al., 2012; Weinberger et al., 2005). 

In these suboptimal regions the virus must rely more heavily on its promoter, the Long 

Terminal Repeat, for gene activation. The HIV-1 promoter contains several conserved 

transcription factor binding sites that have co-evolved with human transcription machinery. This 

includes transcription factor binding sites for SP1, NF-KB, C/EBP, AP-1 and NFAT (Churchill et 

al., 2015). Various fluctuations in signaling for these transcription factors can lead to viral gene 

expression, as most clearly evidenced by J-Lat cell lines produced in the laboratory of Dr. Eric 

Verdin which are designed to reactivate in response to particular stimuli such as TNFα mediated 

NF-KB activation (Jordan et al., 2003). Again, the virus runs into another roadblock, these 

pathways will not always be active in the cell, even if the cells are constantly handling signals 

from its environment.  

In order to get around this barrier, HIV-1 encodes for its own transcription activator, the 

Transactivator of transcription (Tat) protein. Tat is a potent transcriptional activator and 

modulator of the host transcriptional response. Comparison of Tat deficient, and Tat competent, 

HIV-1 lentiviral expression cassettes demonstrates that Tat upregulates LTR gene expression 
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100-1000 fold (Jordan et al., 2003). Furthermore, Tat interacts with a variety of key transcription 

regulators including SIRT1, KMT7, p300, P-TEFb, SMYD2 (Ott et al., 2011). Tat also has a 

strong affinity to RNA, where it probably binds all over the genome via nascent transcripts 

produced from transcription. Furthermore, expression of other viral proteins causes the 

downregulation of various cell surface receptors including CD4, MHC-1, CD28, CCR5 and WW 

through direct and indirect mechanisms. In addition to transcriptional effects, HIV-1 Tat is quite 

toxic to cells and generally induces apoptosis if it occurs in too high of concentrations - probably 

a consequence of being a sticky protein that disrupts normal host protein complexes. This 

rearrangement of the cellular transcriptional program, and disruption of immune defenses is an 

important step in shifting the cell into a viral replication factory and its eventual demise.  

In addition to this, HIV-1 evades the immune response using additional strategies. The 

HIV-1 virion uses components of the host cell membrane. The rapid mutation rate during 

reverse transcription causes point mutations in viral cell surface receptors, Env and gp120, 

making the proteins hard to consistently detect if antibodies are from a different viral clone. 

Furthermore gp120 non-specifically binds to B-cells to induce their activation and inducing 

random antibody responses. For these reasons, among others, is why it is so difficult to 

successfully produce vaccines against this virus. Only broadly-neutralizing antibody responses 

have been found to be effective but these can take years to develop and do not always work 

(Burton et al., 2012). All this goes to show that the virus is pretty damn good at evading the 

immune response. These challenges, however pale in comparison to the challenges 

surrounding viral latency.  

One would imagine that a transcriptionally stunted HIV-1 virion is a good thing for the 

host. If the virus can only partially complete the viral life cycle, then the cell is intact and 

infection doesn’t spread. However, today we are going to be savvy evolutionary biologists, and 

see that this partially functional virus is a huge advantage for the virus. With transcription of 

some fraction of virus generally silenced, the virus is able to live alongside the host without 
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disrupting host function. On random occasion, the cellular environment will favor replication and 

tilt the scales, viral replication may resume in the cell and reestablish infection, even if 

antiretroviral therapy is completely effective in its suppression of active viral replication. As a 

consequence, patients must take ART for the rest of their lives, incurable. 

 Chapter II will cover how HIV-1 manipulates aspects of the host acetylation machinery 

in order to create an environment suitable for viral infection. Chapter III is original research 

where the HIV-1 Tat protein and an HIV-1 reporter virus are used to demonstrate the role 

protein mono-methlyation has in regulating the HIV-1 transcriptional response. Together these 

materials outline current developments ongoing in HIV-1 research. It demonstrates the 

relevance of acetylation and methylation and their metabolites in regulating HIV-1 transcription, 

and discusses ongoing strategies to develop a functional cure for the disease.  

The Gatekeepers of Cell Fate Decisions 

HIV-1 has served as an early model for the understanding of eukaryotic transcription. As 

a brief recap: The chromatin environment, or degree to which the DNA is compacted in the 

region, affects whether or not the gene is accessible for activation. Chromatin can be remodeled 

in order to activate or suppress transcription. This can be induced by specific differentiation 

programs or the recruitment of transcription activators. Once the chromatin is accessible, the 

central driver of mammalian transcription RNA Polymerase II (Pol II), is recruited to the 

promoters of genes and is primed for transcription initiation. At many genes, Pol II can initiate, 

but then needs an additional signal in order to transition into productive transcription elongation 

and the production of an mRNA (one example). During transcription elongation, there are co-

transcriptional events that ensure the mRNA is stable and communicating the proper 

information. Finally, the processed mRNA can be brought to ribosomes where proteins can be 

produced and the protein product can begin its life. In this section, I will briefly elaborate on 

these topics which will provide context for Chapters IV, V and VI. 
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The remodeling of the chromatin environment is a critical step during cellular 

differentiation and organismal development. Differentiation into different cell types requires 

exposing or hiding certain genomic regions. This is achieved by a balance between chromatin 

remodeler protein complexes such as the BRG1/BRM Associated Factor (BAF) and the 

Polybromo-associated BAF (PBAF) complexes (which are also known as SWI/SNF) and the 

Polycomb Repressive Complexes which are constantly invading the genome to repress 

aberrant or selfish-gene activation (Hodges et al., 2016). This balance leads to the expression 

of specific gene subsets based on the accessibility of the genetic material at doses appropriate 

for the differentiation of certain cell types. At a more granular level, it has been shown that 

positioning of a single nucleosome can play an important role in repressing HIV-1 to support 

viral latency. BAF/PBAF play important roles in activating and suppressing HIV-1 expression by 

moving this nucleosome, a process that is facilitated by the activities of an important acetyl-

lysine reader protein and kinase BRD4 (Conrad et al., 2017).  

If the promoter of a gene is accessible, recruitment of the pre-initiation complex (PIC) is 

an essential step in activating transcription. The PIC is a large multisubunit complex that recruits 

Pol II to gene promoters. This complex is composed of several general transcription factors 

(GTFs) including TFIIA, TFIIB, TFIID, TFIIE, TFIIF, TFIIH along with components of the 

Mediator complex, and Pol II (Taatjes, 2010). At this stage RNA Pol II is in a naïve state where 

its regulatory domain found on its C-terminus (CTD) remains in an unmodified state. The Pol II 

CTD is an intrinsically disordered protein domain which is composed of a repeated heptapeptide 

sequence with a consensus of Y1S2P3T4S5P6S7. This domain is largely conserved across 

species, but often contains some degree of species specific differences in the number of 

repeats and the degree to which they diverge from the consensus sequence (Eick and Geyer, 

2013). All the consensus residues of the CTD consensus sequence can be modified either 

through phosphorylation or proline-isomerization. Importantly, for transcription initiation to occur, 

Pol II must dissociate from the PIC and get loaded onto the promoter to initiate transcription. In 



11 
 

most eukaryotes this is marked by the phosphorylation of serine residues at positions 5 and 7 

(Tietjen et al., 2010). Overall, different Pol II modifications are associated with specific 

transcriptional events.  

Another key step in transcription is promoter-proximal pausing. Pol II pausing occurs 

after transcription initiation and the production of a nascent RNA transcript. Pausing has been 

shown to be important in many highly expressed genes and specifically regulates a certain 

subset of signal responsive genetic processes in higher eukaryotes (Adelman and Lis, 2012). 

Pausing is induced by the presence of Negative Elongation Factors (NELF) and DRB-Sensitivity 

Inducible Factor (DSIF) which effectively block transcription elongation from occurring. The 

transition between transcription initiation and elongation for HIV-1 is marked by the recruitment 

of the super-elongation complex which is composed of several important proteins and kinases 

that allow for the displacement of NELF and activation of DSIF. The SEC contains critical 

positive transcription elongation factors like P-TEFb, ELL, and AFF proteins. The recruitment of 

these proteins allows for the phosphorylation NELF and DSIF along with serine residues at 

position 2 of the Pol II CTD. Together these events allow for productive transcription elongation, 

and several co-transcriptional events that are important for the production of the final RNA 

product (Luo et al., 2012). 

For the context of this body of work it is important we pay special attention to the 

molecular events that occur in the Pol II CTD. Phosphorylation of key residues on this domain is 

associated with molecular events that are generally conserved across eukaryotic organisms. 

For example S5 phosphorylation is important for the recruitment of factors important for 5’ 

methylguanosine capping and the recruitment of transcription elongation factors. 

Phosphorylation of S2 induces the recruitment of splicing and polyadenylation factors important 

for mRNA processing and stability. The importance of CTD PTMs will be discussed in detail in 

Chapter V. 
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There are many proteins, molecules, nutrients and signals that must synergize in order 

to produce a proper transcriptional response. Mass spectromentric advances and modification-

specific antibodies have highlighted that a huge number of the important components involved 

in transcription are modified post-translationally, especially by protein acetylation (Choudhary et 

al., 2009; Lundby et al., 2012; Weinert et al., 2018). Many of these modifications are not yet 

understood and they pose a critical gap in the scientific literature, especially as pharmaceutical 

companies continue to look towards the use of HDAC/KDAC or methyltransferase inhibitors as 

therapies. Furthermore, acetylation and methylation are tightly linked to metabolic intermediates 

and therefore could be affected by macro and micronutrient availabilities explaining their role in 

cancer, ageing and other disease states (Choudhary et al., 2014). Through this body of work I 

hope to demonstrate the importance and interconnected nature between transcription and post-

translational modifications such as acetylation and methylation.  
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Abstract 

Over the last 15 years, protein acetylation has emerged as a globally important post-

translational modification that fine-tunes major cellular processes in many life forms. This dynamic 

regulatory system is critical both for complex eukaryotic cells and for the viruses that infect them. 

HIV-1 accesses the host acetylation network by interacting with several key enzymes, thereby 

promoting infection at multiple steps during the viral life cycle. Inhibitors of host histone 

deacetylases and bromodomain-containing proteins are now being pursued as therapeutic 

strategies to enhance current antiretroviral treatment. As more acetylation-targeting compounds 

are reaching clinical trials, it is timely to review the role of reversible protein acetylation in HIV-

infected CD4+ T cells.  

Acetylation of host proteins is essential for cellular function 

The survival and function of cells are critically dependent on their ability to rapidly integrate 

multiple, intersecting cell-signaling circuits. A key strategy for effectively regulating complex 

signals is the reversible post-translational modification (PTM) of proteins. Over 200 PTMs are 

known, many of which are highly conserved among a wide range of organisms (Jensen, 2006). 

Despite their ubiquitous presence, only a few PTMs have been comprehensively studied including 

acetylation of lysines. The global role of protein acetylation was initially underappreciated (Verdin 
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and Ott, 2015). Originally found to reversibly modify lysines in the tails of histones, acetylation 

was thought to regulate gene expression primarily by altering the structural properties of the 

chromatin environment (Figure 2-1). However, with the identification of acetylation-modifying 

enzymes and improvements in high-resolution mass spectrometry, it became clear that the 

regulation of cellular function by protein acetylation extends beyond the nucleus. Over 3600 novel 

acetyl-lysine sites have been identified in a broad range of human proteins in different subcellular 

compartments (Choudhary et al., 2009). Acetylation of these proteins has been linked to the 

regulation of diverse cellular pathways, including cell-cycle control, DNA damage response, 

cytoskeletal organization, and immune signaling(Shakespear et al., 2011; Spange et al., 2009).  

Histone acetyltransferases (HATs) are considered the “writers” of acetylation because 

they transfer an acetyl group from the cofactor, acetyl-coenzyme A, to the target lysine (Figure 

2-1). At least 26 human HATs are known, nine of which are grouped into three major families 

based on similarities in their structure and sequence: (1) GNAT (Gcn5-related N-

acetyltransferases), including PCAF and GCN5; (2) MYST (MOZ, Ybf2/Sas3, Sas2, TIP60), 

including HBO1; and (3) p300/CBP proteins (E1A-associated protein of 300kDa/CREB-binding 

protein) (Berndsen and Denu, 2008; Li et al., 2012).  
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Figure 2-1: The different players in the host acetylation network. Histone acetyltransferases 
(HATs) transfer acetyl groups to target lysines in proteins while histone deacetylases (HDACs) 
remove them. Proteins containing bromodomains bind acetyl-lyisnes via distinct structural binding 
pocket and recruit complexes relevant for the function of the acetylated protein.  
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The activity of HATs is counterbalanced by HDACs, which remove the acetyl groups and 

are therefore considered “erasers” (Figure 2-1). Thus far, 18 mammalian HDACs are known, 

which are categorized into three classes based on distinct catalytic characteristics. Class I and II 

HDACs (HDACs 1–11) use a Zn2+-dependent deacetylation mechanism and are inhibited by 

hydroxamic acids such as trichostatin A, vorinostat (SAHA), givinostat (ITF2357), and 

panobinostat (LBH589) (Shirakawa et al., 2013). Notably, class II HDACs shuttle between the 

nucleus and cytoplasm; a subset of these HDACs (class IIa) have little in vitro HDAC activity 

unless associated with the class 1 HDAC3/N-CoR complex (Jones et al., 2008). Class III HDACs 

are NAD+-dependent sirtuin deacetylases (SIRTs 1–7), which are found in the nucleus, 

cytoplasm, and mitochondria, and are not responsive to classical HDAC inhibitors (Houtkooper et 

al., 2012). 

  Besides HATs and HDACs, so-called reader proteins have been identified that contain 

protein domains which bind specifically to acetylated lysines (Figure 2-1). Best known and 

characterized are proteins containing bromodomains—conserved ~110–amino acid protein 

modules that form a deep hydrophobic cavity that specifically accommodates acetyl-lysine 

residues (Filippakopoulos and Knapp, 2014). The human genome is predicted to encode 46 

bromodomain-containing proteins, which are usually epigenetic regulators; some of these 

proteins contain more than one bromodomain (Filippakopoulos et al., 2012).  

The three groups of acetylation-associated proteins engage in regulatory crosstalk. Many 

HATs, including p300/CBP and GNAT enzymes, contain bromodomains. Since they can both 

write and recognize acetylation marks, HATs can be recruited to acetylated sites and promote 

spreading of the mark (Josling et al., 2012). Because class IIa HDACs have negligible intrinsic 

deacetylase activity, they might function as acetyl-lysine readers rather than erasers and recruit 

other chromatin-modifying enzymes to sites of transcription (Bradner et al., 2010). Moreover, HAT 

and HDAC activities are regulated by acetylation of the enzymes themselves. p300/CBP proteins 

bind and regulate the activity of several HDACs (e.g. HDAC1, HDAC6, and SIRT2) by directly 
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acetylating lysines (Han et al., 2009; Han et al., 2008; Qiu et al., 2006). Conversely, SIRT2 can 

regulate the autoacetylation of p300 and thereby modulate its ability to bind to transcription pre-

initiation complexes (Black et al., 2006; Black et al., 2008). HATs and HDACs not only regulate 

each other, but they are also intimately tied to the metabolism of cells through their cofactors 

acetyl-coenzyme A (HATs) and NAD+ (Class III HDACs). This regulatory crosstalk serves to 

maintain a dynamic equilibrium between the acetylation and deacetylation of specific substrates 

within cells and to rapidly translate environmental cues into shifts in complex cellular processes. 

Viruses have evolved intricate strategies to usurp complex cellular processes in support 

of their own propagation. HIV-1 is a complex lentivirus that reverse transcribes its RNA genome 

into cDNA and integrates into the host chromatin of CD4+ T lymphocytes and macrophages. 

Through recruitment of the host transcriptional machinery, HIV promotes high-level transcription 

of its viral genome or becomes transcriptionally silenced in a subset of latently infected memory 

T cells (Ott et al., 2011).  

Acetylation of the chromatin environment near the viral integration site can affect HIV 

transcription (Shirakawa et al., 2013). However, acetylation of non-histone proteins is also 

important in the viral life cycle. Multiple interactions exist between HIV and HATs, HDACs, and 

bromodomain-containing proteins encoded by the host. These interactions can alter the function 

of these epigenetic regulators, thereby disrupting the host acetylation network. Viral proteins, 

including the virally encoded integrase enzyme and transactivator of transcription (Tat), serve as 

substrates for cellular HATs and HDACs and require timely acetylation and deacetylation events 

for their proper function. In this review, we discuss the known mechanisms by which HIV taps into 

the host acetylation network as a basis for our understanding of how acetylation-targeting 

strategies interfere with the HIV life cycle. 

HIV and the host acetylation machinery  

Recent system-wide mass spectrometry approaches identified a large number of 

interactions of acetylation-related proteins with HIV (Fahey et al., 2011; Gautier et al., 2009; Jager 
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et al., 2011) , many of which have yet to be experimentally confirmed. Importantly, because these 

proteomic strategies rely on affinity purifications, it is unclear whether the interactions are direct 

or indirect via a larger protein complex. The majority of human HATs (19 of 26) interact with at 

least one HIV protein; some, such as p300 and p160, interact with up to five (Figure 2-2). As 

much as one third of human HDACs (6 of 18) have been formally identified as HIV interaction 

partners. Notable HDACs that can interact with up to three HIV proteins include HDAC1 (Tat, Vpr, 

and integrase) and HDAC6 (Tat, gp41, and gp120). Similarly, about one third of bromodomain-

containing proteins (16 of 46) display HIV-binding potential. Interestingly, the majority of these 

interactions are made with HIV Tat (Tat binds to 11 HATs, 4 HDACs, and 14 bromodomain-

containing proteins), underscoring the importance of reversible acetylation in the function and 

regulation of this accessory HIV protein. Below, we focus on confirmed interactions and 

modifications of critical regulators of the HIV life cycle.  
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Figure 2-2: Global interactions of HIV with the host acetylation network. Recent unbiased 
interaction studies between HIV and host proteins have identified a high degree of interplay 
between HIV proteins and host acetylation factors: 19 of 26 HATs, 6 of 18 HDACs, and 16 of 46 
bromodomain-containing proteins bind diverse HIV proteins. These data were determined with 
GPS-Prot (http://www.gpsprot.org), a web based software tool that integrates HIV-Host 
interaction datasets.  
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Acetylation of host and viral factors during HIV entry and integration 

Although studies of the effect of acetylation on HIV replication have focused traditionally 

on transcriptional regulation, mounting evidence suggests that acetylation is critical in early steps 

of the viral life cycle. After HIV-1 attaches to the plasma membrane of the host cell, the viral 

envelope (Env) proteins gp120 and gp41 interact with the host receptor CD4 and one of two 

coreceptors—CXC chemokine receptor type 4 (CXCR4) and CC chemokine receptor type 5 

(CCR5)—to facilitate viral fusion and entry (Figure 2-3) (Loetscher et al., 2000). Once within the 

cytoplasm, the viral nucleocapsid uses the host microtubule network to move toward the nuclear 

pore complex by manipulating cytoplasmic factors such as dynein (McDonald et al., 2002). During 

this time, the core of the HIV-1 particle progressively disassembles (viral uncoating), and the viral 

RNA genome is reverse transcribed by the viral reverse transcriptase enzyme to form a pre-

integration complex with the proviral double-stranded cDNA at its center. The pre-integration 

complex, composed of viral and host factors, mediates the transport of double-stranded cDNA 

into the nucleus, where it integrates into the host chromatin with the assistance of host factors 

such as the lens epithelium-derived growth factor (LEDGF/p75) and the virally encoded integrase 

enzyme. During these early steps of HIV infection, several host and viral factors undergo 

reversible acetylation. Here, we will discuss how these early steps are regulated by the acetylation 

of α-tubulin, HIV-1 integrase, and cyclophilin A (Figure 2-3). 

Microtubules are composed of α/β tubulin heteropolymers, which form key structures in 

cell division, vesicular trafficking, and multiple signaling pathways. These dynamic filaments are 

stabilized by acetylation of the α-tubulin polymer—a highly conserved mechanism that is 

increasingly recognized as a key factor in human health and disease (Perdiz et al., 2011; Piperno 

et al., 1987). As shown by Valenzuela-Fernández et al., the interaction between the HIV gp120 

protein and the CD4 T-cell surface receptor induces α-tubulin acetylation, leading to microtubule 

stabilization necessary for fusion of the virus to the host cell (Valenzuela-Fernández et al., 2005). 

By altering the activity of HDAC6, one of two reported tubulin deacetylases (North et al., 2003)–
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either through overexpression of the wildtype protein or a dominant-negative mutant—the authors 

linked α-tubulin acetylation to early viral fusion (Figure 2-3).  
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Figure 2-3: The role of reversible protein acetylation in the early HIV infection. The role of 
reversible protein acetylation in early HIV infection. The different steps of the early stages of the 
HIV life cycle are depicted with viral (integrase) and host [cyclophilin A (CypA) and α-tubulin] 
factors regulated by acetylation depicted in red. Engagement of HIV envelope protein gp120 
with its host receptor CD4 induces α-tubulin acetylation and microtubule stabilization, a process 
required for successful fusion of the virus to the cell. Overexpression of HDAC6, which 
decreases a-tubulin acetylation, impairs virus–cell fusion and subsequent infection. Cellular 
CypA, a peptidylprolyl isomerase, is packaged into budding virions and regulates early steps of 
infection. Acetylation of CypA impairs its catalytic activity and disrupts its interaction with the 
HIV gag protein. The viral integrase enzyme is critical for the integration of proviral double-
stranded cDNA into the host chromatin. Acetylation of the integrase enzyme by p300 enhances 
its affinity to genomic DNA and its strand transfer activity. It also recruits bromodomain-
containing protein TRIM28 and its associated HDAC1 activity. 
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Recently, the matrix region of HIV Gag was shown to recruit the EB1-binding protein Kif4 

to the ends of microtubules, thereby regulating the formation of acetylated α-tubulin necessary for 

early stages of HIV-1 infection (Sabo et al., 2013). Occurring specifically at the postentry stage of 

infection, this recruitment affects nuclear import, initiation of reverse transcription, and viral cDNA 

synthesis. Human herpes virus 8 also induces microtubule acetylation during early stages of viral 

infection, pointing to a common phenomenon conserved among different viruses (Naranatt et al., 

2005). However, the molecular mechanism by which HIV uses the host acetylation machinery to 

promote α-tubulin acetylation remains unclear. Although tubulin was one of the first non-histone 

proteins shown to undergo acetylation, the α-tubulin acetyltransferase TAT-1 (or MEC17 in 

worms) was not identified until recently (Akella et al., 2010; Shida et al., 2010). Further studies 

are required to determine whether HIV regulates microtubule acetylation by directly recruiting 

TAT-1, by inhibiting the α-tubulin deacetylases HDAC6 and SIRT2, or by alternative 

mechanisms. 

Integration occurs within the large pre-integration nucleoprotein complex, which consists 

of the viral cDNA, viral proteins (integrase, matrix, Vpr, nucleocapsid, and reverse transcriptase), 

and several host factors. p300 can directly acetylate the viral integrase at three carboxy-terminal 

lysines: K264, K266, and K273 (Cereseto et al., 2005). Acetylation increases the affinity of 

integrase for genomic DNA and enhances strand transfer activity (Figure 2-3). Conversely, point 

mutations in acetylation sites or inhibition of p300 inhibited viral integration and replication 

(Cereseto et al., 2005). An additional report confirmed the acetylation of integrase by p300, but 

could not find a replication defect of point mutants when an untagged viral construct was used 

(Topper et al., 2007). A second integrase acetyltransferase, human GCN5, has partially 

overlapping specificity for integrase lysine residues, suggesting that integrase acetylation is more 

complex than originally assumed (Terreni et al., 2010). 
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The acetylated residues in HIV integrase are interaction sites for host bromodomain-

containing proteins. Data from a tethered catalysis yeast two-hybrid screen identified host TRIM28 

(also known as KAP1 and Tif-1B) as a bromodomain factor that binds preferentially to acetylated 

integrase (Allouch and Cereseto, 2011). TRIM28 recruits HDAC1, thus triggering deacetylation of 

HIV integrase and restricting viral integration (Allouch et al., 2011). This highlights the evolution 

of cellular mechanisms to counter infection by exploiting viral dependence on protein acetylation. 

Interestingly, HDAC1 was previously identified as a component of the integrase complex (Sorin 

et al., 2009). Here, the authors showed, using the yeast two-hybrid system, that integrase 

interacts with SAP18, a component of the cellular Sin3a/HDAC complex. They further showed 

that this complex, packaged into HIV-1 virions, is critical for postentry viral infection. In sum, these 

studies suggest that HDAC1 can regulate HIV infection either positively or negatively, depending 

on the context of viral interaction. 

Cyclophilin A (CypA), a highly conserved host peptidyl-prolyl cis-trans isomerase, has 

complex functions in diverse cellular processes such as protein folding, signal transduction, and 

cell-cycle regulation. During HIV infection, CypA is recruited by the group-specific antigen (Gag) 

precursor polyprotein, which consists of important components of the HIV virion such as matrix 

and capsid proteins, and is packaged into budding virions (Figure 2-3) (Franke et al., 1994; Thali 

et al., 1994). After entering target cells, CypA is associated with multiple steps of early infection, 

including uncoating, reverse transcription, and nuclear trafficking (Fassati, 2012). These functions 

are regulated by acetylation (Lammers et al., 2010). The authors used a new in vitro system to 

generate large amounts of acetylated CypA protein using synthetically evolved acetyl-lysyl-tRNA 

synthetase/tRNACUA pair system in E. coli., which co-translationally directs the incorporation of 

acetyllysine into a target protein in response to specifically encoded amber codons (Neumann et 

al., 2008). They showed that acetylation of lysine 125 (K125) inhibits the catalytic activity of the 

CypA enzyme and disrupts its interactions with the HIV Gag protein. It is possible, although not 

shown, that the positive function of HDAC1 in early viral infection is associated with deacetylation 
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of K125 in CypA by the co-packaged integrase/Sin3a/HDAC complex, thereby promoting optimal 

CypA activity (Sorin et al., 2009).  

Reversible protein acetylation and HIV transcription 

Once integrated into the host chromatin, the HIV genome, like a human protein coding 

gene, is subject to transcriptional regulation by the host RNA polymerase II (Pol II) enzyme. During 

the first phase of HIV-1 transcription, short incomplete viral transcripts accumulate that cannot 

support full viral replication (Kao et al., 1987). These incomplete transcripts results from pausing 

of the Pol II complex shortly after transcription starts. This elongation block is not unique to HIV 

and is found in many human genes (Core et al., 2008). To overcome it, HIV encodes the 

transcriptional transactivator Tat, an RNA-binding protein required for elongation of HIV 

transcription. Tat recruits a critical multicomponent host factor, the positive transcription 

elongation factor b (P-TEFb), to the 5’ extremities of elongating HIV transcripts, specifically to a 

conserved RNA stem-loop structure called TAR (Figure 2-4). The recruitment of P-TEFb to TAR 

promotes transcriptional elongation through its intrinsic serine/threonine kinase activity, 

enhancing the processivity of Pol II and dissociating negative elongation factors that physically 

obstruct transcription. Subsequent splicing of these elongated HIV RNA transcripts fuel the viral 

life cycle and give rise to novel Tat molecules which, in an autoregulatory loop, activate HIV 

transcription (Weinberger et al., 2005). 
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Figure 2-4: Regulation of HIV transcription by protein acetylation. HIV transcription is 
closely associated with the host acetylation machinery and is currently a target for acetyllysine-
targeting drug regimens. Viral (Tat) and host factors [histones in nucleosomes (nuc), the Tat 
cofactor P-TEFb, RNA Polymerase II (Pol II)] that are targets of acetylation are depicted in 
orange. HATs, HDACs and bromodomains (BRD)-containing factors associated with HIV 
transcription are listed in the box. Proteins in purple depict factors of the super eloncation 
complex (SEC) recently identified as interacting with P-TEFb and Tat. 
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Throughout this process, viral transcription is regulated at multiple levels by reversible 

acetylation (Figure 2-4). The integrated HIV provirus is fully chromatinized, controlling access of 

host transcription factors to the HIV promoter in the 5’ long-terminal repeat (LTR) (Verdin et al., 

1993). This chromatin structure is under the control of HATs and HDACs, as first shown in studies 

in which the HDAC inhibitor trichostatin A potently remodeled the chromatin structure at the HIV 

LTR in cells (Van Lint et al., 1996) and in in vitro reactions (Sheridan et al., 1997). Since then, 

interest has grown to identify which HATs and HDACs play distinct roles in regulating HIV 

transcription. These efforts were recently comprehensively reviewed (Hakre et al., 2011; 

Shirakawa et al., 2013) Briefly, HDACs 1–3 are known to reside at the HIV LTR in cells with 

transcriptionally inactive (latent) HIV through interactions with various transcription factors, 

including YY1, LSF, CTIP2, CBP-1, NF-B p50, c-myc and Sp1 (Shirakawa et al., 2013). In 

contrast, cellular HATs such as p300, CBP, PCAF, and GCN5 are recruited to the LTR by Tat 

and activating transcription factors such as NF-B p65, AP-1, Myb, GR C/EBP, NFAT, Ets-1, LEF-

1 and IRF (Hakre et al., 2011). Interestingly, increased histone acetylation during HIV activation 

appears to be associated with chromatin modifications during G2 arrest of the cell cycle—

demonstrating the ability of HIV to manipulate critical cellular processes through the host 

acetylation network (Thierry et al., 2004). 

Many transcription factors involved in recruiting HATs or HDACs to the HIV promoter are 

themselves targets of acetylation. For example, the p65 subunit of NF-B is acetylated at multiple 

sites. One of which is K310, a target site of SIRT1 and SIRT2; this acetylation event is critical for 

full transcriptional activity of p65 (Rothgiesser et al., 2010; Yeung et al., 2004). The p50 subunit 

of NF-B is also acetylated at multiple sites, including K431, K440, and K441; these acetylation 

events enhance the DNA-binding activity and transcriptional activity of the heterodimeric NF-B 

complex (Deng et al., 2003; Furia et al., 2002). Similarly, acetylation of Sp1 at K703 increases 

affinity of the transcription factor for DNA (Ryu et al., 2003). Interestingly, both components of the 
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Tat-associated P-TEFb complex, cyclin T1 and CDK9, also undergo reversible acetylation—a 

modification that alters their association with inhibitory ribonucleoprotein complexes and the 

kinase activity of CDK9 directly (Cho et al., 2009; Cho et al., 2010; Fu et al., 2007; Sabo et al., 

2008). 

. Three acetylation sites in the cyclin T1 subunit also serve to bind the second bromodomain 

of the double bromodomain and extraterminal domain (BET) protein BRD4, a process associated 

with activation of the P-TEFb complex (Schroder et al., 2012). Interestingly, eight lysines in the 

C-terminal domain of Pol II undergo reversible acetylation by p300 (Schroder et al., 2013). 

Acetylation of the Pol II C-terminal domain is specifically enriched downstream of polymerase-

occupied gene promoters and is required for optimal activation of genes carrying paused Pol II. 

However, a direct connection with HIV has not yet been established (Figure 2-4).  

Tat itself interacts with HAT enzymes including TIP60, PCAF, CBP, p300, TAFII250, and 

human GCN5 (Benkirane et al., 1998; Col et al., 2001; Hottiger and Nabel, 1998; Kamine et al., 

1996; Marzio et al., 1998; Weissman et al., 1998; Yamamoto and Horikoshi, 1997). These 

interactions can target the individual enzymes to specific transcription factor complexes (e.g. TBP, 

TFII, NF-B), recruit them to the HIV LTR, or modulate their catalytic activities (Caron et al., 2003). 

In certain cases, interactions between Tat and HATs promote extra-transcriptional effects, such 

as neuronal cell death (by disrupting neurotrophin signaling) or increased neoplasia (by impairing 

p53 tumor suppressor function) (Harrod et al., 2003; Wong et al., 2005). However, understanding 

the relationship between these individual interactions (i.e. temporal and spatial kinetics) within the 

context of the viral life cycle still remains a major challenge in the field. 

Tat has at least two acetylation sites. Acetylation of lysine 28 (K28) by PCAF supports the 

cooperative interaction of Tat with its target RNA structure TAR and the P-TEFb cofactor, thereby 

promoting Pol II phosphorylation and efficient transcript elongation (D'Orso and Frankel, 2009; 

Kiernan et al., 1999). Acetylation of K50/51 by p300/CBP and human GCN5 terminates the P-

TEFb-dependent step in Tat transactivation, mediates dissociation of Tat from TAR/P-TEFb, and 
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recruits instead the PCAF HAT via the PCAF bromodomain (Deng et al., 2000; Dorr et al., 2002; 

Kaehlcke et al., 2003; Kiernan et al., 1999; Mujtaba et al., 2002; Ott et al., 1999). Other 

interactions of acetylated Tat with host bromodomain-containing proteins include its recruitment 

of Brg-1—a component of the SWI/SNF nucleosome remodeling complex—and the HAT and 

transcription initiation factor TAFII250 (Mahmoudi et al., 2006; Weissman et al., 1998). 

Bromodomain-containing protein BRD2 has also recently emerged as a potential regulator of the 

HIV LTR; this mechanism, however, appears to occur independently of Tat involvement (Boehm 

et al., 2013a). 

Tat also interacts with host HDACs, such as SIRT1 and HDAC6, to undergo lysine 

deacetylation (Figure 2-4) (Huo et al., 2011; Pagans et al., 2005). Deacetylation of Tat by SIRT1 

is necessary for optimal transactivator function—supporting a model in which timely and balanced 

acetylation/deacetylation events are important to fully support Tat function during HIV 

transcription. Tat serves as a super-substrate for SIRT1, associating avidly with the SIRT1 HDAC 

domain and thereby preventing other substrates (e.g. p65 K310) from accessing the enzyme 

(Kwon et al., 2008). By effectively inhibiting SIRT1 activity on other substrates, Tat induces 

hyperacetylation of p65, rendering it more active and activating infected CD4+ T lymphocytes. 

Thus, Tat is not only a bona fide substrate and recruitment module for HATs, HDACs, and 

bromodomain-containing proteins, it also directly manipulates the activity of HATs and HDACs, 

resulting in reprogramming of infected T cells and manipulation of the infection rates of 

neighboring lymphocytes. Besides Tat, the accessory HIV protein Vpr also binds to p300/CBP 

HAT proteins and supports HIV transcription (Kino et al., 2002). 

Acetylation during late stages of HIV infection 

It remains to be determined whether acetylation also regulates the late stages of viral 

replication. However, it is clear that the changes in HIV entry, integration, and transcription 

described above will also indirectly alter the rates of virion assembly and budding. Furthermore, 

because stable microtubules are important for virion assembly and budding, it is likely that altering 
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the acetylation of α-tubulin will also directly affect these later stages of the viral lifecycle (Jolly et 

al., 2007). Similarly, the co-packaging of integrase with the Sin3/HDAC complex into virions is 

likely associated with more widespread acetylation/deacetylation processes during assembly, 

budding, and maturation of HIV virions (Sorin et al., 2009). However, the exact nature of the host 

or viral factors critical for these late steps of the viral life cycle remains unclear at this stage.  

Therapeutic manipulation of the acetylation network 

These intricate interactions between HIV and host acetylation-associated processes make 

acetylation-targeting drugs ideal candidates to support current antiretroviral therapy (ART). ART 

potently inhibits actively replicating HIV, but cannot eradicate the virus from patients (Chun et al., 

1997; Siliciano et al., 2003; Wong et al., 1997). The major barrier to curing HIV-1 remains the 

persistence of long-lived, resting CD4+ memory T cells harboring replication-competent but 

transcriptionally silenced proviruses (Chomont et al., 2009). These latent reservoirs are 

established early after infection, are resistant to ART, and trigger viral rebound after ART is 

stopped (Fischer et al., 2004; Kaufmann et al., 2004; Lewin et al., 2008; Zhang et al., 1999). One 

current approach is to “shock and kill” latently infected T cells with latency-reversing agents, 

forcing latent proviruses into active transcription under the protection of ART to eliminate them 

through the immune system or additional intervention.  

HDAC inhibitors and reversal of HIV latency  

Since early studies demonstrated that HDAC inhibitors modify the chromatin environment 

of the integrated provirus and potently activate HIV, considerable effort has focused on identifying 

HDACs that are important for maintaining the latent state (Hakre et al., 2011; Shirakawa et al., 

2013). A growing library of small molecules that inhibit class I and II HDACs reactivate HIV within 

in vitro models of latent HIV infection; some of these compounds, previously approved for the 

treatment of cancer, have advanced into clinical trials (Campbell et al., 2015; Cillo et al., 2014; 

Falkenberg and Johnstone, 2014; Sgarbanti and Battistini, 2013). Compounds such as valporic 

acid, vorinostat, and givinostat showed success in increasing viral RNA levels in latently infected 
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resting T cells from treated patients; however, the results were either not reproducible (Archin et 

al., 2009; Blazkova et al., 2012; Routy et al., 2012; Wei et al., 2014) or pointed to the finding that 

repeated intake of HDAC inhibitors desensitizes cells to their latency-reversing activities (Archin 

et al., 2010). 

The findings from studies of select latency-reactivating agents are summarized in Table 

2-1, which also gives the working concentrations for each of the compounds used in vitro or ex 

vivo and outlines their mechanism of action. A more extensive list of HDAC inhibitors used in vitro 

can be found in a recent review (Wightman et al., 2012). Various comparative studies indicate 

that panobinostat and romidepsin are most efficient at targeting class I HDACs (Rasmussen et 

al., 2013; Wei et al., 2014). Notably, panobinostat, decreased the size of the latent pool in patients 

in a phase I clinical trial (Rasmussen et al., 2014). Furthermore, prolonged treatment with 

romidepsin had robust latency-reversing activity in patient-derived cells and induced virion release 

in a clinical study in patients (Wei et al., 2014). It remains to be shown whether panobinostat or 

romidepsin treatment will effectively delay viral rebound in patients. A single-drug will likely prove 

insufficient to overcome latency in all cells, and thus a combination treatment targeting multiple 

stages of the life cycle may be required (Bullen et al., 2014). 
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Table 2-1: Summary of emerging or clinically relevant acetylation-based therapeutic 
strategies to combat HIV-1 latency by reactivation or sustained suppression of the HIV-1 
LTR. Clinical trial information was obtained through https://clinicaltrials.gov/. 
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In addition, “shock” therapies like HDAC inhibitors may exert unwanted effects on the “kill” 

arm of the approach. Notably, HDAC inhibitor treatment caused defects in T-cell development 

and distorted CD8+ T cell activity, potentially diminishing the potential of these cells to effectively 

eliminate reactivated cells in patients (Shan et al., 2012; Tschismarov et al., 2014). Furthermore, 

treatment with vorinostat and panabinostat decreased interferon- production in primary activated 

CD8+ T cells, resulting in impaired elimination of HIV-Gag-positive CD4+ T cells in an in vitro 

model of HIV latency (Jones et al., 2014). Studies outside HIV also point to important roles of 

HDACs in the effector function of T cells and macrophages (Bagley et al., 2014; Cheng et al., 

2014; Halili et al., 2010; Yan et al., 2014). For example, in conditional HDAC1 knockout mice, 

cytokine production in CD8+ T cells was enhanced, but the ability to fend off a viral challenge was 

decreased (Tschismarov et al., 2014). It remains to be tested whether the targeted inhibition of 

individual HDACs is effective in reactivating latent HIV while reducing unwanted effects on T-cell 

function (Archin et al., 2009; Barton et al., 2014; Klase et al., 2014). 

Bromodomain inhibitors and HIV transcription  

Recently, novel inhibitors of bromodomain-containing proteins, especially those targeting 

so-called BET (bromodomain and ET domain) proteins BRD2–4 and BRDT, have shown 

impressive effects in cancer, immunity, and contraception (Filippakopoulos and Knapp, 2014; 

French, 2012; Matzuk et al., 2012). These drugs occupy the binding pockets for acetyl-peptides 

in bromodomains and thereby displace BET proteins from chromatin or other binding partners 

(Shi and Vakoc, 2014). Much of the work characterizing these compounds, particularly the freely 

available compound JQ1, has focused on inhibiting BRD4, owing to its relevance in some 

malignant midline carcinomas (Filippakopoulos et al., 2010; French, 2012). Because BRD4 is a 

cofactor of the P-TEFb complex and competes with the HIV Tat protein for P-TEFb binding, BET 

inhibitors were also tested for the ability to reactivate latent HIV. Several BET bromodomain 

inhibitors, including JQ1, iBET151 and MS417, activate HIV transcription in cell culture models of 

latency (Table 2-1) (Banerjee et al., 2012; Boehm et al., 2013b; Li et al., 2013), but their effect in 
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patient-derived cells varies (Shi and Vakoc, 2014; Zhu et al., 2012). BET inhibitors do not 

synergize with HDAC inhibitors to activate HIV transcription, supporting the notion that both drugs 

target similar molecular pathways (Bartholomeeusen et al., 2012; Boehm et al., 2013a; Loosveld 

et al., 2014). However, strong synergies exists with activators of the cellular protein kinase C 

pathway in cell culture (Boehm et al., 2013a; Jiang et al., 2014; Li et al., 2013; Wang et al., 2012) 

and with monoclonal antibodies against HIV in humanized mouse models of HIV (Halper-

Stromberg et al., 2014). Further studies are still required to better understand the molecular 

mechanisms of how BET inhibitors activate HIV transcription, which BET protein is targeted, and 

how best to combine these inhibitors in clinical trials.  

HAT inhibitors and the permanent silencing of HIV transcription  

Alternatives to the “shock and kill” approach, which include durable transcriptional 

silencing of latently infected cells, are so far less developed. Since HIV–HAT interactions have a 

central role in the activation of viral transcription, a structure-guided approach could be used to 

develop specific inhibitors against Tat–HAT interactions (Pan et al., 2007; Vendel and Lumb, 

2004; Zeng et al., 2005). While compounds such as curcumin and isogarcinol can inhibit 

p300/PCAF HAT activity, they also demonstrate low specificity or high levels of toxicities in cell 

lines (Balasubramanyam et al., 2004a; Balasubramanyam et al., 2004b). Mantelingu and 

colleagues demonstrated that chemical manipulation of these naturally derived compounds could 

increase the specificity of binding to p300, and in the case of one of the derived compounds, 

LTK14, suppress viral reactivation in vitro (Mantelingu et al., 2007). Another, more recent study, 

has shown that coumarin derivitaves, specifically, BPRHIV001, also inhibits p300 activity and is 

able to suppress Tat mediated transcription in vitro (Lin et al., 2011). While these studies 

collectively highlight the importance of p300/CBP as a potential target in HIV treatment, it is 

unclear whether HAT inhibitors can effectively inhibit viral rebound from latency in vivo. Further 

investigation of the molecular role of HATs, HDACs, and bromodomain-containing proteins in the 
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establishment and maintenance of latency are required to develop better and more targeted 

therapeutic interventions. 

Conclusion and outlook 

Protein acetylation, a highly conserved regulatory system in a broad range of organisms, can 

rapidly translate environment signals into critical cellular functions. Viruses such as HIV have 

evolved intricate strategies to manipulate this system to facilitate viral propagation at multiple 

steps of the viral life cycle. As a result, there is growing interest in using inhibitors of acetylation-

associated proteins to disrupt these interactions. Despite an impressive body of work, much 

remains to be learned about the complex role of reversible acetylation during the HIV life cycle 

and within the immune system. The ability to continuously monitor acetyl-stoichiometric changes 

(i.e. frequency of each acetylated site within a cell)—on both a local and systemic scale—will be 

critical in assessing the biological significance of the effects of these modifications on different 

cellular processes. Two studies have begun to address this topic in Saccharomyces cerevisiae 

and Escherichia coli (Baeza et al., 2014; Weinert et al., 2014). These studies revealed that 

significant acetylation alterations occur in distinct subcellular compartments during specific cell-

cycle phases or upon deletion of a particular HDAC. Since viruses operate in distinct host 

compartments at different time points, it will be interesting to use this technology to map 

acetylation dynamics in an infected cell during different phases of the viral life cycle. This 

knowledge will promote a more comprehensive understanding of the dynamics of host–virus 

interactions and highlight critical areas of interest for therapeutic intervention. 

In addition, as new players are still continually being added to the acetylation network, novel 

hypotheses and opportunities for treating HIV will arise. Besides bromodomains, some tandem 

plant homeodomain zinc-finger proteins may also bind histones in an acetylation-specific manner 

(Ali et al., 2012; Qiu et al., 2012; Zeng et al., 2010). Furthermore, the tandem pleckstrin-homology 

domain of Rtt106, a yeast chaperone protein, binds acetylated histone H3 at lysine 56 (Su et al., 

2012). Most relevant to HIV, the highly conserved YEATS domain, named for its five founding 
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proteins (Yaf9, ENL, AF9, Taf14, and Sas5), binds acetyl-lysine residues, with a preference for 

acetylated histone H3 lysine 9 (Li et al., 2014). ENL and AF9 are both members of the so-called 

super elongation complex (SEC), which is associated with HIV Tat and P-TEFb and critically 

involved in their function during HIV transcription elongation (He et al., 2010; Sobhian et al., 2010). 

It remains to be determined whether these interactions are dependent on the acetylation status 

of these factors and can be affected by acetylation-targeting drugs.  
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Abstract 

The HIV-1 transactivator protein Tat is a critical regulator of HIV transcription primarily 

enabling efficient elongation of viral transcripts. Its interactions with RNA and various host 

factors are regulated by ordered, transient posttranslational modifications (PTMs). Here, we 

report a novel Tat modification, monomethylation at lysine-71 (K71). We found that K71 

monomethylation (K71me) is catalyzed by KMT7, a methyltransferase that also targets lysine-51 

(K51) in Tat. Using mass spectrometry, in vitro enzymology, and modification-specific 

antibodies, we found that KMT7 monomethylates both K71 and K51 in Tat. K71me is important 
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for full Tat transactivation, as KMT7 knockdown impaired the transcriptional activity of wild type 

(WT) Tat but not a Tat K71R mutant. These findings underscore the role of KMT7 as an 

important monomethyltransferase regulating HIV transcription through Tat. 

HIV-1 Tat Controls Viral Transcription 

The HIV-1 epidemic remains a global health problem despite the growing availability of 

potent antiretroviral therapies. These therapies are not curative, as latent, transcriptionally silent 

virus can spontaneously reactivate from sanctuaries and rapidly rekindle viral infection after 

withdrawal of therapy (Bruner et al., 2015; Dahabieh et al., 2015; Mbonye and Karn, 2014). 

Therefore, the molecular mechanisms of the activation and suppression of HIV transcription are 

of great interest. 

HIV encodes its own viral transactivator, Tat, which activates HIV transcription and 

facilitates its own production in a positive feedback loop. Tat is a small protein, typically found in 

a full-length form of ~101 amino acids (aa) or as a splice variant (72 aa) encoded only by the first 

exon of the tat open reading frame. Both isoforms efficiently transactivate the HIV promoter in the 

5 long terminal repeat (LTR). Tat interacts with the positive transcriptional elongation factor b (P-

TEFb), and viral RNA through several well-characterized domains that can be found in its one-

exon form: a cysteine-rich domain (aa 22–37) and a highly conserved core domain (aa 41–48), 

both of which participate in binding of P-TEFb (Garber et al., 1998; Yang et al., 1997; Zhu et al., 

1997). The neighboring arginine-rich motif (ARM; aa 49–57) interacts with a specific stem-loop 

RNA structure called transactivation response element (TAR) located in the 5 extremities of all 

viral transcripts (Garcia et al., 1989; Ivanov et al., 1999; Selby et al., 1989; Taube et al., 2000). 

Specific binding of the Tat ARM to TAR requires the coordinated binding of P-TEFb to Tat, as the 

cyclin T1 subunit of P-TEFb binds both the Tat cysteine-rich and core domains and loop 

sequences of TAR (Wei et al., 1998). C-terminal to these well-characterized domains is a 

glutamine-rich motif (aa 59–72). When expressed as a peptide, this region adopts a conserved 



40 
 

α-helical structure that is stabilized upon binding to TAR RNA and is implicated in T-cell apoptosis 

(Campbell et al., 2004; Loret et al., 1992). 

Tat is regulated by a number of PTMs including phosphorylation, acetylation, methylation, 

and polyubiquitylation (Ott et al., 2011). The Tat ARM is highly modified at lysine and arginine 

residues. These modifications, including acetylation of K50/51 and methylation of K51 and 

R52/53, regulate TAR and P-TEFb binding positively (K51me) or negatively (K50ac/K51ac; 

R52me2/R53me2) (Mujtaba et al., 2002; Ott et al., 1999; Pagans et al., 2010; Sakane et al., 2011; 

Sivakumaran et al., 2009; Xie et al., 2007). The role of PTMs in the glutamine-rich motif is still 

unclear. Several phosphorylation sites in this domain (S62, T64, S68) enhance transcriptional 

activity, but are not well conserved among viral isolates (Endo-Munoz et al., 2005; Foley B, 2015). 

In contrast, lysine-71 is a highly conserved residue found in 74% of HIV-1 isolates across all 

clades reported in the HIV-1 sequence compendium (Foley B, 2015).  At this residue, 

polyubiquitylation at K71 is required for full transactivation, but does not affect Tat stability (Bres 

et al., 2003). 

Experimental Procedures 

Materials 

HEK293T, Jurkat, and TZMBL cells were obtained from American Type Culture Collection. 

Anti-FLAG M2 affinity gel (A2220) and anti-FLAG monoclonal rabbit antibodies (F7425) were from 

Sigma-Aldrich (St. Louis, MO). Tubulin antibodies (ab15246) were from Abcam and KMT7 

antibodies (Clone 5F2.3, #04-805) were from Millipore. KMT7 siRNAs (#4392420) were from 

ThermoFisher. Tat72 proteins (unmodified, Tat K71me, Tat K51me, Tat K50Ac and Tat 

K51/K71me) were synthesized by PSL Peptide Specialty Laboratories (Heidelberg, Germany). 

Tumor necrosis factor α (TNFα), purchased from ThermoFisher (PHC3011) was resuspended in 

water at 100 ng/μl. Cycloheximide (MP Biomedicals, 02100183) was resuspended in water at 10 

mg/ml. 
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In Vitro Methylation 

Reactions were carried out with 3 μg of synthesized Tat peptides and 0, 1, or 2 μg of purified 

KMT7 in a solution of 0.1 M bicine, pH 8.2, 60 μM 3H-labeled S-adenosyl methionine (3H-SAM). 

After incubating the mixtures for 18h at room temperature, the methylation reactions were run on 

15% SDS-PAGE gels, which were stained with Coomassie Blue, and destained overnight. 

Methylation was detected by autoradiography (22-h exposure). 

Mass Spectrometry 

In vitro modified and in vivo purified Tat peptides were analyzed by MALDI-TOF tandem mass 

spectrometry (MS) as described (Sakane et al., 2011). 

Enzymology 

Methyltransferase activity was measured with a modified radiometric assay (Houtz et al., 1991). 

Kinetic assays were performed with various concentrations of synthetic Tat72 peptides 

(unmodified, Tat K71me, Tat K51me and Tat K51/K71me). The 20 μl reactions contained Tat 

peptides, 0.1 M bicine, pH 8.2, 60 μM 3H-SAM (3.4Ci/mmol), and 1 μg of purified full-length KMT7 

(Couture et al., 2006). The reactions were incubated for 1 min at 37°C. To terminate the reaction 

and ensure full precipitation of the substrates, 0.5 ml of 10% TCA and 5 μl of a bovine serum 

albumin (BSA) solution (10 g/100 ml of water) were added. After this addition the mixture was 

then vortexed, incubated on ice for 3 mins, and centrifuged at 14,000 RPM for 3 minutes. To 

process the reaction, the protein pellets were washed with 150 μl of 0.1 M NaOH, re-precipitated 

in TCA, vortexed and centrifuged at 14,000 RPM for 3 minutes. The pelleted proteins were 

dissolved in 50 μl of formic acid, diluted by half with water, mixed with 1.25 ml of Bio-Safe II 

scintillant (Research Products International), and subjected to liquid scintillation. Activity was 

calculated after correcting for methylation in control reactions lacking either the enzyme or the 

substrate. The assays were performed in triplicate, and the data were plotted and fitted with 

SigmaPlot 11 (Systat Software) to the Michaelis-Menten equation. 
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Tat K71me Antibody Purification 

Peptides for antibody synthesis (K71me1 Type 1, K71me1 Type 2; Fig. 4A) were synthesized by 

PSL Peptide Specialty Laboratories and injected into rabbits and antibodies were purified from 

serum with antigenic peptides as described (Pagans et al., 2011). Purified antibodies were eluted 

under acidic conditions, resuspended in 1% BSA and 0.1% sodium azide, and stored at –80 °C. 

Dot Blot Analysis of K71me Antibodies 

Tat peptides were serially diluted in water and spotted on a 0.2 μM Hybond ECL membrane. 

Membranes were air-dried, and nonspecific binding was blocked with nonfat dry milk (5 g/100 ml 

in TBST consisting of 50 mM Tris-HCl, ph 7.4, 150 mM NaCl and 0.1% Tween 20) for 1 h at room 

temperature. Membranes were incubated with K71me antibodies diluted in blocking buffer for 1 

h, washed 5 times with TBST, then incubated with HRP-conjugated anti-rabbit IgG (Jackson 

ImmunoResearch) at a concentration of 16 ng/ml in blocking buffer, washed 3–5 times with TBST, 

and analyzed using standard ECL substrate. 

Detection of K71me in vivo 

Tat mutants (K71A, K71R, K51/71A, K51/71R) were generated by site-directed mutagenesis of 

previously described Tat constructs (Pagans et al., 2010). KMT7 expression vectors (WT and 

H297A) were also previously described (Pagans et al., 2010). For experiments conducted in 

HEK293T cells, Tat constructs (2 μg) or Tat and KMT7 (2.5 μg and 6 μg, respectively) were 

transfected into cells using Lipofectamine 2000 and incubated for 24h prior to lysis. For 

experiments conducted in Jurkat cells, WT and K71R Tat72 expressing cells were produced as 

described (Jordan et al., 2001). After sorting, cells were transduced with lentiviruses containing 

control short hairpin RNAs (shRNAs) or KMT7 shRNAs (KMT7a: GCACTTTATGGGA- AATTTA; 

KMT7b: GTAGCTGTGGGACCTA- ATA) and a puromycin resistance cassette.  After 1 week of 

puromycin selection at 2μg/mL, cells were lysed using IP-lysis buffer (150mM NaCl, 50mM Tris 

pH 7.4, 1mM EDTA, 0.5% v/v NP-40 substitute) and Tat-FLAG was immuno-precipitated from 
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500 μg of protein using Anti-FLAG M2 affinity gel. Immunoprecipiated Tat was analyzed using 

either anti-FLAG antibodies (0.16 μg/ml) or K71me antibodies (1.75 ng/ml) diluted in blocking 

buffer. After washing, membranes were incubated with a HRP-conjugated anti-rabbit antibody 

(160 ng/ml). All K71me western blots were performed at least twice. 

Measuring the Half Life of Tat 

WT LTR-Tat101-Dendra (LTD) constructs were subjected to site-directed mutagenesis to 

generate the K71R mutation in Tat. WT or K71R LTD constructs, a lentiviral construct (pCMV-

ΔR8.91) and VSV-G pseudotyped envelope plasmid were co-transfected into HEK293T cells to 

produce lentivirus, as described (Dull et al., 1998). Jurkat T cells were infected with either WT or 

K71R LTD lentiviral vectors to generate polyclonal J-Lat populations as described (Jordan et al., 

2003). After resilencing of the LTR, LTD jurkats were infected with KMT7b shRNAs and selected 

with puromycin for at least 1 week. For protein stability experiments, Tat expression was induced 

with TNF (10 ng/ml) for 16 h followed by treatment with cycloheximide (10 μg/ml). Cells were 

fixed at various times in 2% paraformaldehyde (Alfa Aesar), incubated at 4 oC for at least 1 h, and 

analyzed on a FACSCalibur DxP8 (Cytek). Flow cytometry data were analyzed by FlowJo X. Data 

were normalized to 100% at time 0 and natural log transformed to produce a linear half-life curve, 

from which the slope was calculated. Two-tailed Z-tests were performed on averaged slope 

values from at least 4 independent experiments. The equation t(1/2) = ln(2)/-slope was used to 

generate half-life values. Time-lapse microscopy experiments were performed as described 

(Razooky et al., 2015).  

Luciferase Assays 

TZMBL cells (1x105) were transfected with a total of 100 ng of DNA containing 1, 2, 5, or 10 ng 

of Tat-expressing plasmids (WT, K51R, K71R, K51/71R) or empty vector using X-tremeGENE 9 

(Roche Diagnostics) as recommended by the manufacturer. The cells were incubated for 48 h 

and lysed in 1x Promega Passive Lysis Buffer. Luciferase assays were processed with the 
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Promega Dual-Luciferase Reporter Assay System and measured on a Monolight 2010 

luminometer. Experiments were conducted with 4 independent biological replicates with technical 

duplicates and the statistical significance of differences was determined with one-sided t tests. 

Results 

To determine if K51 is the only KMT7 methylation site in Tat, we performed in vitro 

methylation reactions with synthetic Tat proteins spanning aa 1–72 (Tat72). We observed 

substantial incorporation of 3H-S Adenosyl-Methionine (3H-SAM) in Tat72 proteins carrying 

monomethylated K51, indicating additional KMT7 methylation sites in Tat (Figure 3-1A and 3-

1B). In Tat72 peptides with an acetyl group at K50, 3H-SAM incorporation was also slightly 

decreased. This is consistent with previous observations that this modification reduces access of 

KMT7 to K51 (Sakane et al., 2011). 
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Figure 3-1: HIV-1 Tat is monomethylated at Lys-71 by KMT7. In vitro methylation assays were 
done with 3 μg of synthesized Tat72 proteins that were unmodified, acetylated (K50ac), 
methylated (K51me), or both acetylated and methylated, with or without 1 μg of recombinant 
KMT7 in the presence of  [3H]SAM. A, top, representative autoradiogram. This image is 
uncropped and from one gel; the difference in background is an imperfection of the film. Bottom, 
Coomassie Blue stain for Tat. Molecular weight markers are noted in kilodaltons (kDa) B, 
quantification of three autoradiograms with ImageJ (mean±S.E.). C, in vitro methylation assays 
on unmodified Tat proteins with indicated enzymes were subjected to MS, shown are the zoomed 
regions containing Tat ions corresponding to aa 48–72. Boxed in red are peaks indicating 
modified Tat ions. D, MS/MS spectra of the ions boxed in 1C, and their corresponding peptide 
sequences. Ion annotations are found in Table 3-S1. 
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Mass Spectrometry Ion Annotations 

  
 

Figure 1D Left 
 

Figure 1D Right  
Annotation Ion Mass K71me 

 
Annotation Ion Mass K71me  

a5 598.006 
  

a11 1462.734 
 

 
a17 2045.872 

  
a20 2424.704 

 
 

b8 1066.25 
  

b3 341.807 
 

 
b10 1378.103 

  
b4 483.942 

 
 

b11 1475.142 
  

b5 639.89 
 

 
b12 1573.218 

  
b8 1080.918 

 
 

b13 1700.565 
  

b13 1714.677 
 

 
b14 1757.853 

  
c2 230.763 

 
 

b16 1973.135 
  

c7 941.733 
 

 
b17 2074.58 

  
c17 2105.045 

 
 

b20 2438.38 
  

c18 2242.017 
 

 
c2 230.989 

  
c20 2469.389 

 
 

c3 358.925 
  

c21 2557.104 
 

 
c4 487.056 

  
c22 2668.924 

 
 

c7 2091.397 
  

c23 2755.972 
 

 
c17 2091.397 

  
c24 2899.376 *  

c18 2228.051 
  

y3 376.818 
 

 
c20 2456.066 

  
y4 489.843 

 
 

c21 2543.063 
  

y6 674.883 
 

 
c24 2884.518 * 

 
y8 940.85 

 
 

y1 146.336 
  

y13 1441.42 
 

 
y3 375.866 

  
y14 1538.768 

 
 

y4 489.001 
  

y15 1635.712 
 

 
y8 940.094 

  
y16 1791.815 

 
 

y14 1538.294 
  

y17 1947.602 
 

 
y15 1635.481 

  
y18 2103.61 

 
 

y16 1791.304 
  

y19 2232.26 
 

 
y17 1948.125 

  
y20 2387.675 

 
 

y18 2104.376 
  

y21 2545.118 
 

 
y19 2232.49 

  
y24 2970.69 

 
 

y20 2388.953 
  

M+H+ 3027.712 *  
y22 2672.778 

     
 

y23 2799.973 
     

 
y24 2956.1 

     
 

M+H+ 3013.764 * 
    

 
* ions that contain K71me 

     

 

Table 3-S1: Mass annotations for ions produced by MS/MS for Figure 3-1. 
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To specifically identify additional KMT7 methylation sites in Tat, we performed in vitro 

methylation reactions using non-radiolabeled SAM and subjected modified Tat proteins to MALDI-

TOF MS/MS analysis developed to analyze Tat (Sakane et al., 2011). This analysis revealed 

monomethylation at a single additional site, K71 (Figure 3-1C, 3-1D, Table 3-S1) in two distinct 

peptides in reactions with KMT7, but not in reactions with a control enzyme KMT1E (also called 

SETDB1) or no enzyme (Figure 3-1C). In one peptide, only K71 was monomethylated (Figure 3-

1D, left); in the other, both K51 and K71 were monomethylated (Figure 3-1D, right). Neither K51 

nor K71 was dimethylated, underscoring the function of KMT7 as a monomethyltransferase in 

Tat. 

KMT7 Modifies Tat at K71 in Vitro 

Next, we tested whether pre-modification of K71 in Tat72 peptides affects in vitro 

methylation by KMT7. Premethylation of K71 markedly decreased 3H-SAM incorporation while 

K51 pre-methylation had a lesser effect. Finally, premethylation of both K51 and K71 abolished 

methylation of Tat, demonstrating that there are no additional targets for KMT7 in Tat (Figure 3-

2A). These findings support K51 and K71 as the sole sites for KMT7 monomethylation in Tat72. 
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Figure 3-2: KMT7 preferentially monomethylates Tat Lys-71 in vitro. A, reactions were done 
as in Figure 3-1A with 2 μg of synthesized Tat72 proteins that were unmodified, monomethylated 
at Lys-51 or Lys-71 or both, and incubated with 0, 1, or 2 μg of purified KMT7 in the presence of 
[3H]SAM. Top, representative autoradiogram. Bottom, Coomassie Blue stain for Tat and KMT7. 
B, kinetic assays were done with indicated concentrations of Tat peptides and 1μg of recombinant 
KMT7. Assays were conducted in triplicate; error bars indicate S.E. C, activity calculated by fitting 
data to Michaelis-Menten equation with SigmaPlot 11 after correction for methylation in the control 
reactions with either the enzyme or the substrate removed.ND, not determined in doubly modified 
peptides. 
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To better quantify dynamics of KMT7-mediated methylation of Tat72 proteins, we used 

pre-modified Tat proteins in a modified kinetic radiometric assay (Houtz et al., 1991). After testing 

for linearity with time and KMT7 enzyme concentrations, kinetics assays were performed with 

various concentrations of Tat72 proteins (Figure 3-2B). Methyltransferase activity was hyperbolic, 

and all Tat proteins except the Tat K51/K71me doubly modified form followed Michaelis-Menten 

kinetics. The doubly modified form had very little methylation, consistent with our observations 

using autoradiography (Figure 3-2A). 

The catalytic turnover (kcat) and Michaelis constant (Km) of the Tat K51me proteins were 

62% lower relative to the unmodified proteins. Interestingly, the kcat of the K71me proteins 

decreased by 83% but the Km decreased only 21%. Thus, the methylation efficiency (kcat/Km) on 

K51me protein was similar to that of the unmodified protein, but the K71me was 78% less than 

that on control proteins. Furthermore, almost no methylation was detected in the K51/K71me 

protein. Together, these data support the model that K71 is preferred over K51 as a target for 

KMT7 in Tat (Figure 3-2B, 3-2C) and there are no additional sites in Tat72 for KMT7 

monomethylation.  

MS of Tat Purified from HEK293T and Jurkat A2 Cells Reveals Monomethylation at K71 
exists in vivo 

To examine K71 methylation in vivo, we coexpressed Tat101 bearing a C-terminal FLAG 

tag together with either a KMT7 or empty vector in HEK293T cells for 24h. We first purified Tat 

from lysates by FLAG immunoprecipitation, followed by SDS-PAGE separation. The separated 

Tat protein was subjected to  MALDI-TOF MS/MS which showed that K71 was monomethylated 

only when KMT7 was overexpressed (Figure 3-3A, 3-3B; Table 3-S2). This suggests that the 

fraction of Tat that is naturally monomethylated at K71 in HEK293T cells may be small compared 

to the unmodified form. 
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Figure 3-3: In vivo detection of Tat K71me in HEK293T and Jurkat A2 cell lines. A, WT 
Tat101-FLAG and KMT7 were overexpressed in HEK293T cells and analyzed by MS after FLAG 
affinity purification. A zoomed region of the initial MS spectrum shows the K71me containing ion 
found in the presence of KMT7 overexpression, but not the control. The spectrum is 
representative of two independent experiments. B, MS/MS of the ion containing K71me indicated 
by a red box in 3A and sequence of the fragment. C, Tat101-FLAG was FLAG-affinity-purified 
from Jurkat A2 cells after induction with TNFα and analyzed by MS. Depicted is the full spectrum 
with a Tat K71me-carrying ion (aa 70–78). D, MS/MS of the ion containing K71me indicated by a 
red box in 3C and sequence of the fragment. Ion annotations are found in Table 3-S2. 
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  Mass Spectrometry Ion Annotations   
 Figure 3B  Figure 3D 

 Annotation Ion Mass K71me  Annotation Ion Mass K71me 
 a1 129.022   a1 59.492  

 a2 226.059   a8 830.203  
 a3 323.011   b1 87.782  

 a4 451.103   b5 556.341 * 
 a5 508.115   b7 770.89 * 
 a6 595.14   b9 1014.543 * 
 a7 723.253   c7 788.592 * 
 a8 824.378   c8 875.437 * 

 a9 961.359   M+H+ 1032.623 * 
 a11 1188.68      

 b2 254.011      
 b4 479.077      
 b5 536.121      
 b6 623.169      
 b7 751.173      
 b8 852.191      
 b9 989.36      
 c4 496.104      
 c8 869.144      
 y2 248.04 *     
 y3 361.104 *     
 y4 448.081 *     
 y5 547.128 *     
 y6 675.185 *     
 y7 812.298 *     
 y8 913.326 *     
 y13 1410.747 *     
 y14 1507.844 *     
        
 * ions that contain K71me      
        

 

Table 3-S2: Mass annotations for ions produced by MS/MS for Figure 3-3. 
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Next, we analyzed Tat methylation in J-Lat A2 T cells, in which expression of FLAG-tagged 

Tat101 is controlled by its natural promoter and induced by stimuli such as TNFα (Jordan et al., 

2003). Tat expression was induced with TNFα, FLAG-affinity purified, and analyzed by MS. We 

identified a peptide fragment of 1032.627 Da, corresponding to Tat aa 70–78 with a monomethyl 

group at K71 (Figure 3C). MS/MS confirmed the monomethylation at K71 (Figure 3-3D, Table 3-

S2). Together these findings show that Tat K71 is monomethylated in Jurkat T cells under 

conditions mimicking natural HIV infection and that this modification can be induced by KMT7 

overexpression in 293T cells. 

Generating Antibodies Specific for K71me 

We confirmed these results using newly generated modification-specific polyclonal 

antibodies. We previously published methods to produce and characterize mono-, di- and tri-

methyl Tat-specific antibodies at K51 (Pagans et al., 2011). Following these methods, we focused 

on two chemically synthesized K71me 11-mer peptides (type 1 and type 2) (Figure 3-4A). Peptide 

1 (aa 62–72) ends with the first exon, and peptide 2 (aa 67–77) spans both Tat exons. After 

antigen-purification of the modification-specific antibodies, we performed dot-blot analysis of 

various chemically modified Tat proteins (Figure 3-4B). Type 1 antibodies reacted with all 

synthetic Tat72 proteins (WT, K51me, K71me, K50Ac and K51/K71me), but type 2 antibodies 

detected only the K71me Tat72 proteins. Similar results were obtained by SDS-PAGE and 

Western blotting (Figure 3-4C). The type 2 antibodies were highly specific for Tat72 proteins 

carrying a monomethyl group at K71, and the type 1 antibodies recognized all Tat proteins. 

Therefore for further analysis, we used type 2 TatK71me antibodies. 
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Figure 3-4: Generation of K71me-specific antibodies. A, schematic of thesynthetic methylated 
peptides used as antigens to generate K71me Tat antibodies. B, dot blots with synthetically 
modified Tat72 proteins (K51me, K71me, K51/K71me, and K50ac) incubated with antigen-
purified type 1 or type 2 K71me antibodies. C, Western blot analysis of indicated Tat72 proteins 
(1, 10, 100 ng each) with type1 antibodies (top) and type 2 antibodies (bottom). 
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Detecting Tat K71me by Western Blot in vivo 

To confirm the specificity of the type 2 antibodies in vivo, we overexpressed WT or FLAG-

tagged Tat101 proteins carrying mutations at K71, K51, or K50 in 293T cells. After FLAG 

immunoprecipitation, we detected K71me Tat only in WT, K50 and K51mutants, but not in K71 

mutants (Figure 3-5A). This finding indicates that endogenous KMT7 is sufficient to methylate 

K71 in cells. Furthermore, we were able to increase TatK71me by coexpressing Tat101 with WT 

KMT7 relative to coexpression with a catalytically inactive KMT7 mutant (H297A). Importantly, no 

change in methylation was observed on the K71R mutant (Figure 3-5B). 
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Figure 3-5: Detection of K71me Tat methylation in vivo. Lysates from 293T or Jurkat cells 
were FLAG-immunopurified and blotted with indicated antibodies including type 2 Tat K71me 
antibodies. A, Western blot analysis of indicated Tat101-FLAG mutants expressed in HEK293T 
cells. B, Western blot analysis of Wt or K71R Tat101-FLAG co-expressed with Wt or catalytically 
inactive KMT7 mutant in HEK293T cells. Tat Wt and K71R blots were cropped from the same gel 
and had the same exposure times. C, Western blot analysis of FLAG-purified Tat72-FLAG 
isolated from stable cells lines transduced with shRNAs against KMT7 (KMT7a or KMT7b) or a 
scrambled control. Western blots were performed with indicated antibodies. ImageJ was used for 
quantification. 
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Next, we determined whether the K71me antibodies are able to detect Tat72 in T cells. 

For this, we used an HIV-1 mini-genome to generate Jurkat cell lines that stably express Tat72, 

as described for the Jurkat A2 cells (Jordan et al., 2001). We sorted for cells with high-level GFP 

expression, and transduced them with lentiviruses containing one of two shRNAs targeting KMT7 

(a and b) or a scrambled shRNA (Scr). The lentiviral constructs also contained a puromycin 

resistance gene, which allowed us to select for shRNA-expressing cells. After selection, shRNA-

expressing cells were lysed and subjected to FLAG immunoprecipitation, and Tat K71me levels 

were determined by Western blotting (Figure 3-5C). Knockdown of KMT7 was robust; in 

accordance, Tat K71me levels were reduced by 51% in cells treated with the KMT7b shRNA and 

by 28% in cells treated with KMT7a shRNA (Figure 3-5B, bottom). These results underscore the 

role of KMT7 as an important K71 methyltransferase for both forms of Tat in T cells. Since a 

substantial amount of Tat remained methylated at K71 despite the knockdown, we suspect that a 

small residual pool of KMT7 may be sufficient to modify a proportion of Tat proteins, or perhaps 

another enzyme is capable of monomethylating Tat in cells. 

K71me Does Not Affect Tat Half-life 

A number of substrates modified by KMT7 are altered in their stability by downstream 

changes in their polyubiquitylation (Yang et al., 2009b). Since K71 has previously been reported 

as a site for polyubiqitination (Bres et al., 2003), we examined whether K71 methylation by KMT7 

affects the stability of Tat in Jurkat cell lines expressing fluorescent Tat101-Dendra fusion proteins 

generated for this purpose (Jordan et al., 2003). The Tat-Dendra system has been used to 

determine the Tat half-life in flow cytometry and microscopy studies (Razooky et al., 2015; Singh 

et al., 2012). To knock down KMT7, we transduced Tat-Dendra cells with the lentiviral vectors 

expressing scrambled or KMT7b shRNAs used for Figure 3-5B. After puromycin selection, we 

monitored effects of KMT7 knockdown on Tat half-life only in successfully transduced cells. 

Knockdown of KMT7 was confirmed by western blotting (Figure 3-6B). Expression of WT or K71R 

Tat-Dendra proteins was induced with TNFα. After 16-20 h of TNFα treatment, cycloheximide was 
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added to inhibit de novo production of Tat. Cells were fixed at various times, and Tat expression 

was determined by flow cytometry of Dendra (Figure 3-6A). Tat stability did not differ in cells 

transduced with control and KMT7 shRNAs, excluding any prominent effect of K71 methylation 

on Tat stability (Figure 3-6C). In cells expressing scrambled shRNA, the K71R Tat mutant had a 

slightly longer half-life than WT Tat (10.9 vs 9.0 h, P = 0.043). However, time-lapse single-cell 

microscopy of Tat-Dendra cells revealed no statistical difference in the half-lives of WT and K71R 

Tat in the absence of shRNAs (Figure 3-6D). Together, these data affirm previous findings that 

K71 modifications are not involved in Tat protein stability (Razooky et al., 2015). 
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Figure 3-6: Lys-71 mutation or KMT7 knockdown does not affect Tat stability. A, flow 
cytometry histograms showing mean Tat-Dendra fluorescence (MFI) at indicated times (0–8 h) in 
WT cells stably transduced with KMT7b or scrambled shRNAs and treated with cycloheximide. B, 
Western blot analysis confirms knockdown of KMT7 in Tat-Dendra J-Lat lysates after puromycin 
selection. C, measurements of Tat half-life by flow cytometry. MFIs were normalized to t=0 after 
removing background, natural log transformed, and plotted over time as mean ln(MFI)±S.E. of 
four independent experiments in cells transduced with lentiviruses containing KMT7b or 
scrambled shRNAs and expressing WT or K71R Tat. D, time-lapse single cell microscopy of WT 
or K71R Tat-Dendra J-Lats each point represents the MFI of 50 independent cells that were 
tracked for at least 2 h. 
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K71 Methylation Enhances Tat Transactivation 

Previously, we found that KMT7-mediated monomethylation of Tat K51 enhances 

interactions between Tat and TAR RNA and P-TEFb and activates HIV gene expression (Pagans 

et al., 2010). To assess the effect of K71 monomethylation on Tat transactivation, we transfected 

plasmids expressing WT or mutant Tat101 (K51R, K71R, or K51/71R) into TZMBL cells, which 

express firefly luciferase from the integrated HIV LTR when functional Tat is expressed 

(Montefiori, 2009). Transactivation was ~50% lower in the Tat K51R and Tat K71R mutants than 

in WT Tat at three different plasmid concentrations, confirming that these residues are important 

for Tat transactivation (Bres et al., 2003; Pagans et al., 2010). Transactivation was almost 

completely lost when both K51 and K71 were mutated, underscoring their combined importance 

in Tat transactivation. All Tat proteins were expressed at similar levels as confirmed by western 

blot (Figure 3-7A). 
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Figure 3-7: Tat K71me regulates Tat transactivation. A, TZMBL cells were transfected with 
increasing concentrations of plasmids (2, 5, and 10 ng) expressing WT or mutant Tat101. 
Luciferase values are shown from four independent experiments measured as fold expression 
over empty vector (mean ± S.E.). Western blot analysis was performed in cells transfected with 
100 ng of Tat-FLAG plasmid and blotted with anti-FLAG antibodies. B, luciferase values in TZMBL 
cells transduced with KMT7b or scrambled shRNAs and then transfected with WT or TatK71R 
Tat-expressing plasmids (20 ng). KMT7 knockdown is visualized by Western blotting. Values are 
mean ± S.E. from four independent experiments. Significance was calculated with a one-sided t 
test. *, p < 0.05. 
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To test whether monomethylation at K71 by KMT7 contributes to Tat transactivation, we 

knocked down KMT7 expression in TZMBL cells before transfection with WT Tat or K71R mutant 

Tat101. Knockdown of KMT7 decreased the transcriptional activity of Tat WT but had no effect 

on K71R mutant Tat. Evidently, KMT7 activates Tat transactivation, at least in part, through K71 

monomethylation (Figure 3-7B). Knockdown of KMT7 was confirmed by western blotting (Figure 

3-7B). These findings indicate that K71 monomethylation, rather than regulating Tat stability, 

plays a positive role in the transcriptional activity of Tat. 

Discussion 

HIV-1 Tat is a potent viral transactivator that undergoes extensive post-translational 

modifications. Here, we expand the role of KMT7 in Tat function by identifying K71 as a second 

monomethylation site. We found that K71 is monomethylated in both functional HIV-1 Tat101 and 

Tat72 splice variants, underscoring its importance throughout the HIV-1 life cycle. We identified 

KMT7 as a robust Tat K71 monomethyltransferase in both in vitro and in vivo assays. Although 

KMT7 substrates often have perturbed stability, mutation of K71 or knock down of KMT7 did not 

affect the stability of Tat. Instead, K71 monomethylation is important for the transcriptional activity 

of Tat through a yet unresolved mechanism. 

Notably, in vitro methylation and enzymology experiments indicate that the preferred 

methylation site of KMT7 is K71 rather than K51, previously identified as a target of KMT7. 

Although KMT7 has no known stringent site specificity, two consensus sequences in KMT7 

targets have been described: (K,R)-2-(S,T,A)-1-Kme0-X+1 (where X is a polar residue) and a newer 

sequence (G,R,H,K,P,S,T)-3-(K>R)-2-(S>K,Y,A,R,T,P,N)-1-Kme0-(Q,N)+1-(A,Q,G,M,S,P,T,Y,V)+2 

(Del Rizzo and Trievel, 2011; Dhayalan et al., 2011). Comparing the sequences of K71me (S-3L-

2S-1Kme0Q+1P+2) and K51me (G-3R-2K-1Kme0R+1R+2), K71 is more closely aligned with the newer 

consensus sequence than K51, possibly explaining why K71 was the preferred target in our in 

vitro studies (Del Rizzo and Trievel, 2011). 
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Our finding that KMT7 methylates Tat at two sites is consistent with reports that KMT7 

often has multiple targets within individual substrates. For example, the RelA subunit of the NF-

B transcription factor has three KMT7 monomethylation sites (K37me, K314me, K315me) and 

the PCAF acetyltransferase has two (K78me, K89me) (Ea and Baltimore, 2009; Masatsugu and 

Yamamoto, 2009; Yang et al., 2009a). Since the addition of a monomethyl group is a rather subtle 

modification (14 Da), it is likely that multiple monomethylation sites act in concert to mediate 

appropriate regulation of the substrate protein by KMT7. 

Two main consequences of KMT7-mediated methylation have emerged: alteration of 

protein stability and the regulation of interactions between nucleic acids and proteins (Del Rizzo 

and Trievel, 2011). The oncogene p53 and estrogen receptor α are both stabilized upon 

monomethylation by KMT7 (Chuikov et al., 2004; Subramanian et al., 2008). In contrast, RelA of 

NF-κB and DNMT1 are both destabilized upon monomethlyation of one or more sites by KMT7 

(Esteve et al., 2009; Yang et al., 2009a). One review regarded KMT7 as a bona fide protein 

stability modifier, proposing the presence of a methyl/ubiquityl switch that can regulate the stability 

of substrates (Yang et al., 2009b). However, polyubiquitination of Tat at K71 has been linked to 

enhanced transcriptional activity, not degradation (Bres et al., 2003). Indeed, we found that KMT7 

knockdown did not significantly affect the stability of WT or K71R Tat. 

Early structural studies of Tat isolates suggested that the glutamine-rich motif (aa 59 – 72) 

has a degenerate α-helical structure, consistent across different Tat isolates and adopted in the 

presence of TAR RNA (Campbell et al., 2004). This structure is adopted partially through 

conserved glutamine-RNA hydrogen bonds (Q60, Q63, Q66, Q72) and an electrostatic interaction 

between K71 and the TAR phosphodiester backbone at nucleotides 31–35 (Campbell et al., 2004; 

Loret et al., 1992). K71 monomethylation could thus enhance these interactions by stabilizing the 

electrostatic interaction between K71 and the TAR loop (Loret et al., 1992; Pagans et al., 2010). 

Previously, we showed that methylation of K51 by KMT7 activates appropriate Tat/TAR/P-TEFb 

binding (Pagans et al., 2010). K51 lies in the ARM of Tat, which binds TAR RNA in the bulge 
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region. Therefore, methylation of K51 and K71 by KMT7 might coordinately enhance the binding 

of TAR RNA to multiple residues in Tat, potentially positioning the RNA properly with respect to 

Tat and P-TEFb. Future experiments are necessary to explore this model and elucidate the 

mechanism by which KMT7 activates Tat transactivation by monomethylating K71.  

The Dynamics of Tat PTMs Influences Stochasticity of HIV-1 Viral Reactivation 

The molecular events required for proper HIV-1 transcription activation are numerous 

and complex. However, these modifications are probably regulated based on the metabolites 

available in the cellular microenvironment and naturally occurring intermolecular interactions. 

HIV-1 Tat has access to nearly every cellular compartment, can traverse cell membranes and is 

a notoriously sticky protein - so naturally this makes things extra complex. Therefore, Tat could 

have one set of modifications in the cytoplasm, fostering certain intermolecular interactions; a 

different set of modifications regulated by proximity to mitochondria; and a different set of 

modifications that occur in the nucleus. Together, the various modifications lead to the diverse 

phenotypic outcomes of having Tat in cells. It would be interesting if someone was able to do 

time-lapse compartment-specific proteomics screens surveying HIV-1 Tat post-translational 

modifications. 

In terms of the activities in the nucleus, we can consider the bifurcating model of HIV-1 

activation proposed by Weinberger and colleagues (Weinberger et al., 2005). Here, we can 

assume that PTMs can push Tat towards an activated or suppressed state. Through sexual 

transmission, HIV-1 expansion primarily begins in the gut and so I imagine that a proportion of 

memory T cells that harbor latent virus are probably hanging out there or in nearby lymph 

nodes. These T cells are constantly surveilling their environment because they are interacting 

with the various things that wander through human intestines. While these cells may be in a 

“resting” state, they still have to constantly suppress aberrant activatory and anti-suppressive 

signals that they get in this microenvironment.  
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Latency can be reversed through a variety of mechanisms, including CD3/CD28 receptor 

stimulation, PKC activation, NF-KB activation, hyperacetylation, perturbations in methylation, 

and fluctuations in metabolic pathways such as mTOR (Ali et al., 2016; Besnard et al., 2016; 

Boehm et al., 2017; Burnett et al., 2010; Jordan et al., 2003). The probability that these 

pathways are stimulated in different ways in CD4 memory T cells in this compartment is high 

and could push latent cells with a small amount of Tat towards reactivation. This could be 

constantly occurring throughout the life-long treatment of a patient and could explain why 

cessation of antiretroviral therapy so quickly leads to rebound of infection. It is particularly 

strange that a protein that needs to overcome so many barriers for its activity, is so damn good 

at its job.  

From a therapeutic standpoint, some have turned to a “shock and kill” methodology 

where they try to reactivate latent HIV-1 so that ART can then kill the virus. However, it is 

immensely difficult to reactivate latent HIV in patients. The pathways that robustly activate latent 

HIV such as CD3/CD28, PKC or NFKB stimulation make the immune system go haywire and 

induce massive T cell cytotoxicity or unnecessary proliferation. For more subtle approaches like 

KDAC inhibition, while it works well in certain model systems, clinical trials testing these 

compounds have been consistently disappointing (Darcis et al., 2017). Furthermore, stimulating 

or suppressing pathways like acetylation and methylation in an untargeted way will cause 

unregulated changes in chromatin structure, a surefire way of developing genome instability and 

cancer.  

A more recent approach is to “block and lock” HIV-1 activation. The theory behind this is 

that the latent virus already has to pass through so many barriers, perhaps using drugs or 

nutritional supplements one could possibly push the probability of reactivation so low, that 

patients can stop ART. However, to my knowledge there have been no clinical trials to test this, 

and HIV-1 cure attempts are focusing more on other mechanisms for viral suppression. I 

suppose only time will tell if we will be able to successfully cure HIV-1. To be honest, I’m 
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skeptical that it will happen in my lifetime, but at least we tried. For now, perhaps the United 

States should focus its efforts on prevention by providing inexpensive condoms and modes of 

educating the public on how the disease is transmitted and how to avoid transmission.  
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Abstract 

Post-translational acetylation of lysine residues has emerged as a key regulatory mechanism in 

all eukaryotic organisms. Originally discovered in 1963 as a unique modification of histones, 

acetylation marks are now found on thousands of non-histone proteins located in virtually every 

cellular compartment. Here we summarize key findings in the field of protein acetylation over the 

past 20 years with a focus on recent discoveries in nuclear, cytoplasmic and mitochondrial 

compartments. Collectively, these findings have elevated protein acetylation as a major 

posttranslational modification, underscoring its physiological relevance in gene regulation, cell 

signaling, metabolism and disease. 

Introduction 

During the lifetime of a protein there are many points at which an acetyl group may be 

added to influence function. As early as during its translation, a protein may be N-terminally 

acetylated to preserve its stability, interactions or subcellular localization.(Aksnes et al., 2016) N-

terminal acetylation is a major covalent modification occurring on eukaryotic proteins, with >80% 

of human proteins bearing an acetyl group at the α-amino position of its first amino acid. Once a 

protein is properly localized, acetylation of key lysine residues can occur enzymatically or 
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spontaneously to influence its intermolecular interactions, enzymatic functions, localization, and 

eventual degradation. Post-translational acetylation of lysine residues will be the primary focus of 

the current review.  

Lysine acetylation describes the transfer of an acetyl group from acetyl-coenzyme A 

(acetyl-CoA) to the primary amine in the ε-position of the lysine side chain within a protein, a 

process that leads to neutralization of the position’s positive electrostatic charge. Acetylation can 

occur non-enzymatically; however, in most known cases, the level of acetylation results from the 

balance of opposing enzymatic activities. Marks are “written” by lysine acetyltransferases (KATs) 

and “erased” by lysine deacetylases (KDACs). Acetylated lysine residues, amidst their many 

functions, can be functionally interpreted by a third group of proteins, the so called “readers”, 

which harbor specific acetyl-lysine binding domains, most prominently bromodomains. The 

dynamic interplay between the writers, erasers, and readers of acetylation regulates critical 

epigenomic and metabolic processes, in addition to other major cellular functions. 

Historically, investigators have focused on acetylation in the nucleus, where this mark 

regulates histone biology and transcription (Grunstein, 1997; Strahl and Allis, 2000; Struhl, 1998; 

Turner, 2000). Advances in mass spectrometric technologies have since revealed relevant targets 

of acetylation in nearly all intracellular compartments.(Choudhary et al., 2014; Duan and Walther, 

2015) Compartmentalization of cellular proteins and nutrients is essential for cell specialization 

and function. As such, cellular acetylation is driven by the localization of enzymes, metabolites, 

and cofactors required to balance acetylation and deacetylation levels. Importantly, mitochondria 

have emerged as organelles in which acetylation is more prominent than phosphorylation(Gnad 

et al., 2010) and plays a key role in integrating metabolic cues with the bioenergetic equilibrium 

of the cell.  
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In this review, we provide an overview of the chemistry and biology underlying protein 

lysine acetylation in mammals, review recent developments in the understanding of lysine 

acetylation and provide examples of its function and regulation in distinct cellular compartments. 

The chemistry of reversible lysine acetylation  

The transfer of the acetyl group from acetyl-CoA to the ε-primary amine of a lysine residue 

can occur spontaneously or enzymatically. In mitochondria, acetylation is regulated in part by 

chemical, non-enzymatic mechanisms due to the high pH and high local acetyl-CoA 

concentrations within this compartment.(Santo-Domingo and Demaurex, 2012) The mechanism 

of non-enzymatic acetylation proceeds first via deprotonation of the lysine primary amine by 

naturally occurring hydroxide ions, followed by attack of the acetyl-CoA terminal carbonyl by the 

nucleophilic amine. A putative tetrahedral intermediate is transiently formed and decomposes into 

reaction products acetyl-lysine, coenzyme A, and hydroxide (Figure 4-1).(Wagner and Payne, 

2013)  
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Figure 4-1: Proposed reaction mechanism of spontaneous acetylation in the 
mitochondria.(Wagner and Payne, 2013) 
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Lysine acetyltransferases 

The human proteome contains 21 putative KATs that catalyze lysine acetylation (Table 4-

1). The best characterized have been catalogued into three major families based on homology to 

yeast proteins, but also on structural and biochemical features of catalysis – (1) GCN5-related N-

acetyltransferases (GNAT), (2) the p300/CREB-binding protein (p300/CBP), (3) and the MOZ, 

Ybf2, Sas2, and Tip60 (MYST) family. A number of other proteins have acetyltransferase activity 

such as TBP-associated factor 250kd (TAFII250 (KAT4)), αTubulin acetyltransferase (αTAT1), 

circadian locomoter output cycles protein kaput CLOCK (KAT13D) and nuclear receptor 

coactivator-1 (NCoA-1) but do not belong to any of the major acetyltransferase families.  

The first cloned mammalian acetyltransferase was the GCN5 homolog PCAF (KAT2B). In 

this study, Nakatani and colleagues reported conserved sequence homology between PCAF and 

the GCN5 genes in yeast and human. The authors performed in vitro acetylation assays using 

recombinant protein to demonstrate that PCAF (KAT2B) can acetylate whole nucleosomes while 

the function of human GCN5 (KAT2A) was limited to free histones.(Yang et al., 1996) Using 

similar assays, the enzymatic activity was demonstrated for CBP/p300 (KAT3A/B),(Ogryzko et 

al., 1996) TAFII250 (KAT4),(Mizzen et al., 1996) TIP60 (KAT5),(Yamamoto and Horikoshi, 1997) 

and NCoA-1 (KAT13A).(Chen et al., 1997; Spencer et al., 1997)  
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Table 4-1: Putative Lysine Acetyltransferases (KATs) and their common aliases. Proteins are 
listed with the subcellular localization, crystal structures (if available), and UniProt ID. Reference 
information can be found in (Ali et al., 2018). 
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Figure 4-2: Structures of catalytic KAT domains from GNAT (human GCN5, blue, PDB: 1Z4R), 
MYST (human MOZ, orange, PDB:2RC4), and KAT3A/B(CBP/p300) (human KAT3B(p300), grey, 
PDB:3BIY) families. Acetyl-CoA is shown in cyan. Images rendered in Chimera (UCSF). 
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Despite considerable divergence in primary sequence, KATs from distinct families exhibit 

structurally homologous acetyl-CoA binding regions, which generally adopt a globular α/β fold 

(Figure 4-2). Regions flanking the central acetyl-CoA-binding cleft are not generally conserved, 

and may serve to guide substrate specific activities.(Berndsen and Denu, 2008) Among the KAT 

subfamilies, three prevailing mechanisms have been identified. GNAT family members use an 

active site glutamate to deprotonate the lysine ε-amine, enabling nucleophilic attack of the acetyl-

CoA carbonyl, followed by formation of a transient tetrahedral intermediate and its subsequent 

collapse into acetyl-lysine and coenzyme A (Figure 4-3).(Jiang et al., 2012) The same 

mechanism has been proposed for KATs of the MYST family.(Berndsen et al., 2007) A two-step 

mechanism involving an active site acetyl-cysteine intermediate was originally proposed for MYST 

enzymes.(Yan et al., 2002) However, mutagenizing this cysteine residue does not affect 

enzymatic activity within the context of a pre-assembled ternary complex.(Berndsen et al., 2007) 

Mutagenesis of an active site glutamate, however, ablates activity without reducing levels of 

autoacetylation.(Yan et al., 2000; Yuan et al., 2012) Collectively, these data suggest that the 

active site glutamate plays a particularly significant role for MYST family catalysis. However, 

acetyl-cysteine intermediates may still be relevant depending on cellular context for MYST family 

members with still undefined mechanisms.  
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Figure 4-3: Proposed reaction mechanism for GNAT family KATs (Jiang et al., 2012). 
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The mechanism utilized by p300/CBP family members is categorized as a “hit and run” 

(Theorell-Chance) mechanism. It is ordered and rapid, and the ternary complex formed is 

kinetically irrelevant for catalysis.(Liu et al., 2008) Instead of an active site basic residue, aromatic 

residues lining a shallow catalytic pocket steer the lysine substrate and allow for nucleophilic 

attack of acetyl-CoA by lowering its pKa.(Zhang et al., 2014) A tyrosine residue then acts as an 

acid to protonate the sulfhydryl of CoA, leaving as reaction products acetyl-lysine and CoA 

(Figure 4-4). This may partially explain the relative substrate promiscuity observed for 

p300.(Dancy and Cole, 2015) The mechanisms used by several KATs [i.e., KAT13D (CLOCK), 

KAT13A (SRC1), KAT13B (SRC3), KAT4 (TAF1), KAT9 (ELP3), and KAT12 (GTF3C4), among 

others] have not been formally investigated.  
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Figure 4-4: Proposed reaction mechanism for p300 family KATs.(Liu et al., 2008) 
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The enzymatic activity of HAT proteins may vary depending on the cellular 

microenvironment. For example, the substrate specificity and therefore the catalytic activity of 

KAT2A/B (GCN5/PCAF) may be influenced by accessory proteins within this complex that help 

target the acetyltransferase to its substrates, thus enhancing activity. For example, using 

immunoprecipitation followed by gel filtration chromatography KAT2A/B (GCN5/PCAF) can be 

separated from a large macromolecular structure consisting of the TBP-free-TAF complex (TFTC) 

and the SPT3-TAF9-GCN5-acetyltransferase (STAGA). (Demeny et al., 2007; Martinez et al., 

1998; Ogryzko et al., 1998) (Demeny et al., 2007; Martinez et al., 1998; Ogryzko et al., 1998) 

(Demeny et al., 2007; Martinez et al., 1998; Ogryzko et al., 1998) (Demeny et al., 2007; Martinez 

et al., 1998; Ogryzko et al., 1998). These complexes are large, up to 2 megadaltons, and likely 

vary in composition across the genome to transduce highly specific stimuli.(Nagy and Tora, 2007) 

Recent studies have identified two putative mitochondrial KAT enzymes, suggesting that 

acetylation in the mitochondria can be enzymatically triggered and raising interesting questions 

about the catalytic mechanisms of these proteins. GCN5-like protein 1 (GCN5L1) was proposed 

to act as a mitochondrial KAT and a counter-regulator to SIRT3, a mitochondrial lysine 

deacetylase. Notably, robust in vitro acetylation required the presence of additional mitochondrial 

factors suggesting that GCN5L1 activity may not be direct.(Scott et al., 2012) In addition, KAT8 

(MOF) localizes specifically to mitochondria in HeLa cells and its catalytic activity is required for 

appropriate mitochondrial gene expression.(Chatterjee et al., 2016) However, it remains unclear 

whether KAT8 (MOF) enzymatic activity regulates mitochondrial protein acetylation.  

Autoacetylation is an important mechanism of HAT enzymatic regulation. In 2004, Cole 

and colleagues identified a cluster of key lysine residues within an activation loop motif of KAT3B 

(p300) that must be acetylated in order for the enzyme to have robust catalytic activity.(Karanam 

et al., 2006; Thompson et al., 2004) In this model, the activation loop regulates KAT3B (p300) 

activity by competing with substrates for the active site. Upon hyperacetylation, the activation loop 
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is displaced allowing for substrates to interact with the active site.(Karanam et al., 2007; 

Karukurichi et al., 2010) Active site autoacetylation appears to be a conserved process as 

RTT109, a yeast acetyltransferase, autoacetylates its active site at K290 to increase its affinity 

for acetyl-CoA.(Albaugh et al., 2011) Similar to KAT3B (p300), KAT8 (MOF) also requires 

autoacetylation for its activity, shifting the structure of the protein to allow for better substrate 

binding and catalytic activity in vitro and in vivo.(Yuan et al., 2012) In contrast, KAT13D (CLOCK) 

gene acetylates its dimerization partner BMAL1, a modification that facilitates the assembly of a 

CRY1-CLOCK-BMAL1 complex and suppresses its activity in a negative feedback loop essential 

for circadian rhythmicity.(Hirayama et al., 2007) 

Lysine deacetylases and sirtuins 

The reversible nature of lysine acetylation is essential to its function in the regulation of 

critical cellular processes.  The possible existence of enzymatic deacetylation was first suggested 

in 1978 when it was observed that n-butyrate treatment induced the differentiation of Friend 

erythroleukaemic cells into hemoglobin-synthesizing normoblast-like cells, a phenotype that 

correlated with strong histone hyperacetylation.(Riggs et al., 1977) This early work characterizing 

n-butyrate and Trapoxin(Kijima et al., 1993; Yoshida et al., 1995)  as KDAC inhibitors paved the 

way for Schreiber and colleagues to purify the first KDAC from bovine calf thymus lysates using 

a Trapoxin based affinity matrix.(Taunton et al., 1996) Following this, and in rapid succession, 

KDACs 2–11 were discovered through sequence homology analyses to yeast 

deacetylases.(Emiliani et al., 1998; Fischle et al., 1999; Gao et al., 2002; Guardiola and Yao, 

2002; Hubbert et al., 2002; Yang et al., 1997; Zeng et al., 1998) 

At the same time, the silent information regulator (Sir) protein family, known to suppress 

gene expression at telomeres and ribosomal DNA,(Fritze et al., 1997; Gotta et al., 1997) gained 

attention as potential deacetylase enzymes. Mutation of Sir proteins in yeast induced 

hyperacetylation of histones.(Braunstein et al., 1993) In 1999, Frye and colleagues identified five 
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human cDNAs with sequence homology to the yeast Sir2 gene and shortly after, Sir2 was 

identified as an NAD+ dependent histone deacetylase.(Frye, 1999; Imai et al., 2000) The family 

known as Sirtuins was completed using a phylogenetic classification scheme identifying the last 

two members, SIRT6 and SIRT7.(Frye, 2000) 

KDACs and sirtuin proteins are mechanistically and structurally distinct (Figure 4-5). They 

are formally categorized into four distinct enzyme classes based on structural homology with 

yeast transcriptional repressors and unique catalytic mechanisms.(Delcuve et al., 2012; Seto and 

Yoshida, 2014) (Table 4-2) Class I, II, and IV enzymes are Zn2+-dependent and form KDACs 1–

11. Class I enzymes (KDAC1, 2, 3, 8) localize mainly to the nucleus, while class II (KDAC4–7, 9, 

10) and Class IV (KDAC11) enzymes generally shuttle between the nucleus and cytoplasm. The 

Sirtuin proteins 1–7 encompass the class III enzymes and are described in the text below. Similar 

to KATs, KDACs are also often found in large, macromolecular complexes that function primarily 

in gene repression. For example CoREST, NuRD, and Sin3 complexes harbor a catalytic core 

composed of a KDAC1:KDAC2 dimer, and the NCoR complex contains KDAC3.(Kelly and 

Cowley, 2013; Watson et al., 2012)  
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Figure 4-5: Structures of catalytic KDAC domains from KDAC (human KDAC2, red, PDB:4LXZ) 
and Sirtuin (human SIRT1, purple, PDB:4I5I families). KDAC zinc and Sirtuin NAD are shown in 
yellow. Images rendered in Chimera (UCSF). 
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Table 4-2: Zn2+ dependent lysine deacetylases (KDACs). Proteins are listed with subcellular 
localization, relevant crystal structures (if available), common inhibitors, and UniProt ID. 
Reference information can be found in (Ali et al., 2018). 
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Mechanistic insight into KDAC catalysis derives from studies of HDLP, a deacetylase 

homolog from the bacterium Aquifex aeolicus.(Finnin et al., 1999) Like HDLP, KDACs utilize an 

active site histidine to deprotonate a critical water molecule, enabling nucleophilic attack of the 

acetyl group carbonyl (Figure 4-6). Decomposition of the oxyanionic tetrahedral intermediate 

releases acetate and the deacetylated lysine as reaction products. The divalent cation (Zn2+) is 

important for positioning and polarizing a catalytic water molecule, and is positioned itself by 

aspartic acid and histidine residues of a classical catalytic triad (charge-relay network). This Zn2+ 

is a critical target of inhibitors of the class I, II and IV KDACs, which mainly function via chelation.  
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Figure 4-6: Proposed reaction mechanism for class I, II, and IV KDACs (Newkirk et al., 2009). 
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Class III KDACs function independently of an active site metal and, instead, rely on 

nicotinamide adenine dinucleotide (NAD+) as a cofactor for catalytic activity.(Gao et al., 2013) Of 

the seven sirtuins in mammals, only SIRT1, 2, 3 have robust lysine deacetylase activity. More 

limited deacetylase activity has been reported for SIRT5, SIRT6 and SIRT7; while SIRT4 has no 

reported deacetylase activity (Table 3).(Ford et al., 2006; Laurent et al., 2013; Liszt et al., 2005; 

Nakagawa et al., 2009; North et al., 2003) SIRT6 and SIRT7 localize primarily to the nucleus, 

SIRT1 and SIRT2 shuttle between the nucleus and cytoplasm, and SIRT3 is a bona fide 

mitochondrial matrix protein.(Michishita et al., 2005) Unlike class I, II, and IV KDACs, sirtuins are 

not found in large repressive macromolecular complexes. However, certain binding partners 

regulate their enzymatic activity. For example, the active regulator of sirtuin (AROS) has been 

shown to stimulate SIRT1-mediated deacetylation of p53,(Kim et al., 2007) while deleted in breast 

cancer 1 (DBC1) negatively impacts SIRT1 activity.(Kim et al., 2008; Zhao et al., 2008)  
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Table 4-3: NAD+ dependent sirtuin deacetylases. Proteins are listed with subcellular localization, 
relevant crystal structures (if available), common inhibitors, and UniProt ID. Reference information 
can be found in (Ali et al., 2018). 
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The sirtuin reaction mechanism proceeds by nucleophilic addition of acetyl oxygen to the 

anomeric (C1’) carbon of the nicotinamide ribose via SN1, concerted SN2, or dissociative SN2-like 

mechanisms, resulting in the formation of a C1′-O-alkylamidate intermediate (Figure 4-7). Next, 

a histidine residue abstracts a proton from the 2′-hydroxyl group of the NAD+ ribose, which then 

attacks the C1′-O-alkylamidate carbon, generating a bicyclic intermediate. A base deprotonates 

a water molecule, enabling its attack of the bicyclic intermediate. Collapse of the bicyclic 

intermediate generates the deacetylated lysine and O-acetyl-ADP-ribose.(Sauve and Schramm, 

2003) Sirtuins likely also have weak ADP ribosyltransferase activity via incomplete catalysis 

through this described mechanism. ADP ribosyltransferase activity has been formally reported for 

SIRT4 and SIRT6.(Haigis et al., 2006) The mitochondrial SIRT5 enzyme exhibits broad deacylase 

activity, accepting malonyl- and succinyl-lysine substrates.(Du et al., 2011; Park et al., 2013; 

Rardin et al., 2013a) The biological function of this distinct activity is not yet clear.  
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Figure 4-7: Proposed reaction mechanism for class III KDACs/sirtuins(Hirsch and Zheng, 2011).  
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Acetyl-lysine binding modules  

An important function of lysine acetylation is the generation of novel recognition surfaces 

for the binding of proteins harboring “reader” domains specific for the posttranslationally modified 

residue. The best-characterized reader module of acetyl-lysines is a structurally conserved 

protein domain called the bromodomain. The first reference to the bromodomain is traced to the 

characterization of the Drosophila gene brahma (brm), a regulator of homeotic genes now known 

to be a core catalytic component of SWI/SNF chromatin remodelers.(Tamkun et al., 1992) The 

conserved structural motif discovered in the brm gene was termed a bromodomain, yet it is 

etymologically distinct from elemental bromine. Apart from the observation of its frequent 

occurrence in transcriptional regulators, the bromodomain was relatively uncharacterized from 

the time of its discovery in 1992(Tamkun et al., 1992) to the determination of its structure by Zhou 

and colleagues in 1999.(Dhalluin et al., 1999) NMR studies of the KAT2B (PCAF) bromodomain 

revealed that this domain binds acetyl-lysine residues on histones and described the structural 

details of this interaction.  

The bromodomain is approximately 110 amino acids in length, and there are 61 distinct 

bromodomains encoded by 46 proteins (Table 4-4). The bromodomains are conserved from yeast 

to humans and are encoded in an increasing number of factors during eukaryotic 

evolution.(Haynes et al., 1992) In mammals, bromodomains can be divided into several distinct 

subfamilies based mostly on structural homology.(Fujisawa and Filippakopoulos, 2017; Sanchez 

and Zhou, 2009) While most bromodomain-containing proteins encode one bromodomain, up to 

six bromodomains have been documented in a single protein (Polybromo-1). The so-called 

bromo- and extraterminal (ET) domain-containing (BET) proteins encode a characteristic double 

bromodomain motif and are implicated in recruiting the positive transcription elongation factor b 

(P-TEFb) and other factors to signal inducible genes, including those regulated by the 

transcription factor c-myc in several cancers.(Delmore et al., 2011; Mertz et al., 2011; Ott et al., 
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2012) Nearly all bromodomain-containing proteins are nuclear factors that bind chromatin to 

regulate its structure and function. They function mostly as transcriptional coactivators (i.e., 

KAT3B (p300), BRD4), but repressive functions of certain bromodomain-containing proteins are 

also known (i.e., BAZ2A, ZYMND11). Remarkably, many nuclear KATs harbor bromodomains. 

The KAT2A (GCN5) bromodomain is important for chromatin remodeling(Syntichaki et al., 2000) 

and regulation of sequential histone acetylation events.(Cieniewicz et al., 2014) A recent 

structural analysis of the core catalytic domain of KAT3B (p300) showed an assembled 

configuration of the bromodomain, PHD, RING and KAT domains with the RING domain 

positioned over the KAT domain substrate-binding pocket, providing insight into how chromatin-

substrate targeting and KAT regulation might be linked.(Delvecchio et al., 2013)  
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Table 4-4: Bromodomain containing proteins. Proteins are organized according to their 
observed subcellular localization. UniProt IDs refer to human proteins. References correspond 
to protein localization and relevant crystal structures drawn from mouse and human data. 
Reference information can be found in (Ali et al., 2018).  
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The bromodomain structure is well characterized, with >400 high-resolution X-ray crystal 

structures available and near complete structural coverage across the protein family. The domain 

is composed of four left-handed α-helices (αZ, αA, αB, and αC) connected by two loops (ZA and 

BC loops, Figure 4-8). (Dhalluin et al., 1999) This structure forms a hydrophobic cavity that serves 

as the acetyl-lysine recognition site. A hydrogen bond mediated by a conserved bromodomain 

asparagine residue and the acetyl-lysine carbonyl serves as the ligand recognition mechanism. 

Tyrosine residues lining the bromodomain cleft also play a significant role in ligand positioning via 

pi-pi stacking and hydrogen bond formation with critical water molecules. Helical regions of 

bromodomains are moderately conserved, but the length and sequence of the loop regions vary 

considerably. Some bromodomains cooperatively bind multiply acetylated peptides, such as the 

testis-specific BET protein BRDT.(Moriniere et al., 2009) Others are controlled by 

posttranslational modifications on nearby proteins. In vitro, the bromodomain:acetyl-lysine 

interaction is relatively weak (Kd = low micromolar). In vivo, the combined affinities of adjacent or 

proximal protein domains (i.e., helicase, SAND, distinct bromodomain) may modulate specificities 

and/or strength of binding.  
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Figure 4-8: Structures of acetylation reader domains: Bromodomain (human BRD4, black, 
PDB:3UVW), double PHD (human DPF3, blue, PDB:2KWJ), and YEATS (human AF9, yellow, 
PDB:4TMP). Acetyl-lysine ligands shown in pink. Images rendered in Chimera (UCSF). 
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Several other protein domains have been reported to accept acetyl-lysine residues as 

ligands. The plant homeodomain (PHD) finger domain is generally recognized as a methyl-lysine 

reader domain, but when present in tandem in the protein DPF3b, it binds acetylated lysine 

residues on histone H3 and H4 molecules (Figure 4-8).(Zeng et al., 2010) The tandem 

PHD:acetyl-lysine binding mode is mechanistically distinct from that of the bromodomain, utilizing 

aspartic acid within the first PHD domain to form a hydrogen bond with the acetyl amide of the 

ligand. Interestingly, this aspartic acid also serves to recognize N-terminally acetylated peptides 

in addition to acetyl-lysine residues.  Notably, proteins other than DPF3b encode tandem PHD 

domains, such as the CHD4 chromatin remodeler and KAT6A (MOZ), both of which have been 

shown to bind acetylated histones.(Musselman et al., 2012; Qiu et al., 2012) 

The YEATS domain also recognizes acetyl-lysine residues.(Li et al., 2014) YEATS 

domains are present in five human proteins (YEATS2, ENL, AF9, TFIIF, and GAS41). AF9 and 

ENL are both components of the so-called superelongation complex (SEC), a multimeric complex 

containing P-TEFb, AFF1/AFF4 scaffolds, and the ELL1/ELL4 elongation factors.(Luo et al., 

2012) Structurally, the YEATS domain adopts an Immunoglobulin fold (Figure 4-8), and its 

interaction with acetyl-lysine is mediated by several hydrogen bonds in addition to aromatic 

residues important for ligand positioning.(Luo et al., 2012) Acetylated H3K9 is a ligand for the AF9 

YEATS domain, and the ENL YEATS domain exhibits a preference for acetylated H3K27, 

although ENL correlates genome-wide with both acetylated H3K9 and H3K27 in acute myeloid 

leukemia (AML) cells.(Wan et al., 2017) The two other YEATS domain-containing proteins, 

GAS41 and YEATS2, belong to chromatin-remodeling complexes. The AF9 YEATS domain has 

an expanded binding repertoire of acyl-lysine marks, and can also accommodate modifications, 

such as crotonylation.(Li et al., 2016) Importantly, translocations between genes encoding 

ENL/AF9 and MLL methyltransferase occur frequently, and the resultant fusion proteins are 

oncogenic drivers.(Krivtsov and Armstrong, 2007) Specifically, the ENL YEATS domain is 
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required for tethering the SEC to enforce oncogenic gene expression programs in AML.(Wan et 

al., 2017)  

While the bromodomain, YEATS and tandem PHD domains specifically recognize acetyl-

lysine residues, readers have recently been found that specifically bind unmodified lysine 

residues. The SET protein functions through its acidic-domain to bind the C-terminus of the 

transcription factor p53 only when p53 is not acetylated. The function appears to be conserved, 

as proteins with similar domains, such as VPRBP, DAXX and PELP1, also bound preferentially 

to non-acetylated p53. In addition, the SET acidic-domain recognizes non-acetylated lysine-rich 

domains of histone H3, KU70 and FOXO1, suggesting broad implications for this mechanism of 

recognition.(Wang et al., 2016a)  

The widening scope of protein acetylation  

In 1997, over three decades after the discovery of acetylation on histones and tubulin, the 

transcription factor p53 was identified as a non-histone KAT substrate.(Gu and Roeder, 1997) By 

2000, 10 more nuclear proteins and transcription factors were found to be substrates of 

acetylation, leading to speculation that acetylation may rival phosphorylation as a post-

translational modification(Kouzarides, 2000). Six years later, the first acetylome screen identified 

388 acetylation sites in 195 proteins, more acetylation sites than were identified in the previous 

40 years.(Kim et al., 2006) Since then, more than 155 systems-wide acetylome studies have 

revealed the existence of thousands of acetylation sites on many cellular proteins, connecting 

lysine acetylation to virtually every cellular function and most biological outcomes (Figure 4-9). 

Mass spectrometry analyses of acetylation have been conducted in a wide-variety of species 

ranging from gram-positive(Kosono et al., 2015; Liu et al., 2016) and -negative bacteria(Weinert 

et al., 2017), budding yeast(Downey et al., 2015), plants(Konig et al., 2014; Smith-Hammond et 

al., 2014a; Smith-Hammond et al., 2014b), to eukaryotic human pathogens(Miao et al., 2013; Xue 
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et al., 2013), rodents and humans. These have provided valuable insight into the stoichiometry 

and dynamics of lysine acetylation, as well as interactions with other PTMs.  
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Figure 4-9: Acetylome studies reveal the scope of biological functions regulated by acetylation 
in mammalian cells. 
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Proteomic-based studies generally rely on an enrichment step in which pan-acetyl lysine 

antibodies are used to purify acetylated proteins from trypsin-digested lysates.(Choudhary et al., 

2009; Kim et al., 2006) Notably, the use of an antibody raised against a single antigen can 

conceivably bias which proteins are purified from lysates, suggesting that most current studies 

only capture a subset of cellular acetylation sites.(Kim et al., 2016; Svinkina et al., 2015) Stable 

isotope labeling of amino acids in culture (SILAC),(Zhu et al., 2016b) and a label-free 

approach,(Rardin et al., 2013b) have been used to assess the dynamics of acetylated protein 

stoichiometry. These studies have revealed that in mammalian cells individual acetylation sites 

appear conserved across species, but not across tissue types.4, 5 A high degree of overlap is 

observed in human, rat and mouse liver tissues, yet little overlap exists between rat liver and rat 

heart.(Bing and Zhaobao, 2010; Lundby et al., 2012) Acetylation occurs in regions with defined 

secondary structure, such as α-helices and β-sheets, unlike phosphorylation.(Choudhary et al., 

2009; Kim et al., 2006)  

Nuclear protein acetylation levels are high in tissues with actively dividing cells and in 

tumors. Many acetylation sites are found on proteins related to DNA damage, cell-cycle control, 

and transcription (Figure 4-10).(Beli et al., 2012; Kim et al., 2006), (Choudhary et al., 2009) 

Mitochondrial acetylation is primarily found on proteins related to cellular metabolic processes, 

and is enriched in highly metabolically active tissues such as brown fat, heart, and liver, and 

likely plays a role in other tissue types depending on their metabolic activity and capacity to 

respond to insulin.(Bing and Zhaobao, 2010; Lundby et al., 2012; Rardin et al., 2013b) 

Cytoplasmic acetylation has been relatively understudied despite the fact that tubulin was the 

second protein discovered to be acetylated.(L'Hernault and Rosenbaum, 1983; Piperno and 

Fuller, 1985; Piperno et al., 1987) Notably, it is difficult to exclusively study cytoplasmic 

acetylation because cellular fractionation methods are imperfect, and many proteins tend to 

shuttle between the cytoplasm and other subcellular compartments. With these caveats in mind, 
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cytoplasmic acetylation is observed predominantly in liver, peri-renal and testis fat, tissues with 

high cellular concentrations of acetyl-CoA. 73  

  



102 
 

 

Figure 4-10: Acetylated proteins identified in proteomic studies: compartmentalization, tissue 
enrichment (*in rodent) and related biological processes as described in ref: (Choudhary et al., 
2009), (Rardin et al., 2013b), (Lundby et al., 2012). 
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Several groups have taken genetic approaches to probe KAT- or sirtuin- specific 

acetylation sites. Examples include KAT2A/KAT2B knockdown studied in HeLa cells(Fournier et 

al., 2016), KAT13D(CLOCK) knockout studied in mouse liver tissues(Masri et al., 2013), SIRT1 

knockout studied in mouse embryonic fibroblasts(Simon et al., 2012) or liver tissues(Kim et al., 

2015) and SIRT3 knockout studies in mouse liver tissues(Rardin et al., 2013b; Sol et al., 2012) 

(Figure 4-11).  
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Figure 4-11: Genetic approaches to identify acetylation sites, tissue type, and biological process 
as described in refs (Rardin et al., 2013b), (Fournier et al., 2016), (Masri et al., 2013), (Simon et 
al., 2012), (Kim et al., 2015) and (Sol et al., 2012). 
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The first integrative studies provided evidence for coordinated regulation of PTMs.(Duan 

and Walther, 2015) For example, one study noted coordination between acetylation and 

phosphorylation in the nucleus upon DNA damage, but most changes in phosphorylation occurred 

in the cytoplasm.(Beli et al., 2012) Surveys of acetylation and succinylation sites found substantial 

overlap between both acylation sites in mitochondria, suggesting potential competition between 

these modifications.(Gu et al., 2016; Weinert et al., 2013) Environmental cues, such as caloric 

restriction, microbiome components, and viral infection,  and drugs, such as  KDAC inhibitors and 

aspirin, also affect global acetylation levels.(Liu et al., 2015; Scholz et al., 2015; Tatham et al., 

2017; Zhong et al., 2016; Zhu et al., 2016b)  

Nuclear acetylation regulates gene expression 

Histone acetylation 

When nucleosomal histones are assembled with DNA, each subunit displays an N-

terminal tail that can be post-translationally modified. Core nucleosomes are composed of pairs 

of histones H2A, H2B, H3 and H4; variants of these histones are important in chromatin regulation 

and gene expression. Histone H1 and its accompanying variants are regarded as ‘linker’ histones 

as they connect core nucleosomes into denser 30-nm fibers.(Robinson and Rhodes, 2006) 

Acetylation sites have been observed on all histone subunits, including linker histones, and occur 

in both the tail and globular domains (Summarized in Figure 4-12). Acetylation occurs 

abundantly in the tail domains while acetylation in the globular domain appears less 

abundant.(Tweedie-Cullen et al., 2012) Tail acetylation sites are evenly spaced among the 

nucleosomal histone subunits and possess some functional redundancy.(Ma et al., 1998) 

Acetylation sites are well conserved, in contrast to methylation, where species-specific differences 

exist.(Garcia et al., 2007a) Together, the specific array of histone modifications, known as the 

“histone code,” may serve as a highly dynamic regulatory system for gene expression control in 

mammalian cells.  
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Figure 4-12: Histone lysine acetylation sites and their domain location.(Huang et al., 2015) Each 
histone has additional isoforms not listed in this table. *Histone H1 N-terminal domain is 
structurally distinct from tail domains found in histone H2-4. 

  



107 
 

Acetylation of key lysine residues generally thought to disrupt the electrostatic interactions 

between the phosphodiester backbones of DNA and lysine-rich nucleosomes to expose DNA to 

transcription machinery.(Luger et al., 1997) Key advances in the analysis of histone acetylation 

comes from the use of electron transfer dissociation and electron capture dissociation mass 

spectrometry.(Syka et al., 2004; Udeshi et al., 2008) These methods allow for the analysis of long 

histone peptides (>20 a.a.) and therefore the identification of multiple modifications on individual 

histone proteins. Using this and other methodologies, several comprehensive studies have 

observed the combinatorial patterns of histone modifications on each subunit.(Garcia et al., 

2007b; Garcia et al., 2008; Phanstiel et al., 2008; Tan et al., 2011; Tweedie-Cullen et al., 2012) 

These analyses are essential to determine whether specific modifications are compatible on the 

same histone at the same time, potentially identifying important rules for the histone code. 

The best-studied acetylation sites are found on histone H3 and H4, but acetylation of H2A 

and H2B tails has also been correlated with increased transcriptional activity.(Gatta and 

Mantovani, 2011; Puerta et al., 1995) Histone 3 lysine acetylation has been observed on 14 

residues, six of which are located on the tail region and eight in the globular domain.(Huang et 

al., 2015) H4 is acetylated at 9 lysines, six in the tail region and three in the globular 

domain.(Huang et al., 2015) In addition, lysine acetylation has been observed on H2A tails at four 

sites,(Poplawski et al., 2014; Tweedie-Cullen et al., 2012; Zheng et al., 2013) and the globular 

domain at two sites (Figure 4-12).(Chen et al., 2012) Turnover of histone acetylation is unequal 

at different sites.(Zheng et al., 2013) While acetylation of histone tails generally has a fast turnover 

(<30mins), with the exception of H3K4, H2AK13 and K2AK15, nearly all globular domain 

modifications were more stable with a half-life greater than 2 hours.(Zheng et al., 2013)  

Histone H1 is highly modified and was first identified to be acetylated in vivo in 

2004.(Garcia et al., 2004; Vaquero et al., 2004) Multiple proteomic approaches have identified H1 

acetylation sites at 11 lysine residues (K16, K33, K45, K63, K74, K89, K96, K105, K167, K168, 
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K190), albeit at low frequency.(Kamieniarz et al., 2012; Park et al., 2013; Singh et al., 2013; Tan 

et al., 2011; Tweedie-Cullen et al., 2012; Wisniewski et al., 2007) Given its role in DNA 

condensation, histone H1 was originally thought to act primarily as a suppressor of gene 

expression, but its function is now understood to be more nuanced.(Happel and Doenecke, 2009) 

For example, H1.4K34ac is detected in distal and proximal promoter regions of highly transcribed 

genes in induced pluripotent stem cells and cancer cancer cell lines, induced pluripotent stem 

cells (iPSCs) and testicular germ cell tumors.(Kamieniarz et al., 2012) In addition, an inverse 

relationship between the presence of H1 on chromatin and acetylation marks on H3 and H4 has 

been described.(Bernier et al., 2015; Sun et al., 2015)  

Transcription factor acetylation 

Notably, nuclear lysine acetylation is not restricted to histones, but is also found on 

numerous transcription factors including p53, NF-B, and STAT3. Mechanistically, acetylation 

modulates transcription factor activity at multiple steps by inducing nuclear translocation or protein 

stabilization by sterically preventing ubiquitination, modifying molecular complex composition, and 

facilitating chromatin binding specificities. Proteomics studies have identified many known 

acetylation sites on transcription factors, of which we only list those with additional functional 

studies (Table 4-5). We illustrate these phenomena using well-characterized case studies below 

(Figure 4-13). 
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Table 4-5: Selection of Acetylated Transcription Factors, their Writers and Erasers. Reference 
information can be found in (Ali et al., 2018). 
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Several excellent reviews have documented the functions of transcription factor 

acetylation.(Choudhary et al., 2014; Park et al., 2015; Thiagarajan et al., 2016; Wang et al., 

2016b) Here we exemplify a few key principals (Figure 4-13). In the case of transcription factors 

such as NF-κB and STAT3 that are cytoplasmic when inactive, signaling begins with an 

extracellular stimulus that leads to a cascade of PTMs resulting in changes in dimer structures 

and translocation from the cytoplasm to the nucleus.(Greene and Chen, 2004; Zhuang, 2013) 

STAT3 activation is marked by specific phosphorylation and acetylation events that allow for 

dimerization and subsequent nuclear localization.(Avalle et al., 2017) While phosphorylation is 

thought to be dominant for dimerization and DNA binding, several studies suggest a 

phosphorylation-independent mechanism of dimerization.(Braunstein et al., 2003; Kumar et al., 

1997). Chin and colleagues demonstrate that acetylation at K685 by KAT3A/B (CBP/p300) 

induces homodimerization and nuclear translocation of STAT proteins.(Xu et al., 2016) RelA is a 

subunit of NF-B generally sequestered in the cytoplasm through its interaction with its negative 

regulator IBα. Upon cell stimulation, RelA is acetylated by KAT3A/B (CBP/p300) at several 

residues. Acetylation at K221 disrupts the RelA-IBα interaction, allowing for nuclear translocation 

and increased DNA binding (Figure 4-13A).(Chen et al., 2002; Pejanovic et al., 2012)  
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Figure 4-13: Mechanisms driving acetylation dependent regulation of transcription factors.   
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Changes in acetylation can also induce changes in protein stability as is the case for the 

p53 transcription factor. Acetylation can directly compete with ubiquitination at distinct lysine 

residues.(Caron et al., 2005) It can also mediate structural changes to prevent ubiquitination by 

sterically hindering interaction with ubiquitin ligases.(Caron et al., 2005; Goel and Janknecht, 

2003) At homeostasis, p53 is maintained at low levels in the nucleus primarily through ubiquitin-

mediated proteolysis.(Brooks and Gu, 2011) Upon DNA damage, p53 becomes highly acetylated 

at its carboxy-terminal domain (CTD), preventing MDM2-mediated ubiquitination and 

degradation.(Luo et al., 2000; Rodriguez et al., 2000) Acetylation of the p53 CTD is mediated 

primarily by KAT3B (p300), but KAT6A (MOZ) also acetylates p53 at K120 and K382.(Rodriguez 

et al., 2000; Rokudai et al., 2013) Crosstalk exists between factor acetylation and other PTMs, 

notably lysine methylation. For example, lysine methyltransferase 7 (KMT7, SET7/9)-mediated 

monomethylation at K372 promotes acetylation and stabilization of p53 by disrupting its 

interaction with the deacetylase SIRT1 (Figure 4-13B).(Huang et al., 2006; Ivanov et al., 2007; 

Liu et al., 2011; Son et al., 2016) A similar phenomenon has been reported for RelA acetylation 

at K310 which prevents KMT7-mediated monomethylation at K314 and K315, thus stabilizing the 

protein.(Yang et al., 2010) Furthermore, acetylation of p53 is recognized by KAT3A/B (CPB/p300) 

and KAT4 bromodomains to facilitate acetylation of histone H3 and histone H4 at p53 response 

genes, which induces cell-cycle arrest or apoptosis.(Barlev et al., 2001; Li et al., 2007a; Wu et al., 

2014)  

Acetylation can further influence the DNA binding affinity and promoter specificity of 

transcription factors such as the T cell lineage master regulators RAR-related orphan receptor 

gamma (RORγ) and Forkhead box O proteins (FoxO). RORγ is acetylated by KAT3B(p300) and 

deacetylated by KDAC1 and SIRT1 at K69, K81, K99, and K112, the latter activating DNA binding 

of this lineage-determining transcription factor.(Lim et al., 2015; Wu et al., 2015) Deacetylation of 

RORγ increases transcription of the interleukin-17 (IL-17) gene but decreases activation of IL-2 
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(Figure 4-13C).(Lim et al., 2015) Similarly, acetylation of FoxO proteins by KAT3B (p300) 

facilitates dissociation from promoters of genes such as p27 and MnSOD, a process that is 

reversible upon SIRT1, SIRT2 or SIRT3 overexpression.(Daitoku et al., 2011) Interestingly, 

acetylation of the Forkhead box P3 protein (FOXP3) enhances stability and function of the 

transcription factor, a master regulator of regulatory T cell identity.(Sakaguchi et al., 2010) FOXP3 

acetylation is regulated by a balance between KAT3B (p300) and KAT5 (TIP60) acetylation and 

KDAC7, KDAC9 and SIRT1 deacetylation at K31, K263, and K274.(Kwon et al., 2012; Li et al., 

2007b; Liu et al., 2013; van Loosdregt et al., 2011) Of note, acetylation of KAT5 (TIP60) by KAT3B 

(p300) increases its ability to acetylate FOXP3, highlighting the multiple layers of KAT cooperation 

required for appropriate signaling and regulatory T cell function.(Liu et al., 2013; Samanta et al., 

2008; Xiao et al., 2014) 

Acetylation of the basal transcription machinery  

In addition to transcription factors, a growing number of factors associated with the RNA 

polymerase II complex are acetylated. Basal transcription factor acetylation has been studied in 

less detail and these data we summarize here. Choudhary et al lists eight TBP-associated 

proteins (TAFs) that are acetylated in the nucleus.(Choudhary et al., 2009) These proteins 

compose the basal transcription factor TFIID and contribute to transcription initiation of the RNA 

polymerase II complex.(Bieniossek et al., 2013) The function of TAF acetylation in TFIID function 

remains largely unknown, but acetylation of TAF(I)68, the second largest subunit of the TATA 

box-binding protein-containing factor TIF-IB/SL1, enhances binding to rDNA and was linked to 

enhanced RNA polymerase I transcription.(Muth et al., 2001) A more recent study highlighted the 

importance of CBP in RNA Pol II regulation at promoters in Drosophila. In this system, CBP was 

present at the promoters of nearly all expressed genes was found to play a role in promoter-

proximal pausing, especially at genes with CBP and GAF co-occupancy.(Boija et al., 2017) 
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 Acetylation of the positive transcription factor b (P-TEFb) is studied in detail.(Cho et al., 

2009; Fu et al., 2007; Sabo et al., 2008) P-TEFb is composed of a cyclin T subunit and the cyclin-

dependent kinase CDK9, which when assembled in an active elongation complex, is critical to 

phosphorylate negative elongation factors and the C-terminal domain (CTD) of the largest RNA 

polymerase II subunit at serine 2 activating transcription elongation by the polymerase 

complex.(Hsin and Manley, 2012; Meinhart et al., 2005) P-TEFb is stored predominantly in the 

nucleoplasm in a ribonucleoprotein complex (7SK RNP) but is released and activated upon 

increased transcriptional demand.(McNamara et al., 2016; Zhou et al., 2012) This release is 

caused in part by acetylation of four sites in cyclin T1 (K380, K386, K390, K404) that dissociates 

acetylated cyclin T1/CDK9 from the 7SK RNP and activates CDK9 activity on negative elongation 

factors and the polymerase CTD.(Cho et al., 2009) CDK9 also is subject to acetylation at two 

lysine residues (K44, K48).(Fu et al., 2007; Sabo et al., 2008) K48 acetylation disrupts ATP 

binding and inhibits CDK9 kinase activity directly(Cho et al., 2010; Sabo et al., 2008), while K44 

acetylation activates P-TEFb activity. Additional cellular elongation factors found to be acetylated 

by mass spectrometry include FACT members SUP16H and SSRP1, but also the RTF1 subunit 

of the PAF1 complex as well as SUB1 and the CTD phosphatase FCP1(Choudhary et al., 2009), 

but these marks have not yet been studied functionally.  

The CTD of RNA polymerase II is acetylated. The CTD is a long and flexible domain 

structure composed of heptapeptide repeats with the consensus sequence YSPTSPS, which is 

conserved across eukaryotes. Interestingly, the CTD has expanded in metazoans to include a C-

terminal region of heptad repeats that are less strictly aligned with the consensus sequence. In 

mammals, this region contains eight heptad repeats where the serine in position 7 is replaced 

with a lysine.(Simonti et al., 2015) Acetylation of these lysine residues is mediated by 

KAT3B(p300) and is enriched downstream of transcription start sites in actively transcribed 

genes, linking this modification to polymerase pausing.(Schroder et al., 2013) Accordingly, 
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activation of signal-induced genes is inhibited when lysines are mutated to arginines in the CTD. 

However, the acetylated RNA polymerase II is not only found on signal-induced genes, but on 

many actively transcribed genes, implicating additional functions for CTD acetylation in 

transcription.(Schroder et al., 2013) Notably, both RNA polymerase I and III subunits are also 

acetylated(Choudhary et al., 2009). PAF53, a regulatory subunit of RNA polymerase I, is 

acetylated by KAT3A(CBP) at K373.(Chen et al., 2013) PAF53 acetylation is maintained at low 

levels by SIRT7, which facilitates robust rRNA transcription. Induction of stress by glucose 

deprivation suppresses SIRT7 activity leading to hyperacetylation of PAF53 and suppression of 

rRNA transcription.(Chen et al., 2013) 

Protein stability and aggregation in the cytoplasm  

Tubulin and HSP90 are regulated by KDAC6  

Lysine acetylation in the cytoplasm is historically a very “old” concept, as tubulin was the 

first non-histone acetylation substrate identified.(L'Hernault and Rosenbaum, 1983, 1985; Piperno 

and Fuller, 1985; Piperno et al., 1987) Tubulin forms microtubules, a major structural element in 

the cytoplasm, composed of α/β tubulin dimers.(Burton et al., 1975; Howes et al., 2014; Tilney et 

al., 1973) Acetylation of α-tubulin occurs on the luminal side of microtubules at K40 and is 

catalyzed predominantly by α-tubulin acetyltransferase αTAT1, a non-canonical KAT homologous 

to zebrafish or C. elegans MEC17.(Akella et al., 2010; Kalebic et al., 2013; Shida et al., 2010) It 

is unclear whether acetylation is a cause or a consequence of tubulin stability, although this mark 

is generally considered a marker of protein stability. αTAT1 overexpression destabilizes 

microtubules; however, this is mainly attributed to enhanced αTAT1-tubulin interactions, and not 

considered a consequence of increased acetyltransferase activity.(Kalebic et al., 2013) Tubulin 

is deacetylated by KDAC6(Hubbert et al., 2002) and SIRT2.(North et al., 2003) KDAC6 is the 

major tubulin deacetylase and KDAC6 overexpression increases the chemotactic motility of 

murine fibroblasts, possibly due to tubulin destabilization.(Hubbert et al., 2002) SIRT2 plays an 
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important role in tubulin deacetylation in response to macrophage and NLRP3 inflammasome 

activation(Misawa et al., 2013; North et al., 2003) and also regulates tubulin acetylation on mitotic 

spindles.(Nagai et al., 2013)  

HSP90 gained considerable attention due to its potential as a therapeutic target in 

hematologic malignancies.(Kramer et al., 2014) HSP90 exists in two major isoforms: HSP90α 

which is stress-inducible and tightly regulated; and HSP90β which is constitutively 

expressed(Kramer et al., 2014). HSP90 acetylation is detected on up to 22 distinct residues on 

HSP90α, and 5 distinct residues HSP90β.(Choudhary et al., 2009; Kramer et al., 2014; Scroggins 

et al., 2007) KDAC6 deacetylates HSP90 influencing glucocorticoid receptor (GR) or 

mineralocorticoid receptor (MR) signaling.(Jimenez-Canino et al., 2016; Kovacs et al., 2005) 

KDAC1 may also influence HSP90 acetylation,(Nishioka et al., 2008) though KATs responsible 

remain elusive. Acetylation predominantly occurs on the middle domain of HSP90 where it 

regulates intermolecular interactions and chaperone activity.(Jimenez-Canino et al., 2016)  

Tau and Alzheimer’s disease  

Acetylation also regulates microtubule-associated proteins (MAPs) with Tau as a 

prominent example.(Weingarten et al., 1975; Witman et al., 1976) Tau is highly expressed in 

neurons, and mutations in Tau serve as important markers for dementia and Alzheimer’s 

disease.(Wang and Mandelkow, 2016) These mutations are linked to microtubule-binding repeats 

causing neurological defects associated with the disruption of Tau-microtubule interactions. Tau 

aggregation produces paired helical filaments seen in neurofibrillary tangles present in the brains 

of individuals afflicted with neurodegeneration.(Goedert and Jakes, 2005)  

Acetylation was identified on more than a dozen lysine residues in Tau using in vitro, cell-

based and mass spectrometric assays.(Cohen et al., 2011; Min et al., 2010; Morris et al., 2015) 

Acetylation is a common feature across MAP family members as the microtubule-binding domains 

of MAP2 and MAP4 are also acetylated.(Hwang et al., 2016) Tau, like MAP2 and 4 proteins, 
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possesses intrinsic acetyltransferase activity.(Cohen et al., 2016; Cohen et al., 2013; Hwang et 

al., 2016) In addition, several KATs have been identified to modify Tau including 

KAT3A/B(CBP/p300) and KAT2B(PCAF).(Cohen et al., 2011; Min et al., 2010) Deacetylases that 

target Tau include SIRT1, SIRT2 and KDAC6 with robust activities by SIRT1 and KDAC6.(Min et 

al., 2010; Noack et al., 2014; Xiong et al., 2013)  

Several acetylation sites on Tau are well characterized.(Tracy and Gan, 2017) These 

include K274, K280 and K281. Acetylation of these sites reduces Tau interaction with 

microtubules by interfering with functions of the microtubule-interacting domain.(Cohen et al., 

2011; Sohn et al., 2016) Acetylation of K274 and K281 leads to mislocalization of Tau, while K280 

acetylation promotes Tau aggregation.(Cohen et al., 2011; Tracy et al., 2016) Acetylation of a 

distinct site, K174, slows cellular turnover of Tau and contributes to cognitive defects in mouse 

models of Alzheimer’s disease. Notably, acetylation of specific RXGS motifs in Tau inhibit 

phosphorylation and aggregation of the protein, indicating opposing effects of different acetylation 

sites in Tau on neurogenerative pathogenesis.(Cook et al., 2014) These sites are also targeted 

by distinct KDACs: RXGS motifs are preferentially deacetylated by KDAC6, while SIRT1 targets 

K174, K274, K280 and K281.(Cook et al., 2014; Min et al., 2010) As Tau is decorated with many 

posttranslational modifications including lysine methylation and ubiquitination, these modifications 

can competitively inhibit Tau acetylation in vitro and in vivo.(Funk et al., 2014; Morris et al., 2015; 

Thomas et al., 2012) 

Mitochondrial proteins are heavily acetylated 

Mitochondrial acetylation regulates cell metabolism 

Acetylation is widespread in mitochondrial proteins: 1/3 of mitochondrial proteins are 

acetylated,(Anderson and Hirschey, 2012) and many proteins carry multiple acetylated 

lysines.(Choudhary et al., 2009; Kim et al., 2006) Mitochondrial acetylation is strongly conserved 

from Drosophila to humans.(Weinert et al., 2011) Not surprisingly, acetylated proteins are 
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involved in major functions of mitochondria (e.g., TCA cycle, oxidative phosphorylation, β-

oxidation of lipids, amino acid metabolism, carbohydrate metabolism, nucleotide metabolism, and 

the urea cycle).(Wang et al., 2010; Zhao et al., 2010) Mitochondrial metabolism results from high 

concentrations of acetyl-CoA from aerobic catabolism of pyruvate, -oxidation of long-chain fatty 

acids, and decarboxylation of malonyl-coA.(Berg et al., 2012)  

Three of the seven class III deacetylases (SIRT3, 4 and 5) are mitochondrial.(He et al., 2012a) 

SIRT3 has robust NAD+-dependent protein deacetylase activity and mice lacking SIRT3 show 

significant hyperacetylation of mitochondrial proteins,(Lombard et al., 2007) while mice lacking 

SIRT4 or SIRT5 do not. Proteins that become hyperacetylated in the absence of SIRT3 control 

the shift to a fasting metabolism when the source of energy switches from glucose to lipids and 

amino acids. Thus, SIRT3 is linked to the energy status of the cell,(Anderson et al., 2003; 

Bitterman et al., 2002; Lin et al., 2000; Lin et al., 2004; Lin et al., 2002) and it is expressed at the 

highest levels in metabolically active tissues (e.g., liver, kidney, and heart).(Ahn et al., 2008; 

Palacios et al., 2009) SIRT3 expression is also increased in glucose-poor, fasting states, including 

calorie restriction in liver and kidney.(Alhazzazi et al., 2011; Caton et al., 2011; Hallows et al., 

2011; Hirschey et al., 2010; Tauriainen et al., 2011) 

An important unresolved question regarding mitochondrial protein acetylation is the 

mechanism of acetylation itself. Is a mitochondrial KAT required? Mitochondria contain high 

concentrations of acetyl-CoA in millimolar amounts(Garland et al., 1965), and therefore a non-

enzymatic mechanism could account for the high level of mitochondrial protein acetylation.(Paik 

et al., 1970) Indeed, increased mitochondrial protein acetylation is associated with physiological 

conditions that result in higher levels of acetyl-CoA (e.g., fasting, calorie restriction, high-fat diet, 

and ethanol intoxication).(Fritz et al., 2012; Hirschey et al., 2011; Hirschey et al., 2010; Picklo, 

2008; Schwer et al., 2009)  
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Three mitochondrial KATs have been reported. One is GCN5L1, which is homologous to 

a prokaryotic acetyltransferase.(Scott et al., 2012) Mitochondrial protein acetylation is lower when 

the enzyme is lacking, and increased when it is overexpressed.(Scott et al., 2014) The second is 

the nuclear MYST family acetyltransferase KAT8 (MOF). It controls nuclear and mitochondrial 

respiratory genes by regulating oxidative phosphorylation.(Chatterjee et al., 2016) KAT8 (MOF) 

is important in tissues that are energetically demanding. For example, conditional knockouts of 

this gene result in hypertrophic cardiomyopathy and cardiac failure in mouse. However, the 

function of KAT8 (MOF) mediated mitochondrial acetylation in these cell types is not yet clear. 

Third, is acetyl-CoA acetyltransferase 1 (ACAT1), a regulator of the pyruvate dehydrogenase 

complex in mitochondria. ACAT1 was reported to influence acetylation of two mitochondrial 

proteins: PDHA1 and PDP1.(Fan et al., 2014) ACAT1 knockdown led to a decrease in acetylation 

of PDHA1 and PDP1, inhibiting their function and leading to changes in glucose homeostasis that 

could contribute to the Warburg effect. It is critical to note that none of the studies of mitochondrial 

KATs use in vitro methodologies to show that acetylation of mitochondrial substrates is direct. 

This leaves a possibility that GCN5L1, KAT8 (MOF) or ACAT1 may modulate mitochondrial 

Acetyl-CoA levels or pH, influencing the efficiency of spontaneous acetylation in this cellular 

compartment. 

SIRT3 is also important to the respiratory chain. Mice without SIRT3 use 10% less O2 and 

make 50% less ATP than wild-type mice.(Ahn et al., 2008; Jing et al., 2011) SIRT3 deacetylates 

and activates mitochondrial respiratory chain complexes (e.g., NDUFA9 (complex I)(Ahn et al., 

2008) and SDHA (complex II))(Cimen et al., 2010; Finley et al., 2011) and regulates ATP 

synthase.(Bao et al., 2010)  

Metabolic targets of SIRT3  

SIRT3 is a key enzyme in metabolism, necessary for efficient fatty acids utilization in the 

liver and of lipid-derived acetate and ketone bodies in peripheral tissues during fasting. The first 
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identified target of SIRT3 is acetyl-CoA synthetase 2, which generates acetyl-CoA from acetate 

in extrahepatic tissues during fasting.(Hallows et al., 2006; Schwer et al., 2006) During fasting, 

acetate is made by the liver from acetyl-CoA and can be used as energy by other 

tissues.(Shimazu et al., 2010) SIRT3 regulates fatty acid oxidation by deacetylation and activation 

of long chain acyl-CoA dehydrogenase during fasting.(Hirschey et al., 2010)  β-Oxidation 

intermediates (e.g., long chain fatty acids) accumulate in mice that lack SIRT3.(Hirschey et al., 

2010)   SIRT3 also regulates ketone body production by deacetylating and activation 3-hydroxy-

3-methylglutaryl-CoA synthase 2, a key step in the synthesis of ketone bodies. 

In amino acid metabolism, SIRT3 regulates the aminotransferase that forms glutamine by 

transferring an α-amino to α-ketoglutarate. Another enzyme, glutamate dehydrogenase (GLUD1), 

regenerates α-ketoglutarate from glutamate and releases nitrogen as ammonia in the urea 

cycle.(Berg et al., 2012) SIRT3 accelerates the urea cycle by activating ornithine 

transcarbamoylase (OTC) Humans with urea cycle disorders and mice without SIRT3 have similar 

metabolic profiles including increased levels of serum ornithine and reduced levels of 

citrulline.(Hallows et al., 2011) 

Other pathological conditions exhibit lower levels of SIRT3. Tumors often have reduced 

levels of SIRT3. As a result, glucose use is enhanced because of increased levels of reactive 

oxygen species (ROS) that activate hypoxia-inducible factor 1 alpha (HIF1), that, in turn, 

activates glycolytic genes.(Finley et al., 2011; Kim et al., 2010; Shulga et al., 2010) SIRT3 also 

deacetylates and activates isocitrate dehydrogenase 2 and increases ROS levels as a byproduct 

of oxidative phosphorylation.(Someya et al., 2010) SIRT3 deacetylates and activates the ROS-

scavenging enzyme manganese superoxide dismutase to reduce oxidative damage in the 

liver.(Chen et al., 2011; Qiu et al., 2010; Tao et al., 2010) Mice without SIRT3 show greater 

oxidative stress,(Qiu et al., 2010) particularly on a high-fat diet,(Hirschey et al., 2011) and have 

higher ROS levels than normal under calorie restriction.(Someya et al., 2010) 
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Therapeutic Targeting of Lysine Acetylation 

KDAC inhibitors  

The manipulation of lysine acetylation using small molecules now known to be KDAC 

inhibitors was instrumental in the discovery of this modification. N-butyrate was known to control 

gene expression and to induce differentiation of acute erythroid leukemia cells.(Candido et al., 

1978; Riggs et al., 1977; Vidali et al., 1978) Trichostatin A and tetrapeptide trapoxin are potent 

KDAC inhibitors.(Kijima et al., 1993; Yoshida et al., 1990a; Yoshida et al., 1990b) Suberoylanilide 

hydroxamic acid (SAHA) induces terminal differentiation and apoptosis in transformed cells and 

inhibits KDAC1 and KDAC3.(Richon et al., 1998) SAHA (also known as Vorinostat) was approved 

by the Food and Drug Administration (FDA) to treat cutaneous T cell lymphoma. The anti-epileptic 

drug valproic acid also inhibits KDACs(Gottlicher et al., 2001) and is in clinical trials for various 

indications. Other KDAC inhibitors are approved by the FDA (some of which are displayed in 

Figure 4-14), while others remain in clinical development.(Mottamal et al., 2015; Subramanian et 

al., 2010)  
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Figure 4-14: Selected chemical structures of KDAC inhibitors. 
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Several hypotheses may explain the mechanisms of action of KDAC inhibitors. These 

small molecules might induce DNA damage and cell cycle interruption, cause ROS to accumulate, 

or activate apoptotic pathways.(Xu et al., 2007) Most likely, in some way, these small molecules 

encourage apoptosis or hinder proliferation.(Takai et al., 2004) Hyper-acetylation from small-

molecule KDAC inhibitors has been observed at the tumor suppressor gene CDKN1A(Gui et al., 

2004) and in reactivation of latent HIV.(Lusic et al., 2003) Thus, acetylation-mediated 

transcriptional disruptions might explain the effects of KDAC inhibition on cellular proliferation and 

other phenotypes.  

KDAC inhibitors targeting class I/II/IV enzymes generally chelate the divalent metal ion 

required for catalysis, although not all inhibitors exploit this mechanism.(Lobera et al., 2013) 

Available small molecules mostly target class I and II KDACs with limited selectivity for individual 

KDACs.(Falkenberg and Johnstone, 2014) However, emergent small molecules are active 

against a more restricted range of KDACs. Preclinical examples include specific inhibition of the 

cytoplasmic KDAC6 by Tubastatin A and of KDAC8 by PCI-34051.(Balasubramanian et al., 2008; 

Butler et al., 2010) Importantly, the subset of differentially acetylated proteins differs depending 

on the KDAC inhibitor used. (Scholz et al., 2015)   

Sirtuin modulators  

 SIRT1 is an attractive target for modulation given early connections between Sir2 and 

replicative lifespan in yeast.(Kaeberlein et al., 1999; Lin et al., 2000). Indeed, as discussed, sirtuin 

activity closely ties key metabolic and epigenomic processes. However, specific targeting of 

sirtuins, while exciting, has proven difficult. Adding to this challenge, initial clinical studies with 

sirtuin activators have been inconsistent. While it is clear that sirtuin genetic deletion results in 

large changes in acetylation substrates and gross chromosomal abnormalities that lead to DNA 

damage,351, 569 more extensive work is required to understand this family of genes and their 

therapeutic potential.  
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 Polyphenolic compounds, namely the phytochemical resveratrol, were originally shown to 

activate sirtuin activity by enhancing cofactor and substrate binding via engagement of the SIRT1 

N-terminus.(Howitz et al., 2003; Wood et al., 2004) These polyphenols lack potency in sirtuin 

binding, have low retention times in humans, and likely have considerable off-target 

effects.(Erdogan et al., 2017; Walle et al., 2004) More recent high-throughput screening 

methodologies uncovered other SIRT1 activators, such as SRT1720, with interesting biological 

effects that lead to extended lifespan and improved health in mice and some efficacy against 

xenografted tumor growth models.(Chauhan et al., 2011; Mercken et al., 2014; Mitchell et al., 

2014)  

Controversy has erupted about the action of resveratrol and SRT1720 (Figure 4-15). Two 

studies demonstrated in vitro that resveratrol-mediated SIRT1 activation required the presence of 

a fluorophore conjugated to substrate peptides,(Beher et al., 2009; Pacholec et al., 2010) an 

observation that was supported by structural data.(Cao et al., 2015) In vivo, resveratrol induces 

hypoacetylation for a subset of non-fluorophore labeled peptides, but also induces 

hypteracetylation of other substrates while leaving a large proportion of genes 

unchanged.(Hubbard et al., 2013; Lakshminarasimhan et al., 2013)  These contradictory effects 

in global protein acetylation could be due to off target effects, such as inhibition SIRT3 or 

activation of SIRT5.(Gertz et al., 2012) Importantly, they also may be explained by significant 

sequence specificities of resveratrol-mediated SIRT1 activation due to allosteric mechanisms.  
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Figure 4-15: Selected chemical structures of sirtuin activators. 
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A number of specific inhibitors of sirtuin activity have been identified (Figure 4-16). 

Examples include indols, such as EX-527 targeting SIRT1, along with compounds such as sirtinol 

and tenovin derivatives.(Gertz et al., 2013; Mai et al., 2005; McCarthy et al., 2012; Napper et al., 

2005) A growing number of SIRT2-specific inhibitors have been tested, including as AGK2,(He et 

al., 2012b; Luthi-Carter et al., 2010; Riepsamen et al., 2015) SirReal inhibitors,(Rumpf et al., 

2015) and most recently 33i.(Erburu et al., 2017) Due to the high degree of conservation among 

sirtuin active sites, not surprisingly, several inhibitors bind to two or more sirtuins: cambinol with 

an IC50 ~60 μM for SIRT1 and SIRT2,(Heltweg et al., 2006) salermide targeting SIRT1 and 

SIRT2,(Lancelot et al., 2013; Lara et al., 2009) and suramin that inhibits SIRT5 but also strongly 

inhibits SIRT2 and SIRT1.(Cui et al., 2014; Schuetz et al., 2007) Inhibitors that target SIRT3 are 

also being tested.(Alhazzazi et al., 2016; Salo et al., 2013) Not much is known about the 

mechanism behind sirtuin inhibitors; however, in some cases, they likely function by interfering 

with NAD+ engagement.(Gertz et al., 2013)  

  



127 
 

 

Figure 4-16: Selected chemical structures of sirtuin inhibitors 
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KAT inhibitors  

KAT3A/B(CBP/p300) has emerged as a potential therapeutic target for respiratory 

diseases, HIV infection, metabolic diseases, and cancer.(Dekker and Haisma, 2009) However, 

the relatively shallow substrate-binding site in p300 is a challenging drug target, and most 

compounds to date target the acetyl-CoA binding site in the enzyme.(Marmorstein, 2001) Early 

KAT inhibitors include several phytochemicals, such as curcumin,(Marcu et al., 2006) 

garcinol,(Arif et al., 2009) and anacardic acid.(Sun et al., 2006) Chemical inhibitors were originally 

developed as bi-substrate acetyl-CoA mimics,(Lau et al., 2000) pioneered by the Cole laboratory, 

and later replaced by smaller, more selective synthetic compounds, such as C646.(Gao et al., 

2013) C646 is a pyrazolone-furan (Figure 4-17) that was discovered via virtual ligand screening. 

It efficiently reduces histone acetylation levels within cells and displays cytotoxic properties toward 

certain cancer cells.(Gao et al., 2013) Notably, a recent study characterized A-485, the most 

potent and specific p300 inhibitor identified to date.(Lasko et al., 2017) A-485 was found to be 

1000-fold more potent than other cell permeable HAT inhibitors including C646 and highly specific 

to the KA3A/B(CBP/p300) BHC (bromodomain HAT-C/H3) domains. A-485 was also found to 

suppress proliferation in 61 cancer cell lines with an EC50 <2 μM indicating the compound may 

have some therapeutic potential, especially against hematological malignancies and prostate 

cancer.(Lasko et al., 2017) Importantly, further characterization of potential off target effect and 

studies in pre-clinical animal models are likely necessary prior to moving forward in any clinical 

setting.  

Another study used naturally occurring acyl-CoA derivatives conjugated to biotin to affinity-

purify KATs. Palmitoyl-CoA was recovered and found to inhibit GCN5 (KAT2A). This metabolite 

among other acyl-CoA derivatives, were also able to bind PCAF (KAT2B) and MOF (KAT8) and 

modestly reduce levels of histone acetylation, underscoring that Acyl-CoA cofactors may act as 

endogenous regulators of lysine acetyltransferase activities.(Montgomery et al., 2015) 
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Interestingly, some long chain fatty acid metabolites such as myristic acid (required to produce 

myristoyl-CoA) have also been reported to activate deacylation activity in sirtuins, especially 

SIRT6.(Feldman et al., 2013) 
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Figure 4-17: Selected chemical structures of KAT inhibitors 
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Salicylate inhibits KAT3A/B(CBP/p300) acetyltransferase activity by directly competing 

with acetyl-CoA and down-regulates the specific acetylation of histones and non-histone proteins 

in cells.(Shirakawa et al., 2016) Furthermore, diflunisal, an FDA-approved drug containing a 

salicylic acid substructure, inhibited KAT3A/B(CBP/p300) more potently than salicylate. Both 

drugs are orally bioavailable and inhibited p300-dependent myelogenous leukemic cell growth in 

vitro and in vivo, pointing to a potential new clinical application. In addition, p300-induced tau 

acetylation was inhibited by salicylate or its derivative salsalate, which enhanced tau turnover and 

reduced tau level.(Min et al., 2015) In a mouse model of Alzheimer’s disease, administration of 

salsalate after disease onset rescued tau-induced memory deficits and prevented hippocampal 

atrophy, underscoring the clinical potential of KAT inhibitors in Alzheimer’s disease.  

Bromodomain inhibitors  
 

Small-molecule inhibition of bromodomains is the most recent advancement in efforts to 

pharmacologically target the protein acetylation network. Rather than disrupting enzymatic 

catalysis, these compounds target protein:protein interactions by inhibiting bromodomain 

recognition of its acetyl-lysine residue-containing ligand. The first bromodomain drug discovery 

attempts were described in the HIV field targeting the interaction of the acetylated form of the viral 

transactivator Tat (acK50) with the bromodomain of KAT2B/PCAF, a critical step in transcription 

from the integrated HIV provirus.(Dorr et al., 2002; Mujtaba et al., 2002; Zeng et al., 2005) The 

structure-based approach led to the discovery of a class of N1-aryl-propane-1,3-diamine 

compounds that selectively inhibited the acTat:PCAF interaction, albeit with relatively low 

potency. Also, the intracellular introduction of acetylated histone H4 peptides induced dissociation 

of BRD4 from chromatin and reduced cell growth.(Nishiyama et al., 2008) A year later, a patent 

from Mitsubishi Pharmaceuticals indicated that  thienodiazepines bind BRD4 

bromodomains.(Miyoshi, 2009) This patent report spurred the discovery of a lead compound, 

JQ1, with therapeutic activity against a rare squamous epithelial cancer called the NUT midline 

carcinoma.(Filippakopoulos et al., 2010) The NUT midline carcinoma is cytogenetically defined 
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by a translocation of the BRD4 gene that results in an in-frame fusion with the nuclear protein in 

testis (NUT), a tissue-specific acetyltransferase.(Grayson et al., 2014)  

At the same time as the initial report of JQ1, the laboratory of Alexander Tarakhovsky in 

collaboration with GlaxoSmithKline reported the discovery of I-BET, a synthetic compound 

mimicking acetylated histones and disrupting containing chromatin complexes responsible for 

expression of inflammatory genes in activated macrophages, thus conferring protection against 

lipopolysaccharide-induced endotoxic shock and bacteria-induced sepsis.(Nicodeme et al., 2010) 

Interestingly, BET inhibitors also support immunotherapeutic applications by suppressing 

expression of Programmed Cell Death Protein Ligand 1 (PDL1),(Zhu et al., 2016a) which 

increases cytotoxic T-cell activity and limits tumor progression in mice. Since the characterization 

of BET inhibitors and their preclinical application in cancer and immunology disease models, their 

potential utility in modulating male fertility,(Matzuk et al., 2012) neurocognitive function,(Korb et 

al., 2015) cardiovascular disease,(Anand et al., 2013) and viral infections(Conrad and Ott, 2016) 

has been described.  

JQ1, I-BET, and related compounds are powerful inhibitors of both bromodomains of the 

BET protein BRD4, with similar activity also against bromodomains of BRD2, BRD3 and the testis-

specific BET protein BRDT.(Filippakopoulos et al., 2010) They function primarily by competing 

with acetyl-lysine binding by forming a hydrogen bond with a critical asparagine residue that 

otherwise engages the acetyl-lysine. The pharmacophore is a methyltriazole that is common to 

most available BET inhibitors (Figure 4-18). Recently, second generation BET inhibitors have 

been described, including bivalent compounds that target both BET bromodomains and achieve 

potency orders of magnitude above that of JQ1.(Tanaka et al., 2016), Phthalimide-conjugated 

BET inhibitors that function as hetero-bifunctional small molecules have also been reported, which 

direct BET proteins to E3 ligase activity of cereblon, allowing for rapid and exquisitely specific 

destruction of BET proteins within the cell.(Winter et al., 2015)  
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Figure 4-18:  Selected chemical structures of BET inhibitors. 
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More than 20 early clinical trials are in progress with BET inhibitors.(Filippakopoulos et 

al., 2010; Liu et al., 2017) Their focus is primarily on the treatment of various hematological 

malignancies, as BET proteins are co-activators of several critical oncogenes, including 

MYC,(Delmore et al., 2011) in addition to important regulators of cell proliferation and fate, such 

as MYB,(Roe et al., 2015) BCL2, and FOSL1.(Lockwood et al., 2012) Transcriptional disruption 

of these genes is linked to anti-neoplastic phenotypes observed under BET inhibition, likely 

operating via local removal of BRD4 and associated transcription factors (i.e., P-TEFb) from 

acetylated chromatin or acetylated transcription factors (i.e., TWIST,(Shi et al., 2014) GATA-

1,(Lamonica et al., 2011; Zhu et al., 2016a) and ERG(Roe et al., 2015)) in addition to indirect 

effects on transcription and the cell cycle. Several BET inhibitor trials have completed Phase I or 

reported tolerability and partial clinical outcomes.(Berthon et al., 2016; Odore et al., 2016) Thus 

far, BET inhibitors appear well-tolerated with dose-limiting side effects as diarrhea, fatigue, and 

reversible thrombocytopenia.(Theodoulou et al., 2016a)  

As BET inhibitors are rapidly advancing into clinical trials, inhibitors of non-BET 

bromodomains are also being developed.(Chen et al., 2016; Drouin et al., 2015) Current non-

BET bromodomain inhibitors have been described mainly for bromodomains of 

acetyltransferases (i.e., p300/CBP) and chromatin remodeling components (i.e., BRD7, BRG1). 

Most non-BET targeting small molecules are at the stage of being chemical probes,(Theodoulou 

et al., 2016b) and it has emerged that druggability varies among individual bromodomains.  

Future and perspectives for protein lysine acetylation 

Lysine acetylation has moved from being a specialized mark on histones to a critical 

modification controlling cell fate, proliferation, and metabolism. The modification causes a change 

in the electrostatic charge of its cognate lysine residue, recruits reader proteins, and is tightly 

linked to fluctuations in key cellular metabolites, such as NAD+ and acetyl-CoA. In respective 

cellular compartments, lysine acetylation regulates diverse molecular outcomes, such as gene-
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specific chromatin processes, enzymatic regulation, protein multimerization, localization and 

stability. Reader protein domains, including the bromodomain, tandem PHD, YEATS, and acidic 

domains have evolved to specifically bind to acetylated or non-acetylated lysine residues, thus 

coordinating the acetylation response. Our understanding of other acylation marks is rapidly 

evolving; examples include lysine crotonylaton, succinylation and malonylation, with shared 

enzymes that place and remove the marks such as KAT3A/B and sirtuins, respectively.(Hirschey 

and Zhao, 2015; Sabari et al., 2015) Pharmacological targeting of lysine acetylation is an 

established and briskly advancing field, starting from KDAC inhibitors, moving to sirtuin activators, 

and now including KAT and bromodomain inhibitors. The effects and mechanisms underlying 

these compounds are still being uncovered, and future studies must consider the role of newer 

acylation marks in drug action.   

Other open questions concern the issue how partitioning of critical metabolites contributes 

to the function of lysine acetylation in distinct cellular milieus. A considerable degree of diversity 

of non-histone acetylation has emerged in metazoans, especially in mammals. This could be due 

to a more discreet compartmentalization of acetyl-CoA in lower eukaryotes. In yeast, acetyl-CoA 

is 20–30 fold enriched in mitochondria as compared to other cellular compartments.(Weinert et 

al., 2014) In this context, acetyl-CoA does not permeate past the mitochondrial membrane and 

allows for distinction between acetyl-CoA as a metabolic intermediate and a cofactor for lysine 

acetylation. In mammals, this distinction is not as clear, and the question how other acyl group 

donors such as succinyl-CoA or malonyl-CoA compartmentalize remains yet unexplored. The 

opening of the lysine acetylation field to nutrition, exercise and aging as well as its growing 

influence on disease pathogenesis and treatment of cancer, neurodegeneration, and HIV is 

exciting and signals far-reaching significance. Lysine acetylation may be key to the understanding 

of how such processes are molecularly defined. In the future, lysine acetylation and its directed 

intervention hold promise and is aimed at significantly improving health- and lifespan in humans.  
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Abstract 

Multiple posttranslational modifications of the RNA polymerase II C-terminal domain (CTD) 

coordinate passage through the transcription cycle. The crosstalk between different modifications 

is poorly understood. Here, we show how acetylation of lysine residues at position 7 of 

characteristic heptad repeats (K7ac), a modification only found in higher eukaryotes, regulates 

phosphorylation of serines at position 5 (S5p), a conserved mark of polymerases initiating 

transcription. Using mass spectrometry, we identified Regulator of Pre-mRNA Domain-containing 

(RPRD) proteins as reader proteins of K7ac. K7ac enhanced in vitro binding of CTD peptides to 

the CTD-interacting domain (CID) of RPRD1A and RPRD1B proteins and inversely regulated S5p 

levels genome-wide. Treatment with deacetylase inhibitors globally enhanced levels of K7ac- and 
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decreased levels of S5-phosphorylated polymerases 500 base pairs downstream of transcription 

start sites of expressed genes, consistent with acetylation-dependent S5 dephosphorylation via 

a previously identified RPRD-associated S5 phosphatase. Consistent with this model, RPRD1B 

knockdown increased S5p, but also enhanced K7ac levels, indicating that RPRD proteins recruit 

a K7 deacetylase. Collectively, our data identify RPRD CIDs as K7ac reader domains and reveal 

auto-regulatory crosstalk between K7ac and S5p via RPRD proteins at the transition from 

transcription initiation to elongation in higher eukaryotes.  

RNA Polymerase II CTD modifications regulate its function. 

The RNA Polymerase II (Pol II) complex is highly conserved in all eukaryotic cells and 

responsible for the production of most gene expression products (Buratowski, 2003; Eick and 

Geyer, 2013). RPB1, the largest subunit of the complex, contains the catalytic core of the complex 

and a unique regulatory region called the C-terminal domain (CTD). In eukaryotes, the CTD is 

composed of twenty or more repeats with a heptad consensus sequence, Y1S2P3T4S5P6S7, which 

is highly conserved from yeast to human. In multicellular eukaryotes, the CTD is expanded and 

contains a varying number of non-consensus repeats depending on the organism (Chapman et 

al., 2008). The 52 repeats of the mammalian CTD can be divided into 21 consensus repeats 

proximal to the enzymatic core, and 31 non-consensus repeats distal from the core with less 

fidelity to the consensus. Divergence from the consensus sequence most commonly occurs at 

position 7, which can be replaced with an asparagine (N), threonine (T), or a lysine (K) instead of 

the consensus serine (Eick and Geyer, 2013). The CTD is intrinsically disordered and functions 

as an interaction platform for accessory proteins required for transcription and transcription-

associated RNA processing events (Buratowski, 2009; Jasnovidova and Stefl, 2013).  

The heptad repeats within the CTD are extensively and dynamically post-translationally 

modified at different times during the transcription cycle. Of the seven consensus CTD residues, 

5 can be phosphorylated (Y1, S2, T4, S5, and S7). The two remaining proline residues can 
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undergo isomerization into cis or trans conformations (Heidemann et al., 2013). Serine-5 

phosphorylation (S5p) and serine-2 phosphorylation (S2p) are the most thoroughly studied CTD 

modifications (Buratowski, 2009; Jasnovidova and Stefl, 2013). Serine-5 is phosphorylated by the 

cyclin-dependent kinase 7 (CDK7) subunit of general transcription factor TFIIH, is enriched at 

promoters, and decreases successively towards the 3’ end of genes (Brookes et al., 2012; 

Ebmeier et al., 2017). The phosphorylated serine-2 mark, placed by several kinases (CDK9, 

CDK12, CDK13 and BRD4), starts to accumulate downstream of transcription start sites and 

steadily increases towards the 3’ ends of genes, reflective of its critical role in productive 

polymerase elongation (Bartkowiak et al., 2010; Devaiah et al., 2012; Nechaev and Adelman, 

2011). The distribution of consensus Pol II modifications is best studied in yeast, revealing a fixed 

transition point from S5p to S2p enriched, on average, 450 base pairs (bp) downstream of 

transcription start sites (TSS) (Bataille et al., 2012; Kim et al., 2010; Mayer et al., 2010; Tietjen et 

al., 2010). Similar to S5p, Serine-7 phosphorylation (S7p) is catalyzed by CDK7, is enriched near 

promoters and in gene bodies, and regulates the expression snRNA genes (Brookes et al., 2012; 

Egloff et al., 2012). Tyrosine-1 phosphorylation is enriched near promoters, and has been linked 

to enhancer and antisense transcription (Descostes et al., 2014). Threonine-4 phosphorylation is 

enriched in coding regions and is required for cell viability and transcription termination 

(Hintermair et al., 2012).  

Posttranslational modifications (PTMs) specifically found in non-consensus repeats 

include asymmetric dimethylation of a single arginine (R1810me2), conserved among some 

metazoa, that regulates transcription of small nuclear and nucleolar RNAs (Sims et al., 2011). In 

addition, lysine residues at position 7 of eight heptad repeats are acetylated by the 

acetyltransferase p300/CBP (KAT3A/B) (K7ac), and were recently also found to be mono- and di-

methylated by a yet unknown methyltransferase (Dias et al., 2015; Schroder et al., 2013; Voss et 

al., 2015; Weinert et al., 2018). These lysine residues evolved in higher eukaryotes in the common 

ancestor of the metazoan lineage, and are highly conserved among vertebrates (Simonti et al., 
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2015). While lysine-7 mono- and di-methlyation marks are found near promoters, K7ac is enriched 

in gene bodies (Dias et al., 2015). K7 residues are required for productive transcription elongation 

of immediate early genes in response to epidermal growth factor stimulation (Schroder et al., 

2013). Importantly, K7ac marks are found at ~80% of actively transcribed genes, with a peak in 

signal +500 bp downstream of the TSS, indicating that the modification could more broadly 

regulate the transition from transcription initiation to productive elongation (Schroder et al., 2013). 

In a genetic model where all eight K7 residues were mutated to arginines (8KR), cells expressing 

8KR RPB1 exhibited altered expression of genes relating to development, multicellularity and cell 

adhesion, underscoring a critical role of K7ac in the development of higher eukaryotes (Simonti 

et al., 2015).  

Effector proteins interacting with differentially modified CTDs often contain a so-called 

CTD-interacting domain (CID), which is one of the best-studied CTD-binding modules and is 

conserved from yeast to humans (Ni et al., 2011). The mammalian Regulator of Pre-mRNA 

Domain-containing (RPRD) proteins 1A, 1B and RPRD2 proteins are homologues of the yeast 

transcription termination factor Rtt103, and each contains a CID (Ni et al., 2011). Rtt103 and 

RPRD CIDs can bind CTD peptides carrying S2p, but not S5p; S7p and unmodified K7 residues 

reside at the edge of the CID binding cleft, and can be substituted without altering the binding 

affinity (Jasnovidova et al., 2017a; Meinhart and Cramer, 2004; Ni et al., 2014). RPRD1A and 

RPRD1B are found in macromolecular complexes that associate with Pol II and transcription 

regulatory factors, including the S5-phosphatase RPAP2 (Liu et al., 2015; Morales et al., 2014; 

Ni et al., 2011; Ni et al., 2014; Patidar et al., 2016). RPRD1A, also called P15RS, regulates G1/S 

cell cycle progression and suppresses Wnt and β-catenin signaling via interactions with the class 

I lysine deacetylase HDAC2 and transcription factor 4 (TCF4) (Jin et al., 2018; Liu et al., 2015; 

Liu et al., 2002; Wu et al., 2010). RPRD1B, also called CREPT, was identified in a mass 

spectrometry-based screen for mammalian Pol II-interacting proteins; it is upregulated in various 

cancers, and regulates genome stability and transcription termination (Lu et al., 2012; Morales et 
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al., 2014; Patidar et al., 2016; Zhang et al., 2018). Although the homology with Rtt103 implies a 

conserved role in transcription termination and explains why the proteins are enriched in 3’ ends 

of eukaryotic genes, an additional less well-defined role of RPRD proteins has emerged at 5’ ends 

of genes in higher eukaryotes. This involves a mechanism to regulate genome stability through 

the resolution of R-Loops, which are DNA-RNA hybrids (Lu et al., 2012) as well as the recruitment 

of RPAP2 to initiating RNA Pol II (Ni et al., 2014).  

In this study, we provide molecular insight into the role of RPRD proteins at the 5’ ends of 

genes and newly connect RPRD proteins with K7ac. We find that RPRD proteins via their CIDs 

specifically interact with K7ac, and that this interaction promotes S5-dephosphorylation at and 

beyond +500 bp downstream of the TSS. This data supports a model where vertebrates evolved 

specific crosstalk between S5p and K7ac to ensure precise transcription initiation dynamics and 

a timely transition to a productive elongation phase at a defined distance to the TSS.  

Preferential Binding of RPRD Proteins to Acetylated RPB1   

To identify proteins that interact with Pol II K7ac, we performed stable isotope labeling with amino 

acids in cell culture (SILAC). We overexpressed HA-tagged RPB1 proteins, either wild type or 

8KR mutant, in HEK293T cells. The proteins also contained a known α-amanitin resistance 

mutation enabling propagation of successfully transfected cells in the presence of α-amanitin, 

which induces the degradation of endogenous Pol II (Bartolomei and Corden, 1987). After culture 

of cells in differential metabolic labeling media, RPB1-containing complexes were purified via their 

HA tag and subjected to mass spectrometric analysis (Figure 5-1A). We found all members of 

the RPRD family preferentially bound to wildtype RBP1, including RPRD1A, RPRD1B, RPRD2 

along with several of their interacting partners such as RPAP2, RPAP3, and RUVB1, which were 

previously identified by mass spectrometry (Ni et al., 2011; Patidar et al., 2016) (Figure 5-1B).  
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Figure 5-1: RPRD proteins interact with RPB1 in an acetylation-dependent manner. A. 
SILAC based mass spectrometry screen was used to identify factors that bind preferentially to 
WT Pol II compared to the 8KR mutant. B. Components of the RPRD1B/RPRD1A complex that 
were identified as WT interactors. C. Reciprocal IPs using antibodies against RPRD1B or 
hemagglutinin (HA) from WT and 8KR cells. D. Densitometry using ImageJ of n=4 independent 
RPRD1B western blots after HA- immunoprecipitation. E. NIH3T3 cells were treated with KDAC 
inhibitors (30nM Panobinostat and 5uM Nicotinamide) for 2 hours. IP from 500ug of nucleoplasm 
pre-cleared with IgG followed by western blotting with the indicated antibodies. Pol II (Total) blots 
were performed with an N-terminal H224 antibody F. Densitometry of RPRD1A and RPRD1B 
western blots produced from three independent Pol II (Total-H224) IP elutions. Error bars are 
SEM, * p < 0.05 for a one-tailed T test. G. ChIP-qPCR of Leo1 at +33 nt downstream of TSS using 
the indicated antibodies from 4 independent chromatin preps, total Pol II ChIP experiments were 
done with the 8WG16 antibody. Values are represented as percent of input with IgG subtracted, 
error bars are SEM. 
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As RPRD1B is the most thoroughly studied of the RPRD family, we confirmed preferential 

binding of RPRD1B to wild type relative to 8KR mutated RPB1 in repeated co-

immunoprecipitation experiments by performing either pull down of endogenous RPRD1B and 

blotting for HA-RPB1 protein or the reverse (Figure 5-1C). The enrichment of endogenous 

RPRD1B proteins after wild type, and not mutant, HA-RPB1 immunoprecipitation was consistent 

among four independent experiments and statistically significant (p = 0.0098) (Figure 5-1D). We 

also tested interaction between endogenous RPB1, RPRD1A and RPRD1B proteins in NIH3T3 

cells treated with lysine deacetylase (KDAC) inhibitors. KDAC inhibitor treatment induced robust 

hyperacetylation of endogenous RPB1 in input material as tested with an antibody specific for 

K7ac (Schroder et al., 2013), but did not change total overall RPB1 protein levels (Figure 5-1E). 

Following pulldown of endogenous Pol II, more RPRD1A and RPRD1B proteins were recovered 

when cells were treated with KDAC inhibitors as compared to vehicle-treated cells, confirming 

positive regulation of the RPB1:RPRD interaction by acetylation (Figure 5-1E and 5-1F).  

Next, we tested in vivo recruitment of RPRD1B to a known target gene, Leo1 (Ni et al., 

2011). Using chromatin immunoprecipitation (ChIP) followed by quantitative PCR, we found 

RPRD1B recruitment to the Leo1 promoter (+33 bp) consistently enhanced in NIH3T3 cells 

treated with KDAC inhibitors as compared to vehicle-treated cells (Figure 5-1G). Similar to what 

we observed by western blotting, K7 residues were hyperacetylated at the Leo1 promoter in 

response to KDAC inhibition in ChIP analysis with the K7ac-specific antibody. Importantly, total 

Pol II occupancy did not increase under KDAC inhibition, confirming specific K7 hyperacetylation 

and enhanced RPRD1B recruitment in response to KDAC inhibition (Figure 5-1G).  

Direct Interaction of K7ac with RPRD CTD-Interacting Domains (CIDs) 

To test whether K7ac modulates CTD binding to the RPRD CID domains, we performed 

isothermal titration calorimetry (ITC) to test the interaction between synthetic CTD peptides and 

purified CID domains from both RPRD1A and RPRD1B proteins. We generated CTD peptides 

spanning roughly 3 heptad repeats (20 amino acids) with repeat 39 at the center. This region was 
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chosen as it is acetylated and phosphorylated in vivo (Voss et al., 2015; Weinert et al., 2018), and 

contains two consecutive K7 residues (Figure 5-2A). Peptides were synthesized in an unmodified 

(UnM), acetylated (K7ac), or phosphorylated (S2p and S5p) state. S2p was included as a positive 

control as it enhances CTD:CID interactions, while S5p served as a negative control (Ni et al., 

2014; Pineda et al., 2015). In addition, we combined S2p and S5p with K7ac to investigate 

potential combined effects. Compared to the unmodified CTD, binding of the RPRD CIDs to CTD 

peptides carrying K7ac had a significantly lower Kd (2.3-fold reduction for RPRD1A and 3.8-fold 

for RPRD1B), indicating enhanced binding. (Figures 5-2B–D). S2p itself had a robust effect in 

enhancing CID binding, as previously observed, but combining K7ac with S2p further decreased 

the Kd by 2.8-fold and 4.2-fold, respectively. S5p-carrying peptides did not interact with CID 

proteins as expected (data not shown). Together these data indicate that K7ac enhances the 

interaction of RPRD proteins with the Pol II CTD with and without additional S2p marks. 
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Figure 5-2: RPRD CID domains recognize acetylated and phosphorylated CTD peptides. 
Isothermal titration calorimetry (ITC) experiments measuring in-vitro binding affinity between 
RPRD1A and RPRD1B CID domains and modified CTD peptides. A. Table of CTD-39 peptides 
with indicated post-translational modifications and predicted RPRD CID binding moieties. B. 
Representative ITC plots of CTD-CID interactions. C Kd values measured by ITC for RPRD1B 
CID and modified CTD-39 binding. D. Kd values measured by ITC for RPRD1A CID and modified 
CTD-39 binding. * p < 0.05, ** p < 0.01 *** p < 0.005 using a one tailed T test. E. Dimer model 
from RPRD1B crystal structure (pdb:4Q94) containing two recognition modules and two peptides 
fragments of the CTD. F. Electrostatic potential surface for RPRD1B CID. G. First CTD peptide 
fragment model from crystal structure superimposed with the electrostatic potential surface 
around the corresponding binding site. H. Second CTD peptide fragment model from crystal 
structure superimposed with the electrostatic potential surface around the corresponding binding 
site. I. Recognition elements around first K7ac and S2p in the CTD peptide fragment. J. 
Recognition elements around second K7ac in the CTD peptide fragment. 
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To better understand the mechanism behind K7ac-dependent stabilization of binding 

between the CID and CTD peptides, we performed molecular modeling using previously 

published RPRD1B CID structures bound to CTD peptides pdb: 4Q94 (dimer) and 4Q96 

(tetramer). RPRD protein dimerization is believed to occur through coiled coil domain interactions 

that are not present in these structures (Mei et al., 2014; Ni et al., 2014), which nonetheless 

dimerize and tetramerize by domain swapping. We proceeded with in silico analyses using both 

structures and searched for consistencies between both. Because phosphorylation and 

acetylation change the net charge of the peptide fragment, we first calculated the electrostatic 

potential of the CID structure to investigate the charge distribution along the binding cleft (Dolinsky 

et al., 2004). We found that the recognition module within the CID, both in the dimeric and 

tetrameric structures, has a positively charged binding pocket (Figures 5-2E–H, Figure 5-S1A–

D), which will enhance the binding of peptides with S2p. Similarly, acetylation, and thus 

neutralization, of the positively charged lysine residues favored interaction with this binding pocket 

by enhancing electrostatic stability.  
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Figure 5-S1: Dimer and tetramer models of RPRD1B:CTD complex share similar features. 
Comparison between dimeric and tetrameric models of RPRD1B:CTD complex. A. Dimer (left) 
and tetramer (right) models from crystal structures. B. Electrostatic potential surface for dimer 
(left) and tetramer (right) models. C. Dimer model CTD peptide fragment superimposed with the 
electrostatic potential surface around the corresponding binding site. D. Tetramer model CTD 
peptide fragment superimposed with the electrostatic potential surface around the corresponding 
binding site. E.  Recognition elements around first K7ac and first S2p in the CTD peptide fragment 
in the tetramer model. F. Recognition elements around second K7ac and second S2p in the CTD 
peptide fragment in the tetramer model.  



170 
 

We also obtained 20 ns molecular dynamics trajectories to refine the models and identify 

residues within the CID that directly bind to S2p and K7ac, and thus contribute to the recognition 

of these post-translational modifications. Through these simulations, we reproduced the 

previously reported coordination between S2p and arginine-106 (R106), and observed that the 

two K7 residues in the acetylated state formed transient interactions with nearby CID residues 

(Figure 5-2I and 5-2J). In particular, the first acetylated K7 residue in the CTD peptide formed 

transient hydrogen bonds with three CID residues (N18, N54 and Y61) in the same vicinity. The 

second acetylated K7 residue interacted with CID residues at the other end of the binding cleft 

(Q24, Q68, N69 and R72) (Figure 5-2I and 5-2J). Similar results were obtained in simulations of 

the tetrameric structure, which also showed coordination between S2p and R106 along with 

similar transient hydrogen-bonding between K7ac and several residues in the CID (N18, Q20, 

E92 and K96) (Figure 5-S1E and 5-S1F). Together, the transient interactions coupled to the 

overall positive electrostatic potential around the recognition module explain the stabilization of 

K7ac-modified CTD peptides over the non-acetylated or unmodified peptides. 

Increased K7ac Correlates with Reduced S5p Downstream of Transcription Start Sites 

RPDR1 proteins are known to interact with RPAP2, the mammalian homolog of yeast Rtr1 

and a known S5 phosphatase (Ni et al., 2011). We tested the influence of K7ac on S5p levels by 

performing ChIP-seq with antibodies specific for K7ac, S5p and total unmodified (8WG16) Pol II 

in chromatin isolated from NIH3T3 cells treated with KDAC inhibitors. Average TSS–anchored 

occupancy profiles were generated for all expressed genes (Ramirez et al., 2016) and normalized 

to genomic background signal (Figure 5-S2A-C). KDAC inhibition increased genome wide Pol II-

K7ac occupancy as expected, but interestingly only from 500 bp downstream of the TSS 

onwards. It decreased K7ac levels proximal to this in an area, where total Pol II occupancy was 

strongly enhanced (Figure 5-3A and 5-3B). In this region, S5p levels were also increased as 

compared to vehicle-treated cells, while beyond the 500 bp mark S5p levels decreased below 
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the level of control cells, mirroring enhanced K7ac (Figure 5-3C). While total Pol II occupancy 

increased immediately downstream of the TSS in response to KDAC inhibition, potentially 

explaining the TSS-proximal S5p enhancement, beyond +500–1000 bp, total Pol II occupancy on 

average remained unchanged, underscoring that the inverse relationship between K7ac and S5p 

at this point was not confounded by changes in total Pol II levels.  

  



172 
 

 

Figure 5-3: An inverse relationship between K7ac and phosphorylation is induced upon 
KDAC inhibition. A-C. TSS profiles generated from ChIP-seq data of expressed genes in 
NIH3T3 cells. Normalized profiles are measured in reads per million and expressed as fold 
change relative to background signal. D. Occupancy profiles of RNA Pol II PTMs measured as 
reads per million on selected RPRD1B occupied genes. S5p is measured using the RNA Pol II 
4H8 antibody. E. Occupancy profiles of RNA Pol II PTMs on control genes. Green arrows indicate 
the direction of transcription relative to the TSS of the depicted gene. Black arrows indicate the 
site of affected PTMs in response to HDACi. 
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Figure 5-S2: An inverse correlation between K7ac and phosphorylation on chromatin is 
induced upon KDAC inhibition. A-C. TSS profiles generated from ChIP-seq data of expressed 
genes in NIH3T3 cells measured in reads-per-million. S5p is measured using the RNA Pol II 4H8 
antibody. 
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A focused analysis of known target genes of RPRD1B such as Leo1 and Cyclin D1 (Lu et 

al., 2012; Ni et al., 2011) showed corresponding profiles with lowered S5p and enhanced K7ac 

levels downstream of the TSS in response to KDAC inhibition (Figure 5-3D). But ~10% of actively 

expressed genes, including Tub1a1 and Mdm2, did not show a downregulation of S5p in response 

to KDAC inhibition despite strong upregulation of K7ac, indicating that these genes are not 

controlled by RPRD proteins but possibly alternative mechanisms (Figure 5-3E). Unfortunately, 

we could not examine the occupancy of RPRD proteins genome-wide as the available antibodies 

did not show a sufficient signal-to-noise ratio in ChIP-seq experiments (data not shown).  

RPRD1B Controls Genes Involved in Multicellularity, Development and Cell Adhesion 

Overexpression of RPRD proteins has been shown to decrease S5p levels at the Leo1 

gene consistent with the model that RPRD proteins recruit the S5 phosphatase RPAP2 (Ni et al., 

2011). We now performed the inverse experiment and knocked down RPRD1B in NIH3T3 cells 

using lentiviral shRNAs. A 50% knockdown efficiency was sufficient to induce global S5 

hyperphosphorylation as observed by western blotting, indicating a critical role of RPRD1B in 

overall S5 dephosphorylation. Surprisingly, we also observed a consistent upregulation of K7ac 

levels in RPRD1B knockdown cells, pointing to the recruitment of a K7 deacetylase by RPRD 

proteins in addition to the S5 phosphatase (Figure 5-4A). No change in total Pol II levels was 

observed.  
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Figure 5-4: RPRD1B knockdown dysregulates genes relating to development and 
multicellularity and disturbs Pol II PTM homeostasis. NIH3T3 cells were treated with shRNAs 
against RPRD1B (sh1B) or a scrambled sequence (shScr) and selected with puromycin for 1 
week. A. Western blotting from whole cell lysates to monitor RPRD1B protein expression upon 
knockdown and the effect on Pol II K7ac and S5p. B. RNA-seq highlighting 271 significantly 
dysregulated genes in red. C. Gene ontology analysis of genes significantly dysregulated in 
response to RPRD1B knockdown. D. DESeq counts per million for selected upregulated genes 
associated with regulation of multicellular organismal process. E DESeq counts per million for 
selected downregulated genes in response to RPRD1B knockdown. * p < 0.05, ** p < 0.01, *** p 
< 0.005 using a one tailed T test.  
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RNA-seq on RPRD1B knockdown cells identified 271 differentially expressed genes as 

compared to control shRNA-treated cells (Figure 5-4B). RPRD1B was among the most 

significantly downregulated genes with an mRNA knockdown efficiency of 41% (p = 0.0019; 

Figure 5-4E), similar to what was observed for protein expression. Gene Ontology analysis on 

dysregulated genes indicated that RPRD1B knockdown induced changes in genes related to 

developmental processes, multicellular organismal development and cell adhesion, consistent 

with previous findings that complete knockout of the factor causes embryonic lethality (Morales 

et al., 2014) (Figure 5-4C). Furthermore, this is consistent with studies indicating K7ac specifically 

evolved in higher eukaryotes, and regulates developmental genes with significant enrichment for 

evolutionary origins in the early history of eukaryotes through early vertebrates (Schroder et al., 

2013; Simonti et al., 2015).  

The majority of dysregulated genes associated with multicellular organismal processes 

was upregulated in response to RPRD1B knockdown (69.7%). Examples include Nov, an 

immediate-early gene important for regulating proliferation and development, the Prolactin 2c2 

gene Prl2c2 involved in embryonal development, the fibroblast growth factor 10 gene Fgf10 

necessary for organogenesis, and the SLIT homolog 2 gene Slit2 involved in neural ECM-

mediated signaling (Figure 5-4D). Examples of downregulated genes include the ECM-

associated sulfatase 1 gene Sulf1 and neural cell adhesion molecule Ncam1 (Figure 5-4E). Tnik, 

an essential activator of the Wnt signaling pathway, was also down-regulated (Figure 5-4E), but 

most other Wnt-regulated genes remained unchanged. Together, these data identify RPRD1B as 

a regulator of genes involved in multicellular organismal development and further support the 

model that RPRD proteins are relevant reader proteins of the K7ac mark in higher eukaryotes.  

RPRD1B Knockdown Perturbs both K7ac and S5p Marks Genome-Wide  

Next, we performed ChIP-seq in RPRD1B knockdown cells using antibodies against K7ac, 

S5p and total Pol II. The most striking finding was the induction of a distinct TSS-proximal increase 

in K7 acetylation with minimal changes to total unmodified (8WG16) Pol II occupancy (Figure 5-
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5A and 5-5B, Figure 5-S3A and 5-S3B). This is consistent with the observation that K7ac was 

induced upon RPRD1B knockdown in western blot experiments and underscores a model where 

RPRD1B recruits a K7 deacetylase that counterbalances K7 acetylation within the first 500–1000 

bp of mRNA production (Figure 5-5A). This peak in K7ac levels was mirrored by a TSS-proximal 

decrease in S5p, possibly through residual RPRD (and RPAP2) proteins remaining in the 

RPRD1B knockdown cells inducing S5 dephosphorylation in response to K7 hyperacetylation 

(Figure 5-5C, Figure 5-S3C). Beyond this TSS-proximal region, S5p levels were elevated relative 

to cells treated with control shRNAs, consistent with the observation that reduced RPRD1B levels 

globally induce S5 hyperphosphorylation due to the lack of S5 phosphatase recruitment.  
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Figure 5-5: Increased S5p and K7ac levels in response to RPRD1B knockdown. TSS profiles 

of expressed genes in NIH3T3 cells. Normalized profiles are measured in reads per million 

normalized to background signal. A-C TSS profiles generated from ChIP-seq data from NIH3T3 

cells expressing either scrambled or RPRD1B targeted shRNAs treated with Vehicle control. D-F 

TSS profiles generated from ChIP-seq data from NIH3T3 cells expressing either scrambled or 

RPRD1B targeted shRNAs treated with KDACi. S5p is measured using the RNA Pol II 4H8 

antibody. Profiles are representative of two independent experiments. 
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Figure 5-S3: RPRD1B knockdown induces hyperacetylation and hyperphosphorylation on 
chromatin near TSSs. NIH3T3 cells were treated with shRNAs targeting a scrambled sequence 
(shSCR) or RPRD1B (shRPRD1B), then with KDACi or a Vehicle control for 2 hours followed by 
ChIP-seq. A-C. TSS profiles generated from ChIP-seq data shown as reads-per-million. 
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When RPRD1B knockdown cells were treated with KDAC inhibitors, the inverse 

relationship between K7ac and S5p observed after either KDAC inhibitor treatment or RPRD1B 

knockdown were no longer detected (Figure 5-5D-F). This indicates that RPRD1B plays a critical 

role in mediating the changes in S5p levels observed after KDAC inhibition. It further supports the 

model that RPRD proteins recruit a KDAC in addition to a phosphatase, considering that 

knockdown of RPRD1B and KDAC inhibition each increased K7 acetylation to the same level, 

and no further increase was observed when both were applied together. Collectively, these results 

underscore the close link between acetylation of K7 residues and dephosphorylation of S5 via 

RPRD proteins at a unique distance from the TSS (+500-1000 bp) and point to the importance of 

an RPRD-associated K7 deacetylase.  

Discussion 

In this study, we report a new molecular function for K7ac in terminating S5p in the 

transition from transcription initiation to elongation. We show that K7ac enhances the recruitment 

of RPRD proteins to the initiated Pol II complex in order to facilitate S5 dephosphorylation; this 

occurs presumably via RPAP2, their interacting S5 phosphatase (Figure 5-6A). Surprisingly, we 

found that lack of RPRD1B protein expression also increased K7ac levels, indicating that in 

addition to binding an S5 phosphatase, RPRD proteins may also recruit a K7 deacetylase. This 

provides a unique autoregulatory mechanism as binding to RPRD proteins to K7ac ultimately 

leads to the removal of the mark. As previous studies have highlighted the importance of S2p in 

enhancing the interaction between the CTD and RPRD CID domains (Ni et al., 2014; Pineda et 

al., 2015), the emergence of S2p downstream of K7ac may serve to maintain RPRD recruitment 

to complete S5 dephosphorylation during the early phase of transcription elongation (Ni et al., 

2014). When levels of K7ac were perturbed –by KDAC inhibitor treatment (Figure 5-6B) or 

RPRD1B knockdown (Figure 5-6C)– recruitment of the S5 phosphatase was either enhanced, 

resulting in increased S5 dephosphorylation and lower S5p levels genome-wide, or recruitment 

was diminished, enhancing S5p levels, respectively. Therefore, these data support a model in 
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which dynamics of K7 acetylation evolved to blunt the peak of S5 phosphorylation at a precise 

distance from the TSS in higher eukaryotes, likely facilitating the transition between transcription 

initiation and productive elongation.  

We previously observed a transient enrichment in the occupancy of K7-acetylated Pol II 

located approximately +500 bp downstream of the TSS when we normalized K7ac peaks to total 

Pol II occupancy on expressed genes (Schroder et al., 2013). This fits well with the self-limiting 

nature of K7ac wherein the modification recruits its own terminating enzyme via the RPRD reader 

proteins. Here we observed characteristic changes in S5p levels at and beyond the +500 bp mark 

that support the model that K7ac and S5p are inversely correlated. The +500 bp mark further 

corresponds well with the proposed hand-off site between S5p and S2p previously determined in 

yeast, underscoring that higher eukaryotes may have evolved K7ac to maintain this transition at 

the same genomic position (Mayer et al., 2010). In our current study, peaks proximal to the +500 

bp mark behaved on average differently than peaks at or beyond the mark. Possible explanations 

are: A) RPRD proteins are recruited specifically to the +500 bp location (at the peak of K7ac) and 

exert their effect on S5p in this region and beyond; B) the balance between S5 phosphorylation 

and K7 acetylation immediately downstream of the TSS is shifted towards S5p and efficient 

dephosphorylation can only occur after CDK7 levels are additionally lowered beyond the TSS 

(Ebmeier et al., 2017). C) It is the transition of Pol II into elongation and the occurrence of S2p at 

the transition point that allows for efficient RPRD association and efficient S5 dephosphorylation; 

D) the RPRD complex changes before and after the +500 bp mark with the K7 KDAC highly 

enriched closer to the TSS, and less enriched beyond +500 bp. We envision that multiple of the 

mechanisms might be in place to explain the observed changes. Interestingly, similar peak 

enrichments of CTD PTMs as we describe for the sense strand of transcription were observed 

along divergent transcription of the negative strand of DNA, the significance of which remains 

unknown.  
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An important finding of our study is that K7ac enhances binding of the RPRD CIDs to CTD 

peptides. We show that the affinity of the CID:K7ac interaction is ~90 M, which lies in the  range 

of acetyl-lysine interactions with bromodomains, the latter being the “classical” Kac recognition 

domain (Muller et al., 2011). Interestingly, the K7ac:CID interaction accommodates additional 

phosphorylation marks such as S2p. This supports previous findings that the CID domain creates 

a positively charged “channel” in which the CTD peptide is dynamically situated depending on its 

PTM status (Jasnovidova et al., 2017a; Ni et al., 2014). K7ac recognition occurs by electrostatic 

and hydrogen bonding with various residues of the CID. Principles of specific recognition of 

phosphorylated amino acids have been well-studied and are consistent with the features we have 

highlighted for S2p. Lysine acetylation has received less study; our results suggest that side 

chains containing amide groups (N and Q) play an important role, forming transient hydrogen 

bonds with the amide group of acetylated K7 residues. It is especially interesting that N18, N69 

and Q24, which form hydrogen bonds with the lysine amide in the dimer or tetramer models are 

conserved across RPRD proteins in mammals (Ni et al., 2014). This flexible mechanism of 

recognition could allow for the RPRD complex to be first recruited to the distal region of the CTD 

via K7ac alone. Furthermore, this could allow for the interaction between CID domains to 

accommodate for serine-to-asparagine substitutions at position 7, also in the distal region of the 

CTD. The complex can then migrate along the consensus repeats within the CTD using S2p and 

possibly also S7p to remove S5p along the full length of the vertebrate CTD (Figure 5-6A) (Egloff 

et al., 2012; Schuller et al., 2016).  
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Figure 5-6: RPRD proteins are recruited to the RPB1 CTD via acetylation and 
phosphorylation to antagonize S5-phosphorylation. A. Model of RPRD complex reader and 
effector functions along modified residues within the CTD. 1B- RPRD1B 1A- RPRD1A, KDAC is 
a yet to be identified K7 deacetylase. B. KDAC inhibition induces K7 hyperacetylation and 
downregulation of S5-phosphorylation. C. Knockdown of RPRD1B perturbs the recruitment of the 
complex to result in both S5 hyperphosphorylation and K7 hyperacetylation. See text for details. 
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Serine-7 phosphorylation is the third-best studied PTM of the CTD. In mammals, S7p is 

enriched with S5p near promoters, but is uniquely stable in gene bodies (Descostes et al., 2014). 

Similar to K7ac, S7-phosphorylated residues are considered docking stations for RPAP2 

regulating S5-dephosphorylation and expression of snRNA genes (Egloff et al., 2012).  

Interestingly, S7p also enhances CTD:CID interaction consistent with the enhancement of 

electrostatic stability we describe here for K7ac (Egloff et al., 2012; Ni et al., 2014). Recent studies 

have succeeded in examining individual repeat PTMs in vivo and showed that CTD heptads are 

generally phosphorylated at one position per repeat (Schuller et al., 2016; Suh et al., 2016). This 

supports a model of dynamic movement along the 52 mammalian CTD repeats proposed here 

where the RPRD complex may start at distal non-consensus regions and work its way up to more 

proximal consensus regions to reach all S5p marks and allow maximal placement of S2p. An 

interesting, yet unexplored connection may also exist between other minor phosphorylation sites 

(Y1 and T4) and K7 acetylation. Y1p in yeast is known to dissociate Rtt103 during the initiation 

and elongation phases of transcription to prevent premature termination of transcription, and 

could interfere with K7ac recognition (Mayer et al., 2012). In contrast, T4p was shown to enhance 

the interaction with the Rtt103 CID domain, and could be conserved in mammals (Jasnovidova et 

al., 2017b). As Rtt103 and RPRD proteins are closely related, Y1p and T4p may also regulate the 

recruitment of RPRD proteins in addition to K7ac, S2p and S7p.   

While RPAP2 is a known S5 phosphatase, the nature of the RPRD-associated 

deacetylase remains unknown. Previous studies have identified HDAC2 as a RPRD1A-

associated deacetylase, thus being a possible candidate for a K7 deacetylase (Liu et al., 2015). 

This is consistent with our previous observations that class I/II KDACs are involved in 

deacetylation of the hypophosphorylated form of Pol II during or after transcription initiation 

(Schroder et al., 2013). Notably, HDAC2, unlike HDAC1 and 3, is found at promoter-proximal 

regions in addition to gene bodies, underscoring its potential as the RPRD-associated K7ac 

deacetylase (Wang et al., 2009). Interestingly, RPRD1B has previously been shown to interact 
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with p300/CBP to regulate gene expression in cancer (Zhang et al., 2018). This points to a fine-

tuned balance between RPRD proteins in the recruitment of K7 acetyltransferases and 

deacetylases. Future studies will investigate whether differences exist between RPRD1A and 

RPRD1B proteins with respect to controlling K7 acetylation.  

Gene expression changes as a consequence of RPRD1B knockdown were moderate, but 

the cellular pathways found to be altered in response to RPRD1B knockdown showed a relevant 

list of genes. These were mainly involved in development of multicellular organisms and were 

strikingly similar to differentially regulated pathways found in wildtype and 8KR- Pol II expressing 

cells (Simonti et al., 2015). We have previously shown that K7ac evolution in higher eukaryotes 

presented a unique mode by which transcription elongation is regulated in mammals. We propose 

that this regulation of K7ac is linked to the now reported recruitment of RPRD proteins and the 

corresponding S5 dephosphorylation, a step tightly controlled in its dynamics in yeast. The 

question of why the need arose to control S5p with K7ac in multicellular organisms at a defined 

distance from the TSS remains unanswered but will be further examined. At this point, our data 

underscore a key role of controlled CTD PTM regulation at the transition from initiation to 

elongation important for the expression of developmentally relevant genes; they further 

demonstrate that this control depends on precise interactions with the RPRD complex, which 

performs reader and effector functions at a well-defined time during the transcription cycle.  

Experimental Procedures 

Antibodies and Reagents 

Dynabeads Protein G (ThermoFisher, 10003D), Dynabeads Protein A (ThermoFisher, 10001D), 

Bovine Calf Serum (Gemini, 100-506), 293T and NIH3T3 cells are from ATCC. Panobinostat 

(CAS 404950-80-7) and α-amanitin (CAS 23109-05-9) were purchased from Santa Cruz 

Biotechnology. All other chemicals and reagents were purchased from Sigma. 

Cell Fractionation and Immunoprecipitation 
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Cell fractionation was performed using the Dignam & Roeder method with minor modifications. 

293T or NIH3T3 cells were pelleted and washed in cold DPBS. Pellets were resuspended in 5 

volumes of DR Buffer A (10mM HEPES-KOH pH 7.9, 10mM KCl, 1.5 mM MgCl2, 0.5mM DTT, 1x 

HALT, 30nM Panobinostat and 5μM Nicotinamide). Cells were Dounce homogenized with 10 

strokes using a tight pestle (Wheaton) and cytoplasmic lysates were set aside or decanted. 

Nuclear pellets were resuspended in DR Buffer C (20mM HEPES, 0.42M NaCl, 1.5mM MgCl2, 

0.2mM EDTA, 25% glycerol, 0.5mM DTT, 1x HALT, 30nM Panobinostat and 5μM Nicotinamide), 

sonicated using the Sonic Dismembrator 500 (ThermoFisher Scientific). 500μg of nucleoplasm 

was precleared with normal IgG (Santa Cruz) conjugated to the appropriate beads and 

immunoprecipitation was performed using anti HA- agarose beads (Sigma, A2095) or antibodies 

bound to Dynabeads. Immunoprecipitates were eluted either by boiling in 2x Laemmli buffer 

(agarose) or incubating in Elution Buffer (50mM NaHCO3, 1% SDS) and adding 2x Laemmli buffer 

(Dynabeads).  

Lentiviral transduction of RPRD1B shRNAs 

VSV-G pseudotyped lentiviruses were produced to contain a Puromycin resistance gene and a 

shRNA against RPRD1B (NM_027434.2-1003s21c1) or a scrambled control. Cells were 

transduced with 0.5mL unconcentrated virus and selected using 2μg/mL Puromycin for 1 week 

prior to experimentation. 

Chromatin Immunoprecipitation in NIH3T3 cells 

NIH3T3 cells were grown under normal conditions (10% BCS, 1x Penicillin and Streptomycin, 

2mM L-Glutamine). We treated 6x107 cells with a lysine deacetylase inhibitor cocktail (30nM 

panobinostat, 5uM Nicotinamide) or a vehicle control (DMSO, water) for 2h. Cells were fixed with 

1% formaldehyde for 15 minutes, thoroughly washed with DPBS, and resuspended in ChIP lysis 

buffer #1 (10mM Tris pH 7.4, 10mM NaCl, 0.5% NP-40, 1x HALT, 30nM Panobinostat and 5μM 

Nicotinamide). After sitting on ice for 10 minutes, cells were briefly vortexed and nuclei were 

pelleted. Nuclei were treated with MNase (NEB, M0247S) for 25 minutes at RT, pelleted and 
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resuspended on ice in ChIP lysis buffer #2 (50mM Tris HCl pH 8.0, 10mM EDTA, 0.5% SDS, 1x 

HALT, 30nM Panobinostat and 5μM Nicotinamide). Chromatin was further sheared by sonication 

using the Sonic Dismembrator 500 (ThermoFisher Scientific) and preserved at -80oC until 

immunoprecipitation. 20-40ug chromatin was used for each IP with the antibody concentrations 

listed in Table 5-S2. IPs were diluted into a final volume of 800uL with ChIP Dilution buffer 

(167mM NaCl, 16.7 mM Tris HCl pH 8.0, 1.2 mM EDTA, 1.1% Triton X-100, 0.01% SDS) and left 

at 4oC overnight. IPs were washed then eluted in ChIP elution buffer (50mM NaHCO3, 1% SDS) 

and decrosslinked at 65oC for 16hrs. Samples were treated with RNAse A (Thermofisher, 

EN0531) for 20 minutes and DNA were purified using the QIAquick PCR purification kit (Qiagen, 

28106). Primer sequences are available upon request. For samples that were deep-sequenced, 

2ng of immunoprecipitated DNA from each reaction was used to create libraries using the Ovation 

Ultra-Low Library prep kit (Nugen, 0344-32) following manufacturer recommendations and 

libraries were deep sequenced on the HIseq 4000 or NextSeq 500 using single-end 50bp or 

single-end 75bp sequencing, respectively.  

RNA sequencing 

RNA was prepared from 1x106 NIH3T3 cells using the QIAgen RNeasy Plus Kit. Libraries were 

prepared with the Ovation Ultralow System V2 kit pn: 7102-32 / 0344-32 and libraries were deep 

sequenced on NextSeq 500 using paired-end 75pb sequencing. RNA seq analysis was done 

using the Illumina RNAexpress application v 1.1.0.  

ChIP-seq data analysis 

Barcodes were removed and sequences were trimmed using Skewer (Jiang et al., 2014). For 

each ChIP 50-60 million reads were aligned to the Mus musculus mm10 genome assembly using 

Bowtie with the –a -l 55 -n 2 -m 1 parameter (Langmead et al., 2009). Peaks were called and 

sequence pileups normalized to reads per million using MACS2 -B -SPMR -g mm -no-model -

slocal 1000 (Zhang et al., 2008).  TSS profiling was done using -plotProfile on matrices generated 

with 10bp bins using the computeMatrix function found in the Deeptools 2.2.3 build (Ramirez et 
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al., 2016). Normalized profiles are calculated as fold change in signal relative to the observed 

background signal which we define as the signal from the 10bp bin at -3000 relative to TSS. 

Reproducibility of data was assessed by principal component analysis (Ramirez et al., 2016).  

Stable Isotope Labeling of Amino Acids in Culture (SILAC) of WT and 8KR Polymerases 

SILAC (Stable isotope-labeled amino acid) labeling was performed according to the manual of 

SILAC Protein Quantitation Kit (LysC) –DMEM (Thermo Scientific cat. no. A33969). In brief, 293T 

cells stably expressing Pol-II-WT-HA and Pol-II-8KR-HA were grown in the light medium (L-

Lysine-2HCl) or heavy medium (13C6L-Lysine-2HCl), respectively. After growing 7 doubling time 

in the respective medium, incorporation efficiency of heavy L-lysine in 293T-Pol-II-8KR-HA cells 

was determined and the efficiency was more than 99%. To immunoprecipitate the HA proteins, 5 

mg of total cell lysate from Pol-II-WT-HA and 5mg of total lysate from Pol-II-8KR-HA cells in p300 

lysis buffer were mixed together (total 500 uL), and 100 uL of HA agarose (Roche) were added. 

After overnight immunoprecipitation at 4C, the HA-agarose was washed 4 times with 1 mL of cold 

p300 lysis buffer to remove non-specific binding proteins. The bound proteins were eluted twice 

by 100 ul of 0.1 M Glycine, pH 2.5 after 30 min incubation. Each elution was stored in separate 

tube. 10 uL of 1 M Tris-HCl pH 8.0 was added into each elution to neutralize the pH. The quality 

of the elution was monitored by Protein Silver Staining (Pierce). Two elusions were combined and 

50 uL out of the 200 uL combined elusions were sent to Mass Spectrometry. Two independent 

biological repeats were performed. 

Mass Spectrometry Analysis 

Sample were analyzed on a Thermo Scientific LTQ Orbitrap Elite mass spectrometry system 

equipped with an Easy-nLC 1000 HPLC and autosampler. Samples were injected onto a pre-

column (2cm x 100 um I.D. packed with 5 um C18 particles) in 100% buffer A (0.1% formic acid 

in water) and separated by a 120 minute reverse phase gradient from 5% to 30% buffer B (0.1% 

formic acid in 100% ACN) at a flow rate of 400 nl/min. The mass spectrometer continuously 

collected spectra in a data-dependent manner, acquiring a full scan in the Orbitrap (at 120,000 
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resolution with an automatic gain control target of 1,000,000 and a maximum injection time of 100 

ms) followed by collision-induced dissociation spectra for the 20 most abundant ions in the ion 

trap (with an automatic gain control target of 10,000, a maximum injection time of 10 ms, a 

normalized collision energy of 35.0, activation Q of 0.250, isolation width of 2.0 m/z, and an 

activation time of 10.0). Singly and unassigned charge states were rejected for data-dependent 

selection. Dynamic exclusion was enabled to data-dependent selection of ions with a repeat count 

of 1, a repeat duration of 20.0 s, an exclusion duration of 20.0 s, an exclusion list size of 500, and 

exclusion mass width of + or - 10.00 ppm.  

Raw mass spectrometry data were analyzed using the MaxQuant software package 

(version 1.2.5.8) (Cox and Mann, 2008). Data were matched to the SwissProt human proteins 

(downloaded from UniProt on 2/15/13, 20,259 protein sequence entries). MaxQuant was 

configured to generate and search against a reverse sequence database for false discovery rate 

calculations. Variable modifications were allowed for methionine oxidation and protein N-terminus 

acetylation. A fixed modification was indicated for cysteine carbamidomethylation. Full trypsin 

specificity was required. The first search was performed with a mass accuracy of +/- 20 parts per 

million and the main search was performed with a mass accuracy of +/- 6 parts per million. A 

maximum of 5 modifications were allowed per peptide. A maximum of 2 missed cleavages were 

allowed. The maximum charge allowed was 7+. Individual peptide mass tolerances were allowed. 

For MS/MS matching, a mass tolerance of 0.5 Da was allowed and the top 6 peaks per 100 Da 

were analyzed. MS/MS matching was allowed for higher charge states, water and ammonia loss 

events. The data were filtered to obtain a peptide, protein, and site-level false discovery rate of 

0.01. The minimum peptide length was 7 amino acids. Results were matched between runs with 

a time window of 2 minutes for technical duplicates. 

Isothermal Titration Calorimetry 

RNA Pol II CTD peptides were purchased from Peptide 2.0 (Chantilly, VA). ITC experiments were 

performed as previously described (Ni et al., 2014) 
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Molecular modeling 

Crystallographic structures were used for the dimer (pdb:4Q94) and tetramer (pdb:4Q96) models. 

Electrostatic potential surfaces were calculated using an adaptive Poisson-Boltzmann solver 

(APBS) from the PDB2PQR server using the Amber force field and PROPKA to assign 

protonation states (Dolinsky et al., 2004). Amber’s LEaP program was used with the Amber 

ff14SB force field and the following force field modifications: phosaa10 (phospates), ffptm 

(phosphorylated serines) and ALY.frcmod (acetyllysines). The TIP3P water model was used to 

solvate the system in a cubic periodic box, such that the closest distance between any atom in 

the system and the periodic boundary is 10 Å. Net positive charge in the box was neutralized by 

adding counterions (Cl-) until neutrality. Energy minimization was performed in two steps: using 

harmonic restraints on the protein (10.0 kcal mol-1 Å-2) and an unrestrained minimization. For each 

minimization we ran 1000 steps of steepest descent and 1000 steps of conjugate gradient 

minimization at a constant volume with a non-bonded cutoff of 9 Å.  The equilibration was done 

in three steps. First, the system was heated from 0 to 300 K with a restrained equilibration (10.0 

kcal mol-1 Å-2) for 20 ps at constant volume with a non-bonded cutoff of 9 Å, using the SHAKE 

algorithm to constrain bonds involving hydrogens, and the Andersen thermostat. The second 

round of equilibration was performed lowering the harmonic restraints (1.0 kcal mol-1 Å-2) on the 

system for 20 ps (other parameters identical). The third round was performed for 1 ns at constant 

pressure of 1.0 bar with non-bonded cutoff of 9 Å at 300 K with the Andersen thermostat. 

Simulations were performed without restraints using new velocities with random seeds at constant 

pressure of 1 bar with non-bonded cutoff distance of 9 Å. 20ns simulations were run with 2 fs 

timestep per construct. Coordinates and energy were saved every picosecond (500 steps) (Case 

et al., 2005). Molecular graphics and analyses were performed with the UCSF Chimera package 

(Pettersen et al., 2004). 
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Chapter VI: Outlooks and Conclusions 

The role of post-translational modifications is widely appreciated in cellular biology and 

pharmacology. As technological advances progress, researchers will continue to develop a better 

understanding of the roles protein acetylation and methylation play in mammalian systems. This 

body of work demonstrates that protein acetylation can be found all over mammalian cells. 

Acetylation plays an important role in a number of biological processes by altering the molecular 

function of proteins, signaling pathways and more. Disruption of acetylation can lead to the 

development of cancer, abnormalities in organismal development and genome instability (Ali et 

al., 2018). To me, it seems that the future of this research is going to look at the spaciotemporal 

dynamics of acetylation in response to various stimuli. This will probably be achieved through 

time-lapse mass spectrometry experiments looking at the dynamics and stoichiometry of the 

modification simultaneously on thousands of proteins. In addition, I think it will be really important 

for future investigators to study how the consumption of metabolites influences development and 

signaling outcomes in the context of various protein modifications. This could be achieved through 

large-scale epidemiological and nutritional studies that look at epigenetic changes in response to 

chronic dietary preferences or deficiencies. It might help us understand the onset of chronic 

diseases that plague long-lived and aging populations.  

Viruses such as HIV-1 harness cellular pathways such as that of acetylation or 

metheylation and manipulates them to enable infection. (Boehm and Ott, 2017; Jeng et al., 2015). 

Unfortunately, these pathways also seem to be highly interconnected with signaling from other 

modifications and sometimes work antagonistically in the same signaling cascade. As a 

consequence, most studies or diseases targeted for epigenetic regulation will probably require a 

multi-drug treatment strategy with a specific time-course. From the perspective of HIV-1 Tat 

regulation, it would be interesting to see how Tat PTMs change depending on the cellular 

compartment in which it is found or stage of infection. This could shed light on the efficacy of 
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strategies for “Shock and Kill” or “Block and Lock” by producing a better sense of how 

modifications change with respect to space and time during infection. However, I think it might be 

a bit unrealistic to think that this will be a sustainable means of curing the disease. Between the 

cost of drug-development and issues around access and pricing of drugs, there will probably need 

to be a fundamental shift in the American healthcare system or most people won’t even be able 

to afford the treatments even if they work.  

Probably the most effective strategy for minimizing the harm that is caused by HIV-1 

infection will be through targeted public health approaches, especially in rural parts of Africa and 

South-East Asia where the virus spread remains rampant. It is also notable that in order to 

address HIV-1 cure, ensuring spread prevention and therapeutics equitably reach those that are 

infected (not just those who have the money for treatment) is paramount. Communities of color 

have lower rates of trust in medicine and science because of historic mistreatment of these 

communities, therefore more can be done in these populations to minimize spread, morbidity and 

mortality caused by this disease. Before we start pumping patients full of more drugs with minimal 

efficacy and significant off-target effects prioritizing alternative options may be important.  

RNA Polymerase II CTD acetylation, if it turns out to be a relevant modification, will change 

the paradigm for understanding mammalian transcription. It is clear that both placement and the 

removal of K7ac is probably necessary for appropriate transcription elongation (Ali, 2018; 

Schroder et al., 2013). There is a great deal to study in the context of this particular modification. 

Studies investigating the regulation of CTD acetylation in response to stimulation in primary cells 

will help us get a better understanding of the importance of these modifications beyond the work 

of cell lines. Investigating the proteins that recognize the modification similar to RPRD proteins 

will be important for understanding its role in transcription. It will also be important to define the 

KDAC that removes the modifications. Our preliminary evidence suggests that Class I and Class 

III KDACs may play roles in influencing CTD acetylation. It may also be important to investigate 
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the role of each individual lysine residue for the CTD, especially those that have been identified 

using mass spectrometric approaches (Voss et al., 2015). This can be achieved with point 

mutational studies of individual CTD lysine residues or with monoclonal antibodies trained to 

specific residue clusters.  

Considering that CTD acetylation is implicated in promoter-proximal pausing and early 

elongation. It is important to study this modification in the context of specific mammalian cellular 

stimuli. Some preliminary evidence has shown that CTD acetylation is enhanced in primary bone-

marrow derived macrophages in a time-dependent manner after activation using LPS or INFγ. 

Promoter-proximal pausing is a critical step in regulating gene expression. Many genes during 

development are paused and activated through specific stimuli. CTD acetylation should be 

assessed in primary cell models, as it is likely that acetylation levels are artificially dysregulated 

in cell-line systems and probably has a more dynamic range in cells that are better 

transcriptionally regulated. As this K7ac antibody is quite robust for both ChIP and western 

blotting. It may be useful to make the antibody commercially available and optimized so that it can 

be used in other important studies. With many developmental avenues to pursue this type of work 

needs more than just one person. 

Overall, it goes without question that protein post-translational modifications play an 

extremely important role in regulating transcription activation and cellular signaling. However 

there is a lot to learn about how metabolism and metabolites influence these processes. Many in 

the field of aging are beginning to see how important specific nutrients and metabolites are in 

regulating acetylation and methylation. However, how the dysregulation of these systems leads 

to cancer, auto-immunity, and immune disruption needs to be better understood. I have always 

been one to advocate for preventative medicine over reactive medicine. I was taught as a kid that 

you are what you eat. Epidemiologists are telling us that if you eat and smoke crap, you get sick. 

There is an epigenetic basis to these facts, and more needs to be done to study this. 
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