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Abstract

Genetic simulation programs are used to model data under specified assumptions to facilitate the 

understanding and study of complex genetic systems. Standardized data sets generated using 

genetic simulation are essential for the development and application of novel analytical tools in 

genetic epidemiology studies. With continuing advances in high-throughput genomic technologies 

and generation and analysis of larger, more complex data sets, there is a need for updating current 

approaches in genetic simulation modeling. To provide a forum to address current and emerging 

challenges in this area, the National Cancer Institute (NCI) sponsored a workshop, entitled 

“Genetic Simulation Tools for Post-Genome Wide Association Studies of Complex Diseases” at 

the National Institutes of Health (NIH) in Bethesda, Maryland on March 11-12, 2014. The goals of 

the workshop were to: (i) identify opportunities, challenges and resource needs for the 

development and application of genetic simulation models; (ii) improve the integration of tools for 

modeling and analysis of simulated data; and (iii) foster collaborations to facilitate development 

and applications of genetic simulation. During the course of the meeting the group identified 

challenges and opportunities for the science of simulation, software and methods development, 

and collaboration. This paper summarizes key discussions at the meeting, and highlights important 

challenges and opportunities to advance the field of genetic simulation.

Keywords

genetic simulation; rare variants; next generation sequencing; complex phenotypes; computational 
resources

Introduction

Genetic simulation, computer modeling of genetic data under specified assumptions, had 

been widely used to study the impact of historical demographic and genetic factors on the 

genetic composition of present human populations; to develop and validate statistical 

methods to detect susceptibility genes for human genetic diseases; and to determine the most 

powerful study designs and statistical tests for identifying putative causal variants for traits 

and diseases (for review [Liu, et al. 2008; Ritchie and Bush 2010]). Simulation is important 

to allow for the evaluation of methods and investigation of models in a controlled, in silico 

experiment where the researcher can directly vary conditions, an element that is otherwise 

void in human population based studies of genetics.

The landscape of epidemiology, and genetic epidemiology specifically, is being transformed 

by the availability of affordable high throughput sequencing and development of other 

“omic” technologies [Lam, et al. 2013]. These technologies create an opportunity to explore 
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more fully the genome and investigate novel hypotheses about contributors to complex 

diseases. Moreover, these technologies result in an explosion of data [Grossman and White 

2012]. The current bottleneck in research is no longer the generation of large scale genetic 

data, but the availability of computational tools to effectively analyze the data [Green and 

Guyer 2011] as well as the means to compare and contrast new tools. With this diversity of 

new, more complex data types and larger datasets, come new challenges identifying the 

ideal analytical methods to study these hypotheses. Genetic simulations play a critical role in 

developing these methods.

Simulated datasets provide a powerful resource for researchers, but challenges remain in 

advancing the field to meet the needs of an ever expanding array of new technology and 

data. Genomic data types vary in structure and type, e.g. haploid and diploid sequences, sex 

chromosomes, mitochondrial DNA, single nucleotide polymorphisms (SNPs), microsatellite 

markers, insertions, deletions, inversions, large indels, structural variations, and copy 

number variations in DNA and RNA sequence variation or variation in protein sequence. 

Simulated traits and/or phenotypes include, but are not limited to, disease status, and 

quantitative traits. Along with genomic data and phenotypic outcomes, simulation models 

may include environmental factors or exposures. To assist users and developers in 

comparing different simulators and selecting the one which is most appropriate for the 

scientific question being asked, the NCI created the Genetic Simulation Resources (GSR) 

website [Peng, et al. 2013], a catalogue of genetic simulation programs where programs are 

described using a series of standardized attributes.

One approach for advancing the science of simulation in a systematic manner is to establish 

forums for collaboration among simulation modelers [Mechanic, et al. 2012]. To provide 

one such forum, the National Cancer Institute (NCI) sponsored a workshop, entitled 

“Genetic Simulation Tools for Post-Genome Wide Association Studies of Complex 

Diseases” in Bethesda, Maryland on March 11-12, 2014. The aim of the meeting was to 

bring a broad spectrum of population geneticists, genetic epidemiologists, and 

computational scientists together to evaluate and advance the use of simulation models for 

genomic studies in epidemiologic analysis studies of complex diseases. Specifically, the 

goals of the workshop were: (i) identify opportunities, challenges and resource needs for the 

development and application of genetics simulation models; (ii) improve the integration of 

tools for simulation models and analysis of simulated data; (iii) foster collaborations to 

facilitate development and applications of genetic simulations. During the meeting, the 

group discussed challenges and opportunities in the science of simulation and development 

of software and methods for genetic simulation. In addition, the group highlighted 

opportunities to foster collaboration to facilitate addressing challenges for the scientific 

discipline and development of methods and software. This paper summarizes the key 

discussions at the meeting and opportunities to advance the field (Table I).

The Science of Genetic Simulation

State of the Science

Genetic simulation is a useful tool for improving our understanding of the genetic basis of 

cancer and other complex diseases [Hoban, et al. 2011; Ritchie and Bush 2010]. In contrast 
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to experimental data, where the “truth” is unknown, simulated data sets are created with 

defined attributes. These in silico data sets generate data under specific assumptions, and can 

be used to validate statistical methods and compare the power of different methods. 

Simulations can also be used to evaluate conditions, e.g. evolutionary history, that could 

have given rise to current observations in genetic data. By performing simulations under 

different conditions, inference can be drawn based on parameters and assumptions for 

simulations that best matches the empirical data. In addition, simulations may be used to 

examine how modifications to a system change the attributes of the datasets, looking both 

forward and backwards over time. Finally, simulations are useful in situations where data 

are unavailable, or too expensive to obtain empirically, such as genotypes in large pedigrees 

or studies of rare diseases. Given the broad range of applications, the complexity of the 

models and the breadth of scientific knowledge needed, genetic simulation should not be 

viewed as simply a useful tool in genetic studies, but should also be viewed as a developing 

scientific discipline of its own. Like any scientific discipline, it needs to progress 

systematically, learning from mistakes and setting standards for good practices. For 

example, the field of mathematical and simulation models that facilitate estimation of health 

care decisions has recently published its second report of good modeling research practices 

[Caro, et al. 2012].

To generate simulated genetic variation in humans, several approaches are used, including: 

(1) backwards (coalescent) approaches, where the ancestral conditions are modeled from the 

observed present conditions; (2) forward time simulations, where initial conditions are 

specified and simulation proceeds forward in time allowing for population pressures; (3) 

sideways simulation, which uses existing data and resamples it; (4) theoretical simulation, 

which simulates genotypes and phenotypes from theoretical distribution; (5) gene dropping, 

which passes ancestral genotypes along a fixed pedigree; (6) phylogenetic simulation, which 

evolves one or more genomic sequences along a fixed or dynamically generated 

phylogenetic tree. In a study examining the number of publications, or applications, which 

cited simulation programs in the GSR catalogue, backward and forward methods appeared 

to be the most commonly used simulations, representing about 57% and 15% of 

applications. Sideways, theoretical, and gene dropping methods excel in certain application 

areas and were also frequently used for simple home-made simulations. Phylogenetic 

simulation was utilized less frequently for genetic epidemiologic studies [Peng, et al. 2014]. 

Each simulation method has pros and cons, therefore it is important to consider which 

method is most appropriate for the scientific question being asked and the type of data 

structures being simulated [Hoban, et al. 2011; Liu, et al. 2008; Ritchie and Bush 2010].

Knowledge Gaps and Opportunities

Population-level simulations of cancer phenotypes have been used to study characteristics of 

interventions, such as tobacco control policies, and screening tests. For example, the Cancer 

Intervention and Surveillance Modeling Network (CISNET), uses micro-simulations and 

comparative modeling to improve understanding of cancer control interventions in 

prevention, screening and treatment (http://cisnet.cancer.gov/). However, to date the 

incorporation of genetics into CISNET models has been limited and there are relatively few 

applications that fully integrate detailed phenotype simulation with genetic data. In part, this 
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is because the joint simulation of genotypes and phenotypes can be very complicated, 

particularly when considering the genetic architecture of complex diseases. One example of 

joint simulation of genotypes and phenotypes is the dataset produced for Genetic Analysis 

Workshop 16 (GAW16) meeting [Kraja, et al. 2009]. For GAW 16, empirical patterns of 

SNP data from the Framingham Heart Study were used for simulations that jointly modeled 

SNPs, longitudinal cardiovascular phenotypes and environmental factors including diet, 

smoking and medication use. In another study, various genetic architectures were simulated 

under multiple disease models, or different phenotypes, for a complex disease [Agarwala, et 

al. 2013]. Another example of joint genotype-phenotype simulation used a model of 

quantitative traits subject to natural selection to explore potential contribution of rare 

variation to phenotypes [Thornton, et al. 2013]. Importantly, the nature of complex traits 

requires the development of simulation models capable of incorporating the biological 

heterogeneity of phenotypes, including longitudinal outcomes, time-dependent variables, 

environmentally modified traits and endophenotypes (Table I, 1.1).

In addition to improved joint modeling of genotype and phenotype, it is also important to 

consider how to best incorporate next generation sequencing technology and other “-omics” 

into models and genetic simulations [Mechanic, et al. 2012]. We need to incorporate 

realistic probability models of human disease into large-scale genomic data, expanding the 

scope of variation to chromosome wide and genome-wide simulations. We cannot assume 

that simulations of small numbers of genomic variants (i.e. range of 20 SNPs) [Ritchie and 

Bush 2010] will apply in these large-scale settings (i.e. range of 500,000 SNPs, or over 

2,000,000 rare variants). Such an interpretation ignores the possibility that the type I error 

rate and power may change as the number of polymorphisms and samples increase and the 

computational burden of performing the method on a much larger data set. Most of our 

discoveries in genetic epidemiology, including GWAS findings for cancer [Hindorff, et al. 

2011], follow standard genetic models under dominant, recessive and additive effects. 

However, the true genetic models underlying these traits likely involve epistatic effects, 

including gene-gene and gene-environment interactions, pairwise and higher order 

interactions and other complexities. For example, the GAMETES program was developed to 

simulate epistatic genetic models [Urbanowicz, et al. 2012].

In developing complex genetic models, it is important to consider the population genetic 

forces that have shaped modern human populations [Tennessen, et al. 2012]. Demography 

and natural selection have both had dramatic impacts on the patterns of genetic diversity, 

and on the frequency and spectrum of functional variants [Lohmueller 2013; Maher, et al. 

2012]. For example, rare variants show different patterns and associations, compared to 

more common variants [Coventry, et al. 2010]. This will impact both the analysis methods 

[Zuk, et al. 2014], but also the simulation methods needed for studies of rare variation and 

other genetic variation (Table I, 1.2). Moreover, as we begin to model new technologies, we 

need to consider their error distributions. For example, with next generation sequencing, a 

realistic simulator should mimic how the data is generated, including library preparation, 

alignment and variant calling. ASAP is a program that incorporates these variables 

[Torstenson, et al. 2013]. Much remains to be learned about the characteristics of error 

distributions at each of these stages; simulations could help us understand how error rates 

from sequencing will impact genetic epidemiology studies (Table I; 1.3).
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Much emphasis in genetic simulation research has been on germline SNPs, but other types 

of genetic variation are implicated in complex diseases. While simple models for small 

insertions and deletions can be simulated jointly with SNPs [Hernandez 2008] other types of 

structural variants (SVs) are increasingly being shown to impact disease risk. SVs arise 

under different mechanisms [Xing, et al. 2009], and multiple theories have been proposed to 

explain the complex genomic rearrangements observed in cancer, including chromothripsis 

[Stephens, et al. 2011] and breakage-fusion-bridge [Zakov, et al. 2013]. In order to 

understand the mechanistic basis of SVs, as well as the relationship between SVs and 

disease, we need to simulate the frequency, size and underlying causes for SVs. We also 

need to simulate related genetic factors, such as fragile regions, 3-D chromosome 

conformation and mapping artifacts, which add complexity to studies of SVs and SV disease 

associations. In addition to germline DNA variation, to better elucidate the underlying 

biological mechanisms of complex diseases and leverage improved molecular phenotyping 

approaches, simulation tools will be needed to inform analysis and interpretation of these 

other molecular data types. Simulations should be expanded to more complex models 

beyond DNA variation, including transcription factor networks, epigenetic and epigenomic 

factors, gene-expression, pathways and protein sequences (Table I, 1.4).

Many of these knowledge gaps contribute to the use of overly simplified or unrealistic 

simulation models. As noted above, it is important to consider higher order epistatic 

relationships and population genetic factors (Table I; 1.2, 1.5). BioSim is an example of a 

more complex simulator that incorporates underlying biological, pathologic and 

pharmacological processes (Moore, J.M. personal communication, 2014). At a biological 

level, realistic models can include a description of a genotype-phenotype map wrapped in a 

population genetic context. For example, nonsynonymous SNPs can be described by their 

effects on protein stability and protein-protein interaction using expectations from physical 

chemistry coupled to population genetic descriptions of fixation probabilities (for example 

[Grahnen and Liberles 2012; Liberles, et al. 2012]). Another example is using systems 

biochemistry to generate explicit definitions of phenotype that may ultimately relate to both 

human and infectious disease [Savageau and Fasani 2009], moving further from common 

assumptions of the independence of action of individual SNPs.

Despite the need for incorporation of more realism and complexity into simulation models to 

capture underlying biological complexity, if a model is too complicated it may pose issues 

for implementation and interpretation. It is important to ensure that increased complexity is 

actually moving simulations toward the true underlying biology, rather than adding 

unnecessary complexity. One strategy is to consider Approximate Bayesian Computation 

with relevant summary statistics [Beaumont, et al. 2002]. Another concern with the use of 

complex models is identifiability, both in a statistical sense that parameters are identifiable 

and in a biological sense, that inference about biological hypotheses is identifiable [Liberles, 

et al. 2013]. In addition, as we consider large-scale genetic variation, efficiency of the 

simulation becomes more critical. If a model is too complex, it may be computationally 

intensive in terms of time and storage needs. This is a particular challenge for next 

generation sequencing data, which may require simulation and analysis of terabytes of data. 

Data complexity may be reduced by only analyzing regions of interest, or focusing only on 
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parts of the data generation and analysis process. However, this strategy requires a priori 

knowledge regarding the critical regions or processes. A key challenge is identifying which 

aspects of the model are most important to create realistic simulation models for a given 

disease outcome and scientific question. The field will benefit from coordinated efforts to 

address this challenge, rather than rely on overly simplistic models and/or proliferation of 

under-evaluated complex methods.

Meeting attendees identified and discussed these areas of knowledge gaps for genetic 

simulation and suggested specific research priorities. First, the group recognized the 

importance of joint simulation of genotypes and realistically complex phenotypes. Second, it 

was noted that simulation of rare variants is an important area for current study. Given the 

increasing number of genetic epidemiology studies using whole genome and whole exome 

sequencing [Helgason, et al. 2013; Morrison, et al. 2013; Tennessen, et al. 2012], there is an 

opportunity for simulation work in this area to have a large impact on the field. Lastly, the 

group suggested future work in the area of RNA sequencing (RNAseq). Laboratory methods 

for RNAseq are still being developed and thus a better understanding of the underlying 

complexity of RNAseq data is needed before it will be ready for large scale simulations that 

can appropriately evaluate models and new analytic methods.

Software and Methods Development

Current Challenges

Several challenges were discussed related to genetic simulation software and development 

of methods. The issues discussed ranged from end-users selecting or developing the 

appropriate simulator for evaluation of analytical methods and the challenge of comparing 

evaluations when using different simulators, comparability of simulators, to lack of 

consistent documentation of the simulation programs themselves and application of these 

programs by end-users.

There are a large number of genetic simulation programs available for research purposes. 

The GSR catalogue currently describes 93 different programs for genetic simulation, with 13 

additional programs pending entry [Genetic Simulation Resource 2014]. Despite such a 

large number of genetic simulation programs available, many seem to be rarely utilized. An 

evaluation of five recent issues of the journal Genetic Epidemiology, noted that only 8 out of 

36 articles which included simulated data, used existing genetic simulators, or simulators 

already catalogued by GSR [Peng, et al. 2014]. These results may suggest that only a small 

fraction of the scope and diversity of genetic simulations are covered by existing simulators. 

It may also suggest that investigators often create a new simulator, as opposed to using an 

existing tool, resulting in potential replication of effort and redundancy of tools. The 

availability of a large number of programs makes it a challenge for end-users to select the 

appropriate tool for their research.

Several factors are likely contributing to the proliferation of programs. Every simulation 

design may have different requirements. For example, simulators must consider data 

structure (e.g. SNPs, next generation sequencing, RNA sequencing), study design and 

pedigree structure (e.g. case-control, case-only, trios, extended families), and population 
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characteristics (e.g. homogenous, admixed, non-random mating, different selection 

pressures). Therefore, several different programs may be required to address multiple 

scientific needs. Moreover, when researchers develop their own programs, it is easier to 

control all aspects of the simulation and develop a simulator which precisely addresses 

research requirements. With such a large number of distinct simulators, results obtained 

using these different simulators are difficult to compare. However, it is also possible that 

existing simulation programs could be used more broadly.

Another factor contributing to the large number of simulators is that many genetic 

simulation programs, including those catalogued within GSR, are no longer actively 

maintained. The field of genetic epidemiology has evolved rapidly over the past several 

years with a focus shifting from linkage studies, to candidate gene association studies, to 

genome wide association studies (GWAS) and now using next generation sequencing 

technologies in families and population based studies [Mechanic, et al. 2012]. The shift in 

research focus results in tools that are outdated or no longer of interest to the investigator or 

research community. Another reason for the lack of maintenance is that a software package 

may be replaced by better alternatives, including improved design or implementation. In 

addition, authors of software packages may have graduated or left the academic position 

where they created the package. Furthermore, maintenance of simulation programs is time 

consuming and difficult to have supported through traditional research grant funding. It is 

often considered easier to obtain funding for creation of a simulator as compared to 

maintaining the program. Therefore, many researchers may lack the motivation and 

resources to maintain older software packages.

Another challenge in using existing genetic simulation programs is limited documentation 

[Mechanic, et al. 2012] and user support. The documentation of simulation programs often 

uses implicit and domain-specific terms and assumptions, fails to include sufficient 

examples regarding the application of the simulator, and lacks a detailed description of 

simulation methods. Without sufficient documentation, users other than the program creator 

may have difficulty using the programs. This can lead users to develop their own tool, as 

described above. More importantly, lack of transparency about assumptions of simulation 

programs, could lead to inaccurate conclusions when using these programs. There is a need 

in the field to understand the breadth and appropriateness of genetic simulation models, 

specifically describing the limitations of a model (i.e. situations under which a model no 

longer holds, describing the parameter space and assumptions), and improved 

communications regarding these assumptions. Notably, there is a dearth of standards for 

documentation of genetic simulation programs. The GSR catalogue was designed to address 

issues with limited documentation and to improve transparency regarding model 

assumptions by characterizing the simulators according to well-defined features and 

incorporating user comments on software assumptions [Mechanic, et al. 2012; Peng, et al. 

2013]. Nonetheless, more work is needed in this area and opportunities are outlined below.

Genetic simulations are often used to evaluate and compare analytical tools. However, there 

is a danger in creating a simulation specifically to test a new method, as results can be self-

fulfilling prophecies due to assumptions embedded in the simulation [Mechanic, et al. 2012]. 

Moreover, creating a new simulator for the purposes of testing a method or cherry-picking 
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from the large number of different simulators may lead to unfair comparisons of analytical 

methods and potentially results in optimistic interpretations regarding method performance. 

Assessment of analytical methods should be based on assumptions that are aligned with the 

research question of interest; for example, we should not evaluate methods for rare variants 

under simulation assumptions appropriate for common variation. In genetic simulation of 

rare genetic variants, many models assume a large percentage of highly penetrant mutations, 

resulting in optimistic power assumptions. Even when we are using appropriate simulations, 

there is likely somewhere in the parameter space where the method does not work or 

performs poorly. Researchers need to identify and describe those situations where methods 

perform poorly as well as when methods perform best.

Opportunities for Methods and Software Development

Several of the challenges regarding comparability of genetic simulation programs and 

models may be addressed by development of an ontology to describe genetic simulation 

(Table I, 2.1). An ontology is a shared or controlled vocabulary which describes items or 

concepts within a domain, and can represent relationships between terms in the domain 

[Chen, et al. 2013]. Creation and implementation of an ontology in the field of genetic 

simulation could help clarify the assumptions and methodologies incorporated into different 

genetic simulation tools. Moreover, a standardized vocabulary could facilitate comparisons 

between simulation programs, result in improved consistency in descriptions of simulation 

programs, and allow for easier integration of disparate programs. HuPSON [Gundel, et al. 

2013] is an example ontology developed to describe computer simulations in human 

physiology, which may serve as a framework to consider a genetic simulation ontology. 

Development of such an ontology would require collaboration between genetic simulation 

and bioinformatics ontology communities and may foster further interactions between these 

research communities. A workshop focused on developing ontology for genetic simulation 

may facilitate these collaborations.

Another suggestion was to develop guidelines and standards for reporting on genetic 

simulation, including documentation of programs, description of programs in journal 

articles, and reporting by end-users when using simulation programs for applications (Table 

I; 2.2). One strategy is to outline best practices for documentation of simulators and provide 

standard templates for technical documentation, similar to the CISNET model profiles 

[Habbema, et al. 2006]. In addition, funding support for documentation could provide 

motivation for developers to improve documentation. As well as documentation of the 

software itself, guidance for reporting in publications for developers and end users of 

simulation programs was recommended. To ensure sufficient adoption of the guidelines, 

agreement by journal editorial boards is required. An example which may serve as a guide 

are the Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) 

guidelines, where a checklist was created for authors, reviewers, journal editors, and readers 

with a goal of improving reporting in epidemiology studies [Vandenbroucke, et al. 2007]. 

Guidelines for reporting and documentation of genetic simulation may help educate 

reviewers, journal editors, and authors about the necessity of reporting limitations of genetic 

simulation models and results obtained using these tools. Follow up discussions are needed 

to develop the recommended guidelines for genetic simulation reporting. These suggestions 
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could facilitate transparency in model assumptions, assist users in selecting the appropriate 

programs, aid reviewers in evaluating use of genetic simulators, and facilitate replication 

and comparisons by other researchers.

Given the large number and diversity of simulators and quantity of outdated programs, 

appraising the different tools could benefit end-users and foster the science of simulation. 

One suggested approach is to add a GSR-certification feature to the GSR catalogue (Table I, 

2.3). Certification could be based on a defined checklist of features including whether 

programs were open source, had user-friendly implementation (or provided an installer for 

supported platforms), provided adequate documentation, and used standard data input and 

output formats. In addition, older programs which had not been updated could be tagged 

within or even removed from the resource. Simulation programs may also be evaluated 

based on the utilization of these tools or number of downloads. However, these criteria are 

not currently captured within the GSR catalogue. Code repositories, such as SourceForge 

(http://sourceforge.net/) and GitHub (http://github.com/), record numbers of downloads and 

could become sources for examining the utilization of different simulators.

In addition to appraising the different simulation tools, more efforts are needed to support 

the maintenance of simulation programs (Table I, 2.4). Researchers developing these 

programs could explore funding opportunities such as Small Business Innovation Research 

(SBIR) program applications or form collaborations with companies which may have more 

experience than academic researchers disseminating and maintaining software packages. 

Recent NIH initiatives, such as the NIH Big Data to Knowledge (BD2K) and the NCI 

Informatics Technology for Cancer Research (ITCR), emphasize sustainability and 

dissemination of software tools. Opportunities such as these could be explored by genetic 

simulation researchers. Moreover, encouraging software developers to deposit software into 

code repositories could provide options for other developers to support software 

maintenance and enable commenting on the software tools (Table I, 2.5).

It is important to properly recognize the contributions of the researchers who deposit 

software and code. Repositories need to include mechanisms for users to cite any software 

and code that they access, thereby giving appropriate credit to the developers. Furthermore, 

maintaining and updating software packages requires intellectual engagement and time. 

Research faculty, and those in equivalent positions, should be evaluated not only on their 

scientific publication of novel methods, but also on their depositing, updating and 

maintaining software packages. Academic evaluation of software developers will be 

facilitated by citation mechanisms that help demonstrate the usefulness of their software to 

the larger community.

Beyond documentation and maintenance, simulation developers should consider the 

requirements of end-users (Table I, 2.6). Many tools catalogued in GSR are primarily 

command line interfaces and challenging for non-programmers to implement. One strategy 

to engage end-users is to incorporate a graphical user interface (GUI). While GUIs are 

potentially useful for simpler genetic simulations, and can make analysis easier for less 

statistically sophisticated end-users, GUIs may not be feasible for more complicated 

simulators. Additional concerns with GUI implementations are that these could result in 
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careless use, without appropriate documentation of steps implemented by end-users. They 

also do not work for large-scale or batch analysis, and inhibit utilization of computer clusters 

required for advanced simulators. A common strategy to address this problem is to provide a 

command line interface in conjunction with a GUI that both generates and executes the 

command line code, allowing for advanced applications and facilitating reproducibility by 

all users.

Since the large number of different simulators makes it difficult to compare tools, another 

suggestion was for the genetic simulation community to recommend a core set of genetic 

simulation programs for the most common research questions (Table I, 2.7). The challenge 

with this strategy is that it is difficult to determine which simulators are optimal. Methods 

have advantages and disadvantages in specific situations, and no single simulator will be 

optimal in all circumstances. As an alternative, a small number of multi-use programs could 

be developed to support flexible, broad-based models (Table I, 2.8). This strategy could 

foster a diversity of models in a small number of high quality programs. Importantly, if the 

community advocates use of specific simulation tools, these must be widely available and 

maintain good documentation.

Instead of advocating for specific simulators, another strategy could be to create a 

comprehensive framework, or genetic simulation server, for the development and 

distribution of genetic simulation programs and data (Table I, 2.9). This framework would 

depend on development of an ontology for genetic simulation to facilitate creation of 

Application Program Interfaces (APIs). In this framework, several different simulation 

methods could be linked to an analysis server. Through a web interface, a user might then 

perform an analysis on the server to generate simulated data. Notably, the simulated data 

would be available to the user, but also stored for other users. This server could store 

simulated data sets, or even selected benchmark data sets. Users could search for different 

simulation tools or data sets using the web interface. Because all analyses are stored, it will 

be easier for researchers to compare results. Furthermore, the server could store common 

tasks as modules for all users, such as generating random errors for sequencing data. By 

establishing common APIs and directing input and output formats, it would be possible to 

add different modules or for other simulation tools to interoperate with this server. Many 

advantages to such an approach were recognized. However, several concerns were raised 

regarding this approach, including maintenance costs, storage costs, required processing 

power, and intellectual property issues.

A more comprehensive evaluation of simulation programs would require comparing these 

programs to established benchmarks. In a comparison of several coalescent simulation 

programs in their ability to model recombination hotspots in genomic sequences, two 

simulators failed to simulate 500 samples of 5MB sequences and the other three 

demonstrated varying accuracy in position and intensity of simulated recombination 

hotspots [Yang, et al. 2014]. In another study of simulators for GWAS, datasets simulated 

by 5 simulators vary greatly in linkage disequilibrium and minor allele frequency patterns 

[Xu, et al. 2013]. Therefore, it is unclear how results of subsequent analyses compare using 

different simulation programs. One possible approach to address is to create a test suite for 

each type of simulation to compare these programs. This type of comparative modeling 
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would be a substantial effort by the research community, but would help assure 

comparability among studies and improve the scientific value of simulation (Table I, 2.10).

While many of these suggestions would improve the utilization of genetic simulators, many 

end users would prefer to access the simulated data sets themselves. Benchmark simulated 

data sets would provide standards to compare analysis tools [Mechanic, et al. 2012]. The 

data sets could be created for typical applications and provided with detailed descriptions 

regarding the method of data simulation. This group recommended renewing efforts to 

identify benchmark datasets (Table I, 2.11). Benchmark simulations have been provided by 

the Genetic Analysis Workshop (GAW) [Ziegler, et al. 2011], but are often focused on 

specific simulations that have been the topics of particular GAW meetings. More researchers 

should be encouraged to make simulated datasets publicly available (Table I, 2.12), perhaps 

at the time of publication. The use of independently generated simulated datasets would 

facilitate fair comparison between statistical methods and help identify the strength and 

weakness of methods.

Fostering Collaboration

Opportunities to Advance Science and Methods of Genetic Simulation

Meeting participants recognized that fostering collaboration is critical to addressing 

challenges described regarding the science, software, and development of methods for 

genetic simulation. Moreover, many of the suggested opportunities described above would 

be best accomplished as teams, instead of individual groups working in silos.

For genetic simulation tools to be used most effectively, more communication is required 

between simulation developers, end-users of simulation programs, and researchers from 

other communities (e.g. epidemiologists, physicians, engineers, statisticians and others) 

(Table I, 3.1). Increased engagement within and outside scientific disciplines could clarify 

assumptions and increase appropriate applications of simulation tools. As genetic 

epidemiology progresses with use of simulation, communication with the parallel fields of 

population genetics, comparative genomics, and molecular evolution, that are asking many 

of the same questions about the nature of the genotype-phenotype map will be important. 

These fields have developed with very different toolboxes, assumptions, and inference 

strategies and cross fertilization would be beneficial to both communities. Moreover, genetic 

simulators would likely benefit from a deeper understanding of how simulations are 

effectively used in other fields, including protein biology, physics and pharmacology. 

Increased collaboration and engagement with these fields would build bridges among groups 

with different skill sets and allow for sharing of expertise. Determining how to describe 

genetic simulation to other fields, could result in more appreciation by other research 

communities. These collaborations should start from the planning stages of a study could 

result in more appreciation and understanding of what simulation is and how it can be used. 

Importantly, the requirements and uses for simulated data need to be more broadly 

communicated, because experimental data is not a sufficient control for evaluating analytical 

methods. Further, by engaging end-users in the discussion, they will better understand when 

and how simulation tools may be used most appropriately and limitations of these tools. One 

strategy to improve engagement could be to create a consortium dedicated to fostering the 
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science of genetic simulation (Table I, 3.2). Another suggestion was to create an on-line 

forum for discussion about genetic simulation (Table I, 3.3).

CISNET may serve as a model for collaboration for the genetic simulation community. The 

approach innovated by the CISNET group is systematic comparative modeling with central 

questions to be addressed by groups collaboratively with a common set of inputs and 

outputs. Reproducibility of simulation results across models adds credibility to results and 

differences in results are used to identify potential areas for further study. The CISNET 

modeling network has interacted with several other agencies including United States 

Preventive Services Task Force (USPSTA), Agency for Health Care Research and Quality 

(AHRQ), and the Centers for Disease Control (CDC). Likewise, a goal for the genetic 

simulation community could be to increase interaction with broader scientific communities. 

In addition to using the CISNET network as a model, genetic simulation modelers could 

explore opportunities to link the genetic simulation community into CISNET to examine 

how genetic data informs CISNET models (Table I, 3.4).

Another strategy to foster the community of genetic simulations is a focus on education and 

training. Supporting the development of a curriculum in genetic simulation would be an 

investment in the future of genetic simulations, and would help set and shape expectations 

for simulation development. One suggestion was for a course to focus on simulation as a 

science and understanding the role and importance of simulations, and, distinct from 

simulation software programming itself, the assessment of simulation methods. The content 

of educational material could emphasize end-user needs to foster more interaction between 

end-users and developers. Importantly, these materials may contribute to more sophisticated 

knowledge of simulation methods by both developers and end-users. In addition, the course 

could highlight requirements for documentation of tools. The curriculum could be developed 

in the form of a massive open online course (MOOC), available to unlimited participation on 

the web. By making the educational materials accessible on line, they may more likely be 

adopted by the research community. Another suggestion was to create training based on the 

“Google Summer of Code” (http://www.google-melange.com/), where students work 

together to support open source development projects. At a simulation summer of code, 

students could be trained on programming and best practices for genetic simulation, accurate 

documentation, and evaluation of programs against benchmark test suite (Table I, 3.5).

Summary and Conclusions

Genetic simulations are essential for the study of the genetics of complex diseases. As the 

genetic epidemiology field develops new analytical methods to adapt to the ever-evolving 

data landscape, simulations and simulated data sets are critical for validation of these novel 

methods. Natural, biological data cannot be used for the validation and comparison of 

methods. While these approaches may be used to determine if a method finds what is 

already known, any other finding is subjective because the truth in biological systems is 

unknown.

During the course of the “Genetic Simulation Tools for Post-Genome Wide Association 

Studies of Complex Diseases” meeting, participants identified many challenges and 
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opportunities to advance the field and science of simulations. Several knowledge gaps in the 

science of simulations were identified as priorities, specifically recognizing the necessity of 

realism in simulation models while balancing the need for efficiency of implementation. The 

scientific priorities suggested were improved modeling of phenotypes, next generation 

sequencing and rare variant data, and RNA sequencing data. In addition, comparison and 

evaluation of different simulators and studies performed using these tools remains a 

challenge. While GSR is a first step to attempt to address this challenge, by providing 

detailed descriptions of genetic simulation programs, more work is needed including 

standards for reporting and documentation, appraising or evaluating genetic simulation 

programs, and identifying benchmark datasets.

Finally, recognizing the need for the genetic simulation community to work together with 

each other, end-users, and other fields, the main opportunity which may further the field is 

to foster collaborations, by forming groups to address common problems, educate 

developers and users of simulation programs and improving communications. Education of 

the next generation of genetic epidemiologists in the best practices of genetic simulation 

may be one of the best strategies to impact this discipline in the future.
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Table I

Opportunities to Advance Field of Genetic Simulation

The Science of Genetic Simulation

1.1 Development of simulation models capable of incorporating the biological heterogeneity of phenotypes, including longitudinal 
outcomes, time-dependent variables, environmentally modified traits and endophenotypes.

1.2 Incorporation of more complex genetic models into simulations, including interactions, population genetic models, and differing 
patterns of association.

1.4 Consideration of sources of error in modeling data from new technologies

1.4 Development of genetic simulation models for other types of genetic variation (e.g. structural variation) and other types of variation 
(e.g. epigenetics, gene expression)

1.5 Need for increased realism and complexity in genetic simulations, balanced with efficiency and implementation requirements

Software and Methods Development

2.1 Creation of an ontology for genetic simulation

2.2 Development of guidelines and standards for reporting on genetic simulation, including documentation of programs, description of 
programs in journal articles, and reporting by end-users when using simulation programs for applications

2.3 Certification of genetic simulation tools based on defined checklist including whether programs were open source, user-friendly 
implementation (or provide an installer for supported platforms), provide adequate documentation, and use standard data input and 
output formats

2.4 Increased support for maintenance of genetic simulation programs

2.5 Encouragement of deposition of software into code repositories

2.6 Consideration of requirements of end-users including incorporation of graphical user interface and appropriate documentation

2.7 Selection and recommendation of a core set of genetic simulation programs for the most common research questions

2.8 Development of a small number of multi-use programs to support flexible, broad-based models for genetic simulation

2.9 Creation of comprehensive framework, or genetic simulation server for development and sharing of genetic simulation programs and 
data

2.10 Comparative modeling using genetic simulation programs using a defined test suite to compare programs and data obtained using these 
programs

2.11 Identification and promotion of common data sets for comparison of analysis tools

2.12 Encouragement of making simulated data sets public available

Fostering Collaboration

3.1 Increased communication between simulation developers, end-users of simulation programs, and researchers from other communities

3.2 Formation of a consortium dedicated to fostering the science of genetic simulation

3.3 Creation of an on-line forum for discussion about genetic simulation

3.4 Exploration of opportunities to interact with Cancer Intervention and Surveillance Modeling Network (CISNET) consortium and other 
communities

3.5 Development and support of a curriculum in genetic simulation to train researchers in genetic simulation, programming and best 
practices, including accurate documentation and evaluation of programs.
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