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ABSTRACT

A Direct Ridership Model (DRM) for predicting Bus Rapid Transit (BRT) patronage in Southern
California is estimated. Attributes of bus stops and their surroundings constitute the data
observations of the DRM, enabling a fairly fine-resolution of analysis to be carried out on
factors that influence ridership. The best-fitting DRM revealed that service frequency strongly
influences BRT patronage in Los Angeles County. High intermodal connectivity, with both
feeder bus routes and rail-transit services, also significantly induces BRT travel. Population
densities also contribute to BRT patronage and in the case of exclusive-lane BRT services, higher
employment densities further increase higher daily boardings. The strong statistical fit of the
model bodes well for DRM as a platform for estimating BRT patronage in coming years.

DIRECT RIDERSHIP MODELING

Direct modeling of transit ridership has emerged as an alternative to traditional four-
step travel-demand modeling for corridor and station-level analyses (1). Direct models
estimate ridership as a function of station environments and transit service features rather
than using mode-choice results from large-scale models. This provides a fine-grain
resolution suitable for studying relationships between built environments, transit services,
and ridership. Because of the focus on bus stops and their surroundings, direct ridership
models have found particular favor for estimating the ridership bonus of a transit-oriented
developments (TOD) (2).

Because direct models predict demand for a specific node or location versus the
origin-destination attributes of a trip, some variables normally found in mode-choice
models, such as comparative travel times and prices of transit versus auto, are conspicuously
absent. The comparative accessibility of station-area residents to jobs and shops via transit
versus auto are included in some direct models in imbed the performance attributes of
transit services versus its chief competitor, the private automobile.

Direct ridership models generally have small sample sizes since observations consist
of transit stations or stops. Thus degree of freedom constraints often limit the number of
variables that can be included as well their specifications (e.g., inclusion of interactive
terms). It is because of these limitations that direct models fall under the rubric of sketch-
planning tools. They provide order-of-magnitude insights for testing of various system
designs and land-use scenarios.

To date, direct modeling has been used to estimate station- and corridor-level
ridership for rail transit investments and expansion proposals in areas as diverse as
Charlotte-Mecklenburg County (NC), St. Louis (MO), the East Bay of the San Francisco Bay
Area, Fairfax County (VA), and Boise (ID) (3-6). For a host of reasons, including fiscal
constraints and development densities that are too low for rail investments, more and more
U.S. cities and regions are turning to Bus Rapid Transit (BRT) as a cost-effective alternative to
rail transit (7). As far as we know, no direct ridership model has been estimated to date for a
BRT proposal.
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This paper presents a Direct Ridership Model (DRM) for BRT services based on
experiences in Los Angeles County. The paper is organized as follows. First, we discuss the
sample frame used to conduct the analysis as well as candidate variables that were
considered for entry into the DRM. This is followed by a presentation of a best-fitting
regression model that conforms with travel-demand theory and yields interpretable and
statistically significant results. The paper concludes with discussions on the policy
implications of the research and opportunities for advancing BRT direct ridership models in
coming years.

MODELING APPROACH AND SAMPLE

Limited real-world experiences with BRT in the U.S. limits the ability to draw upon
empirical experiences to inform ridership estimates. While foreign cities like Curitiba, Brazil,
Adelaide, Australia, and Bogota, Colombia have accumulated considerable experiences with
dedicated-lane BRT operations, vast cultural, socio-economic, and institutional differences with
the U.S. limit the use of empirical evidence from such settings.

In the United States, one of the most proactive regions in advancing BRT services has
been Southern California. The Metropolitan Transportation Authority (MTA) phased in the
Metro Rapid Program in 2000 with the goal of improving bus speeds within urbanized Los
Angeles County. Four pilot routes -- along Wilshire Boulevard (720), Broadway (745), Vermont
Avenue (754) and Ventura Boulevard (750) — used Next Bus (real-time passenger information)
technology at most stops to informed waiting customers of estimated bus arrival times. Metro
Rapid buses consist exclusively of low-floor buses and have their own distinctive color scheme
and markings. Other features include signal prioritization, frequent headways, and
comparatively long spacings between bus stops.

A new stage in BRT services was reached in 2005 when MTA’s Metro Orange Line
opened. The Orange Line is one of the first “full-service” BRT systems in the United States,
featuring a dedicated busway (running on a disused rail corridor), high-capacity articulated
buses, “rail-like” stations (incorporating level boarding and off-board fare payment), and
headway-based schedules. The 14-mile route connects the western terminus of the Red Line
subway at North Hollywood with Warner Center, the third largest employment center in Los
Angeles County. As of 2009, Southern California’s Metro Rapid Program consisted of 28 routes
in total, providing 450 directional miles of service. MTA buses operate all but two of the routes.
The Santa Monica Big Blue Bus (BBB) operates a BRT service as well: Rapid Blue Line 3, which
runs along Lincoln Boulevard, and Rapid Blue 7, which connects downtown Santa Monica to the
Rimpau Transit Center in the eastern part of the city. The Rapid Blue 3 line is slated for
conversion to a higher end BRT service with a dedicated bus lane, and is the focus of ridership
forecasts presented later in this paper.

Sample Selection

In order to obtain a sample of sufficient size to draw statistically reliable inferences, 50
MTA bus stop locations were sampled across 20 different Metro Rapid lines. Each location had
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a stop on each side of a road, meaning ridership as well as service-level data were compiled for
both stops at each location. In addition, data were collected for six bus stop locations of BBB's
Rapid Blue line 3. Lastly, to reflect the relationships between services and ridership for “high
end” BRT services, data for 13 Orange Line stops were obtained. Figure 1 shows the locations
of the 69 total bus stop locations that constituted the sample frame for Direct Ridership
modeling. Average daily ridership data were obtained for each stop for October 2008.
Accordingly, data for explanatory variables were obtained for time periods as close as possible
to the October 2008 date.

Model Specification and Variables

Direct Ridership models estimate boardings (and/or exits) at a stop or station for defined
periods of time (e.g., daily) as a function of 3 key sets of variables related to stops or stations:

(1) Service Attributes — e.g., frequency of buses (headways, buses per hour), operating
speeds, feeder bus connections (number of lines or buses), dedicated lane (0-1), vehicle
brand/marketing (0-1), etc.;

(2) Location and Neighborhood Attributes — e.g., population and employment densities,
mixed land use measures (0-1 scale), median household incomes and vehicle ownership
levels (as proxies for levels of “transit dependence”), distance to nearest stop (as a
proxy for catchment size), accessibility levels (e.g., number of jobs that can be reached
within 30 minutes over transit network in peak periods), terminal station (0-1), street
density (e.g., directional miles of street divided by land area), connectivity indices (e.g.,
links/nodes of street network), etc.; and

(3) Bus Stop/Site Attributes — e.g., bus shelters (0-1), Next Bus passenger information (0-
1), bus benches (0-1), far-side bus stops (0-1), park-and-ride lots (0-1, or number of
spaces), bus bulbs (0-10), etc.

Often, service attributes like bus headways do not vary within a bus line though they can and
often do vary across lines. Travel-demand theory holds that transit riders, particularly choice
users, are more sensitive to service quality and operating features than other factors (8, 9).
Accordingly we expected some measures of a bus stop’s service quality to enter the Direct
Ridership Model. Other attributes of the operations, like fare levels, are usually so similar
across passengers who board buses at each stop that they are not of much use for DRMs. The
one service-related variable that we felt would significantly enter a model of BRT ridership in
Southern California was whether a stop received an exclusive-lane service. No factor can make
bus-transit more time-competitive with the private car as operating in a bus-only lane (7, 10).
Accordingly, MTA’s 13 Orange Line bus stops were dummy-coded (0-1) to denote their
gualitatively higher service levels than the other bus stops in the data base.
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Figure 1. Locations of 69 BRT bus stop observations used for estimating Direct Ridership
Model: 50 Metro Rapid stops, 13 Orange Line stops, and 6 Rapid Blue 3 stops

Location variables aim to capture attributes of the immediate operating environment,
such as nearby densities and distances to nearest stop. The farther a bus stop is from the next
nearest stop, for instance, typically the stop’s geographical catchment area increases in size.
Being a terminal station often boosts ridership even more since end-line stations typically serve
big geographic catchments. If stops with large catchments average high population densities,
boardings at the stop should go up even more. And if nearby residents average relatively low
incomes and car ownership rates, then boarding can be expected to further rise. Factors like
dense street networks with high connectivity (i.e., link-to-node ratios) can bump up ridership,
at the margin, by expediting pedestrian flows to stops.

One measurement issue all direct ridership models face is the appropriate size of the
geographic buffer drawn around bus stops to capture neighborhood attributes. In keeping with
other research on the walkability to transit (11, 12), we opted to create % mile buffers around
stops. Overlaying these buffers onto census tract polygons allowed variables like population
density within % mile of a stop to be estimated using GIS techniques.

Lastly, some of the bus-stop attribute variables — such as the presence of bus shelters or
far-side bus stops — are binary (0-1) and thus are used in the models as dummy variables. These
variables largely represent the presence of passenger amenities and relative to variables that
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traditional choice theory holds influences utility are thought to have fairly marginal influences
on ridership levels. While the availability of a bench at a bus stop might be appreciated by a
waiting customer, its presence or absence is unlikely to cause or deter most people from
making a transit trip. In light of the relatively small sample size, we were prepared for such
variables not to enter the best-fitting model.

One other possibility we allowed for in direct ridership modeling was interactive terms —
specifically, the interaction between operating on a bus-only lane and other factors, like urban
densities. That is, does the combination of having an exclusive bus lane and high nearby
densities give a proportionally bigger boost in ridership than the sum of these two individual
influences? Accordingly, we created a number of variables that interacted the presence of bus-
only services with other predictors like population densities and feeder bus connections.

In all, three classes and 22 candidate variables, listed in Table 1, were available for
model entry were: (1) Service Attributes — 8 variables; (2) Location and Neighborhood
Attributes — 6 variables; and (3) Bus Stop/Site Attributes — 8 variables. Thus, for each bus stop
studied, data were compiled on each of these 22 variables. The general modeling approach
involved including variables that traditional travel-demand theory holds are significant
predictors of transit ridership — namely, some measures of service quality (e.g., number of daily
buses, number of feeder connections), location (e.g., distance to the nearest bus stop), and
neighborhood density. Once a best-fitting “core” model was developed, we then stepped in
other variables related to bus-stop attributes (e.g., bus shelters, far-side bus stops) to see if
they provided marginal explanatory benefits to the core model. Last, we sought to introduce
interactive terms that captured potential boosts in ridership from combining dedicated-lane
services with other predictors. Only interactive terms that marginally improved the predictive
power of the model were added. In all cases, variables were retained in the model if the signs
on coefficients met a prior expectations and the t statistics were reasonably significant,
preferably with probability values less than 0.05.
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Table 2. Candidate Variables Available for Entry into Direct Ridership Model

Variable Class Variable List

BRT Service Attributes * Daily number of buses in both directions

* Daily number of hours of service

* Daily number of perpendicular feeder buses

* Number of perpendicular feeder bus lines

* Number of daily connecting rail-transit train units
* Number of daily parallel rail-transit lines

* Number of daily perpendicular rail-transit lines

* Presence of dedicated-lane services (0-1)

Location and Neighborhood | * Population Density, in 2000 (number of persons within %

Attributes (within % mile mile radius, from U.S. census)

buffer of stop) * Employment Density, in 2000 (number of workers within %
mile radius, from U.S. census)

* Total Urban Density, in 2000 (number of persons plus
workers within % mile radius, from U.S. census)

¢ Street Connectivity Index (number of intersections divided by
number of links; a high value denotes high connectivity and
in general, more navigable walking environments)

* Distance to the nearest BRT stop (in miles)

* Aterminal (end-of-line) stop (0-1)

Bus Stop/Site Attributes * Park-and-Ride Lot (0-1)

* Number of Park-and-Ride spaces

* Presence of bus benches (0-1)

* Presence of bus schedule information (0-1)

* Presence of a Passenger Information System (NextBus) (0-1)
* Presence of a bus-stop shelter/canopy (0-1)

* Presence of a far-side bus stop (0-1)

* Presence of BRT-branding/logo at stop (0-1)

DIRECT MODEL FOR ESTIMATING BRT RIDERSHIP

Ordinary least squares (OLS) regression was used to estimate a BRT direct ridership
model based on Southern California experiences. Since a number of BRT bus stops in the data
base share the same bus line, we also attempted Hierarchical Linear Model (HLM) estimates to
account for the nested nature of the data. In theory, HLM accounts for the statistical non-
independence of bus stops that share the same bus lines. Although interclass correlations
suggested significant nesting of bus stops within bus lines, the HLM models yielded results with
poorer fits than OLS and more limited set of predictive variables with statistical significance.

Table 2 presents descriptive statistics for the dependent variable (average daily
boardings) and eight explanatory variables that entered into the Direct Ridership Model.
(Interactive variables that entered the model are not presented in Table 1.) Among predictor
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variables, the largest variation (standard deviation/mean) was with the number of feeder rail
trains (only 3 of the 63 Metro Rapid stops had rail connections) and in park-and-ride capacity
(10 of the 69 bus stops had nearby parking lots). Bus service frequency varied least across the

69 bus-stop observations.

Table 2. Descriptive Statistics for Dependent Variable and Independent Variables that enter
the Direct Ridership Model. All values are for bus stop observations.

Std. Coefficient
Minimum | Maximum Mean Deviation of
Variation

Dependent Variable:
Average Number Daily Boardings 0 8,703 7439 1,194.9 1.61
Independent Variables:
Number of daily buses (each direction) 40 185 88.6 40.9 0.46
IIi\lnuer:ber of perpendicular daily feeder bus 0 7 156 129 0.83
{\rl:ir:sber of perpendicular daily rail feeder 0 100 549 22 31 4.06
Distance to Nearest BRT Stop (in miles) 0.17 1.48 0.73 0.277 2.63
Park-&-Ride Lot Capacity (number of 0 1,205 76.2 2316 304
spaces)
bpjfﬁgr'?t'on density (people within 1/2-mile 19.4| 53488.8| 138095| 9,300.5 0.67
Total density (population + employment 6,238.0 | 115808.4 | 24,746.6 | 18,409.1 0.74

within %2 mile buffer)

The best performing multiple regression model for directly measuring BRT ridership is
shown in Table 3. From the summary statistics, a model with good overall statistical fit was

obtained: 95 percent of the variation in average daily boardings across the 69 bus stop

locations was explained by the nine variables in the model.
The BRT direct ridership model for Southern California yielded results that conform to
expectations. All of the service quality variables positively contribute to ridership. As Metro
Rapid bus service frequency increases, so does ridership — each Metro Rapid bus arriving at a
bus stop increases average daily boardings at that stop by 5.1 passengers (or stated another
way, the average number of boardings per bus at a stop was a little over 5 passengers). In
addition, daily boardings increased with the intensity of both bus and rail-train feeder services.
Also notably significant were the two interactive terms for bus service quality: BRT & Feeder
Bus as well as BRT & Feeder Rail. (In Table 3, “BRT” is used to denote dedicated-lane services,
notably MTA’s Orange Line operations.) Based on the beta weight (standardized regression
coefficient), the combination of dedicated-lane services and rail connections had the strongest
predictive power of any variable in the model (reflecting the ridership boost received at two
Orange Line stops served by rail). For example, the model results indicate that each feeder
train that arrives increases average daily ridership by 6.7 passengers. However, if the daily train
connects to a stop with a dedicated-lane Metro Rapid service, it increases average daily
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ridership by another 52.8 passengers, for a total of nearly 60 passengers. Clearly, the ability to
make a rail-bus intermodal transfer has significantly increased BRT ridership in Los Angeles
County. While BRT no doubt supplements rail services in parts of Los Angeles County, for
dedicated-lane services on MTA’s Orange Line, it without question has been a complement as
well.

Table 3. Direct Ridership Model for BRT in Los Angeles County. Estimated using OLS for 69
Bus Stop Locations in Los Angeles County

Std. t
Coefficient | Error | Beta | statistic | Sig.
Service Attributes
Number of Dallly Metro Rapid Buses 5103 1353 176 3771 000
(both directions)
Number of perpend|cular daily feeder bus lines 73021 | 36.045 080 2051 045
(both directions)
Number of perpendicular daily rail feeder trains 6.722 1.934 126 3.476 .001
Neighborhood Attribute
Population density (1/2-mile buffer) 0.017 0.004 134 4.303 .000
Distance to nearest BRT stop (in miles) 261.705 | 150.751 .060 1.736 .088
Interactive Terms:
BRT & Feeder Bus: Dedicated Lane (0-1) * | 124557 | 62121 | 123 2.005 | .050
Number of perpendicular daily feeder bus lines
BRT & Feeder Rail: Dedicated Lane (0-1) *
Number of perpendicular daily rail feeder 52.891 3.831 533 13.807 .000
trains
BRT & Parking Capacity: Dedicated Lane (0-1) *
Park-&-Ride Lot Capacity 0.514 0.249 .093 2.067 .043
BRT and Total Density: Dedicate Lane (0-1) *
(Population + Employment density within 1/2- .036 .011 185 3.202 .002
mile buffer)
Constant -541.164 154.71 -- -3.50 .001

Summary Statistics:

R Square = .952

F Statistic (prob.) = 129.011 (.000)
N =69

The primary neighborhood attribute that influenced BRT ridership in Los Angeles County
was population density within % mile of a bus stop (an area of around 503 acres in size). Metro
Rapid stops surrounded by denser residential areas averaged appreciably higher ridership,
controlling for other factors. This is consistent with a body of literature that shows density to
be the most important built-environment attribute for predicting travel demand in general (13)
and transit ridership in particular (2). As the saying goes, “mass transit” needs “mass”, or
density. The model suggests that doubling the population within one-half mile radius of a
Metro Rapid bus stop from 5000 to 10000 inhabitants (or from around 10 to 20 persons per
gross acre) could be expected to increase daily BRT boardings by 170 passengers, holding all
other factors constant. An interactive variable modified this relationship. If the Metro Rapid

7
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stop had a dedicated-lane service, the combination of both population and employment
densities further boosted ridership. We suspect the addition of employment counts in addition
to residential population (as a measure of total density) was significant in this interactive form
because workers were likely to respond to BRT services most noticeably only when dedicated-
lane services that yielded significant commute-time savings were available.

Two bus-stop attributes also entered the best-fitting ridership model. One was the
distance to the nearest BRT stop. Lengthy spacing between stops enlarges a stop’s catchment
area which tends to increase daily boardings. In the case of Metro Rapid, a stop 1.5 miles from
the nearest BRT stop could expect some 260 more daily boardings than one a half mile away, all
else being equal. The second attribute of bus-stop settings that influenced patronage was the
capacity of Park & Ride lots, though only in the case of Metro Rapid stops with dedicated-lane
bus services. As shown in Table 3, this interactive term has a positive coefficient indicating that
bundling high-quality BRT services with parking-lot capacity boosted ridership in Los Angeles
County. Again, a BRT service’s opportunities for inter-modality — be the connections with
private cars, rail-transit cars, or surface-street buses — emerged as a significant predictor of BRT
ridership in Southern California.

PREDICTION ACCURACY

Overall, the Direct Ridership Model’s prediction of October 2008 average daily
boardings corresponded fairly closely to actual boardings. This is reflected by both the high R-
Square statistic in Table 3 (R* = .952) as well as the plot in Figure 2. The 45-degree angle of the
data points (plotting predicted values on the vertical axis and actual boardings on the horizontal
axis) reveals high prediction accuracy. Notably, this 45-degree angle and the absence of any
notable outliers indicate that the DRM performed remarkably well at predicting BRT ridership
for a range of services: from low-patronage stops with low-end, mixed-traffic services (i.e., BRT
“lite”) to high-patronage, exclusive-lane services (i.e., Orange-Line stops), including those with
and without rail-transit connections.

As noted, Santa Monica’s Big Blue Bus (BBB) aims to create an Orange-Line-like BRT
service. This will be in the form of converting BBB’s Rapid Blue Line 3 from its existing mixed-
traffic operations to a high-end, dedicated-lane BRT service. Given that the Direct Ridership
Model shown in Table 3 contained variables that captured attributes of “high-end”, dedicated-
lane BRT, it is well-position to estimate changes in ridership from the existing “low-end” BRT
service. Producing ridership estimates involved adjusting values in Table 3 for the four
interactive terms related to dedicated-lane BRT services. The difference in ridership estimates
for Rapid Blue Line 3 between existing and upgraded service essentially involved “switching”
the value of the dedicated-lane dummy variable from “0” to “1” (and multiplying this by the
other values in the interactive model — namely numbers of daily feeder bus lines, number of
daily rail feeder trains, Park-&-Ride capacity, and total density).
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Figure 2. A Plot of Predicted Boardings (Vertical Axis) and Actual Boardings (Horizontal Axis)
for 69 Metro Rapid Bus Stops.

For the 6 stops on Rapid Blue Line Line 3, the DRM estimates an increase in daily
boardings from the existing (2008 daily average) of 857 customers to over 5,800 boarders with
the conversion to high-end, dedicated-lane BRT service. This represents more than a six-fold
increase in daily boardings. Such a surge in ridership is likely on the high side, reflecting the
more transit-conducive environment of Metro Rapid services in denser, more congested Los
Angeles City (that dominated the database) compared to the city of Santa Monica. While no
one has a crystal ball and can predict with any precision what the future ridership will be on
Rapid Blue Line 3, experiences with dedicated-lane services in Los Angeles County suggest that
the impacts could be substantial.
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CLOSE

BRT represents a fairly low-cost, fast-action way of introducing higher-quality transit
services. In a way, a Direct Ridership Model (DRM) offers similar advantages to traditional
large-scale travel-demand models — it is a fairly stripped down, sketch-modeling approach that
allows empirically-informed estimates of patronage to be produced at a fraction of the cost.
While not necessarily a substitute for more data-intensive and statistically sophisticated
models, a DRM can provide a useful platform for generating first-cut ridership estimates and for
conducting sensitivity tests of key explanatory variables like bus service frequency and station-
area densities.

Data from 69 BRT stops in Los Angeles County — from mixed-traffic BRT operations to
exclusive-lane services — revealed several important factors that are associated with high BRT
ridership. One, service intensity matters. As the frequencies of both BRT and feeder bus
services increase, so will BRT patronage. Second, high levels of intermodal connections can be
a boon to BRT usage. The DRM for Southern California revealed that adding inter-modal
options — notably, rail-transit connections and park-and-ride provisions in addition to surface-
street feeder buses — is associated with significant gains in daily patronage. Third, surrounding
population densities also matter. In the case of exclusive-lane BRT services, employment
densities are also important contributors to ridership. Clearly, TOD can add riders to not only
rail-transit operations but to BRT as well, something that is obvious to anyone who has ridden
the exclusive busways of Curitiba or Ottawa.

In close, the state of practice in BRT ridership forecasting is still in its infancy. That said,
we believe direct ridership modeling should be in the kitbag of tools available to planners for
estimating patronage of future BRT services. When used as a complement to traditional four-
step models and other more advanced forecasting tools, DRMs can provide useful
supplemental insights into the likely ridership impacts of BRT service enhancements and
neighborhood land-use changes. As with all sketch-planning tools, their value lies in the ability
to quickly generate order-of-magnitude patronage estimates and to just as quickly probe the
sensitivity of estimates to changes in key input variables.
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