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Abstract

1. River network structure influences many important population and community

processes. Previous work examining ecological dynamics in river networks has

focused on within-trophic-level dynamics, with less emphasis on food-web inter-

actions. Yet, trophic interactions in rivers are influenced by processes that may

interact with network structure and position.

2. Using a spatially explicit consumer–resource model, we explore how trophic

dynamics are influenced by the branching nature of river networks. We focus on

cases where the consumer–resource interaction is prone to temporal oscillations

and periodic low population sizes. In these cases, we find that the influence of

network structure and dispersal can reduce temporal variability and increase per-

sistence of consumers and resources at the metacommunity scale.

3. The effects of network structure and dispersal on our observed metacommunity

dynamics result from asynchrony among dynamics of local communities: when

asynchronous local fluctuations are averaged, consumer–resource dynamics

become less variable and bounded higher above zero at regional spatial scales.

Fluctuations synchronise across clusters of linked local communities.

4. Communities that connect to only one other downstream community typically

vary independently of other patches and show high variability, while communi-

ties that are linked to multiple upstream and downstream habitats show greater

clustering and less variability. These patterns suggest that headwater versus

mainstem locations in river networks may show different levels of population

variability and thus differential responses to management and restoration efforts.

K E YWORD S

asynchrony, consumer–resource interactions, dispersal, metacommunities, networks

1 | INTRODUCTION

Ecological communities are dynamic and exist in spatially complex

environments. Increasingly, studies of natural communities have used

metacommunity theory to ask how communities are influenced by

spatial processes (Holyoak, Leibold, & Holt, 2005). Theoretical (Lor-

eau, 2010; Mouquet & Loreau, 2003) and empirical (Howeth & Lei-

bold, 2010; Kneitel & Miller, 2003; Vanschoenwinkel, De Vries,

Seaman, & Brendonck, 2007) research suggests that dispersal can

have a positive effect on species richness, either locally or regionally,

through a variety of mechanisms such as rescue effects, spatial

refuges and source–sink dynamics (Holyoak et al., 2005). Because

these multitude of mechanisms have been long predicted to operate

most strongly at intermediate levels of dispersal, empirical studies

have largely focused on manipulating dispersal rates and scales

(Cadotte, 2006; Kneitel & Miller, 2003; Steiner, Stockwell, Kalaimani,
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& Aqel, 2011) and typically alter only the presence of connections

among local communities (Ellner et al., 2001; Holyoak & Lawler,

1996; Vasseur & Fox, 2009). More recently, however, research has

shown that altering patterns of connectivity can have a considerable

effect on diversity and species variability in metacommunities inde-

pendent of dispersal rate (Chisholm, Lindo, & Gonzalez, 2011; Hol-

land & Hastings, 2008), suggesting that community assembly and

dynamics may vary across ecosystem types owing to differences in

the spatial configuration of underlying habitat.

Much research on the ecological effects of connectivity patterns

has been advanced in the context of river ecology. The distribution

of habitat in most rivers has a branching, or dendritic, structure. This

branching structure of river networks differs from other natural and

human networks, which are typically more regular or random in

topology, due to constraints from nearest neighbour dispersal and

underlying geomorphology (Rodriguez-Iturbe & Rinaldo, 1997; Urban,

Minor, Treml, & Schick, 2009).

For organisms whose dispersal is constrained by river geometry,

ecological dynamics may be strongly altered relative to other ecolog-

ical systems. Single-species (metapopulation) models demonstrate

that branching connectivity patterns can increase metapopulation

persistence relative to linearly (Fagan, 2002; Labonne, Ravigne, Par-

isi, & Gaucherel, 2008; Sarhad, Carlson, & Anderson, 2014) and ran-

domly connected (Yeakel, Moore, Guimaraes, & De Aguiar, 2014)

metapopulations, depending on the mechanism of dispersal. Further-

more, an increased variance in connectivity associated with greater

structural complexity in dendritic networks has been associated with

greater spatial variability in population density (Labonne et al., 2008;

Padgham & Webb, 2010; Sarhad & Anderson, 2015; Sarhad, Mani-

fold, & Anderson, 2017). Predicted patterns of population variability

in dendritic metapopulations have been observed in microcosm

(Altermatt & Fronhofer, 2018) and field studies (Moore et al., 2015).

At the level of the metacommunity, patterns of a-, b- and c-diversity

can all be strongly influenced by dendritic spatial structure relative

to regular spatial structure (Auerbach & Poff, 2011; Carrara, Alter-

matt, Rodriguez-Iturbe, & Rinaldo, 2012; Carrara, Rinaldo, Giometto,

& Altermatt, 2014; Muneepeerakul, Weitz, Levin, Rinaldo, & Rodri-

guez-Iturbe, 2007; Seymour, Fronhofer, & Altermatt, 2015), with the

magnitude and direction of effects often being sensitive to the par-

ticulars of dispersal rate and directional bias. Yet, a full mechanistic

understanding of the linkages between dendritic spatial structure

and ecological dynamics, especially at the level of the metacommu-

nity, is still lacking. Determining the role of dendritic spatial connec-

tivity on community structure and dynamics remains a primary

ecological challenge for freshwater ecologists with significant conser-

vation implications due to widespread fragmentation and flow alter-

ation in rivers (McCluney et al., 2014).

A primary factor underlying differences between metapopula-

tions/metacommunities and non-spatial (i.e. well-mixed) systems is

asynchrony in the dynamics of local patches from one another.

When patches vary asynchronously, populations can be buffered

from local extinctions through rescue effects and dispersal (Brown &

Kodric-Brown, 1977; Leibold et al., 2004; Murdoch, 1994); averaging

of asynchronous local dynamics can in turn lead to an overall reduc-

tion in the amplitude of fluctuations at the regional scale (Maser,

Guichard, & McCann, 2007). Thus, understanding conditions respon-

sible for generating asynchrony is a fundamental goal of metacom-

munity ecology (Gouhier, Guichard, & Gonzalez, 2010; Steiner,

Stockwell, Kalaimani, & Aqel, 2013). Increasing the number of disper-

sal connections, or “connectivity,” tends to increase persistence and

therefore richness (Holyoak & Lawler, 1996; Liebhold, Koenig, &

Bjornstad, 2004; Paradis, Baillie, Sutherland, & Gregory, 1999), yet

dispersal rates that are too high tend to synchronise fluctuations and

homogenise metacommunities (Hastings, 1993; Koelle & Vander-

meer, 2005). More recent work has shown that patterns of connec-

tivity—the distribution of dispersal links among patches—can also

strongly alter asynchrony potential across wide ranges of baseline

connectivity and dispersal (Gilarranz & Bascompte, 2012; Holland &

Hastings, 2008; Strogatz, 2001). River networks possess irregular

patterns of connectivity that favour the formation of asynchronous

ecological dynamics (Marleau, Guichard, & Loreau, 2014; Yeakel

et al., 2014), potentially accounting for differences in diversity pat-

terns among regular networks and those characteristic of river drai-

nages (Cadotte, 2006; Carrara et al., 2012).

A large proportion of metacommunity theory in river networks

such as that cited above has been generated around competitive

metacommunities, where most species are similar in trophic role or

position, without much focus on consumer–resource communities.

Yet appreciation of the role of space in community dynamics in ecol-

ogy more broadly has been greatly advanced by studies of con-

sumer–resource interactions (Briggs & Hoopes, 2004; Holyoak et al.,

2005; Murdoch, Briggs, & Nisbet, 2003). More recent work in this

vein has explored the role of network structure on both pairwise

(Holland & Hastings, 2008) and multispecies consumer–resource

interactions (Pillai, Gonzalez, & Loreau, 2011). In river networks,

branching structure may reduce fluctuations among consumers and

resources (Cuddington & Yodzis, 2002) and affect many aspects of

food-web structure and dynamics (Grant, Lowe, & Fagan, 2007;

Power & Dietrich, 2002), although our understanding of the range of

these impacts, and the mechanisms behind them, is still developing.

In particular, the role of spatial structure on asynchrony and, in turn,

persistence and population variability at both the local community

and metacommunity level in river consumer–resource systems is

unclear. Given the importance of trophic relationships in diversity

maintenance (Chase et al., 2002), energy transfer (Hairston & Hair-

ston, 1993) and material cycling (Bassar et al., 2010; McIntyre,

Jones, Flecker, & Vanni, 2007), further exploration of how asyn-

chrony of consumer–resource interactions is influenced by river net-

work structure could provide important insights into a wide range of

community and ecosystem processes in rivers.

Here, we use a spatially explicit consumer–resource model to

explore how dynamics of trophically interacting species are influ-

enced by the branching nature of river networks. We assume that

both the consumer and resource are able to disperse among habitat

patches that are arranged in a branching structure and that dispersal

is largely constrained to the river network, such as would be
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exhibited by fishes or insects that disperse aquatically or along ripar-

ian corridors. Consumer–resource dynamics are also simulated on

regular and random networks for comparison.

By simulating consumer–resource dynamics over a range of

metacommunity sizes, dispersal rates and spatial network structures,

we aim to address the following questions: (1) How much do the rel-

ative amounts of asynchrony in consumer–resource oscillations in

different spatial network types differ across gradients in dispersal

and metacommunity size? (2) How prone are river metacommunities

to asynchrony, particularly in comparison with other network struc-

tures? (3) To what extent does asynchrony reduce the amplitude of

regional oscillations and bound consumers and resources from zero,

increasing persistence potential? and (4) What spatial patterns of

asynchrony emerge in dendritic river networks, and how do these

differ from other network configurations?

Our simulation results highlight spatial patterns of asynchrony

that emerge in the dynamics of consumer–resource systems that are

driven by network size and structure. Furthermore, compared with

regular and randomly connected habitats, we show how consumer–

resource systems in river networks can exhibit unique patterns of

asynchrony that reflect different dynamics in headwater communi-

ties that connect to only one other downstream community versus

mainstem communities that are linked to multiple upstream and

downstream habitats.

2 | METHODS

2.1 | Consumer–resource model

We simulated consumer–resource interactions in metacommunities

using the well-studied Rosenzweig–MacArthur model (Rosenzweig &

Macarthur, 1963) with the addition of dispersal,

dRi

dt
¼ rRi 1� Ri

K

� �
|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

resource
production

� aCiRi

bþ Ri|fflffl{zfflffl}
resource

consumption

þD
Xn
j¼1

AijRj

|fflfflfflfflfflffl{zfflfflfflfflfflffl}
resource
dispersal

dCi

dt
¼ caCiRi

bþ Ri|fflffl{zfflffl}
consumer
production

� mCi|{z}
consumer
mortality

þD
Xn
j¼1

AijCj

|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
consumer
dispersal

(1)

Here, Ri and Ci are the amount of resources and consumers,

respectively, in local community i at time t. Resource production is

modelled by logistic growth where r is the intrinsic population

growth rate and K is the resource carrying capacity. Resources are

lost to consumption according to a type II functional response with

a being the consumer attack rate and b being the half-saturation

coefficient. Consumed resources are converted into new consumer

biomass at rate c, and consumer biomass is lost with constant per

capita rate m.

The final terms in each equation in Equation (1) represent disper-

sal among communities in the spatial network; each local community

is a “patch” or “node” and dispersal connections are “edges” in the

network sense. Spatial structure of the metacommunity is introduced

through the matrix A, which encodes in the off-diagonal elements

whether communities i and j are connected by dispersal. For Aij

(i 6¼ j), a value of “1” denotes that local communities i and j are con-

nected by dispersal, whereas a “0” means there is no such connec-

tion. Although downstream flow can introduce directional biases in

the movement of organisms and material, we assume that dispersal

is always bidirectional for simplicity, that is Aij = Aji. The diagonal ele-

ments Aii are the negative sum of off-diagonal elements for rows i,

reflecting the total amount of emigration from the community i. The

dispersal rate D scales the amount of dispersal across each connec-

tion in the metacommunity.

We recast Equation (1) into a non-dimensional form that retains

the same dynamics but possesses fewer parameters. The fact that

Equation (1) possesses many parameters can lead to a large number

of simulations that can obscure important mechanisms led us to

rescale the model using ratios of the original parameters and state

variables. We chose the resource instantaneous per capita growth

rate as the base unit of time such that t̂ ¼ rt and recast the

resources and consumers, respectively, as. R̂ ¼ R=b and Ĉ ¼ aC=rb.

Following these substitutions, model dynamics are now determined

exclusively by the consumer–resource conversion rate relative to the

resource instantaneous per capita growth rate (/ ¼ ca=r), resource

self-regulation (h ¼ b=K), the consumer per capita mortality rate rel-

ative to the resource instantaneous per capita growth rate

(g ¼ m=r), dispersal relative to the resource instantaneous per capita

growth rate (D̂ ¼ D=r) and the metacommunity dispersal network’s

spatial structure (A). Dropping the hats for convenience, the non-

dimensional form of Equation (1) thus becomes

dR
dt

¼ R 1� hRð Þ � RC
1þ R

þ D
Xn
j¼1

AijRj

dC
dt

¼ /RC
1þ R

� gC þ D
Xn
j¼1

AijCj

(2)

For simplicity, we assume that there is no spatial heterogeneity

in parameter values, meaning that local communities do not differ in

underlying parameter values, only spatial position. Furthermore, dis-

persal rates are assumed to be the same for both consumer and

resource. We revisit these and other assumptions in the Discussion

section.

To focus on the effects of changing spatial structure, we limited

our simulations to parameter values corresponding to high-amplitude

oscillations (/ ¼ 5, h ¼ 0:3, g ¼ 1) used in previous studies of con-

sumer–resource dynamics on spatial networks (Holland & Hastings,

2008). Equation (2) is capable of generating a wide array of dynam-

ics, including stable fixed points, damped oscillations and limit cycles.

The parameter values we chose reflect the case of limit cycles gen-

erated by strong consumption, strong resource self-regulation and

relatively high predator mortality. In nature, these dynamics would

correspond to a consumer–resource system that shows high oscilla-

tory variability in consumers and resources and periodic low popula-

tion sizes, both of which make the system susceptible to extinctions.

Therefore, the parameter range we chose is ideal for evaluating the
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influence of spatial asynchrony on consumer–resource variability and

regional persistence.

2.2 | Spatial network structure

To explore the effects of dendritic spatial structure on consumer–re-

source asynchrony in a maximally simple and manageable context,

we first compared dynamics on a range of deterministically gener-

ated networks (Figure 1). River metacommunities were constructed

as simple branching trees. Each local community was connected to

two upstream communities and one downstream one, except for the

basal community at the river network outflow (the “root” in network

terminology) and the terminal upstream headwater communities (the

“leaves”). The communities in each branching level can be inter-

preted as reaches of similar Strahler stream order; in the determinis-

tic configuration, each community at a given order is the same

distance from the community at the outflow.

To assist in determining properties potentially unique to dendritic

river networks, we compared river metacommunities with (1) linear

metacommunities, where communities arranged in a single line, and

(2) ring-lattice metacommunities, where communities are arranged in

a circle and each is connected to the two closest patches on either

side (Figure 1). The number of local communities in a river metacom-

munity is 2l – 1, where l is the number of levels. We simulated

dynamics on metacommunities of different sizes; those reported

here include metacommunities with 7, 15, 31 and 63 local communi-

ties, which in turn generates metacommunities with three, four, five

and six branching levels, respectively. Linear and ring-lattice meta-

communities were compared with river metacommunities of equiva-

lent local community number.

To confirm results in a slightly more realistic context, we addi-

tionally examined the dynamics of Equation (2) on sets of river

metacommunities with stochastically generated spatial structure.

Multiple replicate stochastic river metacommunities were generated

using an algorithm which begins with a single basal community at

the outflow and iteratively “grows” the network by adding upstream

communities to randomly selected downstream ones. We imposed

the limitation that each local community may only be linked to two

upstream ones. Branching events were determined by comparing

draws from a standard uniform distribution to a given branching

probability. We generated 50 replicates of each of three sets of river

metacommunities with branching probabilities of 0.15, 0.5 and 0.85

(Figure 1). These networks occupy a gradient between in network

shape between the deterministic linear and river graphs: the linear

deterministic metacommunity is one with a branching probability of

0, while the deterministic metacommunity has a branching probabil-

ity of 1. Such structures respectively could serve as first approxima-

tions of more dendritic- to more trellis-shaped drainage networks

(Pidwirny, 2006).

The dynamics of stochastically generated river metacommunities

were then compared to a set of non-dendritic random networks with

the same number (50) of communities produced by the Erd€os–R�enyi

(ER) random graph model, constructed with the Boost Graph Library

in C++ (http://www.boost.org/doc/libs/1_63_0/libs/graph/doc/).

These metacommunities could be considered as terrestrial systems

or the network of dispersal exhibited by aquatic organisms whose

movements are not confined to the wetted channel, such as sala-

manders or insects with a flying adult stage. We set the probability

of a dispersal link between any two communities for non-dendritic

random metacommunities to be that which yields the same number

of connections as a similarly sized river metacommunity; this value is

simply one less than the metacommunity size. Any ER random meta-

communities that were generated with unconnected communities

were discarded. Fifty networks were generated for each level of

branching probability in river metacommunities as well as for the ER

random networks.

2.3 | Simulation methods and analyses

The dynamics of Equation (2) were simulated on the different meta-

community configurations described above using the LSODA differ-

ential equation solver in ODEPACK (https://computation.llnl.gov/ca

sc/odepack/). Dynamics on each of the fifty replicates of each speci-

fic metacommunity structures and for each level of dispersal were

F IGURE 1 Examples of metacommunity spatial configurations
used in this study. Dark circles represent local communities, while
lines represent dispersal connections. Shown are metacommunities
with seven local communities; systems with 7, 15, 31 and 63 were
examined in this study. For stochastic networks, single examples are
shown, although multiple networks were created for each branching
probability used
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simulated twenty times with random initial conditions for each of

the consumer and resource drawn uniformly from the interval [0.2,

1.8]. This range was chosen arbitrarily, although dynamics were fre-

quently in this range and it provided enough variation to promote

asynchrony. Furthermore, the twenty simulations per specific struc-

ture was found to generate representative results when compared

to subsets of cases where more than 20 were used, providing a bal-

ance between replication and computation time. Each simulation

was then run for 20,000 time steps to ensure long-run dynamics

were reached (where a time step is defined as one unit defined by

the dimensional analysis), and then, results from the final 2,000 time

steps were selected for further analysis.

We focused our analyses on two features of metacommunity

dynamics (Figure 2). First, we examined the amount and patterns of

asynchrony observed across metacommunity structures and levels

of dispersal. Because our models are deterministic, we used a strict

definition of synchrony, with patches considered synchronised only

if the abundances of each patch are within 0.01 of each other for

at least the last twenty time steps. While this threshold is slightly

less strict than previous related studies (e.g. Holland & Hastings,

2008), our results were not particularly sensitive to the exact value

chosen.

While dynamics may be asynchronised in a metacommunity, sub-

sets of local communities will synchronise with one another, forming

distinct “clusters.” These local communities in a cluster will be syn-

chronous with each other, but not with communities in other clus-

ters. The number of clusters was identified based on the number of

unique sets of unsynchronised dynamics present within the meta-

community. The number of clusters and the average cluster sizes

were directly related to the number of local communities in the

metacommunity. Therefore, results are presented as the number of

clusters/the metacommunity size.

As dynamics in our models were deterministic, we assessed the

potential relationship between metacommunity asynchrony and ame-

lioration of extinction risk using boundedness of population cycles

away from zero. This metric was calculated by taking the minimum

value of the total regional population of both the consumer and

resource across a given metacommunity during the final 2,000 time

steps.

We explored spatial patterns of asynchrony in the different simu-

lated network types using the coefficient of variation (C.V.) in the

population density of consumer and resources, where the C.V. is

the ratio of standard deviation in population density to the mean of

the same over the given time period. The C.V. was calculated using

the final 2,000 time steps for both consumers and resources in each

local community. Because there was strong and consistent overlap in

the patterns exhibited by resources and consumers in their C.V.s, we

present results for resources only.

3 | RESULTS

3.1 | Dynamics in deterministic metacommunities

Metacommunity size, dispersal rate and spatial configuration all have

strong effects on asynchrony for all parameter ranges examined in

the deterministically generated metacommunities (Figure 3). While

the resulting patterns in observed dynamics are complex and some-

what idiosyncratic to particular combinations of parameters and ini-

tial conditions, generalities do emerge with straightforward

ecological interpretations which we explore below.

Most simulations exhibited asynchrony with varying degrees of

clustering (Figure 3). Synchronous dynamics only emerged in the

smallest metacommunities; these were composed 7 or 15 communi-

ties in all cases with a small percentage of synchronous outcomes

F IGURE 2 Examples of metacommunity dynamics examined in this study. Pictured above are time series for the included river
metacommunity on the right. Only resource dynamics are shown, although corresponding consumer dynamics were also generated. Each time
series in the bottom panel matches the local community with the same colour in the pictured river network. Local communities that share the
same colour in the right-hand network represent “clusters” with synchronised dynamics. The example above has five clusters, noting that some
time series are obscured because their dynamics are very similar to those that are more obviously pictured. The panel above pictures regional
dynamics of the whole metacommunity, calculated as the sum total of individuals in each local community. Asynchrony causes the amplitude
of oscillations to be reduced and minimum population sizes increased when comparing regional dynamics to those of individual local
communities
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occurring for 31 community river networks only. All other simula-

tions showed asynchrony in oscillations among local communities,

although the number synchronised clusters differed dramatically. Lar-

ger metacommunities exhibited greater asynchrony with higher num-

bers of clusters for all spatial configurations and dispersal rates.

Simulations at intermediate levels of dispersal had generally

greater asynchrony and lower clustering than at lower or higher

levels of dispersal (Figure 3). Completely synchronous dynamics were

also confined to the highest dispersal rate used, D = 1 9 10�1 (Fig-

ure 3). At the opposite extreme, the largest metacommunities in all

spatial configurations showed near-complete or complete asynchrony

with no clustering (i.e. every local community is its own cluster) at

intermediate dispersal of D = 1 9 10�2 or D = 1 9 10�3. The mech-

anisms here are largely intuitive: at high dispersal rates, local com-

munities are more effectively “mixed” and therefore synchronised in

their dynamics; at low dispersal rates, there is not enough exchange

to influence local dynamics.

Our simulations demonstrated a tight link between the fre-

quency of asynchrony, numbers of clusters and resource minima in

all scenarios (Figure 3). In cases of complete synchrony, consumer–

resource oscillations were completely in phase and had the same

amplitude in every local community. Without asynchrony in local

dynamics, regional minima are substantially lower, which would

translate into to higher extinction risk in natural populations. In

more asynchronous systems with large numbers of clusters, more

local communities oscillated out-of-sync with one another, leading

to greater regional averaging of dynamics and corresponding

increases in resource population minima. The highest minima

tended to fall around D = 1 9 10�3 where most simulations

showed the highest number of clusters. Declines in minima at

D = 1 9 10�4 corresponded to decreases in clustering in many

cases.

Compared with the effects of metacommunity size and dispersal

rate, the spatial configuration of the metacommunity dispersal

F IGURE 3 Asynchrony in metacommunities with deterministic spatial structures. The state frequency shows differences in the frequency of
observed spatial patterns of asynchrony depending on spatial configuration, metacommunity size and dispersal rate. Asynchrony is classified by
the amount of clustering in the system, ranging for total synchrony, where the number of clusters is 1, to total asynchrony, where the number
of clusters is equal to the number of local communities. Because metacommunities can differ in size, we standardise the amount of clustering
as the number of clusters/metacommunity size n. In the lower panels are corresponding regional population minima, calculated over the last
2,000 time steps of each simulation, where the regional population is the total resource abundance summed across the metacommunity.
Consumers show nearly identical patterns, so only resources are shown. Point colours give the spatial asynchrony pattern that produces the
observed regional resource minimum
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network had more subtle but still important influences on asyn-

chrony and population minima. River metacommunities were the

least prone to high asynchrony, generally showing higher clustering

when asynchronous. Ring lattices in contrast were most prone to

asynchrony. Despite these apparent differences, regional population

minima were similarly high in large systems and at intermediate dis-

persal rates, with little obvious differences in comparison with linear

and ring-lattice systems. At low dispersal, D = 1 9 10�4, river meta-

communities exhibit the largest variation in outcomes, meaning that

the degree of long-term asynchrony is more sensitive to the spatial

pattern of the initial numbers of resources and consumers.

3.2 | Spatial patterns of asynchrony in deterministic
metacommunities

The differences in the frequency of asynchrony and cluster numbers

presented in Figure 3 reflect differences in underlying spatial pat-

terns of asynchrony. The formation of asynchronous patterns proved

quite complex and difficult to predict from specific initial conditions;

oscillations in individual communities can have both differences in

phase and differences in amplitude, and the two are not necessarily

related. Rather than summarising the complexity of these spatial pat-

terns, we concentrate on the coefficient of variation in consumer–re-

source oscillations (Figures 4 and S1). Using this metric, we still can

observe a diversity of different patterns. Yet, some consistent pat-

terns do emerge.

The most consistent spatial pattern that emerges in river net-

work configurations is that outlying boundary communities that are

only connected to one other community have the highest C.V.s (Fig-

ure 4). This pattern also holds true for linear metacommunities,

although the pattern inverts in a small number of these (Figure 1).

The C.V.s of local communities in river configurations largely differ-

entiated by branching level: differences between local communities

within the same branching level were small, with much greater dif-

ferences between local communities in different branching levels

(Figure 4). The greatest differences were between those communi-

ties that were farthest from the outflow and others downstream.

Different specific patterns of asynchrony emerged under the same

dispersal rates, especially at high dispersal in river metacommunities.

While this also occurred in linear and lattice metacommunities, the

differences in spatial patterns were not nearly as great as in river

metacommunities.

F IGURE 4 Example spatial patterns of asynchrony in deterministic river metacommunities. Shown are the most (max.) and least (min.)
asynchronous pattern, measured as the number of clusters, of all patterns observed for each level of dispersal. Colours show the relative
coefficient of variation among patches, with red being the highest variability patch and blue the lowest. Local communities sharing the same
number belong to the same synchronised cluster
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Patterns of asynchrony observed in river metacommunities were

related to spatial patterns in population minima (Figure 5). The min-

ima generally increased with increasing distance from the outflow

community, indicating increasing boundedness from zero and buffer-

ing of population fluctuations due to asynchronous dispersal inputs.

However, the community farthest from the outflow always had the

lowest minimum, a pattern consistent with them having the highest

C.V.s in population fluctuations. Because these communities only

had one dispersal connection to other communities patches, their

dynamics were relatively consistent across simulations with different

metacommunity sizes, being almost indistinguishable among meta-

communities with n = 15 or greater.

3.3 | Dynamics in stochastic metacommunities

Stochastically generated metacommunities showed similar influences

of metacommunity size, dispersal rate and spatial configuration on

asynchrony as with deterministic ones (Figure 6). The influence of

stochastic variation in metacommunity spatial structure on dynamics

is most readily observed in larger system sizes because of the

greater number of possible metacommunity configurations. From

here on, we focus on results from simulations where metacommuni-

ties are composed of n = 31 local communities, although patterns

are consistent across other simulations.

Simulations lead to highly asynchronous outcomes in all cases

except for those with the highest dispersal rates, D = 1 9 10�1 (Fig-

ure 6). At this high dispersal rate, river metacommunities with higher

branching probabilities and ER metacommunities both showed higher

variation in asynchrony outcomes owing to their more complex and

less linear spatial structures. This greater number of observed cluster

solutions corresponded to greater variation in the range of observed

population minima. At lower dispersal rates, particularly

D = 1 9 10�4, these metacommunities showed almost total asyn-

chrony; greater clustering and lower resource population minima

were seen for the most linear river metacommunities with branching

probability .15.

Dynamics were somewhat more asynchronous in stochastically

generated river metacommunities relative to deterministically gener-

ated ones at the same dispersal rates and system sizes (Figures 3

and 6). The diversity of spatial asynchrony patterns appeared be

enhanced in stochastic river metacommunities due to the complexity

of dispersal linkages possible (Figures 4 and 7). While local communi-

ties linked to only one other community still showed the highest

C.V.s, overall patterns and differences between individual communi-

ties are more variable given the spatial complexity of each metacom-

munity’s structure. In some (but certainly not all) cases, individual

branches show high C.V.s in all of the communities that comprise

the branch, with confluences of these highly variable branches show-

ing extensive buffering in the form of much lower C.V.s. Differences

between branches were maintained to the greatest extent in rivers

with high branching order, as these configurations possessed many

more small branches than the more linear-shaped metacommunities

with low branching order.

The relationship between population minima and distance to the

outflow is obscured in stochastically generated river metacommuni-

ties (Figures 7 and S2). There is extensive variation in these patterns

due to grouping many different stochastically generated structures.

The clarity of patterns is therefore reduced because the maximum

distance a patch can be from the outflow is not the same for all

metacommunities with the same branching probability. In compar-

ison with the deterministic river networks, where all terminal

upstream communities are equal in distance from the outflow, an

“upstream” community can be very close or very distant in a

stochastic network.

In stochastic metacommunities, a better predictor of minimum

population size is the “degree” of the local community, that is the

number of other communities it is directly connected to by dispersal

(Figure 8). Communities with degree 1 are the terminal upstream

communities farthest from the outflow and the outflow itself, which

have the lowest minima. This reflects the highest variability (C.V.)

observed in these communities (Figure 7). In contrast, communities

with degree 2 represent confluence communities, which have the

lowest variation (Figure 7) and highest population minima (Figure 8).

Because ER random networks are not constrained to having a den-

dritic spatial structure, they can possess communities with more than

three connections. These communities continue the trend observable

in river networks where a greater number of dispersal connections

increases the population minimum.

4 | DISCUSSION

The branching geometry of river networks has profound influences

on fundamental instream physical and ecological processes (Grant

F IGURE 5 Resource minima vary as a function of distance for
the outflow community in deterministic river metacommunities,
calculated as the number of links. The maximum distance naturally
varies depending on the metacommunity size n. Points shown are
average minima (�SD) calculated in the last 2,000 time steps and
then across all simulations of a given metacommunity size n. Results
are shown for dispersal D = 1 9 10�1 as these had most variability
in asynchrony outcomes
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et al., 2007). Freshwater systems exhibit strong trophic cascades

when compared to other ecosystems (Borer et al., 2005; Shurin

et al., 2002), yet despite this suggestion of consumption as a key

organising process in rivers, the interplay between river network

structure and consumer–resource interactions is not well charac-

terised. We show that dispersal of consumers and resources in

branching river networks can affect the degree of metacommunity

asynchrony and persistence potential using mathematical models

where trophic interactions lead to strong local oscillations. Asyn-

chrony in these oscillations among communities frequently arose in

river metacommunities, particularly in larger systems and at interme-

diate dispersal rates. A major consequence of asynchrony was that

dispersal among communities appeared to buffer consumer and

resource population oscillations, leading regional dynamics to be

bounded further away from zero. While river networks did not con-

sistently exhibit the greatest asynchrony among network types we

examined, the spatial patterns of asynchrony most consistently

observed were unique to river networks and carry important ecologi-

cal implications, which we explore below.

The most consistent pattern of spatial asynchrony that we

observed in river networks was one where the highest population

variability occurred in terminal upstream communities, which,

because of their position, are most analogous to headwater commu-

nities in actual rivers. While nearby headwaters were sometimes

clustered with each other, they would also oscillate asynchronously

from one another and from communities at branch junctions. Disper-

sal from asynchronously oscillating terminal upstream communities

tended to strongly buffer dynamics in communities at branch junc-

tions, leading to lower variability and higher boundedness from zero

in consumer and resource populations. Patterns were most distinc-

tive in deterministically generated river networks; yet high headwa-

ter variability and buffering in junctions were also consistently

observed in stochastically generated ones, suggesting these dynam-

ics are robust. Similar results have been observed in models (Carrara

F IGURE 6 Examples of asynchrony in
metacommunities with stochastic spatial
structures. Asynchrony and resource
minima are defined as in Figure 3. Results
are shown for ER random
metacommunities and river
metacommunities with n = 31 local
communities
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et al., 2012; Fronhofer & Altermatt, 2017; Yeakel et al., 2014) and

microcosm experiments (Altermatt & Fronhofer, 2018; Carrara et al.,

2012). These previous studies have focused on analogous outcomes

as averaging of noisy population dynamics, whereas the dynamics

we observed are deterministic oscillations that are generated from

density-dependent feedbacks among consumers and resources rather

than variability arising from processes such as demographic or envi-

ronmental stochasticity. Spatial averaging of noisy dynamics does

not cause changes in consumer–resource feedbacks in our local com-

munities. Rather, it is the interaction of dispersal and nonlinear con-

sumer–resource interactions that generates the wide variety of

spatial dynamics in this study (Briggs & Hoopes, 2004; de Roos,

F IGURE 7 Example spatial patterns of asynchrony in stochastic river metacommunities for different levels of branching probability.
Measures are as defined in Figure 4. Shown are example river metacommunities generated for n = 31 and D = 1 9 10�1

F IGURE 8 Resource minima as a
function of the degree, or number of
connections, that a community has with
other communities in stochastic river
metacommunities. Points shown average
minima (�SD) calculated in the last 2,000
time steps and then across all simulations
of metacommunities with n = 31 and the
given branching probability. Results are
again shown for dispersal D = 1 9 10�1
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McCauley, & Wilson, 1998). This suggests the spatial patterns of

asynchrony we observed are generalisable across a wide range of

ecological conditions and interactions in branching networks.

High variability in headwater streams versus mainstem habitats

has been observed in a wide range of ecological contexts. Population

fluctuations and/or variable colonisation–extinction dynamics have

been implicated in high genetic diversity in headwater populations

(Besemer et al., 2013; Finn, Bonada, Murria, & Hughes, 2011), spatial

portfolio effects in fish populations (Moore et al., 2015), higher

b-diversity among headwaters (Besemer et al., 2013; Carrara et al.,

2012; Finn et al., 2011; Seymour & Altermatt, 2014; Seymour

et al., 2015) and altered patterns of species co-occurrence (Widder

et al., 2014). The role of consumer–resource interactions in the pat-

terns above has not however been explored. Our results show that

because consumer–resource oscillations can generate population

variation, they could be a strong potential contributor to all of these

contexts. Terminal upstream communities most analogous to head-

waters show the greatest overall variability as well as populations

sizes that approach closer to zero in our models. Because higher

variability and lower population minima should result in higher

extinction rates in real populations, our modelling results are consis-

tent with the extinction/colonisation dynamics hypothesised for pro-

ducing high genetic and species turnover in headwater versus

mainstem communities (Brown et al., 2011).

Many of the patterns observed in headwaters are potentially

altered by out-of-network movement which can be high in some

insects and vertebrates (Grant et al., 2007; Yeakel et al., 2014). For

example, Lowe (2002) found that out-of-network dispersal stabilised

headwater populations in a metapopulation model (see also Camp-

bell Grant, Nichols, Lowe, & Fagan, 2010). For organisms with high

out-of-network dispersal, dynamics would most resemble those of

ER random networks where differences in the contributions of local

communities to regional dynamics are less consistently dramatic.

However, ER metacommunities in our study still exhibited substan-

tial asynchrony and regional averaging of dynamics.

Different locations in river networks may of course exhibit

quite distinct abiotic environmental conditions, a factor that we did

not explore here. Headwaters in particular may have increased

flow variability and otherwise more unique environmental abiotic

conditions (Benda et al., 2004; Brown & Swan, 2010; Clarke, Mac,

Bond, & Lake, 2008; Meyer et al., 2007). Because of this, such

sites have been argued to be subject to higher environmental fil-

tering or species sorting (Brown & Swan, 2010; Brown et al.,

2011). Mainstems in contrast are more connected in a network

sense and may have more buffered environments, leading to larger

dispersal-influenced mass effects dynamics. Additionally, headwater

habitats may be smaller, have lower autochthonous production and

exist upstream of passage barriers, all together with high variability

leading to lowered consumption pressure (McHugh, McIntosh, &

Jellyman, 2010; Meyer et al., 2007; Sabo, Finlay, Kennedy, & Post,

2010; Vannote, Minshall, Cummins, Sedell, & Cushing, 1980).

Despite not including underlying environmental heterogeneity in

our model, we do still observe stronger dispersal influences and

lower variability in headwaters versus mainstems. How these pat-

terns might be altered by added environmental variability is

unclear.

Spatial and temporal variability is easily introduced to Equa-

tion (1) by making parameters such as the resource carrying capacity

K, consumer attack rate a or dispersal rate D dependent on location

i and time t (note that doing this leads to alternative forms of Equa-

tion (2)). The effects of doing this will likely depend on where in the

system different rates occur and the effects they have on local oscil-

latory tendency. For example, lowering enrichment by reducing the

value of the carrying capacity K or consumption pressure in the

attack rate a could locally reduce the tendency for consumer–re-

source oscillations (Murdoch et al., 2003). Upstream habitats that

show reduced oscillations and greater species persistence may then

increase rescue effects on downstream habitats. In contrast, oscilla-

tions and subsequent extinctions could actually be increased in

mainstem habitats by build-up of nutrients and other resources that

increase the value of K at network junctions (Power & Dietrich,

2002); spatial spread of consumer–resource oscillations initiated at

these sites through dispersal could increase variability in otherwise

stable upstream habitats. Studies examining the effects of spatial

heterogeneity on persistence in rivers have examined gradients

(Lutscher, McCauley, & Lewis, 2007) or patchy variability (Lutscher,

Lewis, & McCauley, 2006; McKenzie, Jin, Jacobsen, & Lewis, 2012),

although typically not in a network context (but see Auerbach &

Poff, 2011) or in consumer–resource systems. Upstream habitats can

in some cases lead to refuges for prey or weak competitors in these

previous studies, although patchy variability can lead to weakened

persistence depending on the relative quality of different patches.

The lack of clear expectations arising from previous work therefore

argues for the importance of integrating spatial heterogeneity into

river network models.

The asynchronous spatial dynamics exhibited by our models are

an example of ecological pattern formation (Kareiva, Mullen, &

Southwood, 1990; Rietkerk & Van De Koppel, 2008). In ecological

pattern formation, a small perturbation to an otherwise homogenous

system grows into a persistent, spatially heterogeneous distribution

of organisms and/or their resources. Pattern formation occurs in the

system described by Equation (2) because of its oscillatory tendency

in the absence dispersal, leading to a particular form of travelling

wave spatial pattern formation where asynchrony in local oscillations

travels as “waves” of population density through the system (Yang,

Zhabotinsky, & Epstein, 2004). The interaction of dispersal with non-

linear feedbacks between resource consumption and the consumer

numerical response alters the shape of oscillations, causing them to

diverge in period or amplitude in such a way that generates persis-

tently asynchronous fluctuations among sites. Such patterns of spa-

tially asynchronous population fluctuations in consumer–resource

systems have been observed experimentally, typically increasing pop-

ulation persistence (Ellner et al., 2001; Holyoak, 2000; Holyoak &

Lawler, 1996; Liebhold et al., 2004).

Other mechanisms of spatial pattern formation that are relevant

to river networks have been described that do not rely on systems
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that oscillate in the absence of dispersal to form (Liu et al., 2013;

Rietkerk & Van De Koppel, 2008; Wolfrum, 2012). For example, spa-

tial asynchrony can still arise in cases of three or more interacting

species as a result of Turing-type mechanisms where local inhibition

(e.g. consumption and density dependence) and long-distance activa-

tion (e.g. dispersal) can lead to spatial pattern formation (Hata,

Nakao, & Mikhailov, 2014). Three trophic-level food webs (e.g. algal

resources ? insect grazers ? fish) are not uncommon in freshwater

systems, providing ample opportunities for complex spatial patterns

to arise by Turing mechanisms. Additionally, spatial pattern forma-

tion can arise due to “convective instabilities” wherein directional

biases in dispersal or flow lead to spatial phase separation in oscilla-

tions among interacting populations (Anderson, Hilker, & Nisbet,

2012; Liu et al., 2013). We currently do not include directional dis-

persal in our model here; doing so would require reformulating the

matrix A to be no longer symmetric. The strong unidirectional flow

of water and materials in streams and rivers generates a perfect con-

text for flow-based instabilities, although the sensitivity of these

types of mechanisms to network connectivity and configuration is

unknown.

The spatial complexity of our results demonstrates the impor-

tance of considering metacommunity dynamics in freshwater ecology

and conservation. Despite each consumer and resource sharing iden-

tical parameter values to those in all other communities, they gener-

ated quite different dynamics depending dispersal rates, the amount

of connectivity to other local communities, and their position within

the river network. Thus, when species interactions are capable of

generating emergent properties such as spatial asynchrony, using the

behaviour of local communities to inform management outcomes

can be misleading. Many previous studies have explored colonisa-

tion–extinction dynamics in regional population persistence, focusing

on the importance of dispersal routes promoting persistence and the

consequences of altering connectivity in river networks (Campbell

Grant et al., 2010; Fagan, 2002; Lowe, 2002; Lowe & Bolger, 2002;

Lynch et al., 2011; McKay, Schramski, Conyngham, & Fischenich,

2013; Samia, Lutscher, & Hastings, 2015). However, to our knowl-

edge there has been no study of river networks that has considered

dynamics that can arise in consumer–resource metacommunities,

especially with emphasis on emergent regional patterns and the sen-

sitivity of these to river network configuration. Our results show

that even when both resources and consumers are distributed across

a river network, asynchrony in their metacommunity dynamics can

lead to spatial differences in variability and susceptibility to local

extinction. Maintaining connectivity of headwaters to other habitats

appears particularly necessary: without robust connection to the

river network, recolonisation or rescue effects may not occur in pro-

tected or restored headwater reaches. Given the wide range of asyn-

chrony outcomes observed in our simulations, altering dispersal

pathways and network configuration (e.g. through dams or habitat

destruction) could alter these patterns in unexpected ways. Thus,

exploring the large range of dynamic outcomes possible in spatially

complex river metacommunities can lead to more robust decision-

making in the face of environmental change.

ACKNOWLEDGMENTS

The authors thank Bryan Brown, Robert Carlson, Scott Manifold,

Jonathan Sarhad, Eric Sokol and Christopher Swan for inspiring con-

versations regarding ecological dynamics on river networks. Florian

Altermatt and two anonymous reviewers provided helpful comments

that improved the manuscript. Funding support was provided by

NSF grant DEB-1553718 to KEA and from the County of Riverside

through the Shipley Skinner Endowment to SMH and KEA.

ORCID

Kurt E. Anderson http://orcid.org/0000-0003-0773-3779

REFERENCES

Altermatt, F., & Fronhofer, E. A. (2018). Dispersal in dendritic networks:

Ecological consequences on the spatial distribution of population densi-

ties. Freshwater Biology, 63, 22–32. https://doi.org/10.1111/fwb.12951

Anderson, K. E., Hilker, F. M., & Nisbet, R. M. (2012). Directional biases

and resource-dependence in dispersal generate spatial patterning in a

consumer-producer model. Ecology Letters, 15, 209–217.

Auerbach, D. A., & Poff, N. L. (2011). Spatiotemporal controls of simu-

lated metacommunity dynamics in dendritic networks. Journal of the

North American Benthological Society, 30, 235–251.

Bassar, R. D., Marshall, M. C., L�opez-Sepulcre, A., Zandon�a, E., Auer, S.

K., Travis, J., . . . Reznick, D. N. (2010). Local adaptation in Trinidadian

guppies alters ecosystem processes. Proceedings of the National Acad-

emy of Sciences of the United States of America, 107, 3616–3621.

Benda, L. E. E., Poff, N. L., Miller, D., Dunne, T., Reeves, G., Pess, G., &

Pollock, M. (2004). The network dynamics hypothesis: How channel

networks structure riverine habitats. BioScience, 54, 413–427.

Besemer, K., Singer, G., Quince, C., Bertuzzo, E., Sloan, W., & Battin, T. J.

(2013). Headwaters are critical reservoirs of microbial diversity for

fluvial networks. Proceedings of the Royal Society B: Biological Sciences,

280, 20131760.

Borer, E. T., Seabloom, E. W., Shurin, J. B., Anderson, K. E., Blanchette, C.

A., Broitman, B., . . . Halpern, B. S. (2005). What determines the

strength of a trophic cascade? Ecology, 86, 528–537.

Briggs, C. J., & Hoopes, M. F. (2004). Stabilizing effects in spatial para-

sitoid-host and predator-prey models: A review. Theoretical Population

Biology, 65, 299–315.

Brown, J. H., & Kodric-Brown, A. (1977). Turnover rates in insular bio-

geography: Effect of immigration on extinction. Ecology, 58, 445–449.

Brown, B. L., & Swan, C. M. (2010). Dendritic network structure con-

strains metacommunity properties in riverine ecosystems. Journal of

Animal Ecology, 79, 571–580.

Brown, B. L., Swan, C. M., Auerbach, D. A., Grant, E. H. C., Hitt, N. P.,

Maloney, K. O., & Patrick, C. (2011). Metacommunity theory as a

multispecies, multiscale framework for studying the influence of river

network structure on riverine communities and ecosystems. Journal

of the North American Benthological Society, 30, 310–327.

Cadotte, M. W. (2006). Metacommunity influences on community rich-

ness at multiple spatial scales: A microcosm experiment. Ecology, 87,

1008–1016.

Campbell Grant, E. H., Nichols, J. D., Lowe, W. H., & Fagan, W. F. (2010).

Use of multiple dispersal pathways facilitates amphibian persistence

in stream networks. Proceedings of the National Academy of Sciences

of the United States of America, 107, 6936–6940.

Carrara, F., Altermatt, F., Rodriguez-Iturbe, I., & Rinaldo, A. (2012). Den-

dritic connectivity controls biodiversity patterns in experimental

ANDERSON AND HAYES | 111

http://orcid.org/0000-0003-0773-3779
http://orcid.org/0000-0003-0773-3779
http://orcid.org/0000-0003-0773-3779
https://doi.org/10.1111/fwb.12951


metacommunities. Proceedings of the National Academy of Sciences of

the United States of America, 109, 5761–5766.

Carrara, F., Rinaldo, A., Giometto, A., & Altermatt, F. (2014). Complex

interaction of dendritic connectivity and hierarchical patch size on

biodiversity in river-like landscapes. The American Naturalist, 183, 13–

25.

Chase, J. M., Abrams, P. A., Grover, J. P., Diehl, S., Chesson, P., Holt, R.

D., . . . Case, T. J. (2002). The interaction between predation and

competition: A review and synthesis. Ecology Letters, 5, 302–315.

Chisholm, C., Lindo, Z., & Gonzalez, A. (2011). Metacommunity diversity

depends on connectivity and patch arrangement in heterogeneous

habitat networks. Ecography, 34, 415–424.

Clarke, A., Mac, Nally. R., Bond, N., & Lake, P. S. (2008). Macroinverte-

brate diversity in headwater streams: A review. Freshwater Biology,

53, 1707–1721.

Cuddington, K., & Yodzis, P. (2002). Predator-prey dynamics and move-

ment in fractal environments. The American Naturalist, 160, 119–134.

de Roos, A. M., McCauley, E., & Wilson, W. G. (1998). Pattern formation

and the spatial scale of interaction between predators and their prey.

Theoretical Population Biology, 53, 108–130.

Ellner, S. P., McCauley, E., Kendall, B. E., Briggs, C. J., Hosseini, P. R.,

Wood, S. N., . . . Murdoch, W. W. (2001). Habitat structure and popu-

lation persistence in an experimental community. Nature, 412, 538–

543.

Fagan, W. F. (2002). Connectivity, fragmentation, and extinction risk in

dendritic metapopulations. Ecology, 83, 3243–3249.

Finn, D. S., Bonada, N., Murria, C., & Hughes, J. M. (2011). Small but

mighty: Headwaters are vital to stream network biodiversity at two

levels of organization. Journal of the North American Benthological

Society, 30, 963–980.

Fronhofer, E. A., & Altermatt, F. (2017). Classical metapopulation dynam-

ics and eco-evolutionary feedbacks in dendritic networks. Ecography,

doi:10.1111/ecog.02761.

Gilarranz, L. J., & Bascompte, J. (2012). Spatial network structure and

metapopulation persistence. Journal of Theoretical Biology, 297, 11–

16.

Gouhier, T. C., Guichard, F., & Gonzalez, A. (2010). Synchrony and stabil-

ity of food webs in metacommunities. The American Naturalist, 175,

E16–E34.

Grant, E. H. C., Lowe, W. H., & Fagan, W. F. (2007). Living in the

branches: Population dynamics and ecological processes in dendritic

networks. Ecology Letters, 10, 165–175.

Hairston, N. G. Jr, & Hairston, N. G. Sr (1993). Cause-effect relationships

in energy flow, trophic structure, and interspecific interactions. The

American Naturalist, 142, 379–411.

Hastings, A. (1993). Complex interactions between dispersal and dynam-

ics: Lessons from coupled logistic equations. Ecology, 74, 1362–1372.

Hata, S., Nakao, H., & Mikhailov, A. S. (2014). Dispersal-induced destabi-

lization of metapopulations and oscillatory Turing patterns in ecologi-

cal networks. Scientific Reports, 4, 3585.

Holland, M. D., & Hastings, A. (2008). Strong effect of dispersal network

structure on ecological dynamics. Nature, 456, 792–794.

Holyoak, M. (2000). Habitat patch arrangement and metapopulation per-

sistence of predators and prey. The American Naturalist, 156, 378–

389.

Holyoak, M., & Lawler, S. P. (1996). Persistence of an extinction-prone

predator-prey interaction through metapopulation dynamics. Ecology,

77, 1867–1879.

Holyoak, M., Leibold, M. A., & Holt, R. D. (2005). Metacommunities: Spa-

tial dynamics and ecological communities. Chicago, IL: University of

Chicago Press.

Howeth, J. G., & Leibold, M. A. (2010). Species dispersal rates alter diver-

sity and ecosystem stability in pond metacommunities. Ecology, 91,

2727–2741.

Kareiva, P., Mullen, A., & Southwood, R. (1990). Population dynamics

in spatially complex environments: Theory and data [and

discussion]. Philosophical Transactions: Biological Sciences, 330, 175–

190.

Kneitel, J. M., & Miller, T. E. (2003). Dispersal rates affect species compo-

sition in metacommunities of Sarracenia purpurea inquilines. The

American Naturalist, 162, 165–171.

Koelle, K., & Vandermeer, J. (2005). Dispersal-induced desynchronization:

From metapopulations to metacommunities. Ecology Letters, 8, 167–

175.

Labonne, J., Ravigne, V., Parisi, B., & Gaucherel, C. (2008). Linking den-

dritic network structures to population demogenetics: The downside

of connectivity. Oikos, 117, 1479–1490.

Leibold, M. A., Holyoak, M., Mouquet, N., Amarasekare, P., Chase, J. M.,

Hoopes, M. F., . . . Gonzalez, A. (2004). The metacommunity concept:

A framework for multi-scale community ecology. Ecology Letters, 7,

601–613.

Liebhold, A., Koenig, W. D., & Bjornstad, O. N. (2004). Spatial synchrony

in population dynamics. Annual Review of Ecology Evolution and Sys-

tematics, 35, 467–490.

Liu, Q.-X., Doelman, A., Rottsch€afer, V., De Jager, M., Herman, P. M. J.,

Rietkerk, M., & Van De Koppel, J. (2013). Phase separation explains a

new class of self-organized spatial patterns in ecological systems. Pro-

ceedings of the National Academy of Sciences of the United States of

America, 110, 11905–11910.

Loreau, M. (2010). From populations to ecosystems. Princeton, NJ: Prince-

ton University Press.

Lowe, W. H. (2002). Landscape-scale spatial population dynamics in

human-impacted stream systems. Environmental Management, 30,

225–233.

Lowe, W. H., & Bolger, D. T. (2002). Local and landscape-scale predictors

of salamander abundance in new hampshire headwater streams. Con-

servation Biology, 16, 183–193.

Lutscher, F., Lewis, M. A., & McCauley, E. (2006). Effects of heterogene-

ity on spread and persistence in rivers. Bulletin of Mathematical Biol-

ogy, 68, 2129–2160.

Lutscher, F., McCauley, E., & Lewis, M. A. (2007). Spatial patterns and

coexistence mechanisms in systems with unidirectional flow. Theoreti-

cal Population Biology, 71, 267–277.

Lynch, H. J., Grant, E. H. C., Muneepeerakul, R., Arunachalam, M., Rodri-

guez-Iturbe, I., & Fagan, W. F. (2011). How restructuring river con-

nectivity changes freshwater fish biodiversity and biogeography.

Water Resources Research, 47, W05531.

Marleau, J. N., Guichard, F., & Loreau, M. (2014). Meta-ecosystem

dynamics and functioning on finite spatial networks. Proceedings of

the Royal Society B: Biological Sciences, 281, 20132094.

Maser, G. L., Guichard, F., & McCann, K. S. (2007). Weak trophic interac-

tions and the balance of enriched metacommunities. Journal of Theo-

retical Biology, 247, 337–345.

McCluney, K. E., Poff, N. L., Palmer, M. A., Thorp, J. H., Poole, G. C., Wil-

liams, B. S., . . . Baron, J. S. (2014). Riverine macrosystems ecology:

Sensitivity, resistance, and resilience of whole river basins with

human alterations. Frontiers in Ecology and the Environment, 12, 48–

58.

McHugh, P. A., McIntosh, A. R., & Jellyman, P. G. (2010). Dual influences

of ecosystem size and disturbance on food chain length in streams.

Ecology Letters, 13, 881–890.

McIntyre, P. B., Jones, L. E., Flecker, A. S., & Vanni, M. J. (2007). Fish

extinctions alter nutrient recycling in tropical freshwaters. Proceedings

of the National Academy of Sciences of the United States of America,

104, 4461–4466.

McKay, S. K., Schramski, J. R., Conyngham, J. N., & Fischenich, J. C.

(2013). Assessing upstream fish passage connectivity with network

analysis. Ecological Applications, 23, 1396–1409.

112 | ANDERSON AND HAYES

https://doi.org/10.1111/ecog.02761


McKenzie, H. W., Jin, Y., Jacobsen, J., & Lewis, M. A. (2012). R0 analysis

of a spatiotemporal model for a stream population. SIAM Journal on

Applied Dynamical Systems, 11, 567–596.

Meyer, J. L., Strayer, D. L., Wallace, J. B., Eggert, S. L., Helfman, G. S., &

Leonard, N. E. (2007). The contribution of headwater streams to bio-

diversity in river networks. Journal of the American Water Resources

Association, 43, 86–103.

Moore, J. W., Beakes, M. P., Nesbitt, H. K., Yeakel, J. D., Patterson, D. A.,

Thompson, L. A., . . . Atlas, W. I. (2015). Emergent stability in a large,

free-flowing watershed. Ecology, 96, 340–347.

Mouquet, N., & Loreau, M. (2003). Community patterns in source-sink

metacommunities. The American Naturalist, 162, 544–557.

Muneepeerakul, R., Weitz, J. S., Levin, S. A., Rinaldo, A., & Rodriguez-

Iturbe, I. (2007). A neutral metapopulation model of biodiversity in

river networks. Journal of Theoretical Biology, 245, 351–363.

Murdoch, W. W. (1994). Population regulation in theory and practice.

Ecology, 75, 272–287.

Murdoch, W. W., Briggs, C. J., & Nisbet, R. M. (2003). Consumer-resource

dynamics. Princeton, NJ: Princeton University Press.

Padgham, M., & Webb, J. A. (2010). Multiple structural modifications to

dendritic ecological networks produce simple responses. Ecological

Modelling, 221, 2537–2545.

Paradis, E., Baillie, S. R., Sutherland, W. J., & Gregory, R. D. (1999). Dis-

persal and spatial scale affect synchrony in spatial population dynam-

ics. Ecology Letters, 2, 114–120.

Pidwirny, M. (2006). The drainage basin concept. In Fundamentals of

physical geography, 2nd ed. Retrieved from http://www.physicalgeog

raphy.net/fundamentals/10aa.html

Pillai, P., Gonzalez, A., & Loreau, M. (2011). Metacommunity theory

explains the emergence of food web complexity. Proceedings of the

National Academy of Sciences of the United States of America, 108,

19293–19298.

Power, M. E., & Dietrich, W. E. (2002). Food webs in river networks. Eco-

logical Research, 17, 451–471.

Rietkerk, M., & Van De Koppel, J. (2008). Regular pattern formation in

real ecosystems. Trends In Ecology & Evolution, 23, 169–175.

Rodriguez-Iturbe, I., & Rinaldo, A. (1997). Fractal river basins: Chance and

self-organisation. Cambridge: Cambridge University Press.

Rosenzweig, M. L., & Macarthur, R. H. (1963). Graphical representation

and stability conditions of predator-prey interactions. The American

Naturalist, 97, 209–223.

Sabo, J. L., Finlay, J. C., Kennedy, T., & Post, D. M. (2010). The role of

discharge variation in scaling of drainage area and food chain length

in rivers. Science, 330, 965–967.

Samia, Y., Lutscher, F., & Hastings, A. (2015). Connectivity, passability and

heterogeneity interact to determine fish population persistence in

river networks. Journal of the Royal Society Interface, 12, 20150435.

Sarhad, J., & Anderson, K. E. (2015). Modeling population persistence in

continuous aquatic networks using metric graphs. Fundamental and

Applied Limnology, 186, 135–152.

Sarhad, J., Carlson, R., & Anderson, K. E. (2014). Population persistence

in river networks. Journal of Mathematical Biology, 69, 401–448.

Sarhad, J., Manifold, S., & Anderson, K. E. (2017). Geometric indicators of

population persistence in branching continuous-space networks.

Journal of Mathematical Biology, 74, 981–1009.

Seymour, M., & Altermatt, F. (2014). Active colonization dynamics

and diversity patterns are influenced by dendritic network

connectivity and species interactions. Ecology and Evolution, 4,

1243–1254.

Seymour, M., Fronhofer, E. A., & Altermatt, F. (2015). Dendritic network

structure and dispersal affect temporal dynamics of diversity and spe-

cies persistence. Oikos, 124, 908–916.

Shurin, J. B., Borer, E. T., Seabloom, E. W., Anderson, K., Blanchette, C.

A., Broitman, B., . . . Halpern, B. S. (2002). A cross-ecosystem compar-

ison of the strength of trophic cascades. Ecology Letters, 5, 785–791.

Steiner, C. F., Stockwell, R. D., Kalaimani, V., & Aqel, Z. (2011). Dispersal

promotes compensatory dynamics and stability in forced metacom-

munities. The American Naturalist, 178, 159–170.

Steiner, C. F., Stockwell, R. D., Kalaimani, V., & Aqel, Z. (2013). Popula-

tion synchrony and stability in environmentally forced metacommuni-

ties. Oikos, 122, 1195–1206.

Strogatz, S. H. (2001). Exploring complex networks. Nature, 410, 268–

276.

Urban, D. L., Minor, E. S., Treml, E. A., & Schick, R. S. (2009). Graph mod-

els of habitat mosaics. Ecology Letters, 12, 260–273.

Vannote, R. L., Minshall, G. W., Cummins, K. W., Sedell, J. R., & Cushing,

C. E. (1980). The river continuum concept. Canadian Journal of Fish-

eries and Aquatic Sciences, 37, 130–137.

Vanschoenwinkel, B., De Vries, C., Seaman, M., & Brendonck, L. (2007).

The role of metacommunity processes in shaping invertebrate rock

pool communities along a dispersal gradient. Oikos, 116, 1255–1266.

Vasseur, D. A., & Fox, J. W. (2009). Phase-locking and environmental

fluctuations generate synchrony in a predator-prey community. Nat-

ure, 460, 1007–1010.

Widder, S., Besemer, K., Singer, G. A., Ceola, S., Bertuzzo, E., Quince, C.,

. . . Battin, T. J. (2014). Fluvial network organization imprints on

microbial co-occurrence networks. Proceedings of the National

Academy of Sciences of the United States of America, 111, 12799–

12804.

Wolfrum, M. (2012). The Turing bifurcation in network systems: Collec-

tive patterns and single differentiated nodes. Physica D: Nonlinear

Phenomena, 241, 1351–1357.

Yang, L. F., Zhabotinsky, A. M., & Epstein, I. R. (2004). Stable squares and

other oscillatory Turing patterns in a reaction-diffusion model. Physi-

cal Review Letters, 92, 198303.

Yeakel, J. D., Moore, J. W., Guimaraes, P. R., & De Aguiar, M. A. M.

(2014). Synchronisation and stability in river metapopulation net-

works. Ecology Letters, 17, 273–283.

SUPPORTING INFORMATION

Additional Supporting Information may be found online in the sup-

porting information tab for this article.

How to cite this article: Anderson KE, Hayes SM. The effects

of dispersal and river spatial structure on asynchrony in

consumer–resource metacommunities. Freshwater Biol.

2018;63:100–113. https://doi.org/10.1111/fwb.12998

ANDERSON AND HAYES | 113

http://www.physicalgeography.net/fundamentals/10aa.html
http://www.physicalgeography.net/fundamentals/10aa.html
https://doi.org/10.1111/fwb.12998


Low C.V. High C.V.

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

M
ax

 A
sy

nc
hr

on
y

0
1
2
3
4
5
6
7
7
6
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

M
in

 A
sy

nc
hr

on
y

1e-1

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

1e-2

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

0
1
2
3
4
5
6
7
8
9
10
11
12
13
12
11
16
17
18
19
20
21
22
12
24
25
26
27
28
29
30

1e-3

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0

1e-4
Dispersal Rate D



Low C.V. High C.V.

000
0

0
0

0

0

0

0

0

0
0
0

0 0 0 0
0

0
0

0

0

0

0

0

0

0
0

0
0

M
ax

 A
sy

nc
hr

on
y

000
0

0
0

0

0

0

0

0

0
0
0

0 0 0 0
0

0
0

0

0

0

0

0

0

0
0

0
0

M
in

 A
sy

nc
hr

on
y

1e-1

012
3

4
5

6

7

8

9

10

11
12
13

14 15 16 17
18

19
20

21

22

23

24

25

26

27
28

29
30

012
3

4
5

6

7

7

9

10

11
12
13

14 15 16 17
18

19
20

21

22

23

24

25

26

27
28

29
30

1e-2

012
3

4
5

6

7

8

9

10

11
12
13

14 15 16 17
18

19
20

21

22

23

24

25

26

27
28

29
30

012
3

4
5

6

7

8

9

10

8
12
13

14 15 16 17
18

19
20

21

22

23

24

25

26

27
28

29
30

1e-3

012
3

4
5

6

7

8

9

10

11
12
13

14 15 16 17
18

19
20

21

22

23

24

25

26

27
28

29
30

011
0

0
1

1

0

0

1

1

0
0
13

1 15 16 17
18

19
18

17

16

15

1

13

0

0
1

1
0

1e-4

Dispersal



-4
.0

-3
.5

-3
.0

-2
.5

-2
.0

Distance of Local Community from Outflow

lo
g1

0(
R

es
ou

rc
e 

M
in

im
a)

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

0.15 Branching
0.5 Branching
0.85 Branching



Figure S1. Example spatial patterns of asynchrony in deterministic a) linear and b) ring 
lattice metacommunities. Shown the most (max.) and least (min.) asynchronous pattern, 
measured as the number of clusters, of all patterns observed for each level of dispersal. 
Colors show the relative coefficient of variation among patches, with red being the 
highest variability patch and blue the lowest.  

Figure S2. Resource minima as a function of distance from the outflow community in 
stochastic river metacommunities. Points shown average minima (+/- SD) calculated in 
the last 2000 time steps and then across all simulations of metacommunities with n = 31 
and the given branching probability. Results are again shown for dispersal D = 1 × 10-1. 
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