
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Effects of Processing Dynamics on Social Perception, Judgment, and Action

Permalink
https://escholarship.org/uc/item/39m3g2xk

Author
Carr, Evan Walker

Publication Date
2016
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/39m3g2xk
https://escholarship.org
http://www.cdlib.org/


 

 

UNIVERSITY OF CALIFORNIA, SAN DIEGO 

 

 

 

 

 

Effects of Processing Dynamics on Social Perception, Judgment, and Action 

 

 

 

 

 

A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of 

Philosophy 

 

 

in 

 

  

Psychology and Cognitive Science 

 

 

by 

 

 

Evan Walker Carr 

 

 

 

 

Committee in charge: 

 

Professor Piotr Winkielman, Chair  

Professor David Barner 

Professor Seana Coulson 

Professor Craig R. M. McKenzie 

Professor Christopher Oveis 

 

 

 

 

2016 



 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

© 
 

Evan Walker Carr, 2016 

 
All rights reserved. 



iii 

The Dissertation of Evan Walker Carr is approved, and it is acceptable in 

 

quality and form for publication on microfilm and electronically: 

 

 

 

 

___________________________________________________________ 

 

 

 

___________________________________________________________ 

 

 

 

___________________________________________________________ 

 

 

 

___________________________________________________________ 

 

 

 

___________________________________________________________ 

 

 Chair 

 
 
 
 

 

University of California, San Diego 

 

2016



iv 

DEDICATION 
 

For all those that have helped to mold my mind over the past 5 years. 

 

Credit:  http://xkcd.com/242/ 

 



v 

TABLE OF CONTENTS 

 

Signature Page  ..............................................................................................................................  iii 

Dedication  .....................................................................................................................................  iv 

Table of Contents  ...........................................................................................................................  v 

List of Figures  ...............................................................................................................................  vi 

List of Tables  ..............................................................................................................................  viii 

Acknowledgements  .......................................................................................................................  ix 

Vita ................................................................................................................................................  xi 

Abstract of the Dissertation ..........................................................................................................  xii 

General Introduction  ......................................................................................................................  1 

References  .......................................................................................................................  10 

Chapter 1:  The ugliness-in-averageness effect: Tempering the warm glow of familiarity  .........  14 

Abstract  ...........................................................................................................................  15 

Introduction  .....................................................................................................................  16 

Experiment 1  ...................................................................................................................  28 

Experiment 2  ...................................................................................................................  32 

Experiment 3  ...................................................................................................................  44 

Experiment 4  ...................................................................................................................  54 

Discussion  .......................................................................................................................  64 

References  .......................................................................................................................  70 

Chapter 2: Are you smiling or have I seen you before? Familiarity makes faces look  

happier  ......................................................................................................................  77 

Abstract  ...........................................................................................................................  78 

Introduction  .....................................................................................................................  79 

Experiment 1  ...................................................................................................................  82 

Experiment 2  ...................................................................................................................  90 

Discussion  .....................................................................................................................  101 

References  .....................................................................................................................  104 

Chapter 3: Is that a human? Categorization (dis)fluency drives evaluations of agents  

ambiguous on human-likeness  ...............................................................................  107 

Abstract  .........................................................................................................................  108 

Introduction  ...................................................................................................................  109 

Experiment 1  .................................................................................................................  114 

Experiment 2  .................................................................................................................  122 

Experiment 3  .................................................................................................................  131 

Discussion  .....................................................................................................................  137 

References  .....................................................................................................................  144 

Chapter 4: Easy moves: Perceptual fluency facilitates approach-related action  ......................  149 

Abstract  .........................................................................................................................  150 

Introduction  ...................................................................................................................  150 

Experiment 1  .................................................................................................................  152 

Experiment 2  .................................................................................................................  154 

Experiment 3  .................................................................................................................  155 

Experiment 4  .................................................................................................................  156 

Discussion  .....................................................................................................................  158 

References  .....................................................................................................................  160 

General Discussion  ....................................................................................................................  163 

References  .....................................................................................................................  172 



vi 

LIST OF FIGURES 

 

Figure 1.1:  Experiment 1 results for attractiveness and familiarity (panel a), along with 

multilevel mediation (panel b)  .................................................................................  32 

Figure 1.2:  Structure of individual and morph setup in Experiment 2 (top panel a),  

Experiment 3 (bottom panel b), and Experiment 4 (top panel a)  .............................  35 

Figure 1.3:  Design of the training task for Experiments 2 (top panel a), 3 (top panel a),  

and 4 (bottom panel b) ..............................................................................................  37 

Figure 1.4:  Training performance for participants in Experiment 2 ............................................  39 

Figure 1.5:  Attractiveness ratings (top-left panel a), familiarity ratings (bottom-left panel  

b), and multilevel mediation results for individual faces (top-right panel c) and 

morphed faces (bottom-right panel d) in Experiment 2  ...........................................  41 

Figure 1.6:  Training performance for participants in Experiment 3 ............................................  49 

Figure 1.7:  Attractiveness ratings (top-left panel a), familiarity ratings (top-right panel b), 

multilevel mediation results (middle panel c), and correlation analyses (bottom  

panel d) in Experiment 3 ...........................................................................................  51 

Figure 1.8:  Training performance for participants in Experiment 4 ............................................  59 

Figure 1.9:  Attractiveness ratings (top-left panel a), familiarity ratings (bottom-left panel  

b), and multilevel mediation results for individual faces (top-right panel c) and 

morphed faces (bottom-right panel d) in Experiment 4  ...........................................  61 

Figure 2.1:  Qualitative predictions of different frameworks for Experiment 1  ...........................  83 

Figure 2.2:  Design and procedure for the phase 2 task in Experiment 1  .....................................  88 

Figure 2.3:  Results for phase 2 in Experiment 1  .........................................................................  90 

Figure 2.4:  Design and procedure for phase 2 task in Experiment 2 ...........................................  93 

Figure 2.5:  Results for psychometric function fitting (top panel) and morph level  

thresholds (bottom panels) in phase 2 of Experiment 2  ...........................................  96 

Figure 2.6:  Results for classification RTs (top panel) and self-report estimates of happiness 

percentage (bottom panel) in phase 2 of Experiment 2  ..........................................  100 

Figure 3.1:  Example stimuli from Experiments 1-2 (grayscale images; top row) and  

Experiment 3 (blue/green images; bottom row)  .....................................................  116 

Figure 3.2:  Design and procedure for Experiments 1, 2, and 3  .................................................  117 

Figure 3.3:  Density distributions and means/SEMs for log10-transformed RTs by  

classification condition (top row = human-classification; bottom row = no-



vii 

classification) and agent type (indicated by colors) for Experiment 1  ...................  121 

Figure 3.4:  Weirdness difference scores by classification condition (human-classification  

– no-classification) across the different agent types (human, android, and robot)  .  122 

Figure 3.5:  Density distributions and means/SEMs for log10-transformed RTs by  

classification condition (top row = human-classification; bottom row =  

orientation-classification) and agent type (indicated by colors) for Experiment 2   126 

Figure 3.6:  Difference scores by classification condition (human-classification –  

orientation-classification) on scale ratings for the different agent types (human, 

android, and robot; indicated by bar colors) in Experiment 2  ................................  129 

Figure 3.7:  Density distributions and means/SEMs for log10-transformed RTs by  

classification condition (top row = color-classification; bottom-row =  

orientation-classification) and agent type (indicated by colors) for Experiment 3   134 

Figure 3.8:  Difference scores by classification condition (color-classification – orientation-

classification) on scale ratings for the different agent types (human, android,  

and robot; indicated by bar colors) in Experiment 3  ..............................................  136 

Figure 4.1:  Experimental apparatus used for all four experiments in the approach- 

avoidance task (AAT)  ............................................................................................  151 

Figure 4.2:  Design and procedure used for Experiments 1, 2, 3, and 4  ....................................  153 

Figure 4.3:  Log10-transformed RelTs (left panel) and self-report liking (right panel) for 

Experiment 1  ..........................................................................................................  154 

Figure 4.4:  Log10-transformed RelTs (left panel) and self-report liking (right panel) for 

Experiment 2  ..........................................................................................................  155 

Figure 4.5:  Log10-transformed RelTs (left panel) and self-report liking (right panel) for 

Experiment 3  ..........................................................................................................  156 

Figure 4.6:  Corrugator (left panel) and zygomaticus (right panel) fEMG results for  

Experiment 3  ..........................................................................................................  157 

Figure 4.7:  Log10-transformed RelTs (left panel) and self-report liking (right panel) for 

Experiment 4  ..........................................................................................................  158 

Figure 4.8:  Corrugator (left panel) and zygomaticus (right panel) fEMG results for  

Experiment 4  ..........................................................................................................  159 

 



viii 

LIST OF TABLES 

 

Table 4.1:  Percentage of Classification Decisions According to Fluency (Fluent vs.  

Disfluent), Classification (“Good” vs. “Bad”), and Movement (Flexion vs.  

Extension) for Experiment 1  ...................................................................................  154 

Table 4.2:  Percentage of Classification Decisions According to Fluency (Fluent vs.  

Disfluent), Classification (“Living” vs. “Nonliving”), and Movement (Flexion  

vs. Extension) for Experiment 2  .............................................................................  155 

Table 4.3:  Percentage of Classification Decisions According to Fluency (Fluent vs.  

Disfluent), Classification (“Good” vs. “Bad”), and Movement (Flexion vs.  

Extension) for Experiment 3  ...................................................................................  157 

Table 4.4:  Percentage of Classification Decisions According to Fluency (Fluent vs.  

Disfluent), Classification (“Living” vs. “Nonliving”), and Movement (Flexion  

vs. Extension) for Experiment 4  .............................................................................  159 

 



ix 

ACKNOWLEDGEMENTS 

To Piotr and Chris O. — for being incredibly generous mentors that provided me with 

invaluable thoughts, experiences, and opportunities.  My appreciation is infinite. 

To the other members of my dissertation committee — Craig, Dave, and Seana — for 

investing your time and effort in improving my work.  I hope I can somehow return the favor 

someday.  

To my loving family — Ryan, Jeff, and JoAnna — for supporting my every whim (no 

matter how ridiculous) and acting as one of the few constants in my life.  You’re all an 

inspiration. 

To Christina (Teenies // Pepper) — for making my life over the past couple years a 

million times better than the 25 that came before it.  I love you. 

To Scott — for being a best friend, as well as an incredible example.  Our conversations 

are among my most treasured memories.  I’m 100% certain that you’ll be immensely successful, 

and I can’t wait to see where your creativity takes you.  Looking forward to more awesome 

experiences with you.  

To the other amazing friends that I’ve made in SD — especially Jordie, Jon, Gruberg, 

Brad, Andy, Rob, Liam, Camille, and Sirawaj — who made the journey more memorable and 

entertaining than I could have imagined. 

To my lab-mates — including Liam, Andy, Galit, and Rob — for acting as a reliable 

resource and sounding board for basically everything I needed. 

To the Department of Defense (DoD), American Society for Engineering Education 

(ASEE), and Army Research Office (ARO) for supporting my PhD work through the National 

Defense Science and Engineering Graduate (NDSEG) Fellowship.  This award was a wonderful 

opportunity.  



x 

And to the creators of open-source packages that compose software like R, Python, 

Octave, and GIMP.  Without you, my work would not have been possible. 

Chapter 1 is, in full, under review for publication of the material. Carr, Evan W.; Pecher, 

Diane; Zeelenberg, Rene; Halberstadt, Jamin; Winkielman, Piotr. The dissertation author was the 

primary investigator and author of this material.   

Chapter 2 is, in full, under review for publication of the material. Carr, Evan W.; Brady, 

Timothy, F.; Winkielman, Piotr. The dissertation author was the primary investigator and author 

of this material. 

Chapter 3 is, in full, in press for publication in Journal of Experimental Psychology: 

Human Perception and Performance. Carr, Evan W.; Hofree, Galit; Sheldon, Kayla; Saygin, 

Ayse P.; Winkielman, Piotr. The dissertation author was the primary investigator and author of 

this material. 

 Chapter 4 is, in full, a reprint of the material as it appears in Emotion. Carr, Evan W.; 

Rotteveel, Mark; Winkielman, Piotr, 2016. The dissertation author was the primary investigator 

and author of this paper. 



xi 

VITA 

Evan Walker Carr 

Education 

2016 Doctor of Philosophy:  Psychology & Cognitive Science 

 University of California, San Diego 

2013 Master of Arts:  Psychology 

 University of California, San Diego 

2011 Bachelor of Science:  Marketing, Strategy, and Information Systems (specialization) 

 Cornell University (School of Hotel Administration) 

Selected Publications 

Vogel, T., Carr, E. W., & Winkielman, P. (under review).  Think global, prefer local:  Category 

structure determines attractiveness of global and local prototypes. 

Carr, E. W., Brady, T. F., & Winkielman, P. (under review).  Are you smiling or have I seen you 

before?  Familiarity makes faces look happier. 

Carr, E. W., Pecher, D., Zeelenberg, R., Halberstadt, J., & Winkielman, P. (under revision).  The 

ugliness-in-averageness effect:  Tempering the warm glow of familiarity.  Journal of 

Personality and Social Psychology. 

Carr, E. W., Hofree, G., Sheldon, K., Saygin, A. P., & Winkielman, P. (in press).  Is that a 

human?  Categorization (dis)fluency drives evaluations of agents ambiguous on human-

likeness.  Journal of Experimental Psychology: Human Perception and Performance. 

Carr, E. W., Kever, A., & Winkielman, P. (in press). Embodiment of emotion and its situated 

nature. In A. Newen, L. de Bruin, & S. Gallagher (Eds.), The Oxford Handbook of 

Cognition: Embodied, Embedded, Enactive, and Extended.  Oxford University Press. 

Farmer, H., Carr, E. W., Svartdal, M., Winkielman, P., & Hamilton, A.F.C. (2016).  Status and 

power do not modulate automatic imitation of intransitive hand movements.  PLoS One, 

11(4), e0151835. 

Owen, H. E., Halberstadt, J., Carr, E. W., & Winkielman, P. (2016).  Johnny Depp, 

reconsidered:  How category-relative processing fluency determines the appeal of gender 

ambiguity.  PLoS One, 11(2), e0146328. 

Carr, E. W., Rotteveel, M., & Winkielman, P. (2016).  Easy moves:  Perceptual fluency 

facilitates approach-related action.  Emotion, 16(4), 540-552. 

*Kogan, A., *Oveis, C., Carr, E. W., Gruber, J., Mauss, I. B., Shallcross, A., Impett, E. A., van 

der Löwe, I., Hui, B., Cheng, C., & Keltner, D. (2014). Vagal activity is quadratically 

related to prosocial traits, prosocial emotions, and observer perceptions of prosociality. 

Journal of Personality and Social Psychology, 107(6), 1051-1063. [*co-first authors] 

Carr, E. W. & Winkielman, P. (2014). When mirroring is both simple and “smart”: How 

mimicry can be embodied, adaptive, and non-representational. Frontiers in Human 

Neuroscience, 8(505). 

Carr, E. W., Korb, S., Niedenthal, P., & Winkielman, P. (2014). The two sides of spontaneity: 

Movement onset asymmetries in facial expressions influence social judgments. Journal 

of Experimental Social Psychology, 55, 31–36. 

Carr, E. W., Winkielman, P., & Oveis, C. (2014). Transforming the mirror: Power 

fundamentally changes facial responding to emotional expressions. Journal of 

Experimental Psychology: General, 143(3), 997-1003.



 

xii 

ABSTRACT OF THE DISSERTATION 

 
 
 

Effects of Processing Dynamics on Social Perception, Judgment, and Action 
 
 
 

by 
 
 
 

Evan Walker Carr 

 
Doctor of Philosophy in Psychology and Cognitive Science 

 
University of California, San Diego, 2016 

 
Professor Piotr Winkielman, Chair 

 
 
 

Information processing is required for any social thought, decision, or action.  Most past 

and current research in social cognition focuses solely on the content of the information being 

conveyed.  While this is clearly important, in this dissertation, I investigate how basic social 

responses (i.e., rapid perceptions, judgments, and actions) are impacted by the dynamics of 

information processing (i.e., its ease, speed, or coherence).  To do this, I examine two key 

determinants of processing dynamics — familiarity (prior stimulus experience) and fluency (ease 

of stimulus processing).  First, Chapter 1 provides a systematic investigation of how familiarity 

influences the appeal of facial blends.  Even though facial blends are usually deemed more 

attractive than their constituent individuals, Chapter 1 demonstrates that this classic beauty-in-

averageness effect reverses when the individuals are highly familiar (thus, an
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ugliness-in-averageness effect).  Second, Chapter 2 extends the examination of familiarity to 

basic effects on perception, in showing that facial expressions from familiar individuals appear 

happier.  These results also suggest that the familiarity-positivity effect functions by selectively 

enhancing positive stimulus features, rather than reducing negative stimulus features.  Third, 

Chapter 3 moves towards gauging how categorization fluency (or the effort needed to determine 

category membership) influences the seemingly automatic discomfort people feel towards 

“mixed” agents (or those containing human and non-human features, like androids).  Chapter 3 

shows that classifying on the ambiguous human-likeness dimension makes the mixed agents 

(androids) more disfluent, and in turn, more disliked.  Therefore, these results offer evidence that 

negative reactions to mixed agents are not obligatory, but instead are dependent on the 

surrounding judgment and context.  Finally, Chapter 4 explores the link between fluency and 

motivation-related action.  These experiments demonstrate that fluency elicits context-sensitive 

approach action-tendencies (i.e., RTs to initiate arm flexion), which are accompanied by 

physiological responses indicative of positive affect (i.e., increased smiling and reduced 

frowning, via facial electromyography).  Taken together, the current dissertation shows that 

familiarity and fluency are flexibly embedded into our rapid perceptions, judgments, and actions 

towards social stimuli. 

 



 

1 

GENERAL INTRODUCTION 

One of the most important signatures of human cognition involves the role of subjective 

experience — or the ability to recognize, filter, and apply how it “feels” to undergo or interact 

with something (Dolan, 2002; Gover, 1996; James, 1890; Solms & Turnbull, 2002).  Certainly, 

many of these processes can occur at the level of conscious awareness, as with introspection 

(Boring, 1953; Ellis, 1991; Wilson, 2003), problem solving (Baars & Franklin, 2003; Mayer, 

1992; McLeod & Adams, 2012), or emotion-regulation strategies (Gross, 1997, 2008).  However, 

some aspects of subjective experience can also be unconscious (or at the level of “fringe 

consciousness”; Reber, Wurtz, & Zimmermann, 2004).  In this case, indistinct feelings signal 

background information on the contents of conscious attention, leading to changes in subsequent 

affect and cognition (Brown, 2000; Feldman-Barrett, Niedenthal, & Winkielman, 2005; James, 

1890; Schooler, Mrazek, Baird, & Winkielman, 2015; Winkielman & Schooler, 2011). 

Critically though, these subtle experiences can have downstream effects on social 

evaluations, judgments, motivations, and actions (Winkielman & Berridge, 2004, 2009).  One 

important example of this comes with processing dynamics.  Information processing is required 

for any social thought, decision, or action.  However, most past (and even current) research 

focuses solely on the content of the information being conveyed.  While this is clearly important, 

in this dissertation, I examine on how the dynamics of information processing (i.e., its ease, 

speed, or coherence) can influence how that information is perceived, evaluated, and acted upon.  

More specifically, I will investigate two key factors for the dynamics of information processing 

(along with their effects on social perceptions, judgments, and actions) — familiarity and fluency. 

 

Familiarity 

 Familiarity (or the amount of experience and “sense of knowing” with a stimulus) is 

among the most important factors for social information processing (Zajonc, 2001).  Simply put, 
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the greater the familiarity one has with a stimulus, the greater their liking and preference for it.  

This mere exposure effect (or the phenomenon of increased preference from unreinforced 

stimulus repetition) dates back over a century to Titchener’s (1915) first observations about the 

“warm glow of familiarity.”  Since then, familiarity and mere exposure have been consistently 

examined and applied within psychology, neuroscience, sociology, and business (Baker, 1999; 

Balogh, & Porter, 1986; Obermiller, 1985; Pettigrew & Tropp, 2008; Tremblay, Inoue, 

McClannahan, & Ross, 2010).  Mere exposure effects are also robust across different stimuli 

(e.g., words, images, sounds, and faces) and modalities (e.g., vision, audition, touch, and smell) 

(Zajonc, 1968, 2001), while being subject to some important boundary conditions (Bornstein, 

1989). 

The connection between familiarity and liking could occur for many reasons (for reviews, 

see Fang, Singh, & Ahluwalia, 2007; Moreland & Topolinski, 2010).  One possibility has to do 

with learning and uncertainty, where unreinforced repetition associates the stimulus with an 

absence of negative consequences (Lee, 2001; Zajonc, 1968).  However, most of the prominent 

explanations ascribe to cognitive models, where repetition facilitates ease and efficiency in 

processing (i.e., increased fluency; Bornstein & D’Agostino, 1992; Butler & Berry, 2004; Klinger 

& Greenwald, 1994; Whittlesea & Price, 2001; Winkielman, Schwarz, Fazendeiro, & Reber, 

2003).  There is also evidence for affective models of mere exposure, such that familiar stimuli 

elicit hedonic physiological responses indicative of liking (Harmon-Jones & Allen, 2001).  

 Note that familiarity can also vary in its specific nature.  Objective familiarity refers to 

the actual stimulus history (i.e., how many times it has actually been encountered), while 

subjective familiarity refers to a “sense of knowing” for the stimulus (i.e., a feeling for if and how 

much it has been encountered before).  These distinctions are important because the relation 

between familiarity and preference usually concerns subjective familiarity.  As mentioned, 

subjective familiarity is also often (though not always) linked to processing fluency, as discussed 
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later.  Given that a previous encounter with an item is thought to increase its activation, it follows 

that subsequent efficiency or coherence of processing would also increase upon reactivation. 

Moreover, familiarity has a wide-ranging impact on social judgment and evaluation.  Not 

only do preferences increase for previously encountered social stimuli (like faces; Peskin & 

Newell, 2004), but these preferences generalize to stimuli that are similar to ones seen previously, 

yet objectively new (Gordon & Holyoak, 1983; Whittlesea, 2002).  Such generalization effects 

have also been obtained for social stimuli, such as faces (Rhodes, Halberstadt, & Brajkovich, 

2001), where exposure to other-race faces can increase liking for objectively new faces within 

that same race group (Smith, Dijksterhuis, & Chaiken, 2008; Verosky & Todorov, 2010; 

Zebrowitz, White, & Wieneke, 2008).  These findings are discussed as evidence for “structural 

mere exposure effects” — with increasing levels of distortion from the mere-exposed pattern 

associated with reduced liking for those new stimuli.  These generalization effects are 

theoretically important, as they suggest the role of cognitive factors in this seemingly basic 

phenomenon (Zajonc, 2001).  They also offer a path towards changing real-world social 

preferences that extend beyond the specific individuals engaged in personal interactions, such as 

with the positive effects of intergroup contact (Pettigrew & Tropp, 2008).   

In turn, it is vital to understand the nature, mechanisms, and limitations of familiarity 

effects on social stimuli — especially with effects that seem highly replicable (e.g., the 

attractiveness of facial blends; Chapter 1) or perceptually low-level (e.g., rapidly judging the 

emotional content of others’ facial expressions; Chapter 2). 

 

Fluency 

 The connection between emotion, cognition, and psychophysiology has also been 

successfully explored by examining fluency (i.e., objective or subjective ease in processing effort 

associated with a stimulus; Schwarz, 1998).  Much evidence shows that fluency increases positive 
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affective evaluations, whereas disfluency leads to devaluation, on both behavioral and 

physiological levels (Winkielman, Schwarz, Fazendeiro, & Reber, 2003).  Essentially, this idea 

proposes that the facilitation of perceptual or conceptual processing is associated with a genuine 

hedonic boost in positive affect (Winkielman & Cacioppo, 2001).  Here, objective fluency refers 

to a concrete outcome of easy processing (e.g., faster recognition RTs, reduced cognitive load or 

resource demands, increased accuracy, etc.), while subjective fluency indicates the experience 

associated with such efficient processing (e.g., decreased mental effort; Reber, Wurtz, & 

Zimmermann, 2004).  To account for these findings, the hedonic fluency model posits that 

(dis)fluency generates diffuse affect that can be used to form a range of related social judgments 

and evaluations.  More specifically, easy processing elicits mild positive affect, which is then 

(mis)attributed to the target stimulus (Winkielman, Schwarz, Fazendeiro, & Reber, 2003).  This 

positive affect presumably emerges because fluency probabilistically indicates lower conflict and 

greater coherence.  As mentioned before, note that liking effects from familiarity are often tied to 

fluency, since processing ease should be facilitated with repeated exposure to the stimulus. 

 Fluency can also be manipulated both on the level of percepts and concepts.  With 

perceptual fluency, this usually denotes lower-level changes associated with stimulus structure or 

form (e.g., priming, duration, clarity, contrast, or typicality; Reber, Fazendeiro, & Winkielman, 

2002; Winkielman, Halberstadt, Fazendeiro, & Catty, 2006).  For instance, when patterns (from 

dots to faces) deviate from a category “prototype,” they are relatively devalued, compared to 

more average stimuli (Halberstadt & Rhodes, 2000, 2003; Halberstadt & Winkielman, 2013).  

Therefore, manipulating perceptual fluency involves changing stimulus features to make it more 

or less difficult to process.  With conceptual fluency, this usually refers to higher-level changes 

associated with stimulus meaning (e.g., semantic priming, predictability, or categorization; 

Winkielman, Huber, Kavanagh, & Schwarz, 2012).  Here, fluency is manipulated by changing 

how easy or difficult it is to extract meaning from the stimulus, rather than actually changing its 
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features.  As an example, the effort needed to determine category membership (also called 

categorization fluency; Halberstadt & Winkielman, 2013) is ultimately task-dependent, and 

processing difficulty depends on which (un)ambiguous feature dimensions are highlighted by the 

current task.  In other words, if a stimulus is ambiguous on some dimension, it will elicit 

disfluency (and negative affect), but only in contexts requiring categorization on that particular 

dimension.  To illustrate, Owen, Halberstadt, Carr, & Winkielman (2016) demonstrated that 

mixed-gender faces are only deemed relatively unattractive when first categorized on the central 

ambiguous dimension (gender), rather than an ancillary unambiguous dimension (race). 

 Crucially though, fluency affects a variety of real-world social responses, on both the 

behavioral and physiological levels.  Behaviorally, greater perceptual and conceptual fluency 

enhances positive evaluative judgments, like basic preferences (Winkielman & Cacioppo, 2001), 

product choices and decisions (Novemsky, Dhar, Schwarz, & Simonson, 2007), ratings of 

attractiveness and trustworthiness (Winkielman, Olszanowski, & Gola, 2015), brand assessments 

(Lee & Labroo, 2004), and even stock purchases (Alter & Oppenheimer, 2006).  Physiologically, 

previous research has demonstrated fluency to induce a genuine positive hedonic response, as 

with low-level incipient smiling (via increased reactivity over the zygomaticus major, or the 

“smiling muscle” that pulls up the corners of the mouth; Tassinary, Cacioppo, & Vanman, 2007; 

Winkielman & Cacioppo, 2001).  Parallel effects have also been reported with reduced frowning 

(via decreased reactivity over the corrugator supercilii, or the “frowning muscle” that furrows the 

brow; Tassinary, Cacioppo, & Vanman, 2007), which likely indexes reduced negative affect and 

relaxed mental effort (Topolinski, Likowski, Weyers, & Strack, 2009).  These physiological 

measures are especially valuable because they allow for the dissociation between objective task 

demands and subjective evaluative judgments (Von Helversen, Gendolla, Winkielman, & 

Schmidt, 2008), as well as the measurement of timing differences between perceptual and 

conceptual fluency (Wang, Li, Gao, Xiao, & Guo, 2015). 
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 Given these findings, it is important to gauge when, why, and how fluency effects 

translate to basic social responses.  For example, while most of the previous fluency research 

focuses on higher-level evaluations of stimuli (e.g., liking ratings), it has never been tested 

whether fluency can also impact motivation-related action (i.e., the tendency to approach or avoid 

the stimulus; Chapter 4).  Further, new experiments need to assess the boundary conditions for 

fluency effects to emerge, such as with type of stimulus features in-question (e.g., judgments of 

human-likeness vs. judgments of color ambiguity; Chapter 3) or the type of judgment context 

(e.g., affective decisions of “good or bad” vs. non-affective decisions of “living or non-living”; 

Chapter 4). 

 

Aims of the current dissertation 

The main goal of this dissertation is to examine the roles of familiarity and fluency in 

shaping basic social responses (i.e., perceptions, judgments, and actions that occur quickly and/or 

with little conscious awareness).  Across 13 experiments, I investigate how familiarity and 

fluency can transform classic phenomena in social cognition (Chapters 1 and 3) and rudimentary 

reactions to neutral and emotional stimuli (Chapters 2 and 4).  Overall, these studies provide 

robust evidence that even low-level effects and processes in social cognition can be mitigated, 

amplified, or reversed based on the dynamics of information processing.  To do this, the current 

dissertation is structured according to the following four chapters. 

Chapter 1 provides a systematic inquiry into how familiarity impacts the appeal of facial 

blends.  Blends (morphs) of individual face stimuli are usually deemed more attractive than their 

constituent individuals — known as the classic beauty-in-averageness (BiA) effect.  The 

attractiveness of facial blends is also presumably linked to their perceived familiarity, which leads 

to greater liking.  However, based on modern theories of memory, we predicted that the BiA 

effect should only occur when the contributing individuals are weakly encoded (thus prioritizing 
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a global prototypical representation, thereby making blends appear more familiar and attractive).  

When the individuals are strongly encoded, memory theories would instead predict a relative 

decrease in familiarity and preference for blends — or a novel phenomenon we term the ugliness-

in-averageness (UiA) effect.  In four experiments, we show that the BiA effect emerges with 

weak learning on individual faces, and the increased attractiveness for blends is driven by their 

familiarity (Experiment 1).  In contrast, when participants are first strongly trained on a subset of 

individual faces (using a social name-learning task), a UiA effect emerges for trained faces (i.e., 

blends of trained individuals are rated as less attractive than the trained individuals; Experiment 

2).  We also demonstrate the mechanistic role of familiarity in the UiA effect (Experiment 3) and 

show that simple perceptual (as opposed to social) learning is sufficient to generate the UiA effect 

(Experiment 4).  These results highlight that familiarity-based memory processes can reshape 

seemingly immutable patterns of facial attractiveness, when combining the effects of mere 

exposure (stimulus repetition) and blending (stimulus averaging). 

Chapter 2 extends the examination of familiarity to basic effects on perception.  Mere 

exposure is a standard effect in social cognition, yet the basic nature for how familiarity creates 

positivity remains largely unknown.  Here, we use two different tasks to measure early perceptual 

effects (Experiment 1) and rapid classification judgments (Experiment 2) on affective facial 

expressions.  In Experiment 1, using a paradigm where participants’ responses were orthogonal to 

happiness to avoid response facilitation, we found that trained (familiar) faces were deemed 

happier than untrained (novel) faces.  In Experiment 2, we replicated this effect with a rapid 

“happy or angry” categorization task.  Using psychometric function fitting, we found that 

participants needed less actual happiness to be present in trained (compared to untrained) faces in 

order to classify them as happy.  With both experiments, we show that the familiarity-positivity 

effects operate through selective enhancement of positive stimulus features (rather than reduction 
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of negative stimulus features).  Critically, our results help to dissociate prominent models of mere 

exposure, in demonstrating how familiar faces can appear happier. 

Chapter 3 gauges how categorization disfluency influences evaluations of “mixed” agents 

(or those that contain both human and non-human features).  Essentialism theories suggest that 

mixing human and non-human categories violates “natural kinds,” while perceptual theories 

propose that such mixing creates incompatible cues or “mismatch” effects.  Most theories suggest 

that mixed agents should obligatorily elicit discomfort.  Alternatively, in three experiments, we 

demonstrate that the discomfort associated with mixed agents is partially driven by disfluent 

categorization on ambiguous features that are pertinent to that agent (i.e., whether they are human 

or non-human).  Participants classified three different agents (humans, androids, and robots) 

either on the human-likeness dimension or a control dimension and then evaluated them.  Human-

likeness categorization made the mixed agent (android) more disliked, and disfluency mediated 

this negative affective reaction.  Crucially, devaluation only resulted from disfluency on human-

likeness and not from an equally disfluent color dimension.  We argue that negative consequences 

on evaluations of mixed agents arise from integral disfluency (or features that are relevant to the 

judgment at-hand, like ambiguous human-likeness), whereas no negative effects stem from 

incidental disfluency (or features that do not bear on the current judgment, like ambiguous color 

backgrounds).  These findings support a top-down account for why, when, and how mixed agents 

elicit conflict and discomfort.    

Chapter 4 explores the link between fluency and motivation-related action.  Many studies 

have already shown that processing fluency impacts liking judgments and physiological reactions, 

but it remains unknown whether fluency translates to action-tendencies.  We used four 

experiments to investigate this action effect, its boundary conditions, and associated affective and 

physiological responses.  We found faster approach movements (RTs to initiate arm flexion) to 

perceptually fluent stimuli when participants rapidly classified in an affective judgment context 



9 

 

(i.e., whether the stimulus was “good or bad”; Experiments 1 and 3).  Interestingly, this fluency 

effect on action dissipated within non-affective judgment contexts (i.e., whether the stimulus was 

“living or non-living”; Experiments 2 and 4), even though perceptual fluency still enhanced liking 

judgments (all experiments).  Finally, while we only observed the fluency-action effect in 

affective judgment contexts, perceptual fluency led to a physiological hedonic response in both 

affective and non-affective judgment contexts (i.e., increased smiling and decreased frowning, via 

facial electromyography; Experiments 3 and 4).  This suggests that the affective response can 

dissociate from the motivation-related action tendency, according to the judgment context.  

Collectively, these results reveal that perceptual fluency can flexibly and implicitly shape motor 

responses. 
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Abstract 

  

 Mere exposure (i.e., stimulus repetition) and blending (i.e., stimulus averaging) are 

classic effects known to increase social preferences, including facial attractiveness.  Both effects 

presumably occur because familiarity enhances liking.  Prominent memory theories assume that 

target familiarity depends on the strength of its memory trace, similarity to the specific exposed 

exemplars, and similarity to any global representation.  If so, blends (morphs) of individual 

stimuli should have greater familiarity and liking — or a beauty-in-averageness effect (BiA).  

However, this should only occur when the contributing individuals are weakly encoded, thus 

prioritizing a global prototypical representation.  When the individuals are strongly encoded, 

memory theories predict a relative decrease in familiarity and preference for their blends — or a 

novel phenomenon we term the ugliness-in-averageness effect (UiA).  We tested this novel 

theoretical prediction in four experiments, using the same stimulus set.  Experiment 1 showed that 

with weak learning, participants rated morphs as more attractive than contributing individuals 

(i.e., BiA effect).  Experiment 2 demonstrated that when participants were first strongly trained 

on a subset of individual faces (using a social name-learning task), a UiA effect emerged for 

trained faces — where morphs of trained individuals were rated as less attractive than the trained 

individuals.  Experiment 3 showed that declines in familiarity for the trained morph (rather than 

inter-stimulus conflict) drove the UiA effect.  Experiment 4 demonstrated that simple perceptual 

(as opposed to social) learning is sufficient to generate the UiA effect.  Overall, these results 

highlight that memory processes can fundamentally reshape classic, seemingly immutable social 

preference phenomena. 

 

Keywords:  mere exposure, blending, attractiveness, familiarity, faces  
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Introduction 

The origin of preferences is a central topic in social psychology (Allport, 1935; Berntson 

& Cacioppo, 2009; Schwarz, 2007; Zajonc, 1968, 1998).  One key social preference is 

attractiveness, especially given that human behavior is explicitly and implicitly shaped by the 

beauty associated with a person, group, object, or idea (Reber, Schwarz, & Winkielman, 2004; 

Rhodes & Zebrowitz, 2002).  Consequently, understanding such preferences not only helps to 

illuminate the mechanisms underlying affect and cognition, but this also informs practical 

applications.  The current paper addresses two classic determinants for preferences that have been 

discussed in psychology — mere exposure (i.e., stimulus repetition) and blending (i.e., stimulus 

averaging).  Both processes have been shown to shape preference judgments, usually by 

increasing them.  Here, we use these fundamental phenomena to shed light on the mechanisms 

linking familiarity and preference.  More specifically, we explore predictions generated by 

modern memory models, which link familiarity (and thus, preference) to the similarity of the 

target to memory representations. 

To test these predictions, we apply both of these preference manipulations to the same 

stimuli (i.e., when mere-exposed stimuli are blended together).  Several alternative models predict 

that both mere exposure and blending should increase preferences in an additive fashion.  

However, our theoretical framework uniquely predicts that relative to the exposed exemplars, 

preferences for blends of mere-exposed stimuli should decrease, due to the loss of familiarity.  

Our findings demonstrate that mere exposure generates a familiarity-based preference, and 

blending actually reduces the preference for highly familiar individuals.  To preview the current 

work, we offer background information on mere exposure, blending effects, and modern memory 

models. 
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Mere exposure 

The mere exposure effect — or the phenomenon of increased preference from 

unreinforced stimulus repetition — is a psychology classic.  It goes back at least 100 years, when 

Titchener (1915) made his observations about the “warm glow of familiarity.”  The landmark 

paper by Zajonc (1968) renewed the field’s interest, and since then, mere exposure has been 

continually discussed in psychology textbooks, investigated in the labs, applied in social 

interventions, and utilized in business settings (Baker, 1999; Balogh, & Porter, 1986; Kouchaki, 

Smith-Crowe, Brief, & Sousa, 2013; Obermiller, 1985; Pettigrew & Tropp, 2008; Tremblay, 

Inoue, McClannahan, & Ross, 2010; Zajonc, 2001).  The effect is robust across a wide range of 

stimuli (e.g., faces, words, sounds, images, etc.) and modalities (e.g., vision, audition, touch, 

smell, etc.), though subject to important boundary conditions (Bornstein, 1989).  Aside from its 

practical importance, the mere exposure effect also offers a theoretical window into emotion-

cognition links and processes underlying implicit memory. 

The connection between repetition and preference could occur for many reasons (for 

reviews, see Fang, Singh, & Ahluwalia, 2007; Moreland & Topolinski, 2010).  Zajonc (1968) 

proposed a non-cognitive model where unreinforced repetition associates the stimulus with an 

absence of negative consequences. Indeed, there is some evidence that some novel stimuli induce 

negative affect, which gets reduced with mere repetition (e.g., Zebrowitz & Zhang, 2012).  

Nevertheless, there is much more evidence for cognitive models, in which repetition facilitates 

processing and elicits an implicit sense of familiarity (Bornstein & D’Agostino, 1992; Butler & 

Berry, 2004; Klinger & Greenwald, 1994; Winkielman, Schwarz, Fazendeiro, & Reber, 2003).  

Interestingly, while the mere exposure effect is tied to the sense of familiarity, it does not depend 

on the explicit recognition that the stimulus is “old” (Whittlesea & Price, 2001). 

Importantly, mere exposure effects on preferences generalize to stimuli that are similar to 

ones seen previously, but are actually objectively new (Whittlesea, 2002).  Such generalization 
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effects have also been obtained for social stimuli, such as faces (Rhodes, Halberstadt, & 

Brajkovich, 2001), where exposure to other-race faces can increase liking for objectively new 

faces within that same race group (Smith, Dijksterhuis, & Chaiken, 2008; Verosky & Todorov, 

2010; Zebrowitz, White, & Wieneke, 2008).  Interestingly, the generalization effect from mere 

exposure follows a similarity gradient between the original and test stimulus.  Gordon & Holyoak 

(1983) systematically tested this idea, by first exposing participants to a certain subset of abstract 

and arbitrary stimuli (i.e., letter strings and complex visual patterns).  Next, participants evaluated 

new stimuli — these new stimuli were similar to those exposed previously, but they were 

systematically distorted to different gradients away from the training stimuli.  Even though all test 

stimuli were objectively new, participants’ liking ratings showed a “structural mere exposure 

effect” — with increasing levels of distortion from the mere-exposed pattern associated with 

reduced liking for those new stimuli.  These generalization effects are theoretically important, as 

they suggest the role of cognitive factors in this seemingly basic effect (Zajonc, 2001).  They also 

offer a path towards changing real-world social preferences that extend beyond the specific 

individuals engaged in personal interactions.  In fact, generalization of the mere exposure effect is 

discussed as one mechanism behind the positive effects of intergroup contact (Pettigrew & Tropp, 

2008).  As such, it is very important to understand the nature, mechanisms, and limitations of 

such effects. 

 

Stimulus blending 

The mere exposure effect relates to another classic phenomenon in the domain of 

preferences — blending (or stimulus averaging).  Since the original observations by Galton 

(1879) on composite portraits, psychologists have explored how preferences are influenced by 

averaging or blending the stimuli (often through a method of morphing).  Generally, averaging 

makes the stimulus more attractive, and this effect is most robustly established with faces 
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(Halberstadt, 2006; Langlois & Roggman, 1990; Rhodes & Tremewan, 1996).  However, it also 

occurs within a variety of different modalities and stimuli (e.g., abstract dot patterns, colors, 

birds, cars, watches, fish, voices, gestures, etc.; Bruckert et al., 2010; Halberstadt & Rhodes, 

2003; Winkielman, Halberstadt, Fazendeiro, & Catty, 2006; Wöllner et al., 2012). 

Many explanations have been proposed for this beauty-in-averageness (BiA) effect.  

Some authors invoke evolutionarily shaped “mutant-detector” mechanisms, where morphed faces 

signal greater fitness, due to greater symmetry and a lack of unusual features (Thornhill & 

Gangestad, 1993).   However, as with the mere exposure effect, the dominant explanations are 

cognitive.  Specifically, Langlois & Roggman (1990) point out that blending several faces makes 

the average face more similar to the facial prototype — or the central tendency of a local 

population of faces encountered by the participants.  In fact, averaged faces become more or less 

attractive as a function of exposure to different populations of faces, suggesting the importance of 

learning processes (Principe & Langlois, 2012; Rubenstein, Kalakanis, & Langlois, 1999).  

Consistently, attractiveness of average faces is associated with their implicit familiarity (Peskin & 

Newell, 2004; Rhodes, Halberstadt, & Brajkovich, 2001).  This fits with many studies that use 

abstract patterns (e.g., random dots), which show that exposure to multiple exemplars of a 

category allows participants to implicitly extract the prototype (i.e., category average). Such 

prototypes are also later preferred, as reflected in judgments and physiological measures 

(Winkielman et al., 2006). 

 

Memory models (and how familiarity works) 

The above discussion highlights the importance of understanding the mechanisms of 

memory for social psychological theories of preference.  In this section, we argue that the 

relevant memory literature not only explains why these classic preference phenomena occur, but 

it also helps us identify the boundary conditions under which they disappear (and even reverse).  
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For simplicity, we only briefly review the core assumptions that informed our reasoning behind 

the current experiments.  However, an interested reader can explore the memory literature, 

including its quantitative, computational, neuroscientific, and applied aspects, across several 

reviews (Gillund & Shiffrin, 1984; Mandler, 1980; McClelland & Chappell, 1998; Wixted & 

Mickes, 2014).  For a specific application of the computational or connectionist perspective to 

key questions in social psychology, the reader may refer to a review by Smith (1996). 

Let us start with a couple of clarifications on terminology.  First, objective familiarity 

refers to the actual stimulus history (i.e., how many times it was encountered), subjective 

familiarity refers to a “sense of knowing” for the stimulus, whereas recognition refers to a 

judgment about a previous encounter with the stimulus.  These distinctions are important because, 

as mentioned above, the relation between familiarity and preference primarily concerns subjective 

familiarity.  Second, in the memory models discussed here, subjective familiarity is often (though 

not always) linked to fluency, or the ease of stimulus processing.  This is because a previous 

encounter with an item is thought to increase the activation, re-processing efficiency, and thus 

retrievability of its trace.  For most of this paper, we will focus on subjective familiarity, but we 

will revisit the issue of fluency in the General Discussion. 

Now, we will shift focus to a critical question — what elicits subjective familiarity?  

Prominent memory theories suggest that familiarity of a probe depends on the overall match 

between the probe and the set of items in memory to which it is compared (Gillund & Shiffrin, 

1984; Hintzman, 1984).  Familiarity of a probe is calculated from the similarity values of the 

probe with all traces in memory (or a relevant subset of traces). The strength of a memory trace 

(or the accuracy of the information stored in memory) determines the similarity between the 

probe and the memory trace.  If the memory trace is weak (because only a few item features were 

stored correctly), the similarity between the probe and the memory trace will be lower than when 

the memory trace contains many correctly stored features.  Thus, familiarity will be higher for 
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strong items than for weak items.  In addition, memory traces for other items may also be more or 

less similar to the probe, contributing to the global familiarity of the probe in proportion to their 

degree of similarity.  The similarity calculation is based on the number of matching features 

between the probe and each of the memory traces.  Although the general methods vary, some 

kind of multiplicative function is used so that a close match to one item leads to higher familiarity 

than a moderate match to many items (Hintzman, 1986; Murphy, 2002).  This helps to explain the 

mere exposure effect, because stronger memory traces for actually studied items will result in a 

better match, and thus, higher familiarity values. 

Global matching models were first developed to explain episodic recognition memory, 

and they assumed that the memory decision for whether a probe was old or new was based on the 

global familiarity of the probe.  If the familiarity of the probe exceeds a threshold, it is judged to 

be old; otherwise, it is judged to be new.  For our purposes in the current paper, these models also 

apply to identification and categorization.  Hintzman (1986) proposed that each event leads to a 

trace in memory, assuming that sufficient attention was paid to that event (also see Nosofsky, 

1986).  On this view, semantic and episodic memory are one system.  To identify a probe as a 

particular item, the similarity of the probe to all traces of that item is compared to the similarity of 

the probe to all traces of all other items — and when that ratio is high enough, the probe is 

identified as that item.  For example, to identify a picture of a cat as your neighbor’s cat, the 

similarity of the picture to all traces of your neighbor’s cat is compared to the similarity of the 

picture to memory traces for all other items (e.g., cat traces, dog traces, bike traces, etc.).  If the 

similarity to your neighbor’s cat is higher than the similarity to the other items, the picture is 

identified as your neighbor’s cat.  With categorization, the same mechanism works to compare 

probe similarity of all central category exemplar traces to the probe similarity of all traces for 

other category exemplars. 

Although it is sometimes assumed that prototypes (or “gist” representations) are formed 
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to represent categories, many have argued that models with only exemplar representations might 

perform just as well (or perhaps even better) at explaining categorization performance (compared 

to models that assume the prototype is stored in memory; Barsalou, 1990; Johansen & Palmeri, 

2002; Love, 2013; Medin & Schaffer, 1978; Murphy, 2002).  The reason that the prototype and 

exemplar models differ only slightly is that a prototype is a summary representation of the 

exemplars that have been encountered — and thus, to a large extent, the prototype contains the 

same information as the collection of exemplar traces.  However, exemplar models might fare 

better in cases where individual exemplars contribute to performance, given that the particular 

combination of features is retained (whereas in a prototype representation, the particular feature 

combinations are lost).  

This mechanism explains the BiA effect as resulting from the following process.  First, 

participants are incidentally exposed to many exemplars using minimal exposure, which results in 

formation of very weak individual traces.  Later, participants are presented with the blend probe 

(or morph) that is more similar to all memory traces than any probe of individual faces.  The 

more similarity the blend has to all other face traces, the more familiar (and preferred) it is 

compared to the weakly learned individual faces.   Consistent with this account, traditional BiA 

paradigms use only single incidental exposure to individuals.  Further, evidence shows that BiA 

effect increases with the number of faces that go into the blend.  In fact, the classic Langlois & 

Roggman (1990) paper only observed a clear BiA effect when averaging many individuals (i.e., 

eight or more), which may make the morph appear very familiar (compared to a morph that only 

averages two individuals). 

    

How do exposure and blending effects interact to drive familiarity and preferences? 

With the above principles in mind, we can now derive several predictions regarding the 

combined effects of exposure and blending on familiarity and preferences.  First, a more basic 
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prediction is that strong learning on individual exemplars should result in the traditional mere 

exposure effect (i.e., a growth in familiarity and liking).  Second, our central (and more nuanced) 

prediction is that the effects of blending two unknown faces should depend on the larger memory 

context.  More specifically, when participants have weak memory traces for individual 

exemplars, there should be a traditional BiA effect because the blend will be more familiar than 

the individuals.  When participants have no memory traces for individual exemplars, there should 

be no BiA effect (since the blend probe is not similar to anything).  Critically, if the memory 

traces for these individual exemplars are strengthened (i.e., through learning), the BiA effect 

should be relatively reduced, since the probe for an individual face now has a high similarity to its 

own memory trace.  Moreover, familiarity increases differentiation, which describes the ability to 

distinguish items from similar distractors (McClelland & Chappell, 1998; Shiffrin & Steyvers, 

1997).  Therefore, as memory traces for individual faces become stronger, people improve at 

differentiating that face from other similar faces.   

Our central prediction concerns this blending of highly familiar exemplars.  When the 

blend of highly familiar individuals is presented, the benefit of familiarity due to higher global 

similarity should be weighed against the cost of dissimilarity between the blend and the well-

learned individual exemplars.  As a result, the morph will be less familiar than the exposed 

individuals, so our theoretical perspective derived from the memory literature actually predicts an 

ugliness-in-averageness (UiA) effect.  Note that the morph should still benefit from some 

similarity to the exposed exemplars, and thus have greater familiarity and liking than unfamiliar 

stimuli.  As such, “ugliness” is defined here as a relative decline, rather than an absolute loss.  In 

other words, blending familiar exemplars should reduce the benefits of their exposure, rather than 

bring the morph below the original attractiveness level of unfamiliar face blends. 

This prediction fits well with the previous memory literature.  The most relevant 

examples come from paradigms that investigated the effects of item strength (i.e., learning) on 
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responses to the original items and “blended” items (i.e., items that are objectively new but 

include features of the individual items).  In one memory paradigm, participants first studied 

words like “blackmail” and “jailbird,” and then are asked about the word “blackbird,” as well as 

the original and control items (Jones & Jacoby, 2001).  Another paradigm instructed participants 

to first study word pairs (e.g., table-clock, fish-computer, etc.) either only once (i.e., weak pairs) 

or several times (i.e., strong pairs).  Next, they were asked about intact pairs, rearranged pairs, 

and control items (Kelley & Wixted, 2001).  The key finding across these paradigms is that 

participants showed an elevated false alarm rate to the “blended items” (e.g., “blackbird” or fish-

clock).  And crucially, the false alarm rate is both lower than the recognition of actual presented 

items and reduced (but not eliminated) when participants have a stronger memory of the initially 

studied items.  Again, the theoretical interpretation is that “blended items” create a sense of 

familiarity, but strong memory traces for their individual components increase differentiation. 

Moreover, this prediction also aligns with the previously discussed work on mere 

exposure generalization, which found reduced liking benefits with increased dissimilarity of the 

probe (Gordon & Holyoak, 1983).  Note, however, that this work only used graded (increased or 

decreased) distortions from an abstract prototype, such that there was no feature combination 

across familiar or unfamiliar stimuli.  A more recent and direct example comes from a study that 

blended faces of celebrities and showed them to participants either in the country where these 

celebrities were known or in a different country where they were unknown (Halberstadt, Pecher, 

Zeelenberg, Wai, & Winkielman, 2013).  The study found that morphs of two celebrity faces 

were more attractive than the individual celebrities used to generate them (i.e., traditional BiA 

effect) but only when those celebrity individuals were unknown in the participants’ country (i.e., 

were famous in another country).  Critically, when the morphs were composed of two celebrities 

from the participants’ home country, those morphs were judged as less attractive than the 

individual celebrities.  This initial study is consistent with our hypothesis.  Crucially though, this 



25 

 

study did not manipulate prior exposure to the individual faces — rather, participants were 

assumed to have extensive real-world experience with certain celebrity faces over others.  

Therefore, this study cannot tell us anything about the question of whether averaging familiar 

individuals makes them truly disliked (i.e., reducing liking for the blend to a level that is below 

liking for the individual) or if the mere exposure effect is reduced.  As we will discuss shortly, 

this prediction is a key difference between various theoretical models.  Further, the observed 

dislike for “celebrity morphs” could also be explained by a variety of other factors.  For instance, 

participants may simply not like when any image manipulation is applied to their local celebrities 

(i.e., “Don’t mess with my hero!”) or participants may dislike the blending of individuals on 

opposite sides of the social or societal spectrum (i.e., “Don’t mix liberals and conservatives!”, as 

with the case of the famous “Bushama” blend).  Finally, it is also possible that the effects 

obtained in this study require massive experience with the individuals, over many years and 

exposures.  Given that the Halberstadt et al. (2013) study relied on such “naturalistic” exposure, it 

simply cannot answer these questions, nor can it provide evidence for any mechanism or 

boundary conditions underlying any similar effects.  

Our memory-based prediction also differs from several alternative accounts.  The most 

intuitive alternative prediction is that the effects are additive — that is, preferences from mere 

exposure and blending should combine in a positive fashion, making the morph of familiar 

individuals very attractive.  This prediction is similar to the additive pattern observed from 

combining subliminal affective priming and mere exposure (Monahan, Murphy, & Zajonc, 2000).  

The prediction of an additive effect from mere exposure and BiA manipulations follows from 

assumptions that these two effects involve separate mechanisms.  As an example, if the 

attractiveness of a blend is driven by the elimination of “mutant-like” features, participants should 

prefer blends made from unfamiliar and familiar individuals.   

Interestingly, other accounts make the complete opposite mismatch prediction.  Here, 
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mere exposure and blending should combine negatively, making the morph of two familiar 

individuals especially unattractive and reducing the liking for the blend below the level of the 

contributing individuals.  This prediction aligns with frameworks for ambiguity aversion, 

cognitive conflict, and prediction error, given that the morph falls in-between two established 

categories and represents a cognitive mismatch (Arnal & Giraud, 2012; Dreisbach & Fisher, 

2015; Hsu, Bhatt, Adolphs, Tranel, & Camerer, 2005; Neta, Kelley, & Whalen, 2013).  A similar 

prediction would also be made by the literature on the “uncanny valley effect,” since the morph 

of two familiar categories represents a distortion to the features of the contributing individual 

(Kätsyri, Förger, Mäkäräinen, & Takala, 2015; Saygin, Chaminade, Ishiguro, Driver, & Frith, 

2012).   

Again, note that these additive and mismatch predictions are different than our 

familiarity-based prediction from memory models — which expect blends of highly learned 

individuals to generate familiarity and preference values in-between actually exposed individuals 

and novel individuals (Jones & Jacoby, 2001; Kelley & Wixted, 2001). 

 

Current Research 

The current experiments offer the first systematic investigation of the idea that the 

attractiveness of facial blends varies as a relative function of their prior exposure.  We expected 

that blends of familiar faces (which we experimentally manipulated), but not blends of unfamiliar 

faces, would be less attractive than their constituents (i.e., UiA effect). 

First, we wanted to establish the BiA effect under standard conditions, where all the 

stimuli are initially unknown and exemplars are weakly learned.  This also allowed us to examine 

the link between attractiveness and familiarity (Experiment 1). 

Second, we wanted to directly test for the UiA effect under experimental conditions that 

simultaneously gauged both the mere exposure effect and the blending of highly learned 
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exemplars (Experiment 2). 

Third, we wanted to probe the underlying mechanism for any observed effects, by 

delineating between different theoretical explanations (Experiment 3).  Recall that the mismatch 

accounts propose that morphing two familiar individuals causes a conflict when perceiving the 

morph (which leads to an absolute “dip” in attractiveness for trained morphs).  Our alternative 

familiarity account proposes that any reversals observed with the UiA effect are driven by a 

reduction in morph similarity, compared to its constituent individuals.  These accounts can be 

distinguished across experiments, by morphing two familiar individuals (i.e., high conflict; 

Experiments 2 and 4) and morphing one familiar individual with one unfamiliar individual (i.e., 

no conflict, but low similarity; Experiment 3).  

Finally, we wanted to examine what type of familiarity with the trained stimulus plays a 

role in these effects.  For instance, to create a UiA effect for certain faces, does the familiarity 

have to be social in nature (e.g., learning names), or can it be purely perceptual (e.g., seeing the 

face as a background image during another task)?  The memory models suggest that our 

predictions should be obtained with stimuli that have mere perceptual familiarity.  After all, mere 

exposure effects and blending effects have also been obtained with non-social stimuli (e.g., 

random dot patterns, Chinese ideographs, etc.), and visual similarity is a powerful driver in the 

neural processing of faces (Natu & O’Toole, 2011).  On the other hand, other research suggests 

that the processing of familiar faces in the social context may be unique, compared to faces that 

are novel or only perceptually familiar (Cloutier, Kelley, & Heatherton, 2011).  Furthermore, 

perhaps the nature of the mismatch or conflict must be social? (as with the famous “Bushama” 

blend, which morphs a conservative George W. Bush with a liberal Barack Obama).  We 

answered these questions by implementing a purely perceptual training paradigm in Experiment 

4. 

We used four experiments to address our main questions (described above).  In 



28 

 

Experiment 1, participants simply rated familiarity and attractiveness for a large set of unfamiliar 

individuals and dual-person morphs that were generated using those individuals.  We observed 

the standard BiA effect, and the increased attractiveness for morphs was mediated by their 

perceived familiarity.  In Experiment 2, participants were “trained” on a subset of faces (i.e., 

either “set A” or “set B,” but never both), using a free-recall task that required pairing names with 

individual faces.  Thus, over the course of this task, participants were repeatedly exposed to one 

set of individual faces (but not the other), creating a stimulus set of trained and untrained 

individuals.  After training, participants rated the attractiveness and familiarity of trained and 

untrained morphs and individuals.  Here, we observed a UiA effect for trained faces — where 

morphs of trained individuals were rated as less attractive than the trained individuals themselves.  

In Experiment 3, we restructured the stimulus set to address whether this UiA effect for trained 

morphs was driven by cognitive conflict (i.e., mismatch account) versus a relative reduction in 

similarity (i.e., familiarity account).  We found strong support for our familiarity-based 

hypothesis, where the UiA effect was still generated for morphs that did not have competing 

individual components (i.e., morphs composed of one trained face and one untrained face).  

Finally, in Experiment 4, we used a perceptually based learning paradigm without names, to 

assess the relative importance of social and perceptual familiarity for the UiA effect.  Our 

perceptual training task replicated the UiA effect for trained faces, suggesting it is driven by low-

level visual familiarity cues (rather than any social information that is paired with the trained 

faces).  

 

Experiment 1 

 In Experiment 1, we wanted to test whether our stimulus set generates a standard BiA 

effect (i.e., morphs rated as more attractive than individuals) using a design with minimal 

exemplar learning.  We expected that when many individual exemplars are presented, without 
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strong learning of any specific exemplars, the morphs of those exemplars would be rated as more 

attractive and familiar.  Furthermore, the latter effect (familiarity) should explain the former 

effect (attractiveness).  This prediction follows from previous research showing that incidental 

exposure to many exemplars, leading to limited item-specific memory, generates familiarity for a 

prototypical representation (Posner & Keele, 1968; Winkielman, Halberstadt, Fazendeiro, & 

Catty, 2006). 

 

Method   

Participants.  One hundred fifty-one University of California, San Diego (UCSD) 

undergraduates participated for course-credit, and all participants signed consent forms approved 

by the UCSD Human Research Protection Program (HRPP). 

Materials.  Our stimulus set included 56 individual face images of Dutch and New 

Zealand (NZ) people (28 each), along with 28 50/50 morphs of those faces (14 Dutch-Dutch and 

14 NZ-NZ morphs), for a total of 84 unique stimuli (adapted from a previous study; see 

Halberstadt, Pecher, Zeelenberg, Wai, & Winkielman, 2013).  Each individual was only used in 

one of the morphs, and each morph contained two individuals. 

Design and procedure.  We conducted this as an online study, where all participants 

were told that they would be rating 84 faces on attractiveness and familiarity.  Participants were 

presented with all 84 faces from our stimulus set (i.e., 56 individuals and 28 morphs) one-at-a-

time, in a randomized order.  Note that one feature of this standard design is that many morphs 

are statistically preceded by their constituting exemplars (making the morphs somewhat familiar).  

For each face, participants were asked to rate each image on attractiveness and familiarity, using 

1 (not at all attractive // familiar) to 9 (very attractive // familiar) scales.  
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Results 

Attractiveness and familiarity.  As predicted, participants rated morphs as more 

attractive (M = 4.32, SD = 1.17) than individuals (M = 4.20, SD = 1.15), t(150) = 5.14, p < .001.  

This confirms that our stimulus set yields a traditional BiA effect in the standard paradigm, when 

only weak exemplar learning occurs.  Consistently, we observed that the morphs were also rated 

as more familiar (M = 2.46, SD = 1.44) than the individuals (M = 2.36, SD = 1.37), t(150) = 2.57, 

p = .01 (see Figure 1.1a).  It is also worth noting that the familiarity values are rather low, 

towards the “not at all” end of the 1-9 familiarity scale.  This also confirms that the standard 

procedure used by most BiA studies yields only minimal learning of exemplars and generates 

only slightly greater familiarity for the morph. 

 Multilevel mediation.  To gauge the relative impact of participants’ familiarity ratings on 

the relationship between morphing and attractiveness ratings, we applied multilevel mediation 

analyses to each participant’s data, via the mediation package in R (R Core Team, 2015; Tingley, 

Yamamoto, Hirose, Keele, & Imai, 2014).  Such a strategy is appropriate for repeated-measures 

designs to account for observations nested within participants, since they allow for model-based 

estimation of the average total, direct, and indirect mediation effects using hierarchical data 

structures (Bauer, Preacher, & Gil, 2006). 

 Here, our main predictor was target type (coded as either 0 [individual] or 1 [morph]).  

Our main DV was attractiveness ratings, and our mediator was familiarity ratings.  To conduct 

the multilevel mediation analyses for Experiment 1, mixed-effects models were constructed for 

each of the mediation paths, using by-participant random effects parameters.  All simulations 

from the mediation package in R were based on 5,000 samples per estimate, after which quasi-

Bayesian confidence intervals were calculated around the average total, direct, and causal 

mediation effects. 

 Figure 1.1b displays the mediation results.  We observed clear evidence for mediation.  
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The total effect (b = .12, CI95% = [.07, .17], p < .01) and average direct effect (b = .11, CI95% = 

[.06, .15], p < .01) on attractiveness ratings were both significant.  Target type was a significant 

predictor of familiarity (a-path:  b = 0.09, SE = .04, t = 2.58, p = .01), and familiarity was a 

significant predictor of attractiveness (b-path:  b = .16, SE = .04, t = 3.73, p < .001).  When 

controlling for familiarity (c’-path), the original t-value estimate of target type on attractiveness 

(c-path:  b = .12, SE = .02, t = 5.14, p < .001) was pushed to non-significance (b = .06, SE = .05, 

t = 1.24, ns), while familiarity was still significant (b = .11, SE = .04, t = 2.56, p = .01).  And 

critically, the average causal mediation effect was also significant (b = .01, CI95% = [.002, .02], p 

= .02), revealing familiarity as a mediator. 
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Figure 1.1:  Experiment 1 results for attractiveness and familiarity (panel a), along with multilevel 

mediation (panel b).  We demonstrated that when weak exemplar learning occurs, our stimulus set 

generates a standard beauty-in-averageness (BiA) effect, where morphs were rated as more attractive than 

individuals.  Morphs are also rated as more familiar than individuals, and this familiarity mediates the 

relationship between target type (i.e., individuals vs. morphs) and attractiveness ratings (panel b). 

 

 

Experiment 2 

 Experiment 1 demonstrated that with weak exemplar learning, morphs are judged as 

more attractive and familiar than individuals (i.e., a traditional BiA effect).  These results fit with 

the memory literature, where in the absence of any strong individual memory traces, participants 

rely only on the global familiarity of the faces. 
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 We designed Experiment 2 to address our main question.  Namely, we wanted to test the 

idea that a novel ugliness-in-averageness (UiA) effect could be generated when participants 

undergo strong learning on the individual exemplars, before rating morphs.  Recall that when the 

memory traces for these individual exemplars are strengthened via learning, participants should 

now have higher familiarity for the individuals.  Therefore, when blends of highly familiar 

individuals are presented, the morph will be less familiar than the exposed individuals, leading to 

a UiA effect.  It is also important to note that when individual exemplar memory is increased, all 

individuals may appear overall more familiar (even unexposed individuals), given that mastering 

individual exemplars from a particular face set may give participants a greater sense of familiarity 

for that specific “face space.” 

 To test our predictions in Experiment 2, we “trained” participants on a subset of faces (set 

A vs. set B), using a free-recall task that required pairing names with individuals.  Thus, over the 

course of this task, participants were repeatedly exposed to one set of individual faces (but not the 

other), creating a stimulus set of trained and untrained individuals and morphs.  After training, 

participants rated the attractiveness and familiarity of all morphs and individuals.  We observed a 

UiA effect for trained stimuli — where morphs of trained individuals were rated as less attractive 

than the trained individuals themselves.  

 

Method   

Participants and equipment.  Seventy-four UCSD undergraduates participated for 

course-credit, and all participants signed consent forms approved by the UCSD HRPP.  During 

the main task, all stimuli were presented on 17-inch Dell flat screens from PCs running Windows 

XP and E-Prime 2.0. 

Materials.  The stimuli were the same as the 56 individuals and 28 morphs used in 

Experiment 1. Using these stimuli, we wanted to create an experimental situation where we had 
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individuals and morphs that were both trained and fully untrained (according to each participant).  

To do this, we created two different sets of images (set A and set B) that contained half the total 

number of individual faces (i.e., 28 in each set) and half the total number of morph faces (i.e., 14 

in each set).  Using attractiveness ratings from a previous study (Halberstadt et al., 2013), we 

normed both sets, such that the average attractiveness ratings for individuals (and average 

attractiveness ratings for morphs) were similar across sets.  All morphs were 100% “within-set,” 

meaning that morphs could either be 50/50 morphs of two set A individuals (A-A morphs) or 

50/50 morphs of two set B individuals (B-B morphs) (see Figure 1.2a).  Importantly, for this 

study, the morphs were never composed “cross-set” (i.e., there were never 50/50 A-B morphs) 

(see Figure 1.2b).  Note that the images included in sets A and B were the same in Experiments 2 

and 4, but this was modified for empirical and theoretical purposes in Experiment 3. 

Critically, the advantage of this setup is that each participant rated individuals and 

morphs after training, according to four important conditions (i.e., untrained individuals, trained 

individuals, morphs of untrained individuals, and morphs of trained individuals).  As an example, 

if a participant was assigned to study set A individuals (not set B) in Experiment 2, they would be 

exposed to set A individuals during training, after which they would give ratings to set A 

individuals (trained individuals), set B individuals (untrained individuals), A-A morphs (morphs 

of trained individuals), and B-B morphs (morphs of untrained individuals) (see Figures 1.2 and 

1.3).  
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Figure 1.2:  Structure of individual and morph setup in Experiment 2 (top panel a), Experiment 3 (bottom 

panel b), and Experiment 4 (top panel a).  These experiments used 56 individuals, which were split into two 

different sets (set A vs. set B), each containing 28 individuals.  Experiments 2 and 4 used “within-set 

morphs,” where 28 dual-person morphs were created by averaging two set A individuals or by averaging 

two set B individuals (i.e., there were only A-A morphs and B-B morphs, but never A-B morphs).  

Experiment 3 used “cross-set morphs,” where 28 dual-person morphs were created by averaging one set A 

individual with one set B individual (i.e., there were only A-B morphs, but never A-A or B-B morphs). 

 

 

Design and procedure.  All participants were first told that they would be completing a 

memory task, where they would have to recall different face-name pairs, followed by ratings on 

different dimensions.  Participants were not told until after training that they would be rating 

attractiveness and familiarity.  For training, participants were randomly assigned to study the 28 

individual face stimuli in either set A or B (never both), before progressing through seven rounds 

of a free-recall task. 

Figure 1.3a depicts the structure of the paradigm.  At the start of each round, the 28 
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individuals in the participant’s assigned training condition were each randomly presented in a 

“study” phase.  Each image was presented with a four-letter name for 3000 ms each, one-at-a-

time.  Next, after all 28 individuals were presented, participants were given a “test” phase, where 

they were told to recall the name that was paired with each training face (i.e., they were presented 

with a response box on screen, where they would type the name), during which feedback was 

given.  During test phases, RTs were measured from stimulus onset to the final submission of the 

participants’ typed response to each face (recorded when they hit the ENTER key to advance to 

the next face).  Participants cycled through all 28 faces during every “study” and “test” phase, 

across all seven training rounds.  The names that were paired with each face stayed the same 

across all training rounds.  To encourage high attention and effort throughout the memory task, 

participants were told that they would only advance to the next part of the experiment once they 

hit a satisfactory level of performance (in reality, participants always completed seven training 

rounds, to keep the level of exposure consistent). 

After participants finished the seven rounds of training, they rated each stimulus (i.e., 56 

individuals and 28 morphs) using 9-point scales on attractiveness (1 = not at all attractive; 9 = 

very attractive) and familiarity (1 = not at all familiar; 9 = very familiar).  Each participant 

always rated the stimuli in the following block order — (1) morph attractiveness, (2) individual 

attractiveness, (3) morph familiarity, and (4) individual familiarity.  On attractiveness ratings, 

participants were asked “How attractive do you find this individual?” and responded on the 9-

point scale described above.  On familiarity ratings, participants were asked “How familiar do 

you find this individual?”, and responded on the 9-point scale described above.  Within each of 

the four different rating blocks, stimulus presentation was completely randomized. 

Note that in each rating block, the morph ratings always came first.  This was done to 

ensure that ratings of morphs were not influenced by exposure to untrained individuals, since we 

predicted that any UiA effect would occur after exposure to trained individuals.  Also keep in 
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mind that for this design, the memory literature predicts an elimination of the BiA effect for 

morphs of unfamiliar individuals, since participants never see the exemplars before rating morph 

attractiveness. 

 

 

Figure 1.3:  Design of the training task for Experiments 2 (top panel a), 3 (top panel a), and 4 (bottom 

panel b).  Experiments 2-3 used a name-learning task, where all 28 individuals in the participants’ 

respective training condition (set A vs. set B) were paired with a four-letter name.  Across seven rounds of 

“study” and “test” phases, participants were instructed to observe each face (presented for 3000 ms with the 

name) and type the name in a response box when prompted (free-recall after each “study” round).  

Experiment 4 used a similar training task, but it was changed to remove the names, in order to create 

training that was perceptually based.  Here, instead, participants were told that they would see 28 images 

that would have square probes appear on them, with a random color (blue vs. green) and number of squares 

(1, 2, 3, or 4).  Since the names in Experiments 2-3 stayed the same across all rounds, the square probe 

color/number assigned to each face was also constant across rounds in Experiment 4.  All other 

timing/exposure parameters for Experiment 4 training were the same as Experiments 2-3. 

 

 

 

Results 

 Analysis strategy.  All repeated-measures analyses (including ratings, RTs, and 

accuracy) in Experiment 2 used mixed-effects modeling via maximum likelihood, since this 
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method offers numerous analytical advantages — including more effective handling of 

unbalanced data with missing observations, reliance on fewer assumptions regarding covariance 

structures, and increased parsimony and flexibility between models (Bagiella, Sloan, & Heitjan, 

2000).  All models were built using packages the lme4 (Bates, Maechler, Bolker, & Walker, 

2014) and lmerTest (Kuznetsova, Brockhoff, & Christensen, 2014) in R.  To obtain p-value 

estimates for fixed-effects, we used Type III Satterthwaite approximations, which can sometimes 

result in decimal degrees of freedom, based on the number of observations (West, Welch, & 

Galecki, 2014).1 

 Training performance (name memory task).  We assessed participants’ accuracy and 

RT performance, when recalling names paired with individuals over the seven test rounds 

(according to whether they were randomly assigned to study set A or set B).  We analyzed this 

using a Training Condition (2: set A, set B) x Testing Block (7) fixed-effects structure, on both 

accuracy and RTs.  To normalize the RT distribution and reduce the impact of outliers, all 

incorrect RTs were excluded, and the remaining correct RTs were log10-transformed. 

 Figure 1.4 depicts the results for participants’ training performance across rounds.  In 

short, our training task was effective, since participants became progressively more quick and 

accurate at the free-recall task.  This task also standardized the level of exposure for each of the 

different individual face sets (set A vs. set B), depending on the participants’ training condition 

(see footnote for detailed results of these analyses).2  

                                                             
1 Final mixed-effects models were selected based on top-down model building.  Maximal random intercept 

and maximal random slope models were created (using all by-participant effects).  Next, the two model fits 

were tested against one another via χ2 likelihood-ratio tests (i.e., nested model comparison).  If there was no 

significant difference in model fit, the model with fewer random effects parameters (i.e. only random 

intercepts) was set as the final model; if there was a significant difference in model fit, the model with more 

random effects parameters (i.e., random intercepts and random slopes) was set as the final model. This final 

model was then used for fixed-effects testing, which employed the lmerTest package in R. 

2 In Experiment 2, we observed a main effect of Testing Block on log10-RTs, F(6, 129.12) = 64.98, p < .001 

(Figure 1.4, top panels), such that both set A and set B participants logged faster RTs over successive 

rounds of the free-recall task (with performance beginning to level out around block 5).  Here, we did not 

detect a main effect of Training Condition, F(1, 72.02) = .02, ns, or a Training Condition x Testing Block 
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Figure 1.4:  Training performance for participants in Experiment 2.  Log-10 RTs (top panels) and accuracy 

performance (bottom panels) during free-recall test phases are shown across all seven training rounds.  

Training condition (set A vs. set B) is displayed with plot headers (set A = left column; set B = right 

column) and by line color (set A = red; set B = blue).  Confidence bands show standard errors of the mean. 

 

 

 Attractiveness ratings.  To answer our main question, we tested how participants’ 

                                                                                                                                                                                     
interaction, F(6, 129.12) = .87, ns.  On recall accuracy (Figure 1.4, bottom panels), we again found a main 

effect of Testing Block, F(6, 124.51) = 352.27, p < .001, where both set A and set B participants improved 

their performance over successive rounds of the free-recall task.  Specifically, participants started at 

approximately 33% correct responses in block 1, but improved to about 98% by block 7 (and similar to 

RTs, performance began to plateau around block 5).  We did not detect a main effect of Training Condition, 

F(1, 72.01) = 1.22, ns, nor any evidence for a Training Condition x Testing Block interaction, F(6, 124.51) 

= .40, ns. 
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attractiveness ratings depended on training and morphing.  We analyzed attractiveness using a 

mixed-effects model with a Training Type (2:  trained, untrained) x Target Type (2:  individual, 

morph) fixed-effects structure. 

 There was strong evidence for a Training Type x Target Type interaction, F(1, 5,995.00) 

= 25.14, p < .001.  Follow-up tests on this interaction demonstrated that untrained morphs were 

numerically judged as more attractive than untrained individuals, although this effect was not 

significant, b < 0.10, SE = .08, CI95% = [-.11, .21], t = .58, ns.  This is consistent with the notion 

that with no exemplar learning, there should be minimal preference for the morph (if any at all).  

Confirming the key prediction, trained morphs were judged as less attractive than trained 

individuals, b = -0.50, SE = .08, CI95% = [-.63, -.31], t = -5.84, p < .001.  Thus, we observed 

robust evidence for the UiA effect (rather than a BiA effect) between trained individuals and 

morphs.   Furthermore, we also found that trained morphs were still judged as more attractive 

when compared to untrained morphs, b = 0.30, SE = .09, CI95% = [.10, .44], t = 3.09, p < .01 (see 

Figure 1.5a).  This aligns with our expectation of a relative decrease in preference for morphs of 

familiar individuals, rather than an absolute dislike of such morphs. 

Finally, both main effects were significant.  A main effect of Training Type, F(1, 90.60) 

= 94.79, p < .001, reflecting overall higher ratings for trained targets compared to untrained 

targets.  A main effect of Target Type, F(1, 73.80) = 11.69, p = .001, also demonstrated overall 

higher ratings for individuals compared to morphs. 
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Figure 1.5:  Attractiveness ratings (top-left panel a), familiarity ratings (bottom-left panel b), and multilevel 

mediation results for individual faces (top-right panel c) and morphed faces (bottom-right panel d) in 

Experiment 2.  (a) We observed an ugliness-in-averageness (UiA) effect after training, such that trained 

morphs were judged as less attractive than trained individuals. (b) For familiarity, all effects were 

significant, but the interaction was driven by the fact that there was a greater increase in familiarity for 

individuals after training, compared to morphs.  (c) Multilevel mediation demonstrated that for individual 

faces, the relationship between exposure training and attractiveness ratings was significantly mediated by 

familiarity.  (d) The parallel average causal mediation effect for morphed faces was not quite significant, 

but trending in the same direction.  Error bars = ± 1 standard error of the mean.   

 

 

 Familiarity ratings.  To verify that our memory task induced selective familiarity for 

only trained faces, we analyzed familiarity ratings in the same way as attractiveness ratings, using 

a mixed-effects model with Training Type (2:  trained, untrained) x Target Type (2:  individual, 

morph) fixed-effects structure. 

 Similar to attractiveness, we observed strong evidence for all effects.  First, a main effect 
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of Training Type, F(1, 73.00) = 83.04, p < .001, demonstrated that trained targets were judged as 

more familiar than untrained targets.  Second, a main effect of Target Type, F(1, 73.00) = 19.80, 

p < .001, showed that individuals were judged as more familiar than morphs.  Finally, we 

detected a Training Type x Target Type interaction, F(1, 73.00) = 14.25, p < .001.  This 

interaction revealed a greater difference between trained and untrained individuals, b = 2.10, SE 

= .24, CI95% = [1.59, 2.55], t = 8.55, p < .001, compared to trained and untrained morphs, b = 

1.30, SE = .18, CI95% = [.90, 1.60], t = 7.09, p < .001.  Consequently, trained individuals were 

judged to be more familiar than trained morphs, b = 1.40, SE = .22, CI95% = [.95, 1.82], t = 6.32, p 

< .001.  Untrained individuals were seen as a bit more familiar than untrained morphs, b = 0.60, 

SE = .27, CI95% = [.04, 1.10], t = 2.12, p = .04, but this difference was smaller than the difference 

between trained individuals and trained morphs (see Figure 1.5b).  

 It is also worth noting that the familiarity ratings for Experiment 2 were overall greater 

than those from Experiment 1 (i.e., Experiment 1 familiarity ratings fell mostly between 2 and 3, 

whereas Experiment 2 familiarity ratings were mostly between 5 and 9).  Since strong learning 

only occurred in Experiment 2 (not Experiment 1), there are a couple of factors to consider.  First, 

since individual exemplars have much stronger memory traces after training, this would 

substantially boost familiarity for trained individuals and their morphs (as described previously).  

Second, in Experiment 2, familiarity was measured after all attractiveness ratings, in order to 

limit participants’ exposure to untrained exemplars, before they rated attractiveness.  This would 

explain why participants rated “novel” untrained individuals and morphs as generally more 

familiar in Experiment 2, since they did see those individuals once when rating attractiveness in 

earlier blocks.  Finally, in Experiment 2, we also observed that untrained individuals were rated 

as slightly more familiar than untrained morphs.  This is likely due to the fact that learning on the 

individual exemplars gave participants a greater sense of familiarity for that specific “face space” 

(compared to the other novel morph face set). 



43 

 

 In sum, participants judged both trained individuals and trained morphs as more familiar 

than their untrained counterparts, but this effect was especially amplified for the individuals. 

 Multilevel mediation.  We used the same multilevel mediation procedure as Experiment 

1, but with some small changes (given the new structure of the data in Experiment 2).  Two 

separate datasets for each target type (individuals vs. morphs) were created, where our main 

predictor was training type (coded as either 0 [untrained] or 1 [trained]).  Our main DV was 

attractiveness ratings, and our mediator was familiarity ratings.  As before, mixed-effects models 

were constructed for each of the mediation paths, using by-participant random effects parameters.  

All simulations from the mediation package in R were based on 5,000 samples per estimate, after 

which quasi-Bayesian confidence intervals were calculated around the average total, direct, and 

causal mediation effects. 

 Figures 1.5c and 1.5d show the mediation results.  We observed clear evidence of 

mediation for individual faces.  The total effect (b = .79, CI95% = [.65, .92], p < .01) and average 

direct effect (b = .62, CI95% = [.45, .79], p < .01) on attractiveness ratings were both significant.  

Not surprisingly, training was a significant predictor of familiarity (a-path:  b = 2.07, SE = .24, t 

= 8.55, p < .001), and familiarity was a significant predictor of attractiveness (b-path:  b = .20, 

SE = .02, t = 8.14, p < .001).  When controlling for familiarity (c’-path), the original t-value 

estimate of training on attractiveness (c-path:  b = .79, SE = .07, t = 11.75, p < .001) was reduced 

but still significant (b = .86, SE = .26, t = 3.26, p = .001), while familiarity was also significant (b 

= .10, SE = .03, t = 3.42, p < .001).  Moreover, the average causal mediation effect was also 

significant (b = .17, CI95% = [.05, .29], p < .01), suggesting familiarity as a mediator. 

 When following the same process for morphs, the evidence for mediation was in the 

same direction, albeit not as strong.  Specifically, the total effect (b = .27, CI95% = [.16, .36], p < 

.01) and average direct effect (b = .21, CI95% = [.09, .33], p < .01) on attractiveness ratings were 

still both significant.  However, the average causal mediation effect was not quite significant (b = 
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.06, CI95% = [-.01, .13], p = .12).  When controlling for familiarity (c’-path), the original t-value 

estimate of training on attractiveness (c-path:  b = .27, SE = .05, t = 5.39, p < .001) was reduced 

to non-significance (c’-path:  b = .13, SE = .17, t = .81, ns).  Familiarity ratings were also not a 

significant predictor, only in this c’-path model (b = .04, SE = .03, t = .54, p = .17).  Note, 

however, that the a-path model (b = 1.25, SE = .18, t = 7.09, p < .001) and b-path model (b = .09, 

SE = .02, t = 3.99, p < .001) were both significant. 

 Summary.  We found clear evidence that participants’ familiarity ratings mediated the 

relationship between training and attractiveness on individual faces.  For morphed faces, 

familiarity still impacted the relationship between training and attractiveness (since familiarity 

ratings significantly predicted attractiveness in the b-path model, and it reduced other c’-path 

model coefficient estimates) — but the average causal mediation effect was not as strong (pmorph = 

.12 vs. pindividual < .01). 

 

Experiment 3 

 Experiment 2 established that repetition of individual faces generates a standard mere 

exposure effect, while also generating an ugliness-in-averageness (UiA) effect for morphs of 

trained faces.  This finding offers a major qualification to the classic beauty-in-averageness (BiA) 

effect.  Importantly, the decline in attractiveness for morphs of familiar individuals was relative 

— they were still more attractive than untrained individuals.  Note that these effects were 

obtained with relatively brief periods of exposure, demonstrating that the UiA effect does not 

require immense expertise to emerge.  Theoretically, the results are consistent with predictions 

derived from modern memory frameworks, which emphasize the role of exemplar learning in 

familiarity responses (and in turn, facial attractiveness). 

 With Experiment 3, we wanted to examine the underlying mechanism driving the UiA 

effect.  Recall that in the Introduction, we outlined three alternative patterns for possible results 
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after exemplar training.  First, the additive prediction would posit that preferences from mere 

exposure and blending should combine in a positive fashion, making morphs of familiar 

individuals very attractive.  This prediction seems most intuitive, under the assumption that these 

two manipulations enhance liking via separate and independent mechanisms.  However, the 

results from Experiment 2 offer clear evidence against this idea, since trained morphs were 

judged as less attractive than trained individuals (i.e., a UiA effect). 

This leaves two other possibilities.  One mismatch account suggests that encountering a 

blend of two familiar individuals causes a cognitive conflict, perhaps not unlike conflict triggered 

by bi-stable figures (Kornmeier & Bach, 2012; Topolinski, Earle, & Reber, 2015).  The negative 

affect generated from this conflict is then misattributed to subsequent ratings (causing the “dip” in 

attractiveness for trained morphs).  However, if this was the case, we might expect that trained 

morphs would be judged as not only less attractive than trained individuals, but also less 

attractive than untrained morphs.  But again, this is not what we observed in Experiment 2. 

Instead, on the memory framework, the UiA effect is driven by a relative reduction in 

familiarity-based cues for trained morphs.  More specifically, increased memory traces for 

individual exemplars after training leads to greater familiarity for trained individuals than trained 

morphs, since the former are exact replicates of what was shown during training.  This idea is 

supported by the multilevel mediation results from Experiment 2, demonstrating that familiarity 

significantly predicted attractiveness ratings for both individuals and morphs.  Moreover, the 

memory framework is reinforced by the fact that blends of highly learned individuals generated 

familiarity and preference values in-between actually exposed individuals and novel individuals 

(Jones & Jacoby, 2001; Kelley & Wixted, 2001). 

We used Experiment 3 to further distinguish between these competing mismatch 

(conflict-based) and familiarity (memory-based) hypotheses, with a simple change to our 

Experiment 2 design.  Recall that in Experiment 2, two different sets of images (set A vs. set B) 
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contained 28 individuals and 14 morphs each.  Crucially though, all morphs were 100% “within-

set,” meaning that morphs would either be 50/50 morphs of two set A individuals or 50/50 

morphs of two set B individuals (i.e., there were never 50/50 “cross-set” A-B morphs; see Figure 

1.2a).  However, in Experiment 3, we created new versions of “set A” and “set B” (once again 

based on attractiveness ratings from a previous study; Halberstadt et al., 2013) that instead used 

cross-set morphs (i.e., A-B morphs; see Figure 1.2b).  Here, while both sets A and B each still 

contained 28 individuals and 14 morphs each, they were reorganized so that the two individuals 

composing each morph were always in different sets (that is, one set A individual and one set B 

individual always comprised each morph).  Consequently, in Experiment 3, all morphs were 

cross-set A-B morphs, rather than the within-set A-A and B-B morphs used in Experiment 2. 

Critically, this arrangement directly pits the two remaining alternative explanations 

against each other: 

H1 = This assumes that the UiA effect for trained morphs is driven by mismatch — where 

the conflict of processing a morph of two familiar individuals leads to negative affect, 

which is then misattributed to lower attractiveness ratings for those morphs.  If so, cross-

set morphs should not be rated as less attractive than trained individuals.  Since the cross-

set morphs contain one trained and one untrained identity, any such conflict that would 

emerge from blending two known individuals would be removed (and any UiA effect 

should be eliminated). 

 

H2 = This assumes that the UiA effect for trained morphs is driven by familiarity — 

where the increased exemplar memory leads to greater positivity, so trained individuals 

receive increased attractiveness ratings than morphs because they are exact replicates of 

previous exposure during training.  If so, cross-set morphs should still be rated as less 

attractive than trained individuals.  Since the cross-set morphs contain one trained and 

one untrained identity, they should still be judged as relatively less familiar (and less 

attractive) than the trained individuals. 

 

Method   

Participants.  One hundred fifty-one University of California, San Diego undergraduates 

participated for course-credit, and all participants signed consent forms approved by the UCSD 
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HRPP. 

Materials.  To address our main questions for this study, we made only one change to the 

stimulus setup from Experiment 2.  As mentioned above, we created new versions of “set A” and 

“set B” (once again based on attractiveness ratings from a previous study; Halberstadt et al., 

2013) that instead used cross-set morphs (i.e., A-B morphs).  More specifically, while both sets A 

and B each still contained 28 individuals and 14 morphs each, they were reorganized so that the 

two individuals composing each morph were always in different sets (that is, one set A individual 

and one set B individual always comprised each morph).  Therefore, in Experiment 3, all morphs 

were cross-set A-B morphs, rather than the within-set A-A and B-B morphs used in Experiment 1 

(see Figure 1.2) — that is, each morph was the results of blending the faces of a trained individual 

and an untrained individual. 

Design and procedure.  The task design and procedure used here was the same as 

Experiment 2, only using the new stimulus setup created for Experiment 3 (see Figures 1.2 and 

1.3). 

 

Results 

 Analysis strategy.  Our analysis strategy was the same as Experiment 2. 

 Training performance (name memory task).  Similar to Experiment 2, we examined 

participants’ accuracy and RT performance over all seven testing blocks during training.  This 

analysis was structured according to a Training Condition (2: set A, set B) x Test Block (7) fixed-

effects design, on both accuracy and RTs.  As before, all RTs were log10-transformed to reduce 

the impact of outliers, after excluding error trials. 

 Figure 1.6 displays the training results.  As with Experiment 2, our training task was 

effective, since participants became progressively more quick and accurate at the free-recall task, 
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according to their training condition (see footnote for detailed results of these analyses).3 

 

                                                             
3 With Experiment 3, we found the predicted main effect of Test Block on log10-RTs, F(6, 886.11) = 

439.87, p < .001 (Figure 1.6, top panels), where participants answered progressively quicker over 

successive training rounds.  Note that we also observed evidence for a main effect of Training Condition, 

F(1, 264.29) = 22.31, p < .001, where set A participants had quicker RTs than set B participants throughout 

the memory task.  As with Experiment 2, we observed no evidence for a Training Condition x Test Block 

interaction, F(6, 957.61) = 1.88, ns.  On accuracy (Figure 1.6, bottom panels), we observed the expected 

main effect of Test Block, F(6, 305.73) = 513.58, p < .001.  This demonstrated that participants’ accuracy 

performance was similar to that of Experiment 2, where they started at approximately 36% correct 

responses in block 1, but improved to about 98% by block 7 (with performance beginning to level out at 

block 5).  Similar to Experiment 3 RTs, we observed some evidence for a main effect of Training 

Condition, F(1, 255.01) = 10.33, p = .001, such that set A participants (Macc = 84.71%, SDacc = 35.99%) 

performed better than set B participants (Macc = 82.27%, SDacc = 38.20%) throughout the entirety of the 

memory task.  There was no evidence for a Training Condition x Test Block interaction, F(6, 373.84) = 

1.74, ns. 
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Figure 1.6:  Training performance for participants in Experiment 3.  Log-10 RTs (top panels) and accuracy 

performance (bottom panels) during free-recall test phases are shown across all seven training rounds.  

Training condition (set A vs. set B) is displayed with plot headers (set A = left column; set B = right 

column) and by line color (set A = red; set B = blue).  Confidence bands show standard errors of the mean. 

 

 

 Attractiveness ratings.  Our main questions centered on the link between training and 

attractiveness — specifically with the relative ratings given between trained individuals and 

cross-set morphs.  Given that the cross-set morphs used here were neither 100% trained nor 

untrained (i.e., they were always composed of one trained and one untrained individual), we 

analyzed attractiveness differently than Experiment 2, using a mixed-effects model with Target 

Type (3:  morph, trained individual, untrained individual) as the only fixed-effects factor. 

 We detected strong evidence for a main effect of Target Type, F(2, 148.04) = 111.08, p < 



50 

 

.001.  Critically, a UiA effect still emerged, such that morphs were rated as less attractive than 

trained individuals, b = .60, SE = .06, CI95% = [.44, .68], t = 9.08, p < .001.  Interestingly, even 

though participants did not rate the morphs as more familiar than the untrained individuals (see 

below), they still rated the morphs as relatively more attractive, b = .10, SE = .06, CI95% = [.01, 

.24], t = 2.17, p = .03.  And as expected, we replicated the mere exposure effect, where trained 

individuals were judged as more attractive than untrained individuals, b = .70, SE = .05, CI95% = 

[.59, .77], t = 14.68, p < .001 (see Figure 1.7a).  
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Figure 1.7:  Attractiveness ratings (top-left panel a), familiarity ratings (top-right panel b), multilevel 

mediation results (middle panel c), and correlation analyses (bottom panel d) in Experiment 3.  (a) We still 

observed an ugliness-in-averageness (UiA) effect after training using cross-set morphs (rather than the 

within-set morphs from Experiment 2), such that morphs were judged as less attractive than trained 

individuals. (b) Trained individuals were judged as more familiar than both untrained individuals and cross-

set morphs.  (c) Multilevel mediation demonstrated that the relationship between training target type 

(trained individuals vs. cross-set morphs // trained individuals vs. untrained individuals) and attractiveness 

ratings were significantly mediated by familiarity.  (d) Separate correlation analyses within morphs (left 

panel) and trained individuals (right panel) showed significant positive correlations between familiarity and 

attractiveness.  Linear fits are shown in each plot, along with 95% confidence interval bands.  Error bars = 

± 1 standard error of the mean.   
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 Familiarity ratings.  We analyzed familiarity ratings in the same way as attractiveness, 

using a mixed-effects model with Target Type (3:  morph, trained individual, untrained 

individual) as the only fixed-effects factor. 

 We observed a clear main effect of Target Type, F(2, 149.00) = 133.83, p < .001.  

Trained individuals were judged as more familiar than both untrained individuals, b = 2.20, SE = 

.18, CI95% = [1.83, 2.53], t = 12.18, p < .001, and morphs, b = 2.30, SE = .15, CI95% = [1.99, 2.58], 

t = 15.48, p < .001.  Note that there was also no difference when comparing mean familiarity 

ratings between morphs and untrained individuals, b = .1, SE = .18, CI95% = [-.44, .23], t = .63, ns 

(see Figure 1.7b), though as discussed below, familiarity still played a role in the attractiveness 

ratings of those targets. 

 Multilevel mediation.  We built multilevel mediation models using the same procedure 

as Experiment 2, only with one important change.  Since the cross-set morphs in Experiment 3 

differed from the within-set morphs in Experiment 2 in that they were neither 100% trained nor 

untrained, this was collapsed into one three-level factor for Training Target Type (3:  morph, 

trained individual, untrained individual).  Note that treatment variables with more than two levels 

need to be handled differently than binary treatment variables in multilevel mediation (Imai, 

Keele, & Tingley, 2010).  This can be done by creating separate mediation models with different 

treatment values, compared across the same control value.  Therefore, for Experiment 3, we 

created two separate multilevel mediation models.  The first model compared trained individuals 

to untrained individuals, and the second model compared trained individuals to morphs.  With 

both models, our main predictor was training (trained individuals vs. untrained individuals in 

model 1 [M1]; trained individuals vs. morphs in model 2 [M2]); our main DV was attractiveness 

ratings; and our mediator was familiarity ratings. 

 Figure 1.7c displays a summary of the mediation results.  Critically, we detected evidence 
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for mediation with both models.  As in Experiment 2, training target type was a significant 

predictor of familiarity (a-path [M1]:  b = 2.18, SE = 0.18, t = 12.18, p < .001; a-path [M2]:  b = 

2.28, SE = 0.15, t = 15.48, p < .001), and familiarity was a significant predictor of attractiveness 

(b-path [M1]:  b = 0.18, SE = 0.02, t = 10.55, p < .001; b-path [M2]:  b = 0.16, SE = 0.02, t = 

7.84, p < .001).  When controlling for familiarity, the original t-value estimate of training on 

attractiveness (c-path [M1]:  b = 0.68, SE = 0.05, t = 14.61, p < .001; c-path [M2]:  b = 0.56, SE = 

0.06, t = 9.07, p < .001) was reduced to non-significance (c’-path [M1]:  b = 0.16, SE = 0.22, t = 

0.72, ns; c’-path [M2]:  b = 0.06, SE = 0.30, t = 0.21, ns). 

We also formally tested the total, indirect, and average causal mediation effects in both 

models.  For M1 (comparing trained individuals vs. untrained individuals), the total effect (b = 

.68, CI95% = [.58, .78], p < .01), average direct effect (b = .50, CI95% = [.37, .62], p < .01), and 

average causal mediation effect (b = .18, CI95% = [.09, .28], p < .01) were all highly significant.  

M2 (comparing trained individuals vs. morphs) showed similar results, with a significant total 

effect (b = .55, CI95% = [.43, .69], p < .01), average direct effect (b = .38, CI95% = [.21, .57], p < 

.01), and average causal mediation effect (b = .17, CI95% = [.04, .31], p = .01). 

In short, multilevel mediation demonstrated that familiarity mediated the relationship 

between training and attractiveness (both when specifically comparing trained individuals to 

untrained individuals and morphs). 

Correlations by target type.  Finally, we also wanted to assess the relationship between 

attractiveness and familiarity within trained individuals and morphs (rather than comparing across 

them).  In other words, are morphs that appear more familiar rated higher on attractiveness, 

compared to other morphs that appear relatively unknown?  We investigated this by simply 

aggregating participants’ mean attractiveness and familiarity ratings for morphs and trained 

individuals, then running separate Pearson (r) product-moment correlation tests within each target 

type. 
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Figure 1.7d shows the results of this analysis.  Attractiveness and familiarity were 

positively correlated for both morphs, r(149) = .20, CI95% = [.05, .35], p = .01, and trained 

individuals, r(149) = .24, CI95% = [.09, .39], p < .01.  Importantly, this demonstrated that not only 

did familiarity significantly impact attractiveness ratings across target types (i.e., morphs vs. 

trained individuals), but it also affected attractiveness within target types, as well (i.e., more 

familiar morphs were more attractive than less familiar morphs).    

Summary.  Overall, both the attractiveness and mediation results support the familiarity-

based predictions made by memory models (H2 described previously), where the UiA effect 

depends on the similarity of the morph to the exemplars.  This idea assumes that increased 

exemplar learning leads to greater familiarity for those trained individuals — and the “dip” in 

attractiveness ratings for trained morphs is actually due to the relative reduction of those 

familiarity cues (i.e., trained individuals feel more familiar than trained morphs, since they are 

“pure” replicates of what was shown during the memory task). 

 

Experiment 4 

 To review, Experiment 1 demonstrated that a traditional BiA effect occurs with weak 

learning of exemplars in the context of many new face stimuli.  Experiment 2 revealed that brief 

periods of training generate a mere exposure effect for those training individuals.  Critically, this 

training also elicits a UiA effect, where trained morphs are judged as less attractive than trained 

individuals.  We extended these findings in Experiment 3 using cross-set morphs, which showed 

that these results are driven by a relative reduction in familiarity cues between trained individuals 

and morphs — thus supporting the familiarity-driven (memory-based) framework for the UiA 

effect (over the additive and mismatch frameworks). 

 In Experiment 4, we looked to build on the previous two experiments by investigating a 

different type of training.  More specifically, the face-name memory task from Experiments 2 and 
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3 contained some social element, since participants were tasked with remembering identities for 

the trained individuals.  But is this social element necessary to promote this increased familiarity, 

which in turn leads to reversals in attractiveness ratings between trained individuals and morphs?  

In other words, with a non-social version of the training task (where participants are not required 

to recall identity information, but endure similar levels of exposure), will we observe similar 

effects on attractiveness?  The differences between perceptual and conceptual modes of 

familiarity have long been studied alongside memory-based processes (e.g., false recognition; 

Fazendeiro, Winkielman, Luo, & Lorah, 2005), and these distinctions are interesting for several 

reasons.  One is the issue of process specificity, given that person-based knowledge for familiar 

faces can recruit distinct neural regions, as compared to those faces that are novel or only 

perceptually familiar (Cloutier, Kelley, & Heatherton, 2011).  More critically, according to 

memory frameworks, the mechanisms for eliciting the UiA effect involve basic and general 

familiarity (as would be the case with low-level visual cues; Natu & O’Toole, 2011), rather than a 

conflict between social identities or some other aspect of social knowledge.  Thus, the UiA 

should occur even if learning is kept only to its “pure” perceptual aspects. 

 We addressed this in Experiment 4 by changing the training to a perceptual detection and 

memory task (instead of one that focuses on face-name pairs).  With this new non-social version 

of the training, participants were exposed to the same images (individual faces, in either set A or 

set B) over similar durations (seven blocks of “study” and “test” phases), but they instead had to 

detect and recall blue and green square probes that randomly appeared on each image.  Note that 

with this task, participants’ exposure to each of the images during training is held constant, but 

we changed the type of information that was required for recall — where Experiments 2 and 3 

focused on names (social), while Experiment 4 focused on probes (non-social). 

 In sum, the predictions for Experiment 4 were as follows.  If the UiA effect requires an 

element of social familiarity for trained individuals, then these effects should dissipate in 



56 

 

Experiment 4 (since the training task would not require learning or pairing any social information 

with those trained faces).  If the UiA effect instead only requires perceptual familiarity for trained 

individuals, we should observe similar effects on attractiveness in Experiment 4 (since 

participants are still receiving the same amount of exposure to each of those faces during training, 

compared to Experiments 2 and 3).  

 

Method   

Participants.  One hundred twenty-eight UCSD undergraduates participated for course-

credit, and all participants signed consent forms approved by the UCSD HRPP. 

Materials.  All stimuli and materials were the same as Experiment 2.  Note that we used 

within-set morphs in Experiment 4 (A-A and B-B morphs, as with Experiment 2), rather than the 

cross-set morphs used in Experiment 3 (A-B morphs) (see Figure 1.2). 

Design and procedure.  Our main changes focused on the type of memory task we used.  

As mentioned, we wanted to produce a version of the memory task that removed any social 

aspects (as there would be with face-name pairs) and focused on perceptual familiarity (using the 

face stimuli only as background images that participants would be trained on). 

Figure 1.3b shows the main revisions to the design of the training task for Experiment 4.  

This training task had a similar structure to that of Experiments 2 and 3 — where participants 

would progress through seven rounds of the free-recall task on the 28 individuals in their 

randomly assigned training set (A or B).  However, the type of recall they performed at the test 

phase during each round was different.  Specifically, instead of recalling names, participants were 

instructed that they would have to recall “both the color and number of either blue or green 

square probes that would randomly appear on the different images.”  Therefore, with this version 

of the memory task, no names were presented with the faces. 

Critically, the “images” were the same individual face stimuli used in Experiments 2 and 
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3.  Here, a face was assigned to a constant color (either blue or green) and constant number 

(between 1 and 4) of square probes (note that this color-number assignment did not change across 

successive rounds of training — similar to the names used in Experiments 2 and 3).  During each 

study phase presentation (3000 ms for each image), these 200 ms square probes would then 

appear at random intervals, and participants were tasked with remembering the color and number 

of squares that appeared on each face (see Figure 1.3b).  

All attractiveness and familiarity ratings that followed the memory task were the same as 

Experiments 2 and 3. 

 

Results 

 Analysis strategy.  Our analysis strategy was the same as Experiment 2. 

 Training performance (perceptual memory task).  As was the case with Experiments 

2 and 3, we aimed to gauge participants’ accuracy and RT performance over all seven testing 

blocks during training.  We structured this analysis according to a Training Condition (2: set A, 

set B) x Test Block (7) fixed-effects design, on both accuracy and RTs.  Similar to before, all RTs 

were log10-transformed, after excluding error trials.  We also analyzed accuracy and RT 

performance separately for both the color (blue vs. green) and number (between 1 and 4) of 

square probes that were assigned to each trained individual. 

 Figure 1.8 summarizes the training results.  Similar to Experiments 2 and 3, our training 

task was effective, since participants became progressively more quick and accurate over 

successive training rounds, according to their training condition.  Note that there were some less 

theoretically important effects observed between color and number training performance metrics 

(see footnote for detailed results of these analyses).4 

                                                             
4 For Experiment 4, we detected main effects of Test Block on both color RTs, F(6, 126.00) = 67.58, p < 

.001, and number RTs, F(6, 126.00) = 105.82, p < .001 (Figure 1.8, top panels).  RTs on both color and 

number decreased over the course of the memory task to block 7.  We also saw some evidence for a main 
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effect of Training Condition on color RTs, F(1, 126.00) = 4.96, p = .03, and this main effect was marginal 

for number RTs, F(1, 126.00) = 3.52, p = .06.  While set B participants were more accurate overall, these 

RT main effects revealed that they took longer to recall both the color and number of square probes, 

compared to set A participants on color and number.  While we did not observe any Training Condition x 

Test Block interaction for color RTs, F(6, 126.00) = .29, ns, we did for number RTs, F(6, 126.00) = 2.70, p 

= .02.  This interaction showed that set A participants had a greater rate of RT improvement from blocks 1 

to 7, compared to set B participants.  On accuracy (Figure 1.8, bottom panels), the results mirrored the 

Experiment 4 RT findings.  We found a main effect of Test Block for both color, F(6, 756.00) = 159.43, p 

< .001, and number, F(6, 756.00) = 298.65, p < .001, which both showed that overall accuracy improved 

throughout the memory task.  Participants started around chance level in block 1 for both color (53.01%) 

and number (27.93%), which substantially improved by block 7 (81.72% and 75.00%, respectively), with 

performance starting to level out around block 5.  Similar to RTs, we also observed some evidence for a 

main effect of Training Condition, on both color, F(1, 126.00) = 6.04, p = .01, and number, F(1, 126.00) = 

6.69, p = .01.  This showed that set B participants were more accurate in recalling the color (Macc = 

71.75%, SDacc = 45.02%) and number (Macc = 56.33%, SDacc = 49.60%) of square probes, compared to set 

A participants on color (Macc = 67.24%, SDacc = 46.94%) and number (Macc = 49.72%, SDacc = 50.00%).  

While we did not observe any evidence for a Training Condition x Test Block interaction on color, F(6, 

756.00) = .18, ns,, we did see an interaction for number, F(6, 756.00) = 3.39, p < .01.  Post-hoc breakdowns 

of this interaction revealed that while both set A and B participants started at similar levels of accuracy, set 

B participants improved more quickly and ended block 7 with greater accuracy performance. 
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Figure 1.8:  Training performance for participants in Experiment 4.  Log-10 RTs (top panels) and accuracy 

performance (bottom panels) during free-recall test phases are shown across all seven training rounds.  

Training condition (set A vs. set B) is displayed with plot headers (set A = left column; set B = right 

column) and by line color (set A = red; set B = blue).  The type of information for the free-recall (color vs. 

number of square probes) is shown by line type (color = solid line; number = dotted line).  Confidence 

bands show standard errors of the mean. 

 

 

 Attractiveness ratings.  To gauge the effects of training and morphing on attractiveness, 

we analyzed participants’ attractiveness ratings using a mixed-effects model with a Training Type 

(2:  trained, untrained) x Target Type (2:  individual, morph) fixed-effects structure. 

Figure 1.9a displays the attractiveness results.  Most importantly, we found a Training 
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Type x Target Type interaction, F(1, 10,370.80) = 39.54, p < .001.  Follow-up tests on this 

interaction revealed a similar UiA effect as Experiment 2, with trained morphs judged as less 

attractive than trained individuals, b = 0.50, SE = .08, CI95% = [.33, .65], t = 6.05, p < .001.  

Untrained morphs were numerically rated as more attractive than untrained individuals, but not 

significantly so, b < 0.10, SE = .08, CI95% = [-.15, .17], t = .15, ns.  Also, similar to Experiment 2, 

trained morphs were still judged as more attractive when compared to untrained morphs, b = 

0.30, SE = .07, CI95% = [.14, .41], t = 3.98, p < .001.  We also observed a mere exposure effect, 

since trained individuals were judged more attractive than untrained individuals, b = 0.80, SE = 

.05, CI95% = [.67, .87], t = 15.19, p < .001. 

 The main effects were also significant.  The main effect of Training Type, F(1, 151.8) = 

132.67, p < .001, demonstrated that trained targets were judged as more attractive overall, 

compared to untrained targets.  The main effect of Target Type, F(1, 127.40) = 11.48, p < .001, 

showed that individuals were judged as more attractive overall, compared to morphs. 
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Figure 1.9:  Attractiveness ratings (top-left panel a), familiarity ratings (bottom-left panel b), and multilevel 

mediation results for individual faces (top-right panel c) and morphed faces (bottom-right panel d) in 

Experiment 4.  (a) We observed an ugliness-in-averageness (UiA) effect after training, such that trained 

morphs were judged as less attractive than trained individuals. (b) All familiarity effects were significant, 

but the interaction was driven by the fact that there was a greater increase in familiarity for individuals after 

training, compared to morphs. (c) Multilevel mediation demonstrated that the relationship between 

exposure training and attractiveness ratings was significantly mediated by familiarity for individual faces.  

(d) This parallel average causal mediation effect for morphed faces was marginally significant.  Error bars 

= ± 1 standard error of the mean. 

 

 

 Familiarity ratings.  We tested familiarity ratings with a similar method to the 

attractiveness ratings, using a mixed-effects model with Training Type (2:  trained, untrained) x 

Target Type (2:  individual, morph) fixed-effects structure. 

 Figure 1.9b shows the familiarity results.  All effects from the mixed-effects model on 

familiarity were significant.  First, and most importantly, we observed strong evidence for a 
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Training Type x Target Type interaction, F(1, 127.00) = 36.55, p < .001.  Follow-up testing on 

this interaction revealed the expected effect that trained individuals were rated the most familiar 

— compared to untrained individuals, b = 2.60, SE = .19, CI95% = [2.25, 3.00], t = 13.74, p < 

.001, trained morphs, b = 1.30, SE = .12, CI95% = [1.08, 1.57], t = 10.64, p < .001, and untrained 

morphs, b = 3.00, SE = .21, CI95% = [2.54, 3.36], t = 14.25, p < .001.  Critically though, this 

interaction yielded a similar pattern to Experiment 2, where the difference in familiarity ratings 

between trained individuals and trained morphs was more amplified, compared to the smaller 

difference between untrained individuals and untrained morphs, b = .30, SE = .16, CI95% = [.01, 

.64], t = 2.05, p = .04. 

 Note that we also observed main effects for both Training Type, F(1, 127.00) = 195.80, p 

< .001, and Target Type, F(1, 127.00) = 50.32, p < .001.  These main effects demonstrated that 

trained targets were rated as more familiar overall, and individuals were rated as more familiar 

than morphs. 

 Generally, these results replicated the familiarity findings from Experiment 2.  

Participants judged trained individuals as the most familiar.  It is also worth noting that similar to 

Experiment 2, familiarity ratings in Experiment 4 fell mostly between 5 and 9, and untrained 

individuals were still judged as more familiar than untrained morphs (presumably because 

learning on the individual exemplars gave participants a greater sense of familiarity for that 

specific “face space,” rather than the novel morph face set). 

 Multilevel mediation.  We used the same multilevel mediation strategy described in 

Experiment 2, to assess the relative influence of familiarity on the link between training and 

attractiveness ratings in Experiment 4.  As a reminder, we created two separate datasets for each 

target type (individuals vs. morphs), where our main predictor was training type (coded as either 

0 [untrained] or 1 [trained]); our main DV was attractiveness ratings; and our mediator was 

familiarity ratings. 
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 Figures 1.9c and 1.9d show the mediation results.  Critically, we observed strong 

evidence of mediation for individuals (see Figure 1.9c).  The total effect was significant (b = .77, 

CI95% = [.66, .89], p < .01), along with the average direct effect of training on attractiveness 

ratings (b = .57, CI95% = [.41, .73], p < .01).  As expected, training was a significant predictor of 

familiarity (a-path:  b = 2.63, SE = .19, t = 13.74, p < .001), and once again, familiarity was a 

significant predictor of attractiveness (b-path:  b = .19, SE = .02, t = 10.57, p < .001).  When 

controlling for familiarity (c’-path), the original t-value estimate of training on attractiveness (c-

path:  b = .77, SE = .06, t = 13.85, p < .001) was reduced but still significant (b = .41, SE = .20, t 

= 2.10, p = .04), while familiarity was also significant (b = .06, SE = .03, t = 2.56, p = .01).  

Finally, the average causal mediation effect was significant (b = .20, CI95% = [.08, .33], p < .01), 

suggesting familiarity ratings as a partial mediator. 

 When these same analyses were done for morphs, we still observe some evidence of 

mediation — albeit weaker (see Figure 1.9d).  While there was a significant total effect (b = .27, 

CI95% = [.17, .37], p < .01) and average direct effect (b = .21, CI95% = [.09, .33], p < .01), the 

average causal mediation effect was marginal (b = .06, CI95% = [-.01, .14], p = .09).  Similar to 

Experiment 2, when controlling for familiarity (c’-path), the original t-value estimate of training 

on attractiveness (c-path:  b = .27, SE = .05, t = 5.60, p < .001) was reduced to non-significance 

(c’-path:  b = -.07, SE = .14, t = -.52, ns).  Familiarity ratings were also not a significant predictor 

in this c’-path model (b = .01, SE = .02, t = .57, ns).  Note, however, that the a-path model (b = 

1.63, SE = .15, t = 10.65, p < .001) and b-path model (b = .08, SE = .02, t = 4.35, p < .001) were 

both significant. 

 In sum, the mediation results from Experiment 4 looked very similar to those from 

Experiment 2.  We observed convincing evidence of mediation for individual targets, where 

familiarity mediated the relationship between training and attractiveness ratings.  Moreover, for 

morphs, while familiarity was still connected to both training and attractiveness (attractiveness 
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was significantly predicted by familiarity, and familiarity reduced other c’-path model coefficient 

estimates), the omnibus causal mediation effect was in the same direction, but marginal (pmorph = 

.09 vs. pindividual < .01). 

 

Discussion 

The current research addressed the mechanisms underlying classic social preference 

effects and tested predictions generated by modern models of memory.  The four experiments 

found that different amounts of exposure predictably change the absolute and relative preferences 

for individuals and morphs.  Our experiments replicate classic phenomena of mere exposure (all 

experiments) and the beauty-in-averageness (BiA) effect (Experiment 1).  Critically, they also 

document a novel ugliness-in-averageness (UiA) effect, where morphs of familiar individuals are 

judged as less attractive than contributing individuals (Experiments 2, 3, and 4).  The experiments 

also demonstrate that the UiA effect is due to a relative reduction in familiarity for morphs of 

trained individuals.  As a result, the attractiveness of highly familiar exemplars “trumps” the less 

familiar morphs.  Moreover, consistent with predictions derived from memory theories, the UiA 

effect does not depend on a conflict between two well-known individuals, but only requires a 

decrease of familiarity of a single well-known exemplar (Experiment 3) and can be generated by 

purely perceptual and visual familiarity (Experiment 4).  Generally, this research offers the first 

demonstration for the UiA effect, which combines two classic determinants of preferences in 

social psychology — mere exposure (i.e., stimulus repetition) and blending (i.e., stimulus 

averaging).  This not only highlights the importance of memory processes in understanding social 

judgments like attractiveness, but the current findings also represent a major qualification to the 

classic BiA effect, known since Galton (1879) and confirmed by a multitude studies using a 

variety of different paradigms, stimuli, and modalities (Halberstadt & Rhodes, 2003; Langlois & 

Roggman, 1990; Rhodes & Tremewan, 1996).  As such, our results should extend beyond social 
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judgments of faces, since the interaction between prototypicality (blending) and exposure is 

evident in a variety of other domains (e.g., understanding market dynamics; Landwehr, Wentzel, 

& Herrmann, 2010). 

We will now review in detail each of the major findings, while highlighting their broader 

theoretical implications — but first, let us restate some major assumptions on modern theories of 

memory.  Recall that on those theories, memories contain traces for individual exemplars (e.g., 

specific faces that are studied).  These traces can be accompanied by a “gist” (prototype) 

representation for those exemplars (Deese, 1959; Posner & Keele, 1968; Whittlesea, 2002; 

Roediger & McDermott, 1995) or generate “gist” effects without assuming the existence of a 

unique prototype representation (Barsalou, 1990; Johansen & Palmeri, 2002; Love, 2013; Medin 

& Schaffer, 1978; Murphy, 2002).  Also, the familiarity of a probe (target) is calculated from the 

similarity values of the probe with all traces in memory (or a relevant subset of traces).  The 

strength of a memory trace determines the similarity between the probe and the memory trace — 

if the memory trace is weak (because only a few features of the item were stored correctly), the 

similarity between the probe and the memory trace will be lower than when the memory trace 

contains many correctly stored features.  Thus, familiarity will be higher for strong items than for 

weak items (i.e., mere exposure effect).  With weak learning of multiple items, the blend probe is 

more similar to all memory traces than any probe of individual faces, predicting the BiA effect.  

Crucially though, with strong learning, the probe of known individual faces is more similar to the 

relevant memory traces than the blend probe, predicting the UiA effect.  Note that when 

participants rate morphs made from exemplars without any previous training at all, the memory 

literature predicts no BiA or UiA effects.  

Now, let us move on to our main empirical findings.  First, in Experiment 1, we found 

that weak training on exemplars generates the standard BiA effect — where morphs are judged as 

more attractive and familiar than individuals.  This finding matches our memory account and also 
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fits with previous cognitive explanations of the BiA effect, which posit that blending two faces 

makes it better match to the “gist” or prototype (Principe & Langlois, 2012).  Critically, the 

relationship between target type (i.e., individual vs. morph) and attractiveness was mediated by 

familiarity (such that morphs appear more familiar, and thereby more attractive).  This is 

consistent with findings that attractiveness of average faces is associated with their implicit 

familiarity (Peskin & Newell, 2004; Rhodes, Halberstadt, & Brajkovich, 2001).  Experiments 2, 

3, and 4 investigated the attractiveness for morphs of highly learned exemplars (i.e., when the 

individual exemplars have strong traces in memory) and morphs made out of completely 

unfamiliar exemplars.  No BiA effect emerged for morphs made out of completely unfamiliar 

individuals, while the UiA effect emerged for trained morphs in all three experiments.  

Theoretically, this follows from our memory-based predictions, since individual target faces are 

more similar to strong memory traces than blended faces.  Another feature of our data that offers 

additional support to the familiarity (memory-based) account is that blends of highly learned 

individuals generate familiarity and preference values in-between actually exposed individuals 

and novel individuals.  This makes sense from a memory-based viewpoint, given that familiarity 

and liking is reduced with increased dissimilarity of the probe, but there is still some lingering 

positive effects from partial familiarity (also see Gordan & Holyoak, 1983). 

These robust confirmations of our memory-based account of familiarity can be contrasted 

with alternative theoretical predictions, as previously described in the Introduction.  Recall that 

one prediction was that mere exposure and blending effects would be additive — where the 

positivity from both processes combine to create an even stronger BiA effect (i.e., morphs of 

highly learned exemplars appear extra attractive).  This prediction is intuitive at first, especially 

under the assumption that the benefits of mere exposure and blending occur via independent 

mechanisms.  Further, this additive logic worked in previous studies combining mere exposure 

and affective priming (Monahan, Murphy, & Zajonc, 2000).  However, the findings from 
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Experiments 2, 3 and 4 clearly argue against this idea — since morphs of highly learned 

exemplars were deemed less attractive than their constituent individuals (i.e., UiA effect).   

Another alternative account predicts the UiA effect, but for a different reason.  The 

mismatch account assumes that the morphs of two familiar individuals appear especially 

unattractive because of negative affect generated by cognitive conflict between two established 

categories or “attractors” (Arnal & Giraud, 2012; Dreisbach & Fisher, 2015; Hsu, Bhatt, Adolphs, 

Tranel, & Camerer, 2005; Neta, Kelley, & Whalen, 2013).  This clash would trigger negative 

affect, which would then generalize to the morph.  This account clearly predicts that the dislike 

should be eliminated if the conflict is eliminated, by removing one conflicting strong category.  In 

contrast to this prediction, our data supported the familiarity (memory-based) account in 

Experiment 3, since a UiA effect still emerged when using “cross-set” morphs (composed of one 

trained individual and one untrained individual, as opposed to the “within-set” morphs in 

Experiments 2 and 4).  Keep in mind, however, that the current results do not challenge the 

overall validity of the mismatch (conflict-based) account as a mechanism for the generation of 

negative affect (Dreisbach & Fisher, 2015). 

 Note that we also found that purely perceptual familiarity in Experiment 4 (without any 

social information, as with the name-learning task in Experiments 2 and 3) is sufficient by itself 

to produce a UiA effect.  This fits with decades of past research on the mere exposure effect using 

abstract stimuli (e.g., Chinese ideographs, letter strings, unknown melodies, etc.) and work in 

computational neuroscience showing the importance of visual cues in facial processing (Natu & 

O’Toole, 2011).  Furthermore, it complements other recent research showing that familiarity can 

have both perceptual and conceptual components, but at different time stages (i.e., using EEG 

event-related potentials, perceptual effects emerge at 150–250 ms effects, while conceptual 

effects arise around 400 ms; Wang, Li, Gao, Xiao, & Guo, 2015).  These timing differences 

would be especially valuable to investigate further with the UiA effect, since judgment and 
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physiology shift as stimulus processing progresses from perceptual (early) to conceptual (late) 

stages (Bradley & Lang, 2007).  Neurally, this would also be useful in comparing low-level 

responses between blends of social (e.g., Halberstadt & Winkielman, 2014) and non-social 

stimuli (e.g., Winkielman et al., 2006). 

The current research also observed very strong support for familiarity-positivity link.  

This connection has long been assumed to be at the core of the mere exposure effect (Titchener, 

1915), and it works in a bi-directional manner, with positivity breeding familiarity (Garcia-

Marques et al., 2004; Monin, 2003; Phaf & Rotteveel, 2005).  Note, however, that this “warm 

glow” of familiarity can also fluctuate based on contextual factors, like mood, motivation, or 

goals (De Vries, Holland, Chenier, Starr, & Winkielman, 2010; Freitas, Azizian, Travers, & 

Berry, 2005; Hertwig, Herzog, Schooler, & Reimer, 2008).  It also may depend on the specific 

judgement in-question, with attractiveness, liking, and desirability ratings sometimes showing 

different sensitivity to manipulations of mere exposure and prototypicality (DeBruine, 2005; 

Rhodes, Halberstadt, & Brajkovich, 2001; Rhodes, Halberstadt, Jeffery, & Palermo, 2005).  Thus, 

an interesting avenue for future research would be the role of affective, motivational, and 

judgmental contexts in the UiA effect. Mechanistically, the familiarity-preference link could arise 

due to underlying changes in perceptual fluency (Winkielman, Schwarz, Fazendeiro, & Reber, 

2003).  However, there are also alternative models in which familiarity arises via alternative 

processes, linked to context-free recognition (e.g., Wagner & Gabrieli, 1998).  While 

methodologically challenging, future studies may also attempt to separate the relative 

contribution of “pure” fluency and “pure” familiarity to the effects obtained in the current studies, 

though this question is not essential for our central point.  

Going forward, the current work prompts many other interesting questions.  As an 

example, the current studies did not investigate the role of valenced expressions (e.g., smiling and 

frowning faces).  Not only can valence modify our effects, but with such expressions, social 



69 

 

familiarity may become more important.  This is likely, given that fMRI studies have found 

activation of unique brain regions to person-based familiarity (especially within the medial 

prefrontal cortex; Cloutier, Kelley, & Heatherton, 2011) and more generally between social and 

non-social stimuli (Gobbini & Haxby, 2007; Haxby, Hoffman, & Gobbini, 2000; Johnson, 2005).  

Clearly, involving dimensions with social complexity also needs to be considered (e.g., race or 

gender; Bernstein, Young, & Hugenberg, 2007; Malpass & Kravitz, 1969; Hugenberg & 

Bodenhausen, 2004).  Finally, our results suggest that training modifies blending effects on 

attractiveness of visual stimuli, but it would also be interesting to gauge whether or not our UiA 

effect extends to different modalities (e.g., audition, via blended sounds; Bruckert et al., 2010) or 

works across modalities (Winkielman, Ziembowicz, & Nowak, 2015). 

 In sum, our studies represent the first systematic investigation of the UiA effect.  We 

demonstrated how mere exposure and blending combine to impact familiarity — and how 

memory-based processes modify and reverse classic patterns of facial attractiveness.  Simply put, 

the current experiments reveal that when considering familiarity, blends are not always beautiful.  

 

 

Chapter 1 is, in full, under review for publication of the material. Carr, Evan W.; Pecher, 

Diane; Zeelenberg, Rene; Halberstadt, Jamin; Winkielman, Piotr. The dissertation author was the 

primary investigator and author of this material. 
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Abstract 

  

 Mere exposure is a classic psychological phenomenon. It is well established that 

repetition leads to a “warm glow of familiarity,” but how it occurs remains largely unknown.  

Across two experiments, we show for the first time that familiarity enhances actual perceived 

happiness of facial expressions.  In Experiment 1, using a paradigm where participants’ responses 

were orthogonal to happiness to avoid response biases, we found that trained (familiar) faces 

were deemed happier than untrained (novel) faces.  In Experiment 2, we replicated this effect 

with a rapid “happy or angry” categorization task.  Using psychometric function fitting, we found 

that participants needed less actual happiness to be present in trained (compared to untrained) 

faces in order to classify them as happy.  Critically, our results also dissociate prominent models 

of mere exposure, by demonstrating that familiar faces appear happier through selective 

enhancement of positive stimulus features (rather than reduction of negative stimulus features).       

 

Keywords: mere exposure, affect, familiarity, perception, facial expressions   
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Introduction 

For more than a century, psychology has been fascinated with the “warm glow of 

familiarity” (Fechner, 1876; James, 1890; Titchener, 1915).  This preference for previously 

encountered stimuli — better known as the mere exposure effect (Zajonc, 1968) — not only 

occurs across different tasks, modalities, and stimuli, but it also informs numerous emotion-

cognition models and applications to real-world settings (e.g., Baker, 1999; Balogh, & Porter, 

1986; Obermiller, 1985; Pettigrew & Tropp, 2008; Rhodes, Halberstadt, & Brajkovich, 2001; 

Tremblay, Inoue, McClannahan, & Ross, 2010).  The dominant explanations propose that 

repetition associates the stimulus with an absence of negative consequences (Zajonc, 2001) and 

reduces uncertainty (Lee, 2001), or that repetition facilitates processing (Bornstein & D’Agostino, 

1994), with such fluency experienced as positive (Winkielman, Schwarz, Fazendeiro, & Reber, 

2003).  

Interestingly, despite more than 100 years’ worth of mere exposure research, the nature 

of this effect is still mysterious.  One key question concerns the processing stage at which 

familiarity creates positivity:  Does mere exposure impact early stimulus processing (during 

actual perception) or is it purely a judgment phenomenon (occurring at later stages)?  Another 

key question concerns the nature of affective change:  Does familiarity change positive affect, 

negative affect, or both?  This paper explores these key questions and tests several novel 

predictions, using important social stimuli — emotional facial expressions.  Our proposal is that 

familiarity enhances perceived happiness of facial expressions.  Further, we suggest that this 

effect involves the selective amplification of positive stimulus features (rather than the reduction 

of negative stimulus features). 

These predictions are grounded in several areas of previous research on emotion and 

mere exposure.  First, past studies have found that familiarity increases a variety of preference 

judgments.  Many experiments use ratings of liking or attractiveness, but there is some 
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preliminary evidence that it extends to ratings of happiness, at least for neutral faces (e.g., 

Claypool, Hugenberg, Housely, & Mackie, 2007).  This raises the possibility that familiarity 

actually makes the face “look” happier.  This possibility fits with evidence that mere exposure 

occurs on physiological measures of affect (e.g., greater right-frontal EEG asymmetry and 

increased smiling via facial electromyography; De Vries et al., 2010; Harmon-Jones & Allen, 

2001) and without any evaluative context (Garcia-Marques, Prada, & Mackie, 2016). 

Thus, mere exposure may imbue facial stimuli with intrinsic positivity, which can be 

picked up in perception and classification tasks.  This is related to previous work suggesting that 

perception depends on perceiver’s own affective state (including perception of facial expressions; 

e.g., Phelps, Ling, & Carrasco, 2006).  Here, we use two different tasks to measure early 

perceptual effects (Experiment 1) and rapid classification judgments (Experiment 2).  We also 

systematically explore familiarity effects using psychometric functions across different levels of 

emotion expressions. 

 

Current Research 

The current experiments tested how familiarity with another individual impacts rapid 

perceptual judgments of their emotional facial expressions.  After participants were exposed to 

neutral expressions of selected individuals, they then judged the level of happiness in emotional 

face blends (morphs going from angry to happy) from both familiar and unfamiliar individuals.  

Importantly, our studies were designed to provide distinctive predictions from prominent models 

on the connection between familiarity and valence (see predictions in Figure 2.1, which also 

incorporates weighted familiarity-positivity estimates from exposure on neutral expressions, 

according to a similarity gradient; Gordon & Holyoak, 1983). 

First, the nonspecific activation account (Mandler, Nakamura, & Van Zandt, 1987) and a 

related fluency amplification account (Albrecht & Carbon, 2014) assume that repetition enhances 
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activation or facilitates access to the dominant stimulus features, regardless of their valence.  

Therefore, in our experiments, familiarity could just enhance the impact of valenced features in 

the facial expressions — where happy expressions from familiar targets appear happier, but angry 

expressions from familiar targets also appear angrier.  

The second alternative is the generalized positivity shift account, which assumes that 

familiarity elicits broad positive affect that imbues positivity to all expressions, regardless of their 

valence.  This idea is implicit in the notion of generalized “warm glow” (Monin, 2003; Tichener, 

1915), with the “glow” functioning like positive mood that makes “everything” better (Schwarz 

& Clore, 1993).  

The next two classes of accounts assume separable effects of familiarity on the positive 

vs. negative affect system (Cacioppo & Berntson, 1994).  On the third account, termed the 

negative skew, repetition selectively dampens negative affect, without enhancing positive affect.  

This notion is implied by proposals that repetition “unlearns” negative reactions (Zajonc, 2001) 

and reduces uncertainty (Lee, 2001).  Consequently, the negative skew account predicts the 

greatest repetition benefit for stimuli with negative features (where only angry faces appear less 

angry).  

Finally, a fourth prediction is made by hedonic skew accounts.  On these views, 

familiarity selectively impacts positive features.  This is consistent with earlier studies showing 

that familiarity specifically increases positive affect, rather than reduces negative affect (Garcia-

Marques, Mackie, Claypool, & Garcia-Marques, 2004; Harmon-Jones & Allen, 2001; 

Winkielman & Cacioppo, 2001).  In the current study, this suggests that only happy expressions 

from familiar individuals would appear happier (with no change to angry expressions).  

Theoretically, this could not only indicate dissociable effects of familiarity on the positive vs. 

negative affect system (Cacioppo & Berntson, 1994), but it could also denote a target-dependent 

feature attribution (with positive affect reasonably attributed to only positive features; Schwarz, 
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2014).  This is similar to some perceptual effects of earlier adaptation that only express when the 

correct stimulus features are present (e.g., McCollough, 1965). 

 

Experiment 1 

 To test these alternatives in Experiment 1, we adapted a paradigm designed to look for 

influences on perception, independent of decision and response biases (originally developed by 

Carrasco et al. 2004; adapted to faces by Störmer & Alvarez, 2016).  After exposing participants 

to neutral expressions of certain individuals (but not others), we gauged how familiarity would 

impact perceptual judgments of happiness on facial expressions from familiar and novel 

individuals.  Our main dependent measure was the probability of selecting a trained (familiar) 

face as happier than an untrained (novel) face with objectively the same expression on the same 

trial. 
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Figure 2.1:  Qualitative predictions of different frameworks for Experiment 1.  Under the amplification 

framework (red lines), happy expressions from familiar individuals will appear happier, but angry 

expressions from familiar individuals will also appear angrier (Albrecht & Carbon, 2014; Mandler, 

Nakamura, & Van Zandt, 1987).  Under the negative skew framework (lighter blue lines), angry 

expressions from familiar individuals will appear less angry, with no change to happy expressions (Lee, 

2001; Zajonc, 2001).  Under the hedonic skew framework (darker blue lines), happy expressions from 

familiar individuals will appear happier, with no change to angry expressions (Garcia-Marques, Mackie, 

Claypool, & Garcia-Marques, 2004; Harmon-Jones & Allen, 2001; Winkielman & Cacioppo, 2001).  

Under the generalized positivity shift framework (green lines), all expressions from familiar individuals 

will be selected as happier, regardless of intensity or valence (Monin, 2003; Titchener, 1915).  Since 

participants are trained on neutral expressions, each of these functions (top panel) would also be filtered 

through a familiarity-positivity distribution (middle panel).  More familiarity and positivity would be 

centered on neutral expressions (since they are exact replicates of the expressions shown during training), 

with less familiarity-positivity effects as the expressions deviate farther from neutral (here, we assume a 

simple similarity gradient via mere exposure generalization effects; Gordon & Holyoak, 1983). The 

integrated predictions of the framework and familiarity gradients are shown in the bottom panel. 
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Method   

 Participants and equipment.  Fifty University of California, San Diego (UCSD) 

undergraduates participated for course-credit, and all participants signed consent forms approved 

by the Human Research Protection Program (HRPP).  We aligned our planned sample size 

according to previous studies on perceptual judgments for faces (e.g., Störmer & Alvarez, 2016), 

so in order to achieve maximal power, we set our target to n = 50. 

During the main task, all stimuli were presented using E-Prime 2.0 software, on 17-inch 

Dell flat-screen PCs running Windows 7 (1,280 × 1,024 pixels; 60 Hz refresh rate). 

Materials.  We created our facial stimuli using still images from the Amsterdam 

Dynamic Facial Expression Set (ADFES; Van der Schalk, Hawk, Fischer, & Doosje, 2011).  

From the ADFES, we selected 12 different models to use for morphing (six males and six 

females).  With the 100% angry, 100% happy, and neutral images for each model, we then 

generated morph stimuli at five different levels, including 50% angry, 25% angry, neutral, 25% 

happy, and 50% happy.  This created a stimulus set where we had 60 unique stimuli (12 different 

models displaying five different levels of emotion).  Note that these were only single-person 

morphs — meaning that models were only blended with different images of themselves (there 

were never blends of multiple models).  All the faces were then cropped so that only the facial 

features were visible (i.e., no hair or neck). 

Next, divided the models into “trained” (familiar) or “untrained” (novel), according to 

each individual participant.  To do this, we created two different sets of images (set A and set B), 

each containing different halves (three males and three females) of the total number of models 

(six males and six females).  Thus, each participant had to respond to each of the different 

models’ emotional expressions, but each model was “trained” (familiar) or “untrained” (novel) 

for half the participants.  As an example, if a participant was assigned to study set A models (not 

set B), they would be exposed to neutral expressions of set A models during training (phase 1), 
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after which they would see set A models’ emotion morphs (trained targets) and set B models’ 

emotion morphs (untrained targets) in a follow-up task (phase 2).   

 Design and procedure.  There were two main phases in Experiment 1:  an exposure 

training task (phase 1) and a speeded perceptual judgment task on faces (phase 2). 

Before phase 1, all participants were told that they would be completing a memory task, 

where they would have to track and recall “both the color and number of either blue or green 

square probes that would randomly appear on different images.”  Critically, these “images” were 

neutral faces for the specific models that participants were randomly assigned to study, either in 

set A or set B (never both). 

Participants then started phase 1, which involved 20 exposure trials to each of the six 

models in their assigned training set (120 total training trials).  At the start of each exposure trial, 

participants would see a prompt that said “Remember the color and number of squares!”  When 

they made a button-press, this triggered the start of the exposure trial.  During the trial, a neutral 

expression for one of the training models (in set A or set B, depending on the participant’s 

condition) would appear in the center of the screen for 5000 ms.  Over the course of this trial, 200 

ms blue and/or green squares would appear at random intervals (the frequency of blue and green 

squares was set to be anywhere from zero to nine exposures, with equal probabilities).  After the 

5000 ms trial ended, another screen appeared that asked participants to type a response to “How 

many BLUE squares did you see (0-9)?” and “How many GREEN squares did you see (0-9)?”  

To encourage high attention and effort throughout the memory task, participants were told that 

they would only advance to the next phase of the experiment once they hit a satisfactory level of 

performance (in reality, participants always completed the same number of training trials, to keep 

exposure consistent).  With this task, we were able to give participants many passive exposures to 

neutral faces for only certain models, thus giving them selective familiarity for some models over 

others. 
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After participants finished the 120 training trials in phase 1, they moved onto phase 2.  

Our phase 2 paradigm was a modified version of a paradigm originally used to study attentional-

cuing by Carrasco et al. (2004).  This paradigm usually measures the effects of exogenous 

attention on perceptual processing, and while we were not interested in attention for the current 

study, a benefit of this type of task is that it controls for decision and response biases and has 

therefore been repeatedly used to make claims that effects have a perceptual locus (e.g., Carrasco 

et al. 2004; Störmer & Alvarez, 2016).  For example, in Störmer & Alvarez (2016), two faces 

were simultaneously presented during each trial on the left and right sides of a computer screen, 

with one shifted upward and the other one shifted downward along the vertical axis. Participants 

were then instructed to report the vertical shift (upward or downward, using the up- and down-

arrow keys on the keyboard) of the face they perceived as more intense on some dimension (e.g., 

in Störmer & Alvarez [2016], which face was more attractive). Since the response was orthogonal 

to the dimension of-interest, this eliminates the possibility of a simple response bias and reduces 

the likelihood of the effects originating in decision making.  We adapted this paradigm to 

investigate how our phase 1 training task would impact speeded perceptual judgments of 

happiness in trained (familiar) vs. untrained (novel) faces. 

Figure 2.2 shows a schematic of our phase 2 task.  Each trial would begin with a 

reminder prompt for the participant to report whether they think the happier face is above or 

below the line (using the up- or down-arrow keys, respectively).  Once they pressed a key to 

trigger the trial, a fixation cross would appear for 750 ms.  Two lines would then appear on the 

left and right sides of the fixation for 500 ms, to mark the horizontal axis of the screen.  Next, two 

faces would appear on the left or right side of the screen (each shifted +/- 128 pixels from the 

center fixation), where one face was shifted slightly upward and the other face was shifted 

slightly downward (each shifted +/- 154 pixels from the center fixation).  If the participant 

thought the upper face appeared happier, they pressed the up-arrow key; if they thought the lower 
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face appeared happier, they pressed the down-arrow key.  The participant was given up to 3000 

ms to respond (any responses not logged within this time were excluded), and after they gave a 

response, a 1000 ms response confirmation screen was displayed before the next trial. 

 Critically, we also manipulated the types of faces shown on each trial.  We always 

displayed one trained (familiar) model and one untrained (novel) model.  Importantly, the trained 

and untrained face on each trial were always displaying the same objective level of emotion (i.e., 

50% angry, 25% angry, neutral, 25% happy, or 50% happy).  Therefore, on each trial, no 

response could be considered correct or incorrect (given that both faces were displaying the same 

type and level of emotion).  We were interested in how participants’ training with certain faces 

would influence their perceptual judgments of happiness.  If training does impact perceptions of 

happiness, participants would choose the trained faces consistently more often than the untrained 

face, regardless of spatial location on the screen.  Our instructions also emphasized that there 

were no correct or incorrect answers, and participants were told that the tasks in phases 1 and 2 

were unrelated. 

This task consisted of six blocks of 60 trials each.  This was done to match each of the six 

trained faces with each of the six untrained faces, across five levels of emotion.  Each face was 

also presented on both sides of the screen on different trials (i.e., 6 trained faces x 6 untrained 

faces x 5 emotion levels x 2 display positions = 360 total trials).  In order to get accustomed to the 

phase 2 task, participants also completed eight practice trials using models from the ADFES that 

were not incorporated in either of the phase 1 or phase 2 tasks. 

.  
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Figure 2.2:  Design and procedure for the phase 2 task in Experiment 1. 

 

 

Results 

 All repeated-measures analyses used multilevel modeling (MLM) via restricted 

maximum likelihood, since this method offers numerous analytical advantages — including more 

effective handling of unbalanced data with missing observations, reliance on fewer assumptions 

regarding covariance structures, and increased parsimony and flexibility between models 

(Bagiella, Sloan, & Heitjan, 2000).  All models were built with the lmerTest package in R 

(Kuznetsova, Brockhoff, & Christensen, 2014), using the maximal random-effect structure that 
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would allow for model convergence (Barr, Levy, Scheepers, & Tily, 2013).  To obtain p-value 

estimates for fixed-effects, we used Type III Satterthwaite approximations, which can sometimes 

result in decimal degrees of freedom (West, Welch, & Galecki, 2014).  Before analysis, we 

excluded all trials with RTs less than 200 ms (recall that participants had a max limit of 3000 ms 

to respond). 

In Experiment 1, we analyzed happiness response probabilities using an MLM with 

Stimulus Emotion (5: 50% angry, 25% angry, neutral, 25% happy, 50% happy) as a fixed-effects 

factor.  Random-effects were fitted across participants.   

Figure 2.3 shows the probability of the trained face being chosen as happier than the 

untrained face at the same level of emotion (across all trials).  We plotted this as a function of 

emotion morph levels and fitted a bootstrapped logistic psychometric function to these response 

probabilities, using the quickpsy (Linares & López-Moliner, 2015) and ggplot2 (Wickham, 2009) 

packages in R. 

Overall, participants judged trained faces as happier than untrained faces (when 

compared against 50% chance level), t(49) = 2.35, p = 0.02, but this also varied as a function of 

the emotion, resulting in a main effect of Stimulus Emotion, F(4, 84.82) = 3.59, p = .009.  This 

demonstrated that as the positive features in the faces increased (going from 50% angry to 50% 

happy), participants were more likely to judge the trained face as happier.  Specifically, while 

participants did not differ from chance at 50% angry, t(49) = -0.35, ns, or 25% angry, t(49) = 

1.46, ns, they were significantly above chance in judging trained faces as happier for neutral 

expressions, t(49) = 2.56, p = .01, 25% happy expressions, t(49) = 2.20, p = .03, and 50% happy 

expressions, t(49) = 3.35, p = .002.  Note that while the final curve in Figure 2.3 does appear 

linear across morph levels, it is indeed a logistic psychometric function.  Theoretically, these 

results mirror the prediction made by hedonic skew frameworks (see Figure 2.1). 
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Figure 2.3:  Results for phase 2 in Experiment 1.  The y-axis indicates participants’ response probabilities 

for selecting trained faces as happier (over untrained faces) at the same level of emotion on the same trial.  

Stimulus emotion morph levels are shown on the x-axis.  The dots show overall means for each emotion 

level (across all trials).  The blue lines show bootstrapped curves from psychometric fitting of a logistic 

function (generated using 100 bootstrapped samples), with the final estimate of this curve shown as the 

black line.  While the final curve does appear linear across morph levels, note that this is indeed a logistic 

function. 

 

 

Experiment 2 

In Experiment 1, we demonstrated that mere exposure influences perception of 

happiness, suggesting that familiarity increases positivity at early processing stages.  Importantly, 

this familiarity-positivity effect increased in intensity as the test expressions became happier 

(with no effects for 25% or 50% angry).  This supports hedonic skew frameworks, which argue 

that the “warm glow of familiarity” operates via changes in positive affect (i.e., enhancement of 
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positive features), rather than negative affect.   

In Experiment 2, we aimed to replicate and extend this effect with a categorization and 

judgment task.  After training, participants were required on each trial to quickly decide whether 

a single face (from a familiar or novel individual) was “happy or angry.”  The key benefit of this 

“single-face” design over the “dual-face” design from Experiment 1 is that it allows for a direct 

measure of actual happiness level at each level of emotion (via psychometric function fitting for 

trained and untrained faces), rather than a judgment relative to another simultaneously presented 

face.  We also had participants give a percentage estimate (0-100%) for how happy they thought 

the face looked on each trial.  These percentage ratings not only provided a secondary measure, 

but they also focused on a more deliberative judgement (no time limit), rather than a first 

impression (rapid categorization response). 

  

Method   

Participants, materials, and equipment.  Forty University of California, San Diego 

(UCSD) undergraduates participated for course-credit, and all participants signed consent forms 

approved by the Human Research Protection Program (HRPP).  We planned our sample size to 

align with previous studies on classification judgments for faces (e.g., Winkielman, Olszanowski, 

& Gola, 2015), so in order to achieve adequate power, we decided on a target of n = 40.  Our face 

stimuli, equipment hardware, and software were the same as Experiment 1. 

 Design and procedure.  Our main changes for Experiment 2 were with the phase 2 task 

design.  The phase 1 exposure training task was the same as Experiment 1.  Instead of the dual-

face perceptual task used in phase 2 of Experiment 1, we changed this to a speeded forced-choice 

classification paradigm in Experiment 2. 

Figure 2.4 shows a schematic of the phase 2 task.  Here, there were five blocks of 60 

trials (300 total trials), where each block presented all 60 unique morph stimuli across individual 
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trials (12 models x 5 emotion morphs each).  On each trial, a fixation cross was displayed for 

1000 ms, after which one face stimulus would appear in the center of the screen, which could be 

either a trained or untrained model (displaying a 50% angry, 25% angry, neutral, 25% happy, or 

50% happy expression).  Participants were instructed to categorize, as quickly and accurately as 

possible, whether they thought the face was happy or angry, using the “Z” and “M” keys on the 

keyboard (response key pairs randomized across trials).  They were told that they would only 

have up to 3000 ms to respond, and any response longer than that time limit would be counted as 

incorrect.  After the classification, another question would appear that asked “How happy did that 

face appear to you?”  On this question, participants could type answers that varied anywhere from 

0 to 100% in a response box shown on the screen (0% = no happiness at all; 100% = as happy as 

possible). 

Once participants completed all 300 trials for phase 2, they were debriefed and given 

credit for their participation. 
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Figure 2.4:  Design and procedure for phase 2 task in Experiment 2. 

 

 

Results 

 As with Experiment 1, we used multilevel modeling (MLM) strategies to analyze data 

from Experiment 2 (Bagiella, Sloan, & Heitjan, 2000; Barr, Levy, Scheepers, & Tily, 2013; 

Kuznetsova, Brockhoff, & Christensen, 2014; West, Welch, & Galecki, 2014).  Similar to before, 

we excluded all trial responses where RTs were less than 200 ms (recall that participants were 

only given a max limit of 3000 ms for their face classifications).   

 We also fit logistic psychometric functions for participants’ forced-choice happy/angry 
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classifications on the trained and untrained faces, using the quickpsy (Linares & López-Moliner, 

2015) and ggplot2 (Wickham, 2009) packages in R.  These psychometric curves were fitted via 

direct maximization of the likelihood, according to the following form: 

 

𝜑(𝑥) =  𝛾 + (1 − 𝛾 − 𝜆) ∗ 𝑓𝑢𝑛([1 + exp(−𝛽 ∗ (𝑥−∝))]
−1

) 

 

where γ is the guess rate, λ is the lapse rate, and fun( ) is the sigmoidal-shape logistic function 

with asymptotes at 0 and 1 (Linares & López-Moliner, 2015). 

The fitting of these psychometric functions allowed for the calculation of thresholds for 

different emotion morph levels, which we elaborate on in the next section. 

 Multilevel modeling on happiness classification probabilities.  First, we analyzed the 

probability of happy classifications, according to a Training (2: trained, untrained) x Stimulus 

Emotion (5: 50% angry, 25% angry, neutral, 25% happy, 50% happy) fixed-effects structure.  

Random-effects were fitted by participants and stimulus model IDs. 

 As predicted, we observed a Training x Stimulus Emotion interaction, F(4, 50.46) = 3.17, 

p = .02.  Follow-up tests revealed that while participants gave a higher percentage of happy 

classifications for trained faces at neutral, 25% happy, and 50% happy, this difference was 

greatest at the 25% happy morph level, b = 0.10, SE = 0.02, t(68.40) = 3.29, p = .002.  Also 

replicating the pattern from Experiment 1, there were no differences between trained and 

untrained happy classifications at the 50% angry morph level, b < 0.10, SE = 0.02, t(67.90) = -

1.13, ns, or 25% angry morph level, b < 0.10, SE = 0.02, t(68.70) = 0.48, ns.  Note that we also 

detected a main effect of Stimulus Emotion, which only indicated that happy classifications were 

more likely as the faces became more positive (going from 50% angry to 50% happy; see Figure 

2.5, top panel). 

 Group-level psychometric function fitting.  As previously mentioned, we also fit 
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logistic psychometric functions to the happy/angry classification data, according to training 

condition (i.e., trained vs. untrained faces).  We did this in order to calculate morph level 

thresholds at different response probabilities.  More specifically, using the fitted curves, one can 

obtain a point on the morph continuum (somewhere between 50% angry and 50% happy), which 

corresponds to a certain percentage of responses for one option over the other (e.g., 20% happy 

classifications, 40% happy classifications, etc.).  By bootstrapping these curves, one can also 

calculate a 95% confidence interval estimate around these thresholds, in order to compare across 

training conditions (here, we generated 100 bootstrap samples for each function). 

 Figure 2.5 displays the results.  To gauge how trained vs. untrained thresholds changed 

across the morph continuum, we assessed four different response probabilities:  20%, 40%, 60%, 

and 80% happy classifications.  Interestingly, similar to the familiarity-positivity pattern from 

Experiment 1, the logistic function for trained faces showed greater percentage of happy 

classifications specifically at greater happy response probabilities (i.e., where the faces contained 

more positive features; see Figure 2.5, top panel).  Consequently, for the 60% and 80% happiness 

response probabilities, participants required less actual happiness to be present in the trained 

emotion morphs (compared to untrained emotion morphs), in order for them to classify them as 

happy (see Figure 2.5, bottom panel).  Note that the differences in trained vs. untrained thresholds 

at 60% and 80% are significant at α = .05, but at the lower 20% and 40% happiness response 

probabilities (where the faces contained more negative features), there were no significant 

differences between trained and untrained thresholds (see Figure 2.5, bottom panel).    
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Figure 2.5:  Results for psychometric function fitting (top panel) and morph level thresholds (bottom 

panels) in phase 2 of Experiment 2.  The top panel displays separate logistic functions for happy/angry 

classification data on both trained and untrained faces (red = trained; blue = untrained), across different 

emotion morph levels on the x-axis (i.e., 50% angry, 25% angry, neutral, 25% happy, 50% happy).  

Bootstrapped 95% confidence intervals are displayed around each logistic function, which were generated 

using 100 samples.  Morph level thresholds were calculated across different response probabilities (i.e., 

how much happiness was needed in the faces to achieve 20%, 40%, 60%, and 80% happy classifications).  

These thresholds are shown on the y-axis with 95% confidence intervals around the point estimates, along 

with the training type on the x-axis (red = trained; blue = untrained). 
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 Participant-level psychometric function fitting.  In addition to the group-level logistic 

functions and thresholds fit to all happy/angry classification data (see Figure 2.5), we also fit 

participant-level functions.  More specifically, we followed the same steps as with the group-level 

data, but here, we fit logistic functions to each individual participant’s classification data.  From 

this, we were able to calculate morph level thresholds for each participant at the different 

happiness response probabilities (20% happy, 40% happy, 60% happy, and 80% happy, as 

before), for both trained and untrained faces.  Next, we fit an MLM to predict these participant-

level morph thresholds, using a Training (2: trained, untrained) x Response Probability (4:  20% 

happy, 40% happy, 60% happy, 80% happy) fixed-effects structure.  Once again, we fit maximal 

random-effects according to each participant, to the point that allowed for model convergence. 

 This showed similar results to the group-level analysis depicted in Figure 2.5.  We 

observed a Training x Response Probability interaction, F(3, 195.00) = 6.94, p < .001.  

Thresholds for trained faces were marginally less than untrained faces at the 60% response 

probability, b = -0.10, SE = 0.07, t(72.30) = -1.67, p = .10, and significantly less at the 80% 

response probability, b = -0.20, SE = 0.07, t(72.30) = -3.00, p = .004.  There were no differences 

between trained and untrained faces at the 20% response probability, b < 0.10, SE = 0.07, 

t(72.30) = 0.76, ns, or the 40% response probability, b < 0.10, SE = 0.07, t(72.30) = -0.57, ns. 

 Classification RTs.  We also analyzed participants’ classification RTs using similar 

MLM methods, according to a Training (2: trained, untrained) x Stimulus Emotion (5: 50% 

angry, 25% angry, neutral, 25% happy, 50% happy) fixed-effects structure and random-effects for 

participants and stimulus model IDs.  Recall that we only included RTs between 200 and 3000 

ms.  We also log10-transformed the remaining valid RTs to normalize the response distribution. 

 Figure 2.6 (top panel) shows the results.  We observed a Training x Stimulus Emotion 

interaction, F(4, 151.01) = 3.28, p = .01.  Post-hoc breakdowns of this interaction demonstrated 

that participants had marginally faster RTs both to classify 25% happy trained faces vs. 25% 
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happy untrained faces, b < 0.10, SE = 0.005, t(183.60) = -1.88, p = .06, as well as 50% happy 

trained faces vs. 50% happy untrained faces, b < 0.10, SE = 0.005, t(181.10) = -1.87, p = .06.  

Interestingly, however, participants were also slower to classify neutral expressions for trained 

models (compared to untrained models), b < 0.10, SE = 0.005, t(187.80) = 2.24, p = .03.  There 

were no RT differences by training for 50% angry expressions, b < 0.10, SE = 0.005, t(181.50) = 

-0.53, ns, or 25% angry expressions, b < 0.10, SE = 0.005, t(185.20) = 0.43, ns.  Note that we also 

observed a main effect of Stimulus Emotion, F(4, 68.27) = 18.33, p < .001, which only showed 

that participants generally had the slowest classification RTs to neutral expressions, compared to 

faces that displayed more pure emotion (i.e., 50% angry, 25% angry, 25% happy, and 50% 

happy). 

 Happiness percentage estimates.  Recall that we also had participants give a 0-100% 

free-response estimate for the level of happiness they saw in each face, after every phase 2 trial.  

This gave us an alternative metric of happiness perception on a more deliberative judgment 

(rather than a first impression from a rapid classification).  To analyze this, we ran an MLM with 

a Training (2: trained, untrained) x Stimulus Emotion (5: 50% angry, 25% angry, neutral, 25% 

happy, 50% happy) fixed-effects structure and random-effects for participants and stimulus model 

IDs. 

 Figure 2.6 (bottom panel) displays the main results.  These results showed a similar 

pattern to the Experiment 1 perceptual responses (see Figure 2.3) and Experiment 2 classification 

responses (see Figure 2.5).  We observed a Training x Stimulus Emotion interaction, F(4, 39.68) 

= 4.36, p = .004.  Follow-up tests revealed that participants estimated trained faces as happier 

(compared to untrained faces), specifically at the 25% happy level, b = 2.30, SE = 0.72, t(63.20) 

= 3.21, p = .002, and marginally at the 50% happy level, b = 1.40, SE = 0.72, t(62.60) = 1.92, p = 

.06.  There were no training differences at the 50% angry level, b = -0.70, SE = 0.72, t(62.70) = -

0.92, ns, or the 25% angry level, b = -0.50, SE = 0.72, t(63.40) = -0.67, ns.  Also, note that while 
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happiness estimates for trained expressions were greater than untrained expressions at the neutral 

level, this difference did not reach significance, b = 0.30, SE = 0.72, t(63.90) = 0.35, ns.  We also 

observed a main effect of Stimulus Emotion, F(4, 152.63) = 116.14, p < .001, which only showed 

that participants’ happiness estimates increased as the morph levels became more positive (going 

from 50% angry to 50% happy). 
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Figure 2.6:  Results for classification RTs (top panel) and self-report estimates of happiness percentage 

(bottom panel) in phase 2 of Experiment 2.  The top panel shows log10-transformed classification RTs on 

the y-axis for both trained and untrained faces (red = trained; blue = untrained), across different emotion 

morph levels on the x-axis (i.e., 50% angry, 25% angry, neutral, 25% happy, 50% happy).  The bottom 

panel shows difference scores in happiness estimates on the y-axis by training condition (trained face 

estimates – untrained face estimates), across different emotion morph levels on the x-axis (i.e., 50% angry, 

25% angry, neutral, 25% happy, 50% happy).  ** p < .01, * p < .05, # p < .10. 
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Discussion 

 The current results suggest that familiarity (derived via mere exposure) impacts early 

stimulus processing, modifying the perception of others’ facial expressions.  Across different 

tasks that involved speeded perceptual judgments (Experiment 1), rapid forced-choice 

classifications (Experiment 2), and deliberative estimates of happiness (Experiment 2), 

participants judged familiar individuals’ expressions as happier — particularly when the 

expressions were neutral-to-positive (see Figures 2.3, 2.5, and 2.6).  Psychometric function fitting 

also revealed that exposure training led to lower happiness thresholds at higher happiness 

response probabilities.  Simply put, as the morphs became happier, participants needed less actual 

happiness to be present in trained faces to classify them as happy rather than angry (see Figure 

2.5).  Critically, our findings cannot be explained by simple response biases, given that 

participants only judged trained faces as happier at certain levels of emotion.  This specific 

pattern also emerged across multiple tasks (see Figures 2.3, 2.5, and 2.6) and even when 

responses were orthogonal to the dimension of happiness (Experiment 1). 

Recall the different predictions from prominent models on the familiarity-valence link 

(see Figure 2.1).  Our results offer support for hedonic skew frameworks, which posit that 

familiarity influences positive affect (but not negative affect) and gets expressed via positive 

features (but not negative features) (Garcia-Marques, Mackie, Claypool, & Garcia-Marques, 

2004; Harmon-Jones & Allen, 2001; Winkielman & Cacioppo, 2001).  Generally, our results 

seem inconsistent with models proposing that repetition leads to amplification of pre-existing 

features (or nonspecific activation; Albrecht & Carbon, 2014; Mandler, Nakamura, & Van Zandt, 

1987), selective decrease in negative affect (or a negative skew; Lee, 2001; Zajonc, 2001), or a 

generalized positivity shift (Monin, 2003; Tichener, 1915).  The selectivity in our results for 

neutral-to-positive faces could be due either to the separation of the positive and negative affect 

system (Cacioppo & Berntson, 1994) or due to constraints on the attribution of positive affect to 
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positive features (Schwarz, 2014).  In any case, our results show that this effect occurs at early 

stages of processing.  It is worth noting that our results were obtained with human faces, and 

animal research suggests that mere exposure could reduce distress to novelty (e.g., Zajonc, 

Markus, & Wilson, 1974).  Further, in Experiment 2, participants not only judged trained faces as 

happier, but they were also faster to classify those faces as such (see Figure 2.6, top panel).  This 

is consistent with the idea that mere exposure works via enhancement of fluency (Winkielman, 

Schwarz, Fazendeiro, & Reber, 2003), but this interpretation is speculative as more intense 

positive affect will also speed up classification. 

To our knowledge, this is the first evidence that mere exposure modulates perception of 

facial affect.  Our results are consistent with past findings that familiarity enhances ratings of 

neutral expressions (e.g., Claypool, Hugenberg, Housley, & Mackie, 2007), but they go 

significantly beyond previous work.  First, we used tasks designed to assess early perceptual 

processes, rather than only scale ratings.  Second, our facial expressions varied in the type and 

intensity of emotion being displayed, allowing us to estimate psychometric functions and 

thresholds (see Figure 2.5).  In turn, we showed that the effects of familiarity on happiness 

judgments are dependent on the positive features in the test expression.  As the expressions 

become happier, participants were more likely to judge the trained face as happier (both when 

directly compared to an untrained face [Experiment 1] and when presented alone [Experiment 2]; 

see Figures 2.3, 2.5, and 2.6).  Finally, and perhaps most importantly, these design features 

allowed us to differentiate theoretical accounts of mere exposure. 

 Future work should evaluate the boundary conditions of these findings — especially for 

why familiarity did not reduce the negativity of angry expressions.  We suggest this occurs 

because familiarity works selectively on positive affect and is more easily attributed to positive 

features.  However, some views suggest that anger is “special,” perhaps leading it to be gated 

from familiarity influences (anger superiority effect; e.g., Pinkham, Griffin, Baron, Sasson, & 
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Gur, 2010).  One might be able to answer this question by using different negative emotion 

morphs.  However, note that in the current studies, participants were equally sensitive to neutral-

to-happy as to neutral-to-angry transitions (Figure 2.5), suggesting limited evidence for this 

position (at least in our data). 

 Finally, claims about the perceptual nature of any effect are hotly debated (Firestone & 

Scholl, 2015) and we hesitate to claim that familiarity influences early vision.  Nevertheless, 

evidence for affective influences on perception is still reasonably strong (Niedenthal & 

Setterlund, 1994; Vetter & Newen, 2014).  Future research should examine such early effects 

with tasks that can gauge visual pop-out for trained faces (e.g., continuous flash suppression or 

visual search paradigms).  For now, however, our results suggest that familiar faces do appear 

happier. 

 

 

Chapter 2 is, in full, under review for publication of the material. Carr, Evan W.; Brady, 

Timothy, F.; Winkielman, Piotr. The dissertation author was the primary investigator and author 

of this material.   
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Abstract 

 A fundamental and seemingly unbridgeable psychological boundary divides humans and 

non-humans.  Essentialism theories suggest that mixing these categories violates “natural kinds.”  

Perceptual theories propose that such mixing creates incompatible cues.  Most theories suggest 

that mixed agents, with both human and non-human features, obligatorily elicit discomfort.  In 

contrast, we demonstrate top-down, cognitive control of these effects — such that the discomfort 

with mixed agents is partially driven by disfluent categorization of ambiguous features that are 

pertinent to the agent.  Three experiments tested this idea.  Participants classified three different 

agents (humans, androids, and robots) either on the human-likeness or control dimension and then 

evaluated them.  Classifying on the human-likeness dimensions made the mixed agent (android) 

more disfluent, and in turn, more disliked.  Disfluency also mediated the negative affective 

reaction.  Critically, devaluation only resulted from disfluency on human-likeness — and not 

from an equally disfluent color dimension.  We argue that negative consequences on evaluations 

of mixed agents arise from integral disfluency (on features that are relevant to the judgment at-

hand, like ambiguous human-likeness).  In contrast, no negative effects stem from incidental 

disfluency (on features that do not bear on the current judgment, like ambiguous color 

backgrounds).  Overall, these findings support a top-down account of why, when, and how mixed 

agents elicit conflict and discomfort. 

 

Keywords:  emotions, categorization, judgment and decision making, cognitive 

processing, human-computer interaction  
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Introduction 

A key psychological distinction is the one that divides human and non-human.  Treating 

an agent as human (or “human-like”) fundamentally changes how individuals perceive, interpret, 

behave, communicate, or empathize (Dennett, 1971).  Children and adults consider human-

likeness to be a deep, unchangeable trait — a type of psychological essentialism (Medin & 

Ortony, 1989; Prentice & Miller, 2007).  Such essentialist beliefs arise early in life (Gelman, 

2004), structure social categories and stereotypes (Bastian & Haslam, 2006; Haslam, Rothschild, 

& Ernst, 2000; Haslam, Bastian, Bain, & Kashima, 2006; Howell, Weikum, & Dyck, 2011), drive 

attention (Bastian & Haslam, 2007), and guide automatic motor responses (Bastian, Loughnan, & 

Koval, 2011). 

This human/non-human boundary is often investigated with agents that mix human and 

non-human features.  It has long been noticed that mixed stimuli (e.g., chimeras, griffins, hybrids, 

mannequins, human dolls, etc.) generally elicit a sense of weirdness and discomfort (Frenkel-

Brunswik, 1949; Jentsch, 1906).  This issue gained renewed importance with the recent 

proliferation of bionic humans and androids (i.e., robots with human-like features and behaviors; 

Ishiguro, 2007; Mori, MacDorman, & Kageki, 2012).  Here, the key psychological question is 

what causes such discomfort to mixed agents. 

Extant theories propose a variety of processes.  From the aforementioned essentialism 

perspective, individuals perceive the human/non-human boundary as fundamentally unbridgeable, 

and negative reactions spontaneously arise from the inappropriate blending of two different 

“natural kinds” or separate “essences” (see Demoulin, Leyens, & Yzerbyt, 2006).  Proponents of 

essentialism argue that certain properties are intrinsic and immutable traits of the agent in-

question, and perceivers can essentialize a variety of dimensions (e.g., gender, race, sexual 

orientation, etc.).  Critically though, essentialized categories are usually said to have some key 

defining characteristics:  clear and discrete boundaries from other categories, involuntary and 
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unchanging membership, and observable features that reflect something about the underlying 

function of the agent (Prentice & Miller, 2007).  While theoretically distinct (but still related), 

perception research tends to focus on “mismatches,” or conflicting cues in visual, auditory, and 

motion processing of mixed agents (Katsyri, Forger, Makarainen, & Takala, 2015; MacDorman, 

Green, Ho, & Koch, 2009; Mitchell et al., 2011; Seyama & Nagayama, 2007).  Other proposals 

highlight the potential role of conflict between the apparent lack of conscious experience paired 

with perceived agency (Waytz, Gray, Epley, & Wegner, 2010).  This idea is related to 

suggestions that negative reactions to mixed agents reflect low-level mechanisms involving 

disease avoidance (MacDorman & Ishiguro, 2006).  Overall, most (if not all) theories suggest that 

mixed agents (with both human and non-human features) spontaneously elicit conflict and 

discomfort. 

In contrast to these assumptions, we propose that the relative dislike for mixed agents can 

be modified by contextual factors — providing a major theoretical qualification to these earlier 

claims.  Specifically, the current paper argues that reactions to mixed agents involve an 

interaction between top-down higher-order cognitive processes and bottom-up perceptual factors.  

Basically, we suggest that the sense of “weirdness” is not inherent to the perception of mixed 

agents, but rather is generated when people classify such agents into human versus non-human 

categories — resulting in the experience of categorization disfluency.  This disfluency triggers 

negative affect, which generalizes to agent evaluations (as we explain next).  Note that our top-

down framework is not simply another level of analysis for essentialist or perceptual conflict 

theories.  While there are some versions of bottom-up perceptual theories that could be 

considered compatible with our fluency account, these frameworks still differ on the type of role 

disfluency serves in generating negative affect (i.e., either as a key component or a mere 

byproduct).  We will return to these theoretical distinctions in the Discussion.  Generally, we 

posit that the subjective boundary between human and non-human entities can be markedly 
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reconstructed via categorization processes, which has downstream consequences on judgments, 

evaluations, and attitudes. 

Our proposal builds on several lines of previous research related to fluency — or changes 

in processing speed and effort (Schwarz, 1998).  Here, much of the original research has focused 

on perceptual fluency (manipulated by enhancing low-level “surface” features, like clarity, 

contrast, readability, typicality, etc.; e.g., Carr, Rotteveel, & Winkielman, 2016; Reber & 

Schwarz, 1999; Reber, Winkielman, & Schwarz, 1998) or conceptual fluency (manipulated by 

facilitating the processing of stimulus meaning, as with semantic priming; e.g., Rajaram & 

Geraci, 2000; Whittlesea, 1993).  Evidence shows that processing ease (fluency) increases 

evaluations, whereas disfluency lowers them, as reflected in self-reports and physiological 

measures (Winkielman & Cacioppo, 2001).  According to the hedonic fluency model, easy 

processing elicits positive affect, which is then (mis)attributed to the target stimulus 

(Winkielman, Schwarz, Fazendeiro, & Reber, 2003).  This positive affect presumably emerges 

because fluency reflects (or probabilistically signals) lower conflict and greater coherence in 

stimulus processing.   

Importantly, such effects also extend to categorization (dis)fluency — or the effort 

needed to determine category membership (Halberstadt & Winkielman, 2013).  Note that 

categorization fluency differs from perceptual fluency in that stimulus features remain 

unchanged.  Rather, categorization fluency is ultimately task-dependent, and processing difficulty 

instead depends on which (un)ambiguous feature dimensions are highlighted by the current task.  

In other words, if a stimulus is ambiguous on some dimension, it will elicit disfluency (and 

negative affect), but only in contexts requiring categorization on that particular dimension.  To 

illustrate, Owen, Halberstadt, Carr, & Winkielman (2016) had participants categorize morphed 

male-female faces either on the central ambiguous dimension (gender) or an auxiliary 

unambiguous dimension (race).  Devaluation for mixed-gender faces only occurred in the gender-
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categorization condition, when the gender-ambiguous faces were made disfluent (i.e., difficult to 

categorize).  Similar effects have also been shown for bi-racial faces (Halberstadt & Winkielman, 

2014) and those displaying mixed emotions (Winkielman, Olszanowski, & Gola, 2015). 

This theoretical approach raises an important (and previously unexplored) possibility that 

changing someone’s categorization mindset can alter negative responses to mixed agents, which 

contain supposedly “unbridgeable” human and non-human features.  If so, their categorization on 

the human-likeness dimension should elicit disfluency (and devaluation), but this should be 

reduced during classification on an alternative feature dimension that is still social, yet 

unambiguous (e.g., gaze orientation cues).  Further, as we explain next, to produce devaluation, 

perceivers must not only experience disfluency when processing the agent, but this disfluency 

must be derived from an integral (essential) rather than incidental (non-essential) feature of the 

agent. 

Another contextual factor that dictates fluency-devaluation effects is the underlying 

relevance of the feature in-question.  Some features can be integral (or pertinent to the judgment 

at-hand) while others can be incidental (or peripheral to the current task), as discussed by 

Bodenhausen (1993).  Crucially though, evaluative consequences of (dis)fluency depend on the 

perceived relevance of the experience for the judgment at-hand (see Schwarz, 2010, for a review).  

For example, disfluency in categorizing someone else’s emotional expression may lead the 

participant to judge the target as less trustworthy (i.e., since emotion is a key factor in trust 

judgments; Winkielman, Olszanowski, & Gola, 2015).  However, one can speculate that an 

equally difficult categorization experience on a secondary dimension (e.g., ambiguous hair color) 

will not lower trustworthiness judgments, given that hair color does not bear on trust.  

Consequently, for the current experiments, devaluation effects may only follow from disfluency 

that occurs in response to an agent’s integral features, rather than an equally disfluent experience 

on incidental features.  We expected integral disfluency (i.e., ambiguous human-likeness) to have 



113 

 

downstream negative consequences on evaluations of mixed agents, but no effects to occur from 

incidental disfluency (i.e., ambiguous color backgrounds).  We will return to this issue in the 

Discussion. 

In short, we propose that affective responses to mixed agents are partially driven by top-

down mechanisms.  Categorization difficulty should trigger negative reactions to agents with 

ambiguous features when the current categorization task focuses on the ambiguous dimension 

(and only when the dimension is integral to the nature of the agent).   

 

Current Research 

 We investigated our predictions in three experiments.  In each study, participants saw and 

rated three different agents — one that was clearly human (a human), one that was clearly not 

human (a robot), and one that had both human and non-human features (an android).  Participants 

rated these agents under two different conditions that varied on categorization requirements.  

Some participants categorized the agents as “human or non-human” — a selectively difficult task 

for the android agent — while others performed a control task on which the mixed agent was not 

selectively difficult. 

 To preview the results, categorization fluency impacted evaluative ratings of the different 

agents. Androids were devalued more so in the human-classification condition — both compared 

to a control task of speeded stimulus detection (Experiment 1) and an alternative task of social 

gaze categorization (Experiment 2).  Using data from Experiments 1 and 2, multilevel mediation 

analyses demonstrated that categorization effort mediated the relationship between agent “mixed-

ness” and weirdness judgments, but only for the human-classification condition. 

 Critically, the results show that these effects cannot be explained by simple misattribution 

of incidental task effort.  This is because devaluation effects for mixed agents were eliminated in 

Experiment 3, which elicited disfluency by having subjects view androids with ambiguous color.  
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These results suggest that disfluency translates into devaluation only when generated by 

ambiguous dimensions that are integral (i.e., human-likeness classification) rather than those that 

are incidental (i.e., color-classification) to the evaluative judgment. 

 As such, these results challenge the assumption that human and non-human categories are 

“unbridgeable” — where mixing produces obligatory conflict and devaluation.  Instead, they 

argue for a more cognitively flexible, task-sensitive link between ambiguity, task-relevant 

fluency, and evaluation. 

  

Experiment 1 

 Experiment 1 tested whether categorization disfluency impacted evaluative ratings of 

ambiguous non-human agents, using highly controlled images that placed androids towards the 

middle of the human-likeness continuum.  We focused on weirdness ratings, given that 

dimensions of “eeriness” and “strangeness” are deemed important in many studies on non-human 

agents (Ho & MacDorman, 2010). 

 

Method   

Participants and stimuli.  Fifty-two undergraduates (Mage = 21.00 years, SDage = 2.44 

years; 42 females) at the University of California, San Diego (UCSD) participated for course 

credit and signed consent forms approved by the UCSD Human Research Protections Program. 

Our stimuli were still images taken from the Saygin-Ishiguro Action Database (SIAD), 

which includes actions performed by human, android, and robot agents (Saygin & Stadler, 2012).  

For the android agent, these stimuli featured Repliee Q2 (see Figure 3.1, middle images), which 

was developed at Osaka University in collaboration with Kokoro Inc.  Importantly, with brief 

exposures, people can mistake Repliee Q2 for a human being (Ishiguro, 2006).  Repliee Q2 is an 

advanced humanoid robot that has 42 degrees of freedom and can make head and upper body 
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movements.  Since Repliee Q2 can make head and body movements, the images displayed both 

the head and upper body of the agents.  For the human condition, the stimuli featured the female 

adult on whom Repliee Q2’s appearance was modeled after (see Figure 3.1, left images).  For the 

robot condition, the surface elements of the Repliee Q2 android were removed and stripped of 

human-like features, in order to reveal the underlying materials (e.g., wiring, metal limbs, and 

joints; see Figure 3.1, right images).  For the purpose of the current experiments, to further match 

and standardize these images on perceptual cues (e.g., coloring, clothing, etc.), we edited them 

using Adobe PhotoShop CS2 to maximally control for each agent’s general physical appearance 

(see Figure 3.1). 

To create the stimuli, Repliee Q2 was photographed performing eight different actions 

(nudging, grasping, drinking, waving, talking, turning, wiping, and lifting), both with and without 

its original human-like surface features (i.e., android and robot agent conditions, respectively).  

Critically, the female model for Repliee Q2 then naturally performed the same actions several 

times, and the version of those actions that most closely matched that of Repliee Q2 were selected 

for the stimuli (Saygin, Chaminade, Ishiguro, Driver, & Frith, 2012; Saygin & Stadler, 2012).  In 

short, the stimuli were highly controlled images of human, android, and robot actions, which 

mainly varied on the dimension of the agents’ human-likeness.  

The stimulus images were grayscale and cropped to 400 × 400 pixels.  We used these 

grayscale images in Experiments 1 and 2, but note that the coloring of the images was edited for 

theoretical reasons in Experiment 3.  Figure 3.1 shows examples of the different stimuli.  All 

agents were photographed in the same room, with the same background, lighting, and camera 

settings.   
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Figure 3.1:  Example stimuli from Experiments 1-2 (grayscale images; top row) and Experiment 3 

(blue/green images; bottom row).  Each image depicted one of three agent types (i.e., human [left column], 

android [middle column], or robot [right column]), doing one of eight actions.  Some actions showed the 

individual with their head oriented towards the camera (e.g., “talking” on the top row) while others showed 

the individual with their head oriented away from the camera (e.g., “turning” on the bottom row). 

 

 

 Design and procedure.  Participants were randomly assigned to one of two classification 

conditions (human-classification or no-classification).  In the human-classification condition, 

participants were instructed to judge whether or not individuals in the different pictures were 

“human or non-human.”  In the no-classification condition, participants were instead told to “hit 

the spacebar as fast as possible, once the picture appears on the screen” (see Figure 3.2). 

 Next, participants proceeded through three counterbalanced blocks of 24 trials each 

(totaling 72 trials), each of which asked for a weirdness rating of the agent in the video. After 

each trial, participants gave the rating using a 1 (not at all) to 7 (very much) scale.  Prior to rating 

each image, human-classification participants were told to categorize, “as quickly and accurately 

as possible, whether the agent in the picture was human or non-human,” using the ‘A’ and ‘L’ 
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keys on the keyboard (response labels were randomized across trials).  No-classification 

participants only used the spacebar to indicate the onset of the image.  Each trial began with a 500 

ms fixation, followed by the 3000 ms stimulus image (as soon as the participant responded, the 

image was replaced with the rating scale).  The ITI for each trial was 5000 ms (see Figure 3.2). 

 Therefore, on each trial, we logged the participants’ RT to classify the image and their 

weirdness ratings.   

 

 

 
 

Figure 3.2:  Design and procedure for Experiments 1, 2, and 3.  Experiment 1 used grayscale images of all 

agent actions (first row), with a human-classification condition and no-classification condition 

(human/“toward” action example shown).  Experiment 2 used grayscale images of all agent actions (second 

row) and used both a human-classification condition and orientation-classification condition (robot/“away” 

action example shown).  Experiment 3 (bottom row) used 100% blue, 100% green, and 50/50 blue-green 

images of agent actions, with both a color-classification condition and orientation-classification condition 

(android/“away” action example shown).  Note that Experiment 1 only involved weirdness ratings (all 72 

trials), while Experiments 2 and 3 measured approachability, likeability, and weirdness (24 trials each; 72 

trials total). 
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Results 

 Analysis strategy.  All RTs and ratings were analyzed using trial-level data with 

multilevel models (MLMs; via restricted maximum likelihood estimation).  MLMs more 

effectively handle hierarchical and unbalanced data with missing observations, relying on fewer 

assumptions regarding covariance structures and increasing parsimony and flexibility between 

models (Bagiella, Sloan, & Heitjan, 2000).  Note that while we report MLM results here, due to 

the advantages over traditional ANOVA methods, all reported effects still replicate when using 

these traditional approaches. 

 MLMs were built with the lme4 (Bates, Maechler, Bolker, & Walker, 2014) and lmerTest 

(Kuznetsova, Brockhoff, & Christensen, 2014) packages in R, using the maximal random-effects 

structure appropriate for the data (Barr, Levy, Scheepers, & Tily, 2013).  Such a strategy strikes a 

balance in reducing possible Type I errors, while also avoiding overparameterization in the MLM 

(Bates, Kliegl, Vasishth, & Baayen, 2015).  To obtain p-value estimates for fixed-effects, we used 

Type III Satterthwaite approximations, which can sometimes result in decimal degrees of 

freedom, based on the number of observations (West, Welch, & Galecki, 2014). 

 Across all experiments, subjects who performed at ≤ 50% accuracy during the main task 

were removed from all analyses, and for the remaining subjects, error trials were excluded.  For 

Experiment 1, one subject performed at ≤ 50% accuracy and another subject did not adhere to 

task instructions — therefore, these two subjects were excluded from the total sample, leaving a 

final n = 50. 

 We focused on non-error trials to ensure that participants recognized the true human/non-

human nature of the agent (i.e., whether it was actually human vs. non-human).  We were also 

primarily interested to what extent participants’ evaluations reflect the sheer effort of processing, 
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as opposed to possible categorization errors.  However, all analyses for error trials can be found 

in footnotes for Experiment 15, Experiment 26, and Experiment 37.   

 Response RTs.  Following previous fluency studies (Winkielman, Halberstadt, 

Fazendeiro, & Catty, 2006), we excluded trials with extremely fast (less than 200ms) and slow 

(greater than 3000ms) RTs, and the remaining RTs were log10-transformed to normalize the 

                                                             
5 We could only analyze error trials in the human-classification condition for Experiment 1 (since there 

were no incorrect responses in the no-classification condition).  To do this, we created a new MLM for only 

the human-classification condition, with Agent (3: human, android, robot) as the only fixed-effect factor.  

As expected, within the human-classification condition, participants had lower accuracy in response to 

mixed (android) agents — both compared to the human agent, b = -.29, SE = .01, t = -3.61, p = .002, dz = 

.75, and the robot agent, b = -.28, SE = .01, t = -3.50, p = .002, dz = .73. 

6 On Experiment 2, we analyzed accuracy using the same methods as RTs (since both classification 

conditions could have correct and incorrect responses).  As expected, human-classification participants 

showed a greater number of errors selectively in response to the mixed agent (android).  A Condition x 

Agent interaction, F(2, 167.80) = 43.26, p < .001, demonstrated that human-classification participants had 

lower accuracy for androids — both compared to the human agent, b = -.41, SE = .03, t = -12.54, p < .001, 

dz = 1.36, and the robot agent, b = -.41, SE = .03, t = -12.43, p < .001, dz = 1.35.  Also, there was no 

difference between human and robot accuracy within the human-classification condition, b = .01, SE = .01, 

t = .56, ns, dz = .06.  Importantly, for the orientation-classification condition, accuracy for the android did 

not significantly differ from the human agent, b = -.06, SE = .03, t = -1.76, ns, dz = .19, or the robot agent, 

b = .01, SE = .03, t = .34, ns, dz = .04.  Both main effects were also significant.  The main effect of 

Condition, F(1, 167.14) = 28.97, p < .001, demonstrated that orientation-classification participants were 

more accurate overall than human-classification participants.  The main effect of Agent, F(2, 167.80) = 

54.33, p < .001, demonstrated that participants were overall less accurate in response to the android 

compared to the other agents. 

7 We could not do the same analysis as Experiment 2 for accuracy in Experiment 3, since the android 

images in the color-classification condition were exactly 50/50 between blue and green (and thus, no 

response on those trials could be counted as correct or incorrect).  However, we did analyze accuracy 

performance for all agent types in the orientation-classification condition (using similar methods as 

Experiment 1, by creating a new MLM only for the orientation-classification condition, with Agent [3: 

human, android, robot] as the only fixed-effect factor).  We also checked overall accuracy for the human 

and robot images in the color-classification condition.  First, on the orientation-classification condition, 

overall accuracy across agent types was high (M = 90.87%, SD = 28.80%).  We did observe a main effect 

of Agent from the MLM, F(2, 111.90) = 12.14, p < .001, which showed that orientation-classification 

participants were more accurate in responding to the human agent — both compared to the android agent, b 

= -.04, SE = .01, t = 4.16, p < .001, dz = .52, and the robot agent, b = .05, SE = .01, t = 4.29, p < .001, dz = 

.54.  There were no accuracy differences between the android and robot agents, b = .01, SE = .01, t = 0.69, 

ns, dz = .09.  Second, within the color-classification condition, accuracy performance was comparably high 

for both the human agent (M = 95.71%, SD = 20.27%) and robot agent (M = 96.17%, SD = 19.20%).  Once 

again, note that we could not code accuracy for the android agent in the color-classification condition, since 

they were exactly 50% blue // 50% green. 
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response distribution.  Next, we created an MLM with a Condition (2:  human-classification, no-

classification) x Agent (3:  human, android, robot) fixed-effects structure.8 

 We observed strong evidence for all RT effects in Experiment 1.  Critically, we detected 

the predicted Condition x Agent interaction, F(2, 99.61) = 3.55, p = .03.  Follow-up tests 

demonstrated that only the human-classification subject group took longer to respond to the 

android, both compared to the human agent, b = .05, SE = .01, t = 4.42, p < .001, dZ = .92, and 

robot agent, b = .05, SE = .01, t = 4.00, p < .001, dZ = .83.  The no-classification group showed no 

differences between android and human RTs, b = .01, SE = .01, t = .82, ns, dZ = .16, and a smaller 

difference between android and robot RTs, b = .02, SE = .01, t = 2.10, p = .04, dZ = .40.  Neither 

condition differed in response RTs between the human and robot agents (see Figure 3.3). 

 Note that we also observed both main effects of Condition, F(1, 49.92) = 57.56, p < .001, 

and Agent, F(2, 99.61) = 11.18, p < .001.  Human-classification subjects had longer RTs, and the 

android took the most time to categorize across conditions.   

 Overall, the android was selectively disfluent (compared to both of the other agents).  

Critically, this occurred only within the human-classification condition. 

 

                                                             
8 Note that all of the reported effects for Experiment 1 and 2 RTs still hold, both with and without error 

trials on the android agent (where participants classified the android as “human”). 
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Figure 3.3:  Density distributions and means/SEMs for log10-transformed RTs by classification condition 

(top row = human-classification; bottom row = no-classification) and agent type (indicated by colors) for 

Experiment 1. 

 

 

 Weirdness ratings.  We analyzed weirdness ratings similar to the RTs, using an MLM 

with a Condition (2:  human-classification, no-classification) x Agent (3:  human, android, robot) 

fixed-effects structure. 

 Crucially, we found evidence for a Condition × Agent interaction, F(2, 99.06) = 5.42, p = 

.006.  Post-hoc tests revealed that human-classification participants rated the android higher on 

weirdness (compared to the no-classification group; see Figure 3.4), b = .79, SE = .32, t = 2.49, p 

= .01, d = .72.  Within the no-classification condition, participants rated the android as weirder 

than the human, b = 2.36, t = 8.99, p < .001, dZ = 1.73, and the robot as weirder than the android, 

b = 1.30, SE = .26, t = 4.97, p < .001, dZ = .96.  Within the human-classification condition, 

participants still rated the android as weirder than the human, b = 3.40, SE = .30, t = 11.45, p < 
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.001, dZ = 2.39, but there was no difference between the android and robot agents, b = .09, SE = 

.30, t = .31, ns, dZ = .06. 

 We also detected a main effect of Agent, F(2, 99.06) = 190.51, p < .001, showing that 

overall, robots were judged as weirder than both the android and human agents.  Importantly, this 

main effect of Agent Type occurred in both the experimental and control conditions (ps < .001).  

This indicates that participants in both conditions paid enough attention to the differences 

between human and non-human agents to form discriminative evaluations. 

 

 

Figure 3.4:  Weirdness difference scores by classification condition (human-classification – no-

classification) across the different agent types (human, android, and robot).  Error bars = ± 1 SEM. 

 

 
Experiment 2 

 Experiment 1 showed that the devaluation of mixed agents (androids) was selectively 

amplified in the human-classification condition (compared to the no-classification condition) — 
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possibly because of disfluency caused by difficult categorization on the ambiguous human-

likeness dimension. 

 We had three main goals for Experiment 2.  First, we wanted to replicate the key effects 

from Experiment 1 with greater power and sample size.  Second, we aimed to replace the no-

classification control condition from Experiment 1 with a condition that was more closely 

matched to the experimental condition. To do this in Experiment 2, we used a social 

categorization control condition, which was designed to have a reasonable but equal difficulty for 

all agents, rather than selective difficulty for mixed agents (like in the experimental human-

classification condition).  Third, we added approachability and likeability scales (along with the 

weirdness ratings from Experiment 1), to assess the generalizability of fluency-devaluation 

effects to other dimensions.  

 

Method   

Participants and stimuli.  One hundred seventy UCSD undergraduates (Mage = 20.08 

years, SDage = 2.20 years; 114 females) participated for course credit and signed consent forms 

approved by the UCSD Human Research Protections Program.  All experimental stimuli were the 

same as Experiment 1 (see Figure 3.1). 

 Design and procedure.  The design for Experiment 2 was similar to Experiment 1, but 

with two main changes. 

 First, the no-classification condition from Experiment 1 was replaced with the gaze 

orientation-classification condition in Experiment 2, which required detailed stimulus processing 

by asking participants to judge whether the agent’s head was oriented “toward or away from the 

camera” (see Figure 3.2 and Li, Florendo, Miller, Ishiguro, & Saygin, 2015).  The human-

classification condition remained the same as Experiment 1. 
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 Second, similar to Experiment 1, participants proceeded through three counterbalanced 

blocks of 24 trials each (totaling 72 trials).  However, in Experiment 2, each rating block of 24 

trials was split by different rating dimensions (i.e., approachability, likeability, or weirdness) to 

gauge the generalizability of the fluency effect.  As before, after each trial, participants gave the 

rating using a 1 (not at all) to 7 (very much) scale, and both conditions made their respective 

classifications using the ‘A’ and ‘L’ keys on the keyboard (response labels were randomized 

across trials).  All other timing and trial parameters were the same as Experiment 1 (see Figure 

3.2). 

 Thus, in short, participants proceeded through three counterbalanced blocks of 24 trials 

each (totaling 72 trials).  Each block was randomly assigned to one of three judgments 

(approachability, likeability, or weirdness; see Figure 3.2) and required categorization on the 

image stimuli from Experiment 1 (human-classification vs. orientation-classification). 

 Three subjects performed at ≤ 50% accuracy and were thus excluded from the total 

sample, leaving a final n = 167. 

  

Results 

 Categorization RTs.  We analyzed RTs in the same way as Experiment 1, using an 

MLM according to a Condition (2:  human-classification, no-classification) x Agent (3:  human, 

android, robot) fixed-effects structure. 

 As with Experiment 1, all effects were significant.  Most importantly, we clearly 

replicated the Condition x Agent interaction, F(2, 167.72) = 13.83, p < .001.  Human-

classification participants took longer to categorize the android, both compared to the human 

agent, b = .05, SE = .005, t = 9.92, p < .001, dZ = 1.08, and the robot agent, b = .05, SE = .007, t 

= 7.84, p < .001, dZ = .85, but there was no difference between their human and robot RTs.  

Orientation-classification participants still took longer to classify the android compared to the 
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human agent, b = .02, SE = .005, t = 3.38, p < .001, dZ = .37, but not the robot agent, b = .01, SE 

= .007, t = 1.10, ns, dZ = .12, and they also showed no differences between human and robot RTs 

(see Figure 3.5). 

 Also similar to Experiment 1, we detected some less theoretically important effects.  

Specifically, there were strong main effects of both Condition, F(1, 167.02) = 16.59, p < .001, 

and Agent, F(2, 167.72) = 44.78, p < .001.  Generally, these effects showed that orientation-

classification subjects had longer RTs, and the android took the most time to categorize when 

aggregating across conditions. 

 In sum, once again, the android was selectively disfluent (compared to both the other 

agents) — but only in the human-classification condition. 
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Figure 3.5:  Density distributions and means/SEMs for log10-transformed RTs by classification condition 

(top row = human-classification; bottom row = orientation-classification) and agent type (indicated by 

colors) for Experiment 2. 

 

 

 
 Scale ratings.  We analyzed all scale ratings in the same way as Experiment 1, using 

MLMs with Condition (2:  human-classification, no-classification) x Agent (3:  human, android, 

robot) fixed-effects structures. 

Approachability.  On approachability, we detected a Condition x Agent interaction, F(2, 

159.94) = 11.24, p < .001.  Critically, human-classification participants rated the android lower in 

approachability (compared to the orientation-classification group), b = -.64, SE = .19, t = -3.35, p 

= .001, d = .52 (see Figure 3.6).  Within the orientation-classification condition, participants rated 

the android as less approachable than the human, b = -1.24, SE = .15, t = -8.55, p < .001, dZ = 

.94, and the robot as less approachable than the android, b = -.45, SE = .16, t = -2.85, p = .005, dZ 

= 0.31.  Within the human-classification condition, participants still rated the android as less 
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approachable than the human, b = -2.27, SE = .16, t = -13.96, p < .001, dZ = 1.51, but there was 

no difference between the android and robot agents, b = .21, SE = .17, t = 1.23, ns, dZ = 0.13. 

Note that we also observed a strong main effect of Agent, F(2, 159.94) = 168.87, p < 

.001, such that the robot was less approachable than the android, which in turn was less 

approachable than the human.  This replicates the pattern of evaluative ratings from Experiment 

1.  This main effect of Agent Type occurred in both the experimental and control conditions (ps < 

.001), suggesting that participants in both conditions of Experiment 2 paid attention to the 

differences between human and non-human agents. 

 Likeability.  For likeability ratings, we observed very similar effects to approachability.  

We once again detected a Condition x Agent interaction, F(2, 165.28) = 5.43, p < .01.  As with 

approachability ratings, human-classification participants gave lower likeability scores to 

androids (compared to the orientation-classification condition), b = -.48, SE = .19, t = -2.46, p = 

.02, d = .38 (see Figure 3.6).  Within the orientation-classification condition, participants rated 

the android as less likeable than the human, b = -1.39, SE = .16, t = -8.68, p < .001, dZ = .96, and 

the robot as less likeable than the android, b = -.31, SE = .15, t = 2.07, p = .04, dZ = .23.  Within 

the human-classification condition, participants still rated the android as less likeable than the 

human, b = -2.08, SE = .18, t = -11.70, p < .001, dZ = 1.27, but there was no difference between 

the android and robot agents, b = .26, SE = .17, t = 1.54, ns, dZ = .17.  

 Also similar to approachability, there was again significant evidence for a main effect of 

Agent, F(2, 165.28) = 181.00, p < .001, where the robot was less likeable than the android, which 

in turn was less likeable than the human.  This main effect of Agent Type was present in both the 

experimental and control conditions (ps < .001). 

Weirdness.  With weirdness ratings, the central effects from Experiment 1 replicated.  

There was a basic main effect of Agent, F(2, 166.89) = 253.97, p < .001, with participants rating 
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the robot as weirder than the android, which was rated weirder than the human.  This main effect 

occurred in both conditions (ps < .001).   

Critically, we also observed a Condition × Agent interaction, F(2, 166.89) = 7.12, p = 

.001.  Post-hoc breakdowns of this interaction revealed that human-classification participants 

rated the android higher on weirdness (compared to the orientation-classification group), b = .71, 

SE = .25, t = 2.86, p = .005, d = .45 (see Figure 3.6).  Within the orientation-classification 

condition, participants rated the android as weirder than the human, b = 1.94, SE = .19, t = 10.18, 

p < .001, dZ = 1.12, and the robot as weirder than the android, b = .83, SE = .19, t = 4.30, p < 

.001, dZ = .47.  Within the human-classification condition, participants still rated the android as 

weirder than the human, b = 2.96, SE = .21, t = 13.88, p < .001, dZ = 1.51, but there was no 

difference between the android and robot agents, b = .02, SE = .21, t = 0.10, ns, dZ = .01. 

 Composite positivity index.  We also created a composite rating by averaging 

approachability, likeability, and reverse-coded weirdness scores — which yielded a general 

positivity index for each participant, towards each agent.  This allowed us to gauge how (and to 

what magnitude) fluency effects on evaluation generalize more broadly, to overall positive and 

negative dimensions.  Note that while we still used similar MLM methods for the composite 

rating, this MLM was run on subject means instead of trial-level data (since we needed to obtain a 

single composite score for each subject by averaging their responses across the other rating 

dimensions). 

 Critically, we detected clear evidence for a Condition x Agent interaction, F(2, 159.08) = 

7.19, p = .001.  This interaction demonstrated a parallel pattern to the individual rating 

dimensions.  Human-classification participants responded more negatively to androids (compared 

to orientation-classification participants), b = -.43, SE = .16, t = -2.63, p = .01, d = .40 (see 

Figure 3.6).  Finally, we also observed a main effect of Agent, F(2, 159.08) = 310.69, p < .001, 

where the robot received lower ratings than both the android and human.  This main effect 
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occurred in both conditions (ps < .001), showing that participants in both conditions paid 

attention to the differences between human and non-human agents. 

 

 
 
Figure 3.6:  Difference scores by classification condition (human-classification – orientation-classification) 

on scale ratings for the different agent types (human, android, and robot; indicated by bar colors) in 

Experiment 2.  Individual rating dimensions are shown (approachability, likeability, and weirdness), along 

with the composite positivity index (average of approachability, likeability, and reverse-coded weirdness 

scores). All graphs plot least squares means, along with standard errors. 

 

 

 
Multilevel mediation across Experiments 1 and 2 

 To gauge whether fluency actually drives changes in weirdness evaluations (aside from 

merely accompanying them), we collapsed the categorization RTs (log10-transformed) and 
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weirdness rating data from both Experiments 1 and 2 and applied multilevel mediation analyses 

for each condition (human-classification vs. orientation/no-classification), via the mediation 

package in R (R Core Team, 2014; Tingley et al., 2013).  While the human-classification 

condition was exactly the same in both Experiments 1 and 2, note that the alternative conditions 

were different (i.e., in Experiment 1, no-classification participants only had a simple RT task, but 

in Experiment 2, this was changed to an orientation-classification task).  For simplicity, these 

conditions were collapsed in the main mediation analyses, but separate analyses for each 

condition also did not yield any effects.  Also, note that we only used weirdness ratings for 

mediation because Experiment 1 did not have any approachability or likeability ratings 

(compared to Experiment 2, which had all three dimensions). 

 Essentially, these methods allow for model-based estimation of the average total, direct, 

and indirect mediation effects using hierarchical data structures.  Such a strategy is appropriate 

for repeated-measures designs to account for observations nested within subjects (Tingley et al., 

2013).  Our main predictor was agent “mixed-ness,” which was dummy-coded as either 0 (not 

mixed [human and robot]) or 1 (mixed [android]).  Our main DV was weirdness ratings, and our 

mediator was log10-categorization RT.  To conduct the multilevel mediation analyses for 

Experiments 1 and 2, mixed-effects models were constructed for each of the mediation paths, 

using by-subject random effects parameters.  All simulations from the mediation package in R 

were based on 5,000 samples per estimate, after which quasi-Bayesian confidence intervals were 

calculated around the average total, direct, and causal mediation effects. 

 Importantly, we observed evidence for mediation only within the human-classification 

subject group.  Agent “mixed-ness” was a significant predictor of log10-RTs (a-path:  b = .05, SE 

= .01, t = 6.12, p < .001), and log10-RTs were a significant predictor of weirdness ratings (b-path:  

b = 3.21, SE = 1.02, t = 3.16, p = .002).  The total effect was significant (c-path:  b = 1.44, CI95% 

= [.99, 1.91], p < .01), along with the average direct effect of agent “mixed-ness” on weirdness 
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ratings (c’-path:  b = 1.31, CI95% = [.85, 1.80], p < .01).  And critically, the average causal 

mediation effect was also significant (b = .13, CI95% = [.03, .25], p = .02), demonstrating log10-

categorization RTs as a mediator. 

 Note that when these same analyses were done for the orientation/no-classification 

subject groups, we observed no evidence of mediation.  Agent “mixed-ness” did not predict log10-

RTs (a-path:  b = .005, SE = .006, t = .85, ns), and log10-RTs did not predict weirdness ratings (b-

path:  b = -.07, SE = .41, t = -.18, ns).  The total effect was still significant (c-path:  b = .55, CI95% 

= [.14, .95], p = .01) as was the average direct effect (c’-path:  b = .55, CI95% = [.15, .96], p = 

.01), but there was no average causal mediation effect (b < .001, CI95% = [-.01, .01], ns). 

 

Experiment 3 

 We replicated the key findings from Experiment 1 with Experiment 2 (where androids 

were selectively devalued in the human-classification condition) and this generalized to all 

evaluative dimensions (approachability, likeability, and weirdness).  Multilevel mediation 

analyses across data from both Experiments 1 and 2 revealed that categorization fluency (log10-

RTs) mediated the effect between agent “mixed-ness” and weirdness ratings. 

 In Experiment 3, we wanted to investigate the specificity of the fluency-devaluation 

effects.  One key question is whether similar devaluation effects emerge if androids are disfluent 

on a dimension that is not a key feature of the agent (an ambiguous dimension that is not human-

likeness).  This is theoretically important because it addresses a key theoretical (yet 

underexplored) distinction between disfluency that results from integral versus incidental 

ambiguity (Bodenhausen, 1993).  If fluency-rating effects do emerge when the android is 

selectively disfluent but on incidental features (e.g., mixed color background cues, instead of 

human-likeness), this would argue that devaluation arises from general misattribution of task 

difficulty.  If not, this would suggest that, in order to influence evaluations, the disfluency must 
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be meaningfully connected to the underlying nature of the target.  We return to these theoretical 

alternatives later in the Discussion. 

   

Method   

Participants and stimuli.  One hundred twenty-two UCSD undergraduates (Mage = 20.25 

years, SDage = 1.49 years; 91 females) participated for course credit and signed consent forms 

approved by the UCSD Human Research Protections Program. 

 Design and procedure.  The design for Experiment 3 was similar to Experiment 2, but 

with two important (and related) changes. 

 First, we altered the image stimuli from Experiments 1 and 2 to be tinted across different 

shades of blue and green, but critically, in a way that mirrored the “blending” of the agents 

themselves.  More specifically, the human and robot images were tinted as either 100% blue or 

100% green respectively (image colors not mixed), while the android images were tinted to be 

exactly 50% blue // 50% green (image colors mixed).  This was done to create a situation where 

the level of ambiguity (and thereby, classification difficulty) was still tied to each individual 

agent, but in a manner that did not specifically relate to the human-likeness dimension (see 

Figures 3.1 and 3.2). 

 Second, using these color-modified images, we changed the human-classification 

conditions from Experiments 1 and 2 to a color-classification condition in Experiment 3.  In 

Experiment 3, color-classification participants were instead instructed to categorize each of the 

stimulus images on whether or not they were “blue or green.”  Note that with this setup, the 

fluency structure of the human-classification conditions from the previous experiments is still 

preserved (i.e., robots and humans are easier to categorize, while the android is made selectively 

difficult) but refers to an incidental dimension (i.e., whether the individual images are “blue or 

green”). 
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 Finally, after the experiment, we also debriefed each participant and asked for their 

opinions on what they thought the study was investigated.  None of the participants mentioned 

anything related to categorization difficulty impacting their ratings, based on the color or agents 

in the stimuli. 

 One subject performed at ≤ 50% accuracy and was thus excluded from the total sample, 

leaving a final n = 121. All other parameters and analysis procedures remained the same as 

Experiments 1 and 2 (see Figure 3.2). 

  

Results 

 Categorization RTs.  We analyzed RTs using the same MLM methods as Experiments 1 

and 2.  Aside from a main effect of Agent, F(2, 121.15) = 104.14, p < .001, we found the 

predicted Condition × Agent interaction, F(2, 121.15) = 92.77, p < .001. 

 Color-classification participants took longer to categorize the android, both compared to 

the human agent, b = .08, SE = .005, t = 15.80, p < .001, dZ = 2.09, and the robot agent, b = .09, 

SE = .005, t = 17.03, p < .001, dZ = 2.26, but there was no difference between their human and 

robot RTs.  Orientation-classification participants took less time to categorize the human agent, 

both compared to the android agent, b = -.01, SE = .005, t = -2.34, p = .02, dZ = .29, and the 

robot agent, b = -.02, SE = .005, t = -3.24, p < .01, dZ = .41, while showing no differences 

between android and robot RTs, b < .01, SE = .005, t = .94, ns, dZ = .12 (see Figure 3.7). 

 In sum, the pattern of RTs for the color-classification condition was similar to that of the 

human-classification conditions in Experiments 1 and 2.  In Experiment 3, android images were 

selectively disfluent (i.e., took longer to categorize) only in the color-classification condition, 

whereas there were no consistent RT differences for android images in the alternative orientation-

classification condition. 
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Figure 3.7:  Density distributions and means/SEMs for log10-transformed RTs by classification condition 

(top row = color-classification; bottom-row = orientation-classification) and agent type (indicated by 

colors) for Experiment 3. 

 

 

 
 Scale ratings.  We analyzed all scale ratings for Experiment 3 using the same MLM 

methods as Experiments 1 and 2. 

Approachability.  Intriguingly, with Experiment 3, we did not observe a Condition x 

Agent interaction, F(2, 120.48) = 0.32, ns.  When the difficult human-classification condition was 

changed to a difficult color-classification in Experiment 3, the fluency effects on approachability 

ratings disappeared.  Color-classification participants did not differ from the orientation-

classification participants on approachability ratings for the android, b = .19, SE = .19, t = 1.03, 

ns, d = .19 (see Figure 3.8). 

Also, as was the case with Experiments 1 and 2, we observed a strong main effect of 

Agent, F(2, 120.48) = 105.58, p < .001, such that participants rated the robot as less approachable 
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than the android, which was less approachable than the human (same as in Experiments 1 and 2).  

Once again, this main effect of Agent Type occurred in both the experimental and control 

conditions (ps < .001).  This suggests that participants in both conditions of Experiment 3 noticed 

differences between human and non-human agents.  Other ratings demonstrated this same pattern, 

as indicated below. 

 Likeability.  The effects on the likeability ratings were very similar to those of the 

approachability dimension.  Crucially, we also did not detect a Condition x Agent interaction on 

likeability ratings, F(2, 120.87) = .36, ns.  Once again, the color-classification group did not 

differ from the orientation-classification group for likeability ratings on the android, b = .16, SE = 

.18, t = .87, ns, d = .16 (see Figure 3.8).  

 Note that once again, we also saw a main effect of Agent, F(2, 120.87) = 120.79, p < 

.001, where the robot was rated as less likeable than the android, which was rated less likeable 

than the human.  This main effect was significant in both the experimental and control conditions 

(ps < .001). 

Weirdness.  With weirdness ratings, once again, we did not find a Condition x Agent 

interaction, F(2, 120.50) = 1.14, ns.  The color-classification group did not differ from the 

orientation-classification group for weirdness ratings on the android, b = .06, SE = .23, t = .28, ns, 

d = .03 (see Figure 3.8). 

Moreover, as with the other rating dimensions, we observed a similar main effect of 

Agent as Experiments 1 and 2, F(2, 120.50) = 267.02, p < .001, such that participants rated the 

robot as weirder than the android, which was rated as weirder than the human.  This main effect 

was significant in both the experimental and control conditions (ps < .001). 

 Composite positivity index.  As with Experiment 2, we constructed a composite positivity 

index by averaging approachability, likeability, and reverse-coded weirdness scores.  Once again, 

we found a main effect of Agent, F(2, 121.00) = 231.80, p < .001, where the robot was rated 



136 

 

lower than both the android and human agents.  This main effect occurred in both classification 

conditions (ps <.001). Crucially, we did not detect any evidence for a Condition x Agent 

interaction, F(2, 121.00) = .74, ns, suggesting that differences in agent ratings were not 

influenced by the categorization condition (color-classification versus orientation-classification; 

see Figure 3.8). 

 

 

 
 
Figure 3.8:  Difference scores by classification condition (color-classification – orientation-classification) 

on scale ratings for the different agent types (human, android, and robot; indicated by bar colors) in 

Experiment 3.  Individual rating dimensions are shown (approachability, likeability, and weirdness), along 

with the composite positivity index (average of approachability, likeability, and reverse-coded weirdness 

scores). All graphs plot least squares means, along with standard errors. 
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Discussion 

 Our results suggest that negative evaluations of mixed agents can arise from the 

processing effort exerted to classify such agents on dimensions relevant to human features.  

Crucially, such disfluency and resulting devaluation occurred only when participants first 

categorized those agents along the human-likeness dimension on which they were ambiguous 

(Experiments 1 and 2).  These effects did not occur when processing of mixed agents was 

measured using a generic stimulus detection RT task (Experiment 1) or when these agents were 

classified along a social orientation dimension on which they were unambiguous (Experiment 2).  

These effects emerged even though participants devoted an overall comparable amount of time to 

processing the agents in the control and experimental conditions (Experiment 2).  Consistent with 

this, mediation effects emerged only for participants in the human-classification condition 

(Experiments 1 and 2).  These results cannot be a mere byproduct of general difficulty 

misattribution, since a color-classification task that made androids selectively disfluent did not 

yield similar patterns (Experiment 3).  Note that our findings also cannot be explained by lack of 

attention to relevant agent features in the control condition.  After all, in each classification 

condition across all experiments (including control conditions), participants were sensitive to 

relevant human/non-human features and adjusted their evaluative ratings accordingly. 

 These findings provide an important qualification to previous essentialist claims about 

the “unbridgeable” boundary between human and non-human entities.  Recall that these 

essentialized properties are viewed as deep and immutable traits of the agent in-question.  While 

the experience of being human is certainly one example, note that perceivers can also essentialize 

other social dimensions (e.g., gender, race, sexual orientation, etc.; Bastian & Haslam, 2006; 

Haslam, Rothschild, & Ernst, 2000; Haslam, Bastian, Bain, & Kashima, 2006; Howell, Weikum, 

& Dyck, 2011).  Regardless of the specific dimension, essentialized categories carry with them a 

list of defining characteristics:  clear and discrete boundaries from other categories, involuntary 
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and unchanging membership, and observable features that reflect something about the underlying 

function of the agent (Prentice & Miller, 2007). 

On this essentialism view, the spontaneous negative responses to mixed agents arise due 

to a violation caused by blurring different “natural kinds” for human and non-human (see 

Demoulin, Leyens, & Yzerbyt, 2006; Medin & Ortony, 1989; Prentice & Miller, 2007).  While 

theoretically distinct, other frameworks similarly posit that “mismatches” spontaneously yield 

negative responses to mixed agents. These mismatches can be perceptual, resulting in conflicting 

cues in visual, auditory, and motion processing (Katsyri et al., 2015; MacDorman, Green, Ho, & 

Koch, 2009; Mitchell et al., 2011; Seyama & Nagayama, 2007).  They can also be more 

conceptual, as with incompatible cues for mind perception (Waytz, Gray, Epley, & Wegner, 

2010).  Our findings challenge views that push for strong automaticity in negative responses to 

mixed agents — instead, we show context-sensitivity and top-down control of these effects.  This 

nicely corroborates recent work showing that negative responses can be modified by situational 

factors (Pollick, 2010), since both behavioral and neural responses can vary based on depth of 

processing (Cheetham et al., 2013) and subjectivity in judging human-likeness (Cheetham, Suter, 

& Jancke, 2011).  Also, it is worth keeping in mind that the tendency towards essentializing 

categories is quite variable across different tasks and perceivers (Kalish, 2002).  As Prentice & 

Miller (2007) state, “essentialism is not an all-or-none proposition, but rather is a matter of 

degree” (pg. 203).  Therefore, our results more so argue against “strong” versions of the theory 

that do not allow for (i) dependence of responses to these categories on the specific task and 

context settings or (ii) flexibility in the construal of essential nature for human and non-human 

categories.   

 Critically, the current findings also offer an important theoretical extension of previous 

fluency models.  Note that when substituting the human-classification condition for a color-

classification task with the same “difficulty structure” (where 50/50 blue-green judgments made 
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android images selectively disfluent), all devaluation effects dissipated.  This is a key point, since 

it highlights the importance of the human-likeness dimension, and it demonstrates that 

devaluation effects do not simply result from any general categorization difficulty.  One 

explanation for these color-classification results appeals to the distinction between integral versus 

incidental cues (Bodenhausen, 1993).  Devaluation effects may only follow from disfluency that 

occurs in response to an agent’s key central features (i.e., integral human-likeness) rather than 

ancillary features with similar ambiguity (i.e., incidental colored backgrounds).  More 

theoretically, we suggest that the evaluative consequences of (dis)fluency depend on the 

metacognitive processes that arise from monitoring that processing experience (see Schwarz, 

2010, for a review).  On one level, contextual variables can impact the processing experience 

itself, as with making information more or less difficult to process (similar to the different 

classification conditions in our experiments).  But on another level, contextual variables can 

further impact how the metacognitive experience of (dis)fluency is interpreted and used — and 

this can dictate how later judgments are influenced.  In our experiments, even though human-

classification and color-classification led to similar experiences of disfluent processing, the 

interpretation of those metacognitive experiences is likely what drove differences in the 

evaluation of mixed agents.  If one experiences disfluency on an integral feature of the agent 

(e.g., human-likeness), this will likely have downstream negative consequences on judgment. 

However, similar disfluency on an incidental feature (e.g., color background) would not be 

deemed relevant, and thus “gated” from the evaluation.  Note that the integral versus incidental 

distinction is different than the idea that subjects discount blatant cues of cognitive disfluency in 

their ratings.  In our studies, the color-based and human-based disfluency were equally strong and 

salient.  The key difference here lies in participants’ beliefs about the relevance of fluency cues to 

the particular judgment (here, evaluative rating).  This also corresponds well to ideas of feelings-

as-information, where an experience is used as a cue in making judgments, but only when the 
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experience is considered to be appropriate and relevant to the judgment at-hand (Schwarz & 

Clore, 2003). 

More broadly, our work also relates to findings on inhibitory devaluation and stimulus-

category competition (Fenske & Raymond, 2006; Raymond, 2009).  These models argue that the 

discomfort with mixed agents is a more specific example of cognitive interference, which 

emerges from resolving multiple competing stimulus representations via inhibition (Ferrey, 

Burleigh and Fenske, 2015).  This inhibition leads to negative evaluation, which has been shown 

with human faces and bodies (Fenske et al., 2005; Ferrey, Frischen, & Fenske, 2012) and non-

human entities (Griffiths & Mitchell, 2008).  Interestingly, some of these studies found that 

negative evaluation of stimuli on a categorical boundary can occur without explicit categorization 

(e.g., Ferrey et al. 2015).  Our results differ from these findings.  First, our experiments show 

strong task sensitivity — that is, in our experiments, the devaluation effects were more 

pronounced with categorization.  Second, our Experiment 3 demonstrates that difficult color-

categorization did not lead to devaluation of ambiguous images.  One interpretation of this 

difference is that our stimuli are richer and more complex, thus leading participants’ construal of 

those stimuli to be more dependent on categorical processes.  In fact, some other work suggests 

that with highly similar and familiar stimuli, categorization conflict may spontaneously “pop out” 

without any categorization task, leading to devaluation (Halberstadt, Pecher, Zeelenberg, Wai, & 

Winkielman, 2013).   Further, notice here that our fluency perspective is theoretically distinct 

from models of inhibition.  While fluency theories focus on category processing effort, inhibition 

theories focus on resolving cognitive conflict (often by attaching “inhibitory” tags to distractors).  

These theoretical perspectives should be investigated further, along with other frameworks 

linking emotion and categorization to judgments of human and non-human agents (e.g., Burleigh 

and Schoenherr, 2014; Cheetham et al., 2011; Cheetham et al., 2013). 
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Limitations and future directions 

 There are also some important limitations to consider for the current experiments.  First, 

we used longer RTs as our main operationalization of disfluency (i.e., greater RTs indicates 

greater processing difficulty).  Note, however, that while processing difficulty would certainly 

yield longer RTs, longer RTs do not necessarily have to index disfluency (e.g., longer RTs could 

also emerge from reduced motivation, increased curiosity towards the stimulus, etc.).  Thus, in 

future studies, alternative fluency measures to RTs should also be incorporated to extend our 

findings. 

Second, while our stimuli were highly controlled images of human, android, and robot 

agents doing different actions (Saygin & Stadler, 2012), our stimulus set only contained one 

specific example for each agent type.  While our experiments were not designed to investigate 

subtle gradations in human-likeness between human and robot, our android agents were likely not 

exactly in the middle of this continuum (the perception of which also probably varies across 

participants).  Therefore, future research may also want to include multiple exemplars of human, 

android, and robot agents, which may be able to offer more precise degrees of human-likeness 

(e.g., human/non-human morphs; Mathur & Reichling, 2016; Powers, Worsham, Freeman, 

Wheatley, & Heatherton, 2014). 

Third, the directionality of our fluency-devaluation effect on mixed agents remains 

unclear.  More specifically, explicit categorization on the human-likeness dimension (as with 

Experiments 1 and 2) may amplify disfluency and negative attitudes for mixed agents. Another 

possibility is that perceivers rapidly and implicitly categorize the agents on the human-likeness 

dimension as the “default,” and forced categorization on an alternative dimension (e.g., 

orientation-classification) then reduces negative attitudes for mixed agents.  Our results from 

Experiment 1 might suggest that perceivers do not spontaneously categorize the agents on 

human-likeness, since human-classification participants judged the android to be selectively 
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weirder than participants with only a detection RT task (see Figure 3.4).  However, note that 

participants had much faster RTs without categorization (around 500-600 ms) compared to those 

in the human-classification condition (around 1200-1400 ms; see Figure 3.3).  Implicit 

categorization on the human-likeness dimension may take longer to emerge, or the no-

classification task in Experiment 1 might have distracted participants enough such that 

spontaneous human-likeness categorization could not occur.  This would be interesting to 

examine in future studies, considering previous papers reporting “spontaneous” negative 

responses to mixed agents (Mitchell et al., 2011; Tinwell, Grimshaw, Nabi, & Williams, 2011; 

Złotowski et al., 2015).  It may be possible that spontaneous “pop-out” effects from mixed agents 

are at least partially due to implicit and disfluent categorization on the central human-likeness 

dimension (also see Burleigh and Schoenherr, 2014; Cheetham et al., 2011; Cheetham et al., 

2013; Ito & Cacioppo, 2000; Wiese, Schweinberger, & Neumann, 2008). 

Note that our results do not rule out bottom-up effects in processing mixed agents.  This 

seems evident from our RT results in Experiment 1 (see Figure 3.3) and Experiment 2 (see Figure 

3.5), where participants still took longer to respond to androids even during the alternative control 

tasks (albeit the differences were much smaller than human-classification conditions).  Also, keep 

in mind that some versions of bottom-up perceptual theories can be considered compatible with 

fluency frameworks (as when incompatibility is detected early and leads to obligatory difficulty 

in feature processing).   

Finally, some theories hold that disfluency itself is not the key driver of negative 

evaluation, but rather it is the implications of such disfluency.  As examples, disfluency or 

inconsistency might only matter if they signal a prediction error (Saygin, Chaminade, Ishiguro, 

Driver, & Frith, 2012), a gap in knowledge (Kruglanski, 2013; Roets et al., 2015; Viola et al., 

2015), or a collapse in the sense of meaning (Proulx & Inzlicht, 2012).  Therefore, we argue that 
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negative responses to mixed agents involve an interaction between bottom-up perceptual factors 

and top-down categorization processes. 

 

Conclusion 

 In sum, the current findings highlight the broader theoretical point that higher-order 

processes can modify how we evaluate non-human agents.  These influences, which we explored 

here with “hot” evaluative judgments, are also likely to bear on “cold” cognitive assessments of 

mind perception, agency, and intentionality (Gray & Wegner, 2012; Waytz, Gray, Epley, & 

Wegner, 2010).  Essentially, categorization (dis)fluency can modify the impact of this 

fundamental boundary between human and non-human, where we can dehumanize the living 

(Haslam, 2006) or anthropomorphize the artificial (Chandler & Schwarz, 2010; Epley, Waytz, & 

Cacioppo, 2007).   

 

 

Chapter 3 is, in full, in press for publication in Journal of Experimental Psychology: 

Human Perception and Performance. Carr, Evan W.; Hofree, Galit; Sheldon, Kayla; Saygin, 

Ayse P.; Winkielman, Piotr. The dissertation author was the primary investigator and author of 

this material. 
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GENERAL DISCUSSION 

The preceding chapters have provided an in-depth examination of how basic social 

perception, judgment, and action are impacted by processing dynamics (or the ease, speed, and 

coherence of processing).  Two key factors were investigated — familiarity (prior stimulus 

experience) and fluency (ease of stimulus processing).  Across 13 experiments, both familiarity 

and fluency altered classic psychological effects (Chapters 1 and 3) and rudimentary reactions to 

neutral and emotional stimuli (Chapters 2 and 4).  Critically, the current work shows that 

processing dynamics can infiltrate relatively rapid and low-level social responses.   

Let us review the main findings from each chapter (recall that Chapters 1 and 2 focused 

on familiarity, while Chapters 3 and 4 focused on fluency).  Starting with Chapter 1, four 

experiments investigated predictions made my modern memory theories for how mere exposure 

impacts the attractiveness of facial blends (beauty-in-averageness [BiA] effect).  Even though we 

replicated the classic BiA effect when the individuals were weakly learned (i.e., morphs rated as 

more attractive than their constituent individuals; Experiment 1), we show the first evidence for 

an ugliness-in-averageness (UiA) effect when the individuals are made highly familiar (i.e., 

morphs rated as less attractive than their constituent individuals; Experiments 2, 3, and 4).  

Importantly, both the BiA and UiA effects in our studies were mediated by familiarity.  The BiA 

results (Experiment 1) follow from previous findings suggesting that attractiveness of average 

faces is associated with their implicit familiarity (Peskin & Newell, 2004; Rhodes, Halberstadt, & 

Brajkovich, 2001).  Memory models would predict such an effect, since weak learning on 

individual faces should lead to a prioritization of the blend as a better match to the “gist” or 

prototypical representation of the faces (Principe & Langlois, 2012).  However, the UiA results 

(Experiments 2, 3, and 4) show that the attractiveness of facial blends is contingent on the 

familiarity of their constituent individuals (where familiar individuals are rated as more attractive 

than their blends).  From the memory-based account, this presumably occurs because strong 
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individual learning strengthens the representations for familiar faces, thus making blends seem 

less similar (and familiar) to relevant memory traces.  In turn, we found that the UiA effect is 

driven by a relative reduction in familiarity for morphs of trained individuals (compared to the 

trained individuals themselves).  Note that we specifically dissociated this account from another 

perspective of cognitive “mismatch,” where the morphs of two familiar individuals appear 

especially unattractive because of cognitive conflict between two established categories or 

“attractors” (Arnal & Giraud, 2012; Dreisbach & Fisher, 2015; Hsu, Bhatt, Adolphs, Tranel, & 

Camerer, 2005; Neta, Kelley, & Whalen, 2013).  This clash would trigger negative affect, which 

would then generalize to the morph.  This account clearly predicts that the dislike should be 

eliminated if the conflict is removed, which can be achieved by replacing one of the conflicting 

components.  Our data supported the familiarity (memory-based) account in Experiment 3, since 

a UiA effect still emerged when using “cross-set” morphs (composed of one trained individual 

and one untrained individual, as opposed to the “within-set” morphs containing two trained 

individuals in Experiments 2 and 4).  Finally, the UiA effect still emerges with a purely 

perceptual learning task, suggesting that these processes occur due to low-level visual familiarity 

(Experiment 4). 

Chapter 1 not only delivers novel evidence for a new phenomenon (along with further 

support for the familiarity-positivity link; Garcia-Marques, Mackie, Claypool, & Garcia-Marques, 

2004; Monin, 2003; Titchener, 1915), but it also opens many new questions.  First, one 

interesting avenue for future research would have to do with the role of affective, motivational, 

and judgmental contexts in the UiA effect.  The “warm glow” of familiarity can fluctuate based 

on contextual factors like mood, motivation, or goals (De Vries, Holland, Chenier, Starr, & 

Winkielman, 2010; Freitas, Azizian, Travers, & Berry, 2005; Hertwig, Herzog, Schooler, & 

Reimer, 2008).  It also may depend on the specific judgement in-question, since different 

dimensions show varying sensitivity to mere exposure and prototypicality manipulations 
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(DeBruine, 2005; Rhodes, Halberstadt, & Brajkovich, 2001; Rhodes, Halberstadt, Jeffery, & 

Palermo, 2005).  Second, future research should also examine timing differences in the UiA 

effect, perhaps through the addition of physiological measures (e.g., EMG or EEG).  Judgment 

and physiology can sometimes dissociate as stimulus processing moves from perceptual (early) to 

conceptual (late) stages (Bradley & Lang, 2007; Von Helversen, Gendolla, Winkielman, & 

Schmidt, 2008).  Finally, it would be useful to explore other social manipulations alongside the 

UiA effect, including the role of valenced expressions (e.g., smiling and frowning faces) or group 

status (e.g., race or gender; Bernstein, Young, & Hugenberg, 2007; Malpass & Kravitz, 1969; 

Hugenberg & Bodenhausen, 2004). 

Chapter 2 extended these familiarity effects to the perception of happiness in others’ 

facial expressions.  Up to this point, it was still unclear whether mere exposure effects could 

impact perception or if this was limited to only influencing higher-level judgments.  With two 

experiments that involved speeded perceptual judgments (Experiment 1), rapid forced-choice 

classifications (Experiment 2), and deliberative estimates of happiness (Experiment 2), we found 

that participants judged familiar individuals’ expressions as happier — particularly when the 

expressions were neutral or positive.  The latter suggests that this effect involves the selective 

enhancement of positive stimulus features (rather than the reduction of negative stimulus 

features).  Note that these findings cannot be explained by simple response biases, given the 

selectivity of the familiarity-positivity effect to only certain levels of emotion in the faces.  Also, 

we observed the same pattern of findings across multiple tasks involving rapid perception 

(Experiment 1) and judgment (Experiment 2).  Thus, familiarity seems to imbue facial stimuli 

with intrinsic positivity, which can be misattributed in subsequent perception of certain facial 

expressions. 

One of the most valuable contributions from Chapter 2 comes with how it helps to 

dissociate prominent mere exposure models on the link between familiarity and valence.  Our 
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results support hedonic skew frameworks, which posit that familiarity expresses on positive affect 

(but not negative affect) and gets expressed via positive features (but not negative features; 

Harmon-Jones & Allen, 2001; Winkielman & Cacioppo, 2001).  In turn, our findings are also 

inconsistent with models for amplification of pre-existing features (also called nonspecific 

activation; Albrecht & Carbon, 2014; Mandler, Nakamura, & Van Zandt, 1987), selective 

decrease in negative affect (or a negative skew; Lee, 2001; Zajonc, 2001), or a generalized 

positivity shift (Monin, 2003; Tichener, 1915).  It is especially intriguing that these targeted 

effects from familiarity can emerge at earlier stages of processing.  Our interpretation of these 

findings is that familiarity works selectively on positive affect and is more easily attributed to 

positive features, but this work should be replicated with different kinds of emotion morphs 

(especially given some views that anger is “special” in its social processing; e.g., Pinkham, 

Griffin, Baron, Sasson, & Gur, 2010).  Another future direction would be with the application of 

other perceptual tasks (e.g., visual search with trained and untrained faces), since top-down 

effects of cognition on perception are still being fervently debated (Balcetis, 2016; Firestone & 

Scholl, 2015). 

Moving on to the fluency findings, Chapter 3 was similar to Chapter 1 in that it focused 

on an effect that has been widely shown and replicated (but can be transformed when processing 

dynamics are varied).  More specifically, Chapter 3 investigated the seemingly obligatory 

discomfort that arises from perceiving “mixed” agents (or those that contain both human and non-

human features, like androids; Ishiguro, 2007).  We showed that the relative dislike for mixed 

agents is not inherent or compulsory, but rather it can be modified by contextual factors.  Instead, 

such dislike is generated when people classify the agents into human versus non-human 

categories — resulting in the experience of categorization disfluency (which triggers negative 

affect and generalizes to agent evaluations).  Categorization fluency (or the effort needed to 

determine category membership; Halberstadt & Winkielman, 2013) is different than perceptual 
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fluency, which is usually manipulated via low-level “surface” stimulus features (e.g., contrast, 

readability, duration, etc.; e.g., Carr, Rotteveel, & Winkielman, 2016; Reber, Winkielman, & 

Schwarz, 1998).  Consequently, categorization fluency is ultimately task-dependent, and 

processing difficulty instead depends on which (un)ambiguous feature dimensions are highlighted 

by the current task (Owen, Halberstadt, Carr, & Winkielman, 2016). 

Crucially though, the findings from Chapter 3 provide an important qualification to 

previous claims about an “unbridgeable” boundary between human and non-human entities.  

Mixed agents were devalued more so when participants first classified them on the ambiguous 

human-likeness dimension, and categorization difficulty (longer RTs) mediated these effects 

(Experiments 1 and 2).  On views of essentialism, spontaneous negative responses to mixed 

agents arise due to an aversive combination of human and non-human “natural kinds” (see 

Prentice & Miller, 2007).  Other perceptual frameworks propose similar “mismatches” to occur, 

with conflicting cues in visual, auditory, and motion processing (e.g., Mitchell et al., 2011).  In 

turn, our results from Chapter 3 argue against such theories that do not allow for contextual 

sensitivity in the “automaticity” of negative responses to mixed agents, or the ability for flexible 

construal of essential human and non-human categories.  However, the findings from Chapter 3 

do not rule out bottom-up effects in processing mixed agents.  In the current studies, participants 

still took somewhat longer to respond to androids even during the alternative control tasks 

(Experiments 1 and 2).  Therefore, it is important to keep in mind that some versions of bottom-

up perceptual theories can be considered compatible with fluency frameworks.  For instance, 

incongruity may be detected early, which would lead to low-level difficulty in stimulus 

processing.  Moreover, other theories hold that disfluency is not the actual proximal driver of 

devaluation through effort, but rather the implications of such disfluency is the most important 

factor.  Disfluency can signal a gap in knowledge (e.g., Kruglanski, 2013), a shifted sense of 

meaning (Proulx & Inzlicht, 2012), or prediction error (Saygin, Chaminade, Ishiguro, Driver, & 
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Frith, 2012).  As a result, Chapter 3 should be viewed as evidence that negative responses to 

mixed agents involve an interaction between bottom-up and top-down processes (rather than 

being solely top-down). 

Note that Chapter 3 also reveals an important theoretical extension of previous fluency 

models.  There were no devaluation effects in Experiment 3, where the human-classification 

condition was replaced with a color-classification task of the same “difficulty structure” (i.e., 

50/50 blue-green judgments made android images selectively disfluent).  This demonstrates that 

devaluation effects do not result from any categorization difficulty per se, but rather only 

selectively emerges based on the (un)ambiguous feature in-question and the judgment being 

rendered.  We propose that devaluation effects may only follow from disfluency that occurs in 

response to an agent’s key central features (i.e., integral human-likeness) rather than ancillary 

cues with similar ambiguity (i.e., incidental colored backgrounds; also see Bodenhausen, 1993).  

Even though human-classification and color-classification led to similar experiences of disfluent 

processing, the interpretation of those metacognitive experiences is likely what drove differences 

in the evaluation of mixed agents (see Schwarz, 2010, for a review).  If one experiences 

disfluency on an integral feature of the agent (e.g., human-likeness), this will likely have 

downstream negative consequences on judgment. However, similar disfluency on an incidental 

feature (e.g., color background) would not be deemed relevant, and thus gated from the 

evaluation.   

While the findings from Chapters 1-3 are valuable in showing effects on perception and 

judgment, they did not examine consequences on action.  Chapter 4 addressed this gap by 

demonstrating how fluency facilitates rapid approach action-tendencies.  Using an approach-

avoidance task (AAT) with a vertical button tower, we found faster approach movements (RTs to 

initiate arm flexion) to perceptually fluent stimuli when participants had to classify them with an 

affective judgment (i.e., “good or bad”; Experiments 1 and 3).  Interestingly, this fluency-action 
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effect dissipated in a non-affective judgment context (i.e., “living or non-living”; Experiments 2 

and 4), even though fluent stimuli elicited genuine hedonic physiological responses (i.e., 

increased smiling and reduced frowning via fEMG; Experiments 3 and 4).  To our knowledge, 

this is the first evidence for a link between fluency and approach behavior, suggesting an 

important revision to current fluency models which do not mention consequences for motivation-

relevant action (Winkielman, Schwarz, Fazendeiro, & Reber, 2003).  Our findings show that 

perceptual fluency can modify the valence of a stimulus with enough strength and duration to 

make it function like an intrinsically valenced stimulus (such as an emotional word or an 

emotional facial expression), even when our pseudoword stimuli were initially neutral and low in 

arousal.  Keep in mind that this is also distinct from the mere exposure manipulations used in 

Chapters 1 and 2, which likely involve contributions from both fluency and familiarity.  

Interestingly, Chapter 4 reveals that relatively “pure” enhancements of stimulus fluency (without 

familiarity) are sufficient to influence approach action. 

Among the most intriguing results from Chapter 4 were the fluency differences as a 

function of action context (i.e., affective “good or bad” judgment vs. non-affective “living or non-

living” judgment) and measure (i.e., AAT release times [RelTs] vs. fEMG).  In short, we only 

found RelT effects during the affective task (Experiments 1 and 3), but we observed fEMG 

effects in both the affective and non-affective tasks (Experiments 3 and 4). This follows from 

previous work on approach-avoidance with valenced stimuli (e.g., happy and angry faces), which 

require embedding the action in affective decision contexts (Rotteveel & Phaf, 2004).  In turn, our 

findings suggest that fluency instantiates a low-level hedonic response across multiple contexts 

(fEMG effects in both Experiments 3 and 4), but this affective response is only selectively 

translated to action-tendency based on task relevance (RelT effects only in Experiment 3).  This 

corresponds to proposals that even though a stimulus can be genuinely liked, the facilitation of 

motivation-related action only occurs in specific contexts that elicit wanting (Winkielman & 
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Berridge, 2003).  Further, the fEMG findings suggest that the basic hedonic response to fluency 

arises quickly, before any explicit judgment. 

Despite these insights from Chapter 4, there are many avenues for future research.  First, 

the link between fluency and valence may not be unconditional, since participants were required 

to give a liking rating in all four experiments.  Future studies could test whether similar fluency 

effects on fEMG emerge without any consideration for the affective nature of the stimulus.  

Second, note that a “positive skew” was evident in both the RelT and fEMG results during 

Experiment 3 (i.e., fluency was associated with faster approach RelTs and increased smiling, but 

disfluency was not connected to quicker extension RelTs or increased frowning).  On Experiment 

4, we found no RelT effects, but fluent pseudowords did significantly reduce corrugator reactivity 

(zygomaticus reactivity in response to fluent vs. disfluent pseudowords was in the predicted 

direction but not quite significant).  While physiological responses to fluency do tend to be 

skewed positive (e.g., increased smiling to fluent stimuli; Winkielman & Cacioppo, 2001), future 

experiments should investigate when and why different actions or muscles get activated.  For 

example, other fluency studies have reported reduced frowning effects on the corrugator, 

presumably because of reduced negative affect and relaxed mental effort (Topolinski, Likowski, 

Weyers, & Strack, 2009).  Finally, future studies should also further probe the motivational nature 

of these fluency-action effects.  In Chapter 4, we equate arm flexion RelTs with approach 

(following previous work using this AAT paradigm; Phaf, Mohr, Rotteveel, & Wicherts, 2014), 

but since our main claim is about a link between fluency and approach, others may examine 

whether similar results can be obtained with different approach-avoidance paradigms (see 

Krieglmeyer et al., 2013) or different framings of the same movement (e.g., framing extension as 

approach; see Seibt, Neumann, Nussinson, & Strack, 2008). 

  In conclusion, this dissertation has revealed the effects of two key factors in processing 

dynamics — familiarity and fluency — on shaping socially relevant perception, judgment, and 
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action.  These effects were robust enough to augment, attenuate, or even reverse supposedly 

“automatic” phenomena in social cognition (Chapters 1 and 3).  Moreover, we showed changes to 

low-level responses originating in perception and action, which are often thought to be shielded 

from variations in familiarity and fluency (Chapters 2 and 4).  Taken together, these experiments 

demonstrate that processing dynamics elicit a subtle subjective experience which is flexibly 

incorporated into our interaction with the social environment. 
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