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Abstract

Background: Hypotension is associated with organ injury and death in surgical and critically ill patients. In clinical

practice, treating hypotension remains challenging because it can be caused by various underlying haemodynamic al-

terations. We aimed to identify and independently validate endotypes of hypotension in big datasets of surgical and

critically ill patients using unsupervised deep learning.

Methods: We developed an unsupervised deep learning algorithm, specifically a deep learning autoencoder model

combined with a Gaussian mixture model, to identify endotypes of hypotension based on stroke volume index, heart

rate, systemic vascular resistance index, and stroke volume variation observed during episodes of hypotension. The

algorithm was developed with data from 871 surgical patients who had 6962 hypotensive events and validated in two

independent datasets, one including 1000 surgical patients who had 7904 hypotensive events and another including 1000

critically ill patients who had 53 821 hypotensive events. We defined hypotension as a mean arterial pressure <65 mmHg

for at least 1 min.

Results: In the development dataset, we identified four hypotension endotypes. Based on their physiological and clinical

characteristics, we labelled them as: vasodilation, hypovolaemia, myocardial depression, and bradycardia. The same

four hypotension endotypes were identified in the two independent validation datasets of surgical and critically ill

patients.

Conclusions: Unsupervised deep learning identified four endotypes of hypotension in surgical and critically ill patients:

vasodilation, hypovolaemia, myocardial depression, and bradycardia. The algorithm provides the probability of each
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endotype for each hypotensive data point. Identifying hypotensive endotypes could guide clinicians to causal treatments

for hypotension.

Keywords: anaesthesia; blood pressure; cardiac output; haemodynamic monitoring; hypotension; machine learning
Editor’s key points

� Hypotension in surgical and critically ill patients oc-

curs because of various underlying haemodynamic

changes that respond to distinct treatments based on

their causal mechanisms.

� The authors used an unsupervised deep learning al-

gorithm to identify endotypes of hypotension based

on stroke volume index, heart rate, systemic vascular

resistance index, and stroke volume variation

observed during episodes of hypotension in 871 sur-

gical patients.

� The algorithm identified four hypotension endo-

types. Based on their physiological and clinical

characteristics, these were labelled as: vasodilation,

hypovolaemia, myocardial depression, and brady-

cardia. The endotypes were validated in two inde-

pendent datasets of 1000 surgical patients and 1000

critically ill patients.

� The algorithm provides the probability of each

endotype for each hypotensive event, which might

guide clinicians to mechanism-based treatments for

hypotension.
Hypotension is associated with organ injury and death in pa-

tients having surgery1e3 and in critically ill patients.4e6 Clini-

cians thus try to avoid hypotension. However, avoiding and

treating hypotension can be challenging because the under-

lying haemodynamic alterations are often unclear. A better

understanding of the root causes of hypotension could allow

hypotension to be prevented or treated with specific

mechanism-based targeted interventions.

However, understanding the causes of hypotension at the

bedside in real time is challenging, as haemodynamic vari-

ables closely interact, rapidly change, and are influenced by

therapeutic interventions. Machine learning can process large

amounts of data in a short time and might thereby be used to

help clinicians identify causes of hypotension. In a single-

centre pilot study, traditional unsupervised machine

learning (hierarchical clustering) identified six endotypes of

hypotension in 100 patients having major abdominal surgery.7

It was concluded that these endotypes of hypotensionmust be

confirmed in larger and more heterogenous patient pop-

ulations before endotypes can be recommended to causally

treat hypotension.7 We therefore aimed to identify and inde-

pendently validate endotypes of hypotension in big datasets of

surgical and critically ill patients using unsupervised deep

learning.
Methods

We conducted a retrospective analysis of three aggregated

datasets including prospectively collected anonymised data of
a total of 2871 surgical or critically ill patients. The develop-

ment dataset included 871 surgical patients from six previ-

ously reported studies.8e13 The first independent validation

dataset included 1000 surgical patients, and the second inde-

pendent validation dataset included 1000 critically ill patients.

The datasets are described in the Supplementary material and

patient characteristics are shown in Supplementary Table S1.
Haemodynamic monitoring data used for endotyping

All patients had continuous arterial pressuremonitoring using

a radial artery catheter. Based on the recorded arterial pres-

sure waveforms we retrospectively computed haemodynamic

variables using the Hypotension Prediction Index (HPI) soft-

ware library (Edwards Lifesciences; Irvine, CA, USA).8,14 Spe-

cifically, we determined mean arterial pressure (MAP), stroke

volume index (SVI), heart rate (HR), cardiac index (CI), systemic

vascular resistance index (SVRI) (for which central venous

pressure was assumed to be 5 mm Hg), stroke volume varia-

tion (SVV), and the maximum value of the first derivative of

pressure with respect to time (dP/dt). For each haemodynamic

variable, we extracted 20-s average data points. Poor quality

arterial waveform signals were detected by the arterial beat

detection algorithm of the HPI software library and excluded

from analysis.8,14

We defined hypotension as a MAP <65 mm Hg for at least 1

min.15,16 To identify and validate endotypes of hypotensionwe

considered input variables that are related to hypotension and

clinically actionable. SVI, HR, CI, and SVRI were logical primary

candidate variables. However, CI is redundant with SVI and

HR. To account for the dependency of SVI on cardiac preload

andmyocardial contractility we considered including dP/dt (as

a measure of left ventricular contractility)17 and SVV (as a

dynamic cardiac preload variable predicting fluid responsive-

ness).18 During development of the unsupervised deep

learning model, including dP/dt did not further improve the

model for endotyping. Therefore, we finally considered SVI,

HR, SVRI, and SVV as input variables for the unsupervised

deep learning model to identify endotypes of hypotension.
Identification of hypotension endotypes in the
development dataset

We considered SVI, HR, SVRI, and SVV observed both during

episodes of hypotension and during periods with a MAP <72
mm Hg immediately preceding episodes of hypotension

(Fig. 1).19,20 As endotypes for actual hypotension (MAP <65mm

Hg) might differ from those during periods immediately pre-

ceding hypotension, we additionally performed endotyping

considering only SVI, HR, SVRI, and SVV during episodes of

hypotension (without considering periods with aMAP <72mm

Hg immediately preceding episodes of hypotension).

We used unsupervised deep learning to identify hypoten-

sion endotypes based on the input variables SVI, HR, SVRI, and

SVV in the development dataset. Firstly, we normalised all SVI,



During hypotension

Prior and
MAP�72 mm Hg

MAP=65 mm Hg

MAP=72 mm Hg

Fig 1. Illustration of data points during hypotension and immediately preceding hypotension.

Hypotension was defined as a mean arterial pressure (MAP) <65 mm Hg for at least 1 minute. The figure illustrates data points observed

during episodes of hypotension (purple) and data points observed during periods with a MAP <72 mm Hg immediately preceding episodes

of hypotension (blue). Both purple and blue data points were used in the analyses.
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HR, SVRI, and SVV values to a mean of 0 and a standard de-

viation of 1 to give each variable the same potential weight on

the results. We then developed an autoencoder model, an

artificial deep neural network, to encode data into a lower,

two-dimensional latent space representation (Supplementary

Fig. S1). The purpose of the autoencoder model is to learn an

efficient representation of the data to reduce the dimension-

ality and noise of the data to make the identification of hy-

potension endotypes more robust and less subject to outliers.

The learning curves of the autoencoder model are shown in

Supplementary Figure S2.

A Gaussian mixture model (GMM), an unsupervised ma-

chine learning method, was then used to cluster data in the

latent space into hypotension endotypes. The GMM is a

probabilistic model that assumes data points come from a

mixture of multiple Gaussian distributions, with each repre-

senting a cluster. It provides a probability score for each

cluster and has the advantage of clustering data even when

they are of different shapes and sizes.

To determine the optimal number of clusters (i.e. hypo-

tension endotypes), two clustering evaluation metrics were

used: the CalinskieHarabasz index21 evaluates the ratio of

between-cluster variance and within-cluster variance and

assesses the compactness and separability of clusters, and the

DavieseBouldin index22 measures the average similarity be-

tween each cluster and its most similar cluster and quantifies

how well separated clusters are from each other. The

CalinskieHarabasz index ranges from 0 to infinity, and a

higher CalinskieHarabasz index indicates better clustering.

The DavieseBouldin index ranges from 0 to 1, and a lower

DavieseBouldin index indicates better clustering.

As a sensitivity analysis, we used k-means clustering,

another unsupervised machine learning method, and

compared the hypotension endotypes identified using the

GMM method and the k-means method. The k-means method

is based on slightly different assumptions, assuming clusters

are spherical and of similar size.
Validation of the hypotension endotypes in two
independent validation datasets

The unsupervised deep learning model from the development

dataset was validated in two independent datasets. Firstly, we

aimed to validate whether unsupervised deep learning iden-

tifies the same number of endotypes in an independent
dataset and whether the identified endotypes are similar to

those identified in the development dataset. We thus repeated

the identification of hypotension endotypes in the indepen-

dent validation dataset including 1000 surgical patients and

assessed the similarity between these endotypes and those

identified in the development dataset. Secondly, we aimed to

validate whether the unsupervised deep learning model

trained from the development dataset including surgical pa-

tients generates similar hypotension endotypes in an inde-

pendent dataset including critically ill patients. We thus

applied the unsupervised deep learning model from the

development dataset to the second independent validation

dataset including 1000 critically ill patients, and assessed the

similarity between the identified hypotension endotypes and

those identified in the development dataset.
Similarity of hypotension endotypes

To assess similarities between the hypotension endotypes

identified using different methods and different data in the

development dataset and the two independent validation

datasets we used a measure called KullbackeLeibler diver-

gence.23 The KullbackeLeibler divergence measures how one

probability distribution (one hypotension endotype) diverges

from a second probability distribution (another hypotension

endotype). The KullbackeLeibler divergence ranges between

0 and infinity. The closer the KullbackeLeibler divergence is to

0, the more similar the two distributions are. If it is 0, the two

distributions are identical.
Statistical analysis

We used the Python programming language version 3.9.13

(Python Software Foundation, https://www.python.org/) and

MATLAB version 2022b (The MathWorks, Natick, MA, USA) for

statistical analyses.
Results

We analysed >2 million data points from almost 70 000 hy-

potensive events in 2871 surgical or critically ill patients. We

describe and quantify the amount of hypotension patients had

and the haemodynamic variables used for endotyping in

Supplementary Table S1.

https://www.python.org/
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Hypotension endotypes in the development dataset

In the development dataset of 871 surgical patients, four was

the optimal number of hypotension endotypes for GMM clus-

tering when data points during episodes of hypotension and

during periods with a MAP <72 mmHg immediately preceding

episodes of hypotension were modelled (Fig. 2). Based on their

haemodynamic characteristics, we labelled the four endo-

types as (1) vasodilation; (2) hypovolaemia; (3) myocardial

depression; and (4) bradycardia (Table 1, Figs 3 and 4, and

Supplementary Fig. S3). The most common endotype was

vasodilation, contributing 54 774 of 156 857 (35%) hypotensive

data points. The next most common endotype was hypo-

volaemia, contributing 50 295 of 156 857 (32%) hypotensive

data points. Myocardial depression contributed 35 209 of 156

857 (22%), and bradycardia contributed 16 579 of 156 857 (11%)

hypotensive data points (Supplementary Table S1).

For k-means clustering in the autoencoder latent space,

four was the optimal number of hypotension endotypes

(Supplementary Fig. S4). Based on their haemodynamic char-

acteristics, the four endotypes could again be labelled as (1)

vasodilation; (2) hypovolaemia; (3) myocardial depression; and

(4) bradycardia. KullbackeLeibler divergence analysis showed

that hypotension endotypes identified by GMM clustering and

k-means clustering were very similar (Supplementary

Table S2).

GMM clustering considering only data points during epi-

sodes of hypotension (without considering periods with aMAP

<72 mm Hg immediately preceding episodes of hypotension),

identified the same four hypotension endotypes

(Supplementary Table S3). KullbackeLeibler divergence anal-

ysis showed that hypotension endotypes identified by GMM

clustering were very similar when considering episodes of

hypotension and periods with a MAP <72 mmHg immediately
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Fig 2. Optimal number of hypotension endotypes.

CalinskieHarabasz index (blue circles) and DavieseBouldin

index (purple squares) for different numbers of clusters to

determine the optimal number of clusters (i.e. hypotension

endotypes) in the development dataset using a Gaussian

mixture model in the autoencoder latent space. The plot shows

that four is the optimal number of hypotension endotypes

(highest CalinskieHarabasz index and lowest DavieseBouldin

index).
preceding episodes of hypotension vs considering only epi-

sodes of hypotension (Supplementary Table S4).
Hypotension endotypes in the validation datasets

In the first validation dataset of 1000 surgical patients, four

was the optimal number of hypotension endotypes

(Supplementary Fig. S5). Based on their haemodynamic char-

acteristics, the four endotypes could again be labelled as (1)

vasodilation; (2) hypovolaemia; (3) myocardial depression; and

(4) bradycardia (Table 1, Supplementary Table S1,

Supplementary Fig. S6). KullbackeLeibler divergence analysis

showed that the hypotension endotypes identified in the first

validation dataset and those identified in the development

dataset were similar (Table 2).

When the unsupervised deep learning model from the

development dataset was applied to the second independent

validation dataset of 1000 critically ill patients, the same four

hypotension endotypes were generated (Table 1,

Supplementary Table S1). KullbackeLeibler divergence anal-

ysis showed that the hypotension endotypes identified in the

second validation dataset and those identified in the devel-

opment dataset were again similar (Table 2).
Discussion

In this analysis of haemodynamic data from 2871 surgical or

critically ill patients, unsupervised deep learning identified

four endotypes of hypotension: vasodilation, hypovolaemia,

myocardial depression, and bradycardia. We primarily used

GMM clustering in the autoencoder latent space to identify

hypotension endotypes because it is a robust method less

susceptible to data noise and outliers. As a sensitivity analysis,

we used a different clustering method (k-means) and identi-

fied the same four hypotension endotypes, which suggests

that our results are robust. Additionally, unsupervised deep

learning identified the same four hypotension endotypes in all

three independent datasets including data of heterogenous

surgical and critically ill patients from many hospitals and

countries.

Hypotension is most effectively treated based on its un-

derlying causes and mechanisms. However, in perioperative

and intensive care medicine, specific causes of hypotension

often remain unclear. Consequently, fluids and vasopressors

remain the mainstay treatments.24 Considering hypotension

endotypesmight provide amore detailed understanding of the

underlying haemodynamic alterations and allow causally

treating hypotension with specific interventions. Clinicians

could thus use hypotension endotypes as a guide to the

intervention that is most likely to be effective to treat a given

episode of hypotension in a given patient.

The endotypes we identified in the large datasets of surgi-

cal and critically ill patients using unsupervised deep learning

are similar to those we previously found using traditional

unsupervised machine learning in a single-centre study of 100

patients having major abdominal surgery.7 In that study, hi-

erarchical clustering revealed six instead of four hypotension

endotypes because it differentiated two subtypes of the

vasodilation endotype and classified certain hypotensive epi-

sodes as mixed endotype.7 Including more patients and using

more sophisticated and robustmethods to cluster hypotensive

episodes allowed classifying hypotensive episodes into one of

four distinct hypotension endotypes.

mailto:Image of Fig 2|eps


Table 1 Endotypes of hypotension. Haemodynamic characteristics of the hypotension endotypes in the development dataset (surgical patients), the first validation dataset (surgical
patients), and the second validation dataset (critically ill patients) identified using a Gaussian mixture model. Data are presented as absolute number (percentage) or mean (SD) and
median (25th percentilee75th percentile). CI, cardiac index; dP/dt, maximum value of the first derivative of pressure with respect to time; HR, heart rate; SVI, stroke volume index; SVRI,
systemic vascular resistance index; SVV, stroke volume variation.

Dataset Endotype n (%) SVI (ml m¡2) HR (beats min¡1) SVRI (dyn s cm¡5 m2) SVV (%) CI (L min¡1 m¡2) dP/dt (mm Hg s¡1)

Development dataset
(surgical patients)

Vasodilation 54 774
(34.9)

47 (13),
45 (38e55)

82 (15),
80 (72e91)

1253 (296),
1253 (1044e1450)

7 (3),
7 (5e9)

3.8 (0.9),
3.6 (3.1e4.3)

682 (258),
620 (500e815)

Hypovolaemia 50 295
(32.1)

34 (8),
34 (28e39)

87 (16),
83 (75e97)

1610 (342),
1601 (1375e1821)

16 (6),
14 (11e19)

2.9 (0.5),
2.8 (2.5e3.2)

629 (275),
573 (430e783)

Myocardial depression 35 209
(22.4)

35 (9),
34 (29e40)

64 (7),
64 (60e68)

2268 (957),
2081 (1776e2448)

16 (6),
14 (11e19)

2.2 (0.6),
2.2 (1.9e2.6)

534 (227),
502 (382e648)

Bradycardia 16 579
(10.6)

42 (9),
41 (36e47)

52 (5),
52 (47e56)

2255 (579),
2133 (1867e2517)

9 (3),
9 (7e11)

2.2 (0.5),
2.2 (1.8e2.5)

590 (203),
574 (435e733)

First validation dataset
(surgical patients)

Vasodilation 46 513
(29.2)

47 (12),
46 (40e53)

92 (14),
89 (82e100)

1130 (351),
1111 (935e1300)

8 (3),
8 (6e10)

4.3 (1.2),
4.1 (3.5e4.8)

731 (263),
689 (565e850)

Hypovolaemia 48 957
(30.7)

35 (10),
35 (29e41)

86 (15),
83 (75e93)

1591 (442),
1570 (1308e1848)

16 (7),
15 (12e19)

3.0 (0.8),
2.8 (2.5e3.4)

627 (270),
581 (449e751)

Myocardial depression 33 740
(21.1)

34 (10),
34 (28e40)

65 (8),
64 (60e69)

2289 (908),
2116 (1772e2526)

16 (7),
14 (11e18)

2.2 (0.6),
2.2 (1.8e2.6)

591 (236),
563 (427e724)

Bradycardia 30 327
(19.0)

53 (16),
51 (42e61)

57 (10),
55 (50e64)

1705 (628),
1589 (1259e2080)

8 (3),
8 (6e10)

3.1 (1.6),
2.9 (2.2e3.6)

666 (258),
628 (497e809)

Second validation dataset
(critically ill patients)

Vasodilation 753 091
(39.6)

40 (14),
37 (30e47)

94 (18),
92 (83e103)

1312 (360),
1312 (1049e1547)

8 (3),
8 (6e10)

3.7 (1.1),
3.4 (2.9e4.2)

768 (347),
698 (522e954)

Hypovolaemia 908 098
(47.8)

31 (8),
29 (25e35)

93 (14),
91 (83e100)

1648 (394),
1629 (1398e1866)

17 (6),
16 (12e20)

2.8 (0.7),
2.7 (2.4e3.1)

582 (277),
529 (384e735)

Myocardial depression 199 611
(10.5)

32 (12),
33 (25e40)

68 (11),
66 (61e72)

2518 (1402),
2120 (1778e2633)

18 (8),
16 (12e21)

2.1 (0.7),
2.1 (1.7e2.5)

658 (339),
602 (423e857)

Bradycardia 41 123
(2.1)

41 (9),
40 (34e46)

53 (6),
53 (50e56)

2223 (589),
2167 (1824e2550)

9 (4),
9 (7e11)

2.2 (0.5),
2.1 (1.8e2.5)

985 (546),
835 (604e1208)
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Fig 3. Endotypes of hypotension. This figure shows a two-dimensional autoencoder latent space representation of the data points clus-

tered into the four endotypes (vasodilation, hypovolaemia, myocardial depression, and bradycardia) using a Gaussian mixture model in

the development dataset (surgical patients). The circular rings overlaying the four endotypes represent the probability of the data points to

belong to an endotype, with inner circles indicating a higher probability.
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The hypotension endotypes we identified using unsuper-

vised deep learning are physiologically and clinically plau-

sible. When advanced haemodynamic variables are available,

clinicians could identify hypotension endotypes themselves

using simple basic rules and predefined cut-off values of

haemodynamic variables without using artificial intelligence.

However, clustering haemodynamic variables into
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hypotension endotypes in real time at the bedside can be

difficult, and hypotension endotypes can interact, overlap, and

rapidly change. Unsupervised deep learning decision support

thus could help automatically identify hypotension endotypes

in real time. Additionally, there can be different underlying

causes of hypotension at the same time. Our study forms the

basis for artificial intelligence-assisted real-time
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(SVRI), stroke volume variation (SVV), cardiac index (CI), and the

e (dP/dt) of data points in the development dataset for the four

l, namely vasodilation (vaso), hypovolaemia (hypo), myocardial
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Table 2 Similarity between hypotension endotypes in different datasets. Similarity between hypotension endotypes identified in the
development dataset (surgical patients), the first validation dataset (surgical patients), and the second validation dataset (critically ill
patients) using a Gaussian mixture model quantified by KullbackeLeibler divergence. The closer the KullbackeLeibler divergence is to
0, the more similar two hypotension endotypes are.

Development dataset (surgical patients)

Vasodilation Hypovolaemia Myocardial depression Bradycardia

First validation dataset
(surgical patients)

Vasodilation 2.5 207.1 408.7 149.9
Hypovolaemia 34.2 0.1 33.4 50.0
Myocardial depression 294.6 185.0 0.07 30.3
Bradycardia 21.9 249.8 250.6 0.3

Second validation dataset
(critically ill patients)

Vasodilation 0.5 307.4 450.5 158.7
Hypovolaemia 79.2 0.3 81.3 138.6
Myocardial depression 346.6 202.8 0.1 44.9
Bradycardia 95.6 334.2 289.1 0.2
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haemodynamic guidance. Specifically, hypotension endotypes

could be incorporated into monitoring systems informing

haemodynamic management and providing clinical decision

support.

The advantage of our algorithm is that it not only can

identify the four hypotension endotypes, but it can also pro-

vide the probability of each endotype for each hypotensive

data point because each Gaussian component in the GMM has

its own probability density function characterised by a mean

and a covariance matrix. These probability density functions

define the likelihood of a data point belonging to each

Gaussian component. Thus, GMM can provide the probability

of each data point belonging to different endotypes because of

its probabilistic framework. As there can be more than one

underlying cause of hypotension, knowing the probability of

each underlying cause might help clinicians select and pri-

oritise therapeutic interventions (Supplementary Fig. S7).

There is no clear definition for hypotension in surgical25 or

critically ill26 patients. Hypotension was thus pragmatically

defined as a MAP <65 mm Hg in this analysis. From a patho-

physiological perspective, hypotension means that arterial

pressure is too low to ensure optimal organ perfusion. Most

organs autoregulate their blood flow across varying perfusion

pressures.27 For a single organ, hypotension occurs when

arterial pressure is below the lower limit of autoregulation,

which is usually unknown in clinical practice. We pragmati-

cally defined hypotension as a MAP <65 mm Hg because

numerous registry studies show that at a population level the

MAP harm threshold for hypoperfusion-related organ injury,

such as acute kidney injury or myocardial injury, is 60e70 mm

Hg.1e3,28 We aimed to identify not only endotypes during hy-

potension, but also to identify endotypes when patients are

developing hypotension. We thus considered data points

before hypotension occurred (i.e. when MAP was <72 mm Hg).

The MAP threshold of 72 mm Hg comes from the finding that

when MAP is <72 mm Hg, there is a reasonably high chance

that it decreases further to <65 mm Hg.19,20

Haemodynamic variables are closely interrelated, and

hence hypotension endotypes can overlap and might not be

categorically defined. From a methodological perspective, hy-

potensive data points can belong to multiple endotypes,

therefore the assigned endotype represents the probability
that hypotension is caused by one of the four underlying

haemodynamic alterations.

Our analyses do not consider the temporal relationship

among hypotensive episodes. We evaluated multiple data

points within single episodes of hypotension and multiple

episodes of hypotension within individual patients, treating

data points as if theywere independent, although they are not.

A patient can stay within a certain hypotension endotype or

can move from one hypotension endotype to another as a

function of time. These aspects merit further analysis, espe-

cially for real-time identification of hypotension endotypes.

Our study has additional limitations. We only included pa-

tientswho had continuous arterial pressuremonitoringwith an

arterial catheter. Future research should evaluate whether

considering haemodynamic data from sources other than

arterial pressure waveforms, for example data from other

sensors, physical examination, or laboratory tests, can help

refine hypotension endotypes. We analysed >2 million hypo-

tensive data points in almost 3000 surgical and critically ill pa-

tients. Hypotension endotypes reflect basic cardiovascular

physiology, and it is thus likely that hypotension endotypes are

highly consistent across different patient populations. Howev-

er, while the endotypes are a robust finding, the relative fre-

quency of the endotypes will naturally differ among different

patient populations and settings. We used SVV as an input

variable. SVV cannot reliably predict fluid responsiveness in

patients with spontaneous breathing activity or cardiac

arrythmias.29 However, we did not use SVV to predict fluid

responsiveness but as a general input variable to identify

endotypes. Cardiac arrhythmias that were too severe to be

handled by the SVV algorithm,30 such as atrial fibrillation, were

removed from the analyses. Therefore, further research is

needed to determine if and how well the unsupervised deep

learning algorithm can identify hypotension endotypes in pa-

tients with severe cardiac arrhythmias. For SVRI calculation,

central venous pressurewas assumed to be 5mmHg,which is a

good approximation most of the time, but at times central

venous pressure can deviate from 5 mm Hg. Finally, in this

analysis we identified and validated four hypotension endo-

types. Future studies are warranted to investigate whether

causally treating hypotension considering the specific hypo-

tension endotype improves patient-centred outcomes.
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Conclusions

Unsupervised deep learning identified four endotypes of hy-

potension in surgical and critically ill patients: vasodilation,

hypovolaemia, myocardial depression, and bradycardia. The

algorithm provides the probability of each endotype for each

hypotensive data point. Identifying hypotension endotypes

could guide clinicians to causal treatments for hypotension.

Clinical trials are needed to investigate whether endotype-

guided causal treatment of hypotension improves patient-

centred outcomes.
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