
Lawrence Berkeley National Laboratory
Recent Work

Title
Programming Abstractions for Run-Time Partitioning of Scientific Continuum Calculations
Running on Multiprocessors

Permalink
https://escholarship.org/uc/item/39j151tk

Author
Baden, S.B.

Publication Date
1988

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/39j151tk
https://escholarship.org
http://www.cdlib.org/

LBL-24643 <'.~

1L21Wlf®Iffi~® Iffi®Irllf®ll®y IL21fm(Q)Jr21~(Q)lfJ
UNIVERSITY OF CALIFORNIA

Physics Division

Mathematics Department

Presented at the 3rd SIAM Conference on
Parallel Processing for Scientific Computing,
Los Angeles, CA, December 1-4, 1987

Programming Abstractions for Run-Time
Partitioning of Scientific Continuum
Calculations Running on Multiprocessors

S.B. Baden

January 1988
TWO-WEEK LOAN COPY

Prepared for the U.S. Department of Energy under Contract DE-AC03-76SF00098

DISCLAIMER

This document was prepared as an account of work sponsored by the United States
Government. While this document is believed to contain coiTect information, neither the
United States Government nor any agency thereof, nor the Regents of the University of
California, nor any of their employees, makes any waiTanty, express or implied, or
assumes any legal responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by its trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof, or the Regents of the University of
California. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof or the Regents of the
University of California.

• PROGRAMMING ABSTRACTIONS FOR
RUN-TIME PARTITIONING OF

SCIENTIFIC CONTINUUM CALCULATIONS
RUNNING ON MULTIPROCESSORS*

Scott B. Baden

Lawrence Berkeley Laboratory
University of California

Berkeley, California 94720

January 1988

LBL-24643

To appear in: Proc. Third SIAM Conference on Parallel Processing for Scientific Com­
puting, Dec. 1-4, 1987, Los Angeles, Calif.

*This work was supported in part by the Applied Mathematical Sciences subprogram of the Office of
Energy Research, U.S. Department of Energy, under contract DE-AC03-76SF00098; a California Fellow­
ship in Microelectronics; Intel Scientific Computers; and Cray Research Inc.

('{
I

Programming Abstractions for Run-Time Partitioning of
Scientific Continuum Calculations Running on Multiprocessors

Scott B. Baden*

Lawrence Berkeley Laboratory
University of California

Berkeley, California 94720

Abstract. I will discuss a set of software abstractions for implementing various math-physics cal­
culations on a team of processors. I tried out the abstractions on Anderson's Method of Local Corrections,
a type of vortex method for computational fluid dynamics. I ran experiments on 32 processors of the Intel
iPSC- a message-passing hypercube architecture- and on 4 processors of a Cray X-MP- a shared­
memory vector architecture - and achieved good parallel speedups of 24 and 3.6, respectively. The
abstractions should apply to diverse applications, including finite difference methods, and to diverse archi­
tectures without requiring that the application be reprogrammed extensively for each new architecture.

1. Introduction

A major application for multiprocessors is in obtaining solutions to partial differential equations
arising out of various areas of science and engineering. A major outstanding difficulty in using them is
how to construct robust software that can run efficiently on diverse systems without having to go through
major changes in programming. This is particularly troublesome for calculations that apply computational
effort non-uniformly over space according to time-dependent phenomena, and which must therefore be
dynamically partitioned. I will discuss a set of abstractions that can hide many of the details entailed in
dynamically partitioning and coordinating a computation among a team of processors and that can
improve the robustness of software with respect to those activities.

The abstractions apply to the important class of calculations that spend most of their time in spa­
tially localized computation in which two data points communicate far more information with respect to
the computation done on them when they are close together than when they are far apart. Consider, for
example, the particle-particle particle-mesh solution to the N-body problem. Such a calculation arises in
problems in computational fluid dynamics, plasma physics, and particle physics; it entails following a set
of particles that move under mutual interaction, congregating and dispersing unpredictably with time (see
Figure 2). The particles move under the influence of a logarithmic potential, which computation divides
into two parts: a local part that does roughly 90% of the computational work when the problem is large,
and a relatively inexpensive global part whose data dependencies are not localized. The cost of comput­
ing the local part of the potential is a position- and time-dependent function of the local density of parti­
cles.

*This wmk was supported in part by the Applied Mathematical Sciences subprogram of the Office of Energy Research, U.S.
Department of Energy, under contract DE-AC03-76SF00098; a California Fellowship in Microelectronics; Intel Scientific Comput­
ers; and Cray Research Inc.

-2-

A simple way of applying a team of processors to spatially localized particle methods is to partition
the domain into rectangular regions and assign the computation and data associated with each region to a
processor. There are many ways to partition the domain, two of which are shown in Figure 1. A uniform
partitioning, in which all partitions have the same area, is the most straightforward. Such a partitioning,
however, utilizes only a small fraction of the total power of the processing team because work is distri­
buted non-uniformly in space, as shown in Figure la. A better way is to partition adaptively into some­
what irregularly-sized regions that all complete in roughly the same time, as shown in Figure lb. Such a
strategy compensates for the uneven distribution of work, and can substantially accelerate the computa­
tion. Of course, the partitioning must be periodically recomputed, as shown in Figure 2, or otherwise the
workloads would gradually drift out of balance as the particles redistribute themselves. Some processors
would become overloaded, while others would sit idle waiting; the cost of the computation would steadily
increase with time, as shown in Figure 3.

The decision to change the work assignments dynamically, rather than to assign work statically, can
substantially complicate the user's software. The trouble is that the best way to handle the communication
and the bookeeping that come as a side effect of shuffling work among the processors can depend on vari­
ous overhead costs - such as memory latency or message startup time - that generally vary from system to
system. Thus, the code required to effectively parallelize a calculation on a shared-memory multiproces­
sor differs substantially from that required to run on a message-passing architecture, and code can vary
even among members of one family of architecture. To facilitate in the construction of robust software, I
propose that the user program a generic multiprocessor whose partitioning and coordinating operations
have the same semantics regardless of where implemented. I will discuss a particular generic multiproces­
sor called "genMP." GenMP can help desensitize substantial portions of the user's software from a
change in various system parameters such as communication or memory latency, numbers of processors,
processor interconnection structure, and the semantics of system library calls that handle various aspects
of concurrency. GenMP isn't universal, however, and applies to localized computation only; the user will
have to parallelize any non-localized computation himself - though separately from the local part -
according to the particular architecture in use. The question of how best to parallelize non-localized~ com­
putation is beyond the scope of this paper, and I consider only spatially localized computation.

2. The GenMP Abstractions

GenMP can be implemented by a layer of software on most any traditional multiprocessor system.
It provides a set of run-time utilities that the user will invoke from his code. GenMP assumes a particular
style of localized computation, a lattice model computation, in which the calculation maps onto a regular
lattice of boxes, the work lattice, subdividing the domain. The computation updates the state of each box
as a function of the previous state of only those bins within a given distance C, the local interaction dis­
tance. (In contrast, the data dependencies for the updates done in the global part of the computation are
not constrained to be localized.) The cost of updating a bin generally depends on the state of the surround­
ing bins and can be reasonably estimated with an inexpensive auxiliary computation.

The lattice model of computation assumed by genMP is a reasonable one for a variety of computa­
tions in science and engineering, and for this reason I believe that it will prove useful for a diversity of
applications such as:

o Finite difference calculations that use a fixed rectangular mesh trivially
fit the model, as do methods such as Adaptive Mesh Refinement
(AMR) [3] that employ dynamic grids.

0

0

Localizable Particle methods such as Particle-Particle Particle-Mesh
(PPPM) [11], and Rokhlin and Greengard's fast multipole method [10]
are naturally organized around a lattice, and they spend the majority of
their time computing direct interactions between nearby particles or
doing other localized computation.

Finite element methods may also be mapped onto a lattice [14], and
divide naturally into localized and non-localized computation.

o Ray tracing for computer graphics may also be organized around a lat­
tice, and has a localized communication structure (see Swensen and
Dippe [9]).

-3-

In the interest of brevity I will consider the abstract problem of hpw to parallelize a lattice model
computation using genMP. The interested reader should consult Baden [2] for the details regarding a
specific application. To parallelize a lattice model computation, we subdivide the work lattice into subre­
gions, assign each such subproblem to a unique processor, and let each processor compute on its assigned
subproblem in parallel with the others. Ignoring roundoff, results will be independent of the number of
processors used. The computation begins with a distinguished task called the "boss." The boss reads in
the input data and spawns P additional "worker tasks," where P is chosen by the user. These worker
tasks participate in the numerical part of the computation. All execute the same program but each on a
different set of data - a single subregion of the work lattice. Each worker executes out of a private
address space and communicates with the others through a mechanism to be. discussed. There is no shared
memory.

Each worker maintains a private copy of its assigned part of the work lattice. It also maintains a
copy of a surrounding collection of bins, called an "external interaction region," which augments the
task's assigned sublattice (see Figure 4). The task uses this external interaction region to maintain copies
of data belonging to other tasks that directly interact with its own; hence, the region is C bins thick,
where C is local interaction distance previously discussed. As a consequence of using this distributed
storage strategy, no task may access any bins beyond its external interaction region. Furthermore, a task
may only indirectly access bins, owned by other tasks, that overlap its external interaction region. For
example, when a task modifies a copy of a bin in the external interaction region, then the owner of the
"original" won't know that the change was made. Similarly, when a task modifies an original any tasks
that possess copies will be unaware of the changes. These changes must eventually be propagated, how­
ever, to ensure correctness; at certain points in the calculation each task must suspend computation and
communicate with the other tasks in such a way that all bin-copies be consistent with the originals. To
this end, all tasks periodically invoke a run-time utility called !Bar. When a task encounters a call to
!Bar it communicates with all tasks overlapping its external interaction region and returns when it has
finished communicating with all of them. This set of interacting tasks acts as a local barrier synchroniza­
tion mechanism. Each task will generally encounter and leave the local barrier at a different time, accord­
ing to the amount of work assigned to it. We refer to the barrier as being a local one because generally it
involves only a local subset of tasks, rather than the entire set of tasks as in traditional (global) barrier syn­
chronization; the name !Bar stands for "Local BARrier synchronization." LBar is passed it two sub­
routines as arguments. These perform gather and scatter operations on the local user data structures. For
details see [2].

To ensure they share the work evenly, the workers must periodically invoke a run-time utility called
Partitioner. Partitioner readjusts each worker's assignment of bins according to a time­
varying "work density mapping," supplied by the user. This mapping comes in the form of an array;
each entry estimates the cost of updating one bin of the work lattice. All tasks leave Partitioner
together and upon return each will be assigned a unique rectangular region of the work lattice. A task
determines the set of indices for the bins assigned to it with the aid of querying functions provided as run­
time utilities. As a result of calling Partitioner, some bins may change owners, and must therefore
be transmitted to the correct task. A call to the !Bar utility can handle the necessary exchanges of data.
I chose to implement Partitioner with a recursive bisection algorithm similar to that used by Berger
and Bokhari [4]. The user, however, is unaware of how Partitioner works, and any strategy that
was fast and that rendered partitionings with a low surface area to volume ratio would suffice.

3. Computational Results

I evaluate genMP on the Intel Personal Scientific Computer (iPSC), manufactured by Intel Scientific
Computers, and on the Cray X-MP, manufactured by Cray Research Inc .. I will show that the perfor­
mance of either of these systems running genMP can scale reasonably well with the number of processors
in use. A detailed description of the iPSC and the Cray X-MP is beyond the scope of this paper; see
Baden for a summary of the relevant details, or the manufacturer's manuals [8, 12]. {The pamphlet by S.
Chen et al. [5] on the Cray X-MP is a more accessible document than the manufacturer's Hardware
Reference Manual.) Table 1 summarizes the relevant characteristics of the two machines.

The application I used as a test problem was a vortex dynamics calculation chosen from fluid
dynamics known. This calculation solves the vorticity-stream function formulation of Euler's equations
for incompressible flow in two dimensions in an infinite domain:

Dro = 0
Dt

(3.1)

-4-

u=O at x=oo,

(3.2)

(3.3)

where u(x(t),t) is the velocity of the fluid at position x(t) at timet; ro is the vortic~, defined as the curl

of u; "' is the stream function; !2_ = aa + u.V is the material derivative and ~ = --2 + ~2 is the two-
Dt t ax ay

dimensional Laplacian operator. (For an explanation of these equations consult Chorin and Marsden's
introductory text on fluid mechanics [7]. Also see Chorin's original paper on the vortex blob method [6],
or Leonard's survey of vortex methods [13].) The above equations were solved for an initial vorticity dis­
tribution that was constant inside two disks centered about the origin, and zero elsewhere. These disks are
referred to as Finite Area Vortices. To discretize the above equations we place a collection of N marker
particles, called vortices, on a regular mesh of points, and then compute the path of the vortices over a
sequence of timesteps. The following system of ordinary differential equations describes the motion of
the vortices:

!!_x·(t) = U·(t) i = 1 .. · N dt I I ' ' '
(3.4)

where xi (t) is the position of the ith vortex at timet, ui (t) the velocity, and roi is its strength, which is like
a charge. A PPPM-type algorithm, Anderson's Method of Local Corrections [1], was used to compute the
mutually-induced velocities on the RHS of (3.4). When the vortices number in the thousands this method
typically spends less than 5% in a Poisson solver- global computation - and most of the remaining time
in localized computation. The positions of the vortices were evolved by discretizing (3.4) in time with a
second order Runge-Kutta time integration scheme. All software was written in FORTRAN 77. On the
iPSC, the code was compiled with F1N286 and run under release 2.1 of the node operating system. On
the Cray, the code was compiled with CFT (version 1.14), and run under COS (version 1.16). All arith­
metic was done using 8-byte floating point numbers (double precision on the iPSC, single precision on the
Cray). Experiments were run with various number of vortices N and processors P. Owing to the differ­
ences in processor speed, numbers of processors, and memory capacity, the values of N on the Cray were
different from those used on the iPSC.

I use parallel efficiency as the figure-of-merit Define TlP as the parallel efficiency on P processors:

T1/P
1lP = r;-• (3.5)

where Tp is the time to complete on P processors. T 1 is the time taken on a uniprocessor. For this special
case of P = 1, various overheads that would be incurred on a multiprocessor, such as communication, are
non-existent. By definition 11 1 = 1. Table 2 gives the efficiency and speedup measurements obtained from
the iPSC runs, and Table 3, the measurements obtained from the Cray. Efficiency was quite good on both
machines. On the iPSC, TlP ranged from 90% with 4 processors to 74% with 32. The efficiency on the
Cray was about 90% on 4 processors. Thus, if efficiency were somehow increased to 100%, that would
speed up the iPSC computations by at most 35% ((1-Tli1)x100%) and by 12% on the Cray.

Overall, genMP's overhead seems reasonable; it never exceeded 2.4% on the iPSC, and I estimate
that it never exceeded 5% on the Cray (overheads on the Cray could not be measured directly). The com­
putations vectorized on the Cray as well as they did in the uniprocessor version of the code, and ran at
roughly 250 megaflops/sec. on 4 processors. Surprisingly, the iPSC's high message startup time- roughly
5 msec. - appeared to have very little impact on the running time of the calculation. GenMP incurred a
low communication overhead during local barrier synchronization, for example, because it can transmit
data in bulk rather than an element at a time, and this was facilitated by restricting the partitions to have
simple shapes.

4. Summary

I have outlined a simple approach to parallelizing numerical software for multiprocessors that insu­
lates the programmer from many of the machine-dependent and low-level details. Application-dependent
code and system-dependent code need not become heavily intertwined; when code is transported to a new
machine, the parts that would have to change to accommodate a different communication model are res­
tricted mostly to code the programmer never sees. I tried out my ideas on a realistic application, and
obtained good parallel speedups on architectures that represent two extremes in multiprocessor design phi­
losophy.

t"'· I

·~

-5-

My approach is to have the user program a generic multiprocessor, called "genMP," with abstrac­
tions for hiding the details of task decomposition and coordination activities from the user. GenMP
employs domain partitioning to subdivide workly fairly among a team of processors, and local barrier syn­
chronization to ensure correctness. The user must divide the data and computation for the local part of the
problem into bins of a regular rectangular mesh, must supply work estimates for the computation in each
bin, and must supply routines for converting these data to and from byte streams. GenMP will assign bins
to tasks in order to even the workload and will allow each task to access and communicate the necessary
boundary data. GenMP is intended for a diversity of calculations, previously identified, that fit a simple
model of spatial locality. It is neither universal nor complete, however, and leaves some programming
details up to the discretion of the user.

In order to explore its generality, I have begun to apply genMP to other kinds of applications; a
boundary layer calculation that solves the incompressible Navier-Stokes equations in two dimensions (in
collaboration with E. G. Puckett), an adaptive grid method for hyperbolic partial differential equations (in
collaboration with M. J. Berger and P. Colella), and a three-dimensional vortex calculation (in collabora­
tion with T. Buttke and P. Colella).

The research described here was part of my Ph. D. dissertation research [2] done in the Computer
Science Division at the University of California at Berkeley. I gratefully acknowledge the encouragement
and moral support of my thesis advisor, W. Kahan; Phillip Colella also helped to supervise the work.
Many thanks go to Erling Wold for reading the final draft of this paper.

S. References

1. C. R. Anderson, "A Method of Local Corrections for Computing the Velocity Field Due to a
Distribution of Vortex Blobs," J. Comput. Phys. 62(1986), pp. 111-123.

2. S. B. Baden, "Run-Time Partitioning of Scientific Continuum Calculations Running On
Multiprocessors," LBL-23625, Mathematics Department, University of California, Lawrence
Berkeley Laboratory, June 1987. (Ph. D. Dissertation in the Computer Science Division at the
University of California, Berkeley, Tech. Report# 87 /366)).

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.
14.

M. J. Berger and J. Oliger, "Adaptive Mesh Refinement for Hyperbolic Partial Differential
Equations," J. Comput. Phys. 53,3 (March 1984), pp. 484-512.

M. J. Berger and S. Bokhari, "A Partitioning Strategy for Non-Uniform Problems on
Multiprocessors," IEEE Trans. Comput. C-36,5 (May 1987).

S. S. Chen, C. C. Hsiung, J. L. Larson and E. R. Somdahl, "CRAY X-MP: A Multiprocessor
Supercomputer," in Vector and Parallel Processors: Architecture, Applications, and Performance
Evaluation, M. Ginsberg (editor), North Holland. To be published ..

A. J. Chorin, "Numerical Study of Slightly Viscous Flow," J. Fluid Mech. 57(1973), pp. 785-796.

A. J. Chorin and J. E. Marsden, A Mathematical Introduction to Fluid Mechanics, Springer-Verlag,
New York, 1979.

Cray X-MP Hardware Reference Manual, Cray Research, Inc., 1986. Order number HR-0097.

M. E. Dippe and J. A. Swensen, "An Adaptive Subdivision Algorithm and Parallel Architecture for
Realistic Image Synthesis," SIGGRAPH '84 Conference Proceedings, Minneapolis, July 1984, pp.
149-158.

L. Greengard and V. Rokhlin, "A Fast Algorithm for Particle Simulations," Y ALEU/DCS/RR-459,
Yale Univ., Dept. of Computer Science, April 1986.

R. W. Hackney and J. W. Eastwood, Computer Simulation Using Particles, McGraw-Hill, 1981.

iPSC User's Guide, Intel Corporation, Beaverton, Oregon, October 1985. Order Number: 175455-
003.

A. Leonard, "Vortex Methods for Flow Simulation," J. Comput. Phys. 37(1980), pp. 289-335.

B. Nour-Omid, A. Raefsky and G. Lyzenga, "Solving Finite Element Equations on Concurrent
Computers," Proc. ASME Symp. on Parallel Computations and Their Impact on Mechanics,
December 13-18, 1987.

()()()

()()()

000

()()()

062

048

056

-6-

000 ()()()

~~
189 ~ %~ "'ft ·r:.::. ~ .

~~ r?.l:.~
f.!~ ~ = . .. ~

~'¥. g :>~
311 •• ~-r~ " ~- 187
~:·· 't ~-;

()()() 000

T = 12.500 Elf= 0.200

In< 076

~ ~11 b~.'~~:&
~~ti!"~;~•p

.'tJ..~- · ~

074 P'lt

T = 12.500 Elf= 0.809

()()()

()()()

()()()

000

056

049

062

Figure 1. Partitioning of a particle calculation for vortex dynamics on 16 processors. A simple way to
divide up the work is (a) to partition the domain uniformly into a regular pattern of box-like subproblems.
This strategy, however, would underutilize the processors; only 4 of 16 would be given much work to do.
The trouble is that the particles distribute themselves unevenly so that the completion time for a subprob­
lem may not be proportional to its area. A better way (b) compensates for the uneven distribution of par­
ticles over the domain. This adaptive decomposition generates somewhat irregularly sized subproblems
that all complete in roughly the same time, and it diminishes the running time of the computation by a
factor of four. At the depicted time each processor's share of the workload is shown in the subdomain
assigned to it, normalized to 1000 units of total work. A perfectly balanced workload would correspond
to 062 units of work for each subproblem.

(....

•• w

-7-

T = 0.00000 Eft= 0.752 T= 5.00000 Eft=0.768

T = 20.00000 Eft= 0.773 T = 27.50000 Eft= 0.755

T = 10.00000 Eft= 0.852

··­·-

T = 50.00000 Eft= 0.872

Figure 2. The distribution of particles changes with time, so the work must be periodically repartitioned.
This series of snapshots was taken from the same calculation used to produce Figure 1.

s
e
c
0
n
d
s

-8-

170 ••·------·-·:•••••·-------r-·•····••·•••:••••••••·•••:•··········•·r···••••····• •••••······-.·············:•••••·······:······•···-·

I I i I I
: : : :
: : : :

i 1 j ~
·· -----·- ---~- ------· ·····:-···-·· ····· -i · ----••••• --~ -· · · ···· · · -- r·· ••••• ••• ··i· ···· · ·i------------ -~--- -- -- .. --~-- ----------

: : : : : : : : 150
I I I I I I I I

: : : : : :
: : : : : :
: ! : : : :

. I I I SJfATI¢
: : : : : : : . : :

i j i i
I I I I

: : : :
: : ' : : ------------.-------------'------------- ------------1------------ ------------t-------------' ____________ .. ------------1-------------,

I I I I

: : : : 130
! i l j

! : i

. I

. . --:- -- -------:-- - --------:------------ ~------------ . 110

DrNA1IC

.
90+---~~---+--~--+---~~---r·--~·--~

0 4 8 12 16 20 24 28 32 36 40

Velocity Evaluation

Figure 3. A comparison of static and dynamic load balancing on 32 processors of the Intel iPSC. If the
workloads are partitioned only at the beginning of the calculation (static load balancing), the loads will
drift gradually out of balance, and the time required to perform a velocity evaluation will steadily increase
with time. In contrast, a dynamic load balancing strategy periodically rebalances the workloads and is
able to maintain an almost steady running time. Here loads were rebalanced every fourth velocity evalua­
tion.

-9-

'
' ' ' i---------+--------1--·-------~-----------~---·-----+--------:----------:----------:---------

: : :

'----·-----·.---------------r:-:r::-r:::::

__________ , ____ _

:-r--- -----·-----·--------r ::r:--:l- -::·
*--+---f! i i

Figure 4. Task i is assigned L i, a subregion of the work lattice, and an external interaction region D i.
Di is a surrounding shell of bins and is C bins thick, where we have chosen C =.2. Since Di and Li do
not intersect, subproblems L i and Li are locally independent. But Di and L k do intersect, and so subprob­
lems L i and L k are locally dependent.

-10-

Tables and Figures

Crll}'_X-MP Intel iPSC
Communication Model Shared MemO!Y_ Message-Passin_g_
#Processors used [Max] 4 [4] 32 [128]
Megaflops/sec/cpu 100 0.035
Max Memory (megal:>y!_es) 128 total 0.5/~u

Table 1. Design parameters for the Intel iPSC and the Cray X-MP. We used the iPSC model d5, with 32
processors, and the largest-model Cray, the X-MP/416, with 4 processors 16 megawords of main
memory. The megaflop execution rates are typical sustainable rates for just one processor.

N p 'flp Sp %Lbar %Part
(Efficien9')_ _(fu>_eedllJ>l

386 4 90 3.6 0.3 1.2
796 8 85 6.8 0.8 1.2

1586 16 79 13 1.4 1.0
3180 32 74 24 1.6 0.8

Table 2. iPSC results, where the number of vortices N varies linearly with the number of processors P.
The parallel efficiency 'flp (reported as a percentage) and parallel speedup Sp decrease with P. By
definition the 'flp = Sp IP. Overhead costs are reported as %Lbar, the fraction of the total time spent in
local barrier synchronization, and %Part, the fraction spent partitioning, including the cost of producing
the work density mapping. All runs lasted 64 timesteps, two velocity evaluations were done per timestep,
and loads were rebalanced every other timestep. Since the larger problems couldn't fit into the memory
of a single processor, T1 could not be measured directly, and the efficiency and speedup figures are
pseudo-measurements.

N p Sp _.!le_ _npax
12848 1 1.00 1.000 1.000
12848 2 1.95 0.973 0.994
12848 4 3.63 0.908 0.982
25702 1 1.00 1.000 1.000
25702 4 3.57 0.892 0.957

Table 3. Parallel efficiency and speedup for the X-MP runs. Tlft'ax is the maximum theoretical efficiency
that could be achieved under ideal conditions, given we chose not to parallelize the global computation
done by a Poisson solver. The runs with 12848 vortices ran for 400 timesteps, the larger runs for 240.
Loads were balanced every timestep.

.......-. ~...... -.;.:.:. ~

LAWRENCE BERKELEY LABORATORY
TECHNICAL INFORMATION DEPARTMENT

UNIVERSITY OF CALIFORNIA
BERKELEY, CALIFORNIA 94720

. iA.:....-~

