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CONSTRUCTION OF OPTIMAL MULTI-LEVEL SUPERSATURATED DESIGNS

Hongquan Xu1 and C. F. J. Wu2

University of California and University of Michigan

A supersaturated design is a design whose run size is not large enough for estimating all the main

effects. The goodness of multi-level supersaturated designs can be judged by the generalized

minimum aberration criterion proposed by Xu and Wu (2001). Optimal supersaturated designs

are shown to have a periodic property and general methods for constructing optimal multi-

level supersaturated designs are proposed. Inspired by the Addelman-Kempthorne construction

of orthogonal arrays, optimal multi-level supersaturated designs are given in an explicit form:

columns are labeled with linear or quadratic polynomials and rows are points over a finite field.

Additive characters are used to study the properties of resulting designs. Some small optimal

supersaturated designs of 3, 4 and 5 levels are listed with their properties.

AMS 2000 subject classifications. Primary 62K15; secondary 62K05, 05B15.

Key words and phrases. Addelman-Kempthorne construction, additive character, generalized

minimum aberration, minimum moment aberration, orthogonal array.

1 Introduction

As science and technology have advanced to a higher level, investigators are becoming more inter-

ested in and capable of studying large-scale systems. Typically these systems have many factors

that can be varied during design and operation. The cost of probing and studying a large-scale

system can be prohibitively expensive. Building prototypes are time-consuming and costly. Even

the quicker route of using computer modeling can take up many hours of CPU time. To address the

challenges posed by this technological trend, research in experimental design has lately focused on

the class of supersaturated designs for its run size economy and mathematical novelty. Formally,

a supersaturated design (SSD) is a design whose run size is not large enough for estimating all the

main effects represented by the columns of the design matrix. The design and analysis rely on the

assumption of the effect sparsity principle [Box and Meyer (1986), Wu and Hadama (2000, Section

1Supported by NSF Grant DMS-0204009.
2Supported by NSF Grant DMS-0072489 and NSA Grant MSPR-00G-091.
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3.5)], that is, the number of relatively important effects in a factorial experiment is small. Some

practical applications of SSDs can be found in Lin (1993, 1995), Wu (1993) and Nguyen (1996).

The construction of SSD dates back to Satterthwaite (1959) and Booth and Cox (1962). The

former suggested the use of random balance designs and the latter proposed an algorithm to con-

struct systematic SSDs. Many methods have been proposed for constructing two-level SSDs in

the last decade, e.g., among others, Lin (1993, 1995), Wu (1993), Nguyen (1996), Cheng (1997),

Li and Wu (1997), Tang and Wu (1997) and Butler, Mead, Eskridge and Gilmour (2001). There

are, however, only a few results on multi-level SSDs. Yamada and Lin (1999) and Yamada, Ikebe,

Hashiguchi and Niki (1999) considered the construction of three-level SSDs, and Fang, Lin and Ma

(2000) considered the construction of mutli-level SSDs.

A popular criterion in the SSD literature is the E(s2) criterion [Booth and Cox (1962)], which

measures the average correlation among columns. Extensions of E(s2) criterion to the multi-level

case are not unique. One extension is an average χ2 statistic [Yamada and Lin (1999)], which

measures the goodness of a three-level SSD. Both E(s2) and the average χ2 statistic are indeed

special cases of the generalized minimum aberration (GMA) criterion [Xu and Wu (2001)]. The

GMA criterion, an extension of the popular minimum aberration criterion [Fries and Hunter (1980)],

assesses the goodness of general fractional factorial designs including SSDs as special cases. The

GMA criterion also covers the minimum generalized aberration criterion [Ma and Fang (2001)] as

a special case. For computational and other purposes, Xu (2001) proposed a novel combinatorial

criterion, called minimum moment aberration criterion, and developed a unified theory for multi-

level nonregular designs and SSDs.

This paper studies the construction of optimal multi-level SSDs. Section 2 reviews the opti-

mality criteria such as GMA and minimum moment aberration criteria. Section 3 presents some

general optimality results for multi-level SSDs. An improved lower bound is derived and optimal

SSDs achieving this lower bound are discussed; optimal multi-level SSDs are shown to be periodic.

Inspired by the Addelman-Kempthorne construction of orthogonal arrays, Section 4 describes ex-

plicit construction methods that produce optimal multi-level SSDs whose columns are labeled with

linear or quadratic polynomials and rows are points over a finite field. Section 5 gives proofs that

use additive characters of a finite field. Section 6 lists some small optimal SSDs of 3, 4, and 5 levels

and compares them with existing ones.
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2 Optimality criteria

Some definitions and notation are necessary in order to review the optimality criteria.

An (N, sm)-design is an N×m matrix whose elements are from a set of s symbols {0, 1, . . . , s−1}.

Two designs are isomorphic if one can be obtained from the other through permutations of rows,

columns and symbols in each column. A design is balanced if each level appears equally often in

any column. An OA(N,m, s, 2) is an orthogonal array (OA) of N runs, m columns, s levels and

strength 2, in which all possible level combinations appear equally often for any pair of columns.

An SSD of N runs, m columns and s levels is denoted as SSD(N, sm).

2.1 Generalized minimum aberration

For an (N, sm)-design D, consider the following ANOVA model

Y = X0α0 + X1α1 + · · ·+ Xmαm + ε,

where Y is the vector of N observations, αj is the vector of all j-factor interactions, Xj is the matrix

of orthonormal contrast coefficients for αj , and ε is the vector of independent random errors. For

j = 0, 1, . . . ,m, Xu and Wu (2001) defined Aj(D), a function of Xj , to measure the aliasing between

all j-factor interactions and the general mean. Specifically, if Xj = [x(j)
ik ], let

Aj(D) = N−2
∑

k

∣∣∣∣∣
N∑

i=1

x
(j)
ik

∣∣∣∣∣
2

.

The GMA criterion is to sequentially minimize the generalized wordlength patterns A1(D), A2(D),

A3(D), . . .. Xu and Wu (2001) showed that isomorphic designs have the same generalized wordlength

patterns and therefore are not distinguishable under the GMA criterion.

The generalized wordlength patterns have the property that A1(D) = 0 if D is balanced and

A2(D) = 0 if D is an OA. For SSDs, A2(D) > 0. The GMA criterion suggests that we shall minimize

A2(D) among balanced designs. Note that A2(D) measures the overall aliasing between all pairs of

columns. Let R = (rij) be the correlation matrix of all the main effects. Then A2(D) =
∑

i<j r2
ij .

In particular, for a two-level design, A2(D) is equal to the sum of squares of correlation between

all possible pairs of columns.

Let c1, . . . , cm be the columns of D. For each pair of columns ci and cj , we can define a projected

A2 value as A2(ci, cj) = A2(d), where d consists of the two columns ci and cj . Obviously, the overall

A2 value is equal to the sum of the projected A2 values, i.e., A2(D) =
∑

1≤i<j≤m A2(ci, cj).
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2.2 Minimum moment aberration

For an (N, sm)-design D and a positive integer t, define the tth power moment to be

Kt(D) = [N(N − 1)/2]−1
∑

1≤i<j≤N

[δij(D)]t ,

where δij(D) is the number of coincidences between the ith and jth rows. The minimum mo-

ment aberration criterion proposed by Xu (2001) is to sequentially minimize the power moments

K1(D),K2(D),K3(D), . . .. As the GMA criterion, the minimum moment aberration criterion does

not distinguish isomorphic designs.

By applying some fundamental identities in algebraic coding theory, Xu (2001) showed that the

power moments are linear combinations of the generalized wordlength patterns and that sequen-

tially minimizing K1,K2,K3, . . . is equivalent to sequentially minimizing A1, A2, A3, . . .. Therefore,

minimum moment aberration is equivalent to GMA, and a design has GMA if and only if it has

minimum moment aberration. The following lemma from Xu (2001) shows the connection between

A2 and K2.

Lemma 1. For a balanced (N, sm)-design D,

(i) A1(D) = 0 and A2(D) = [(N − 1)s2K2(D) + m2s2 −Nm(m + s− 1)]/(2N);

(ii) K1(D) = m(N−s)/[(N−1)s] and K2(D) = [2NA2(D)+Nm(m+s−1)−m2s2]/[(N−1)s2].

Since GMA and minimum moment aberration are equivalent, either criterion can be used as

the optimality criterion for SSDs. In this paper we present results in A2 rather than K2 because

the former is easier to interpret than the latter.

On the other hand, minimum moment aberration is more convenient for studying the overall

property while GMA is more convenient for studying projection property. For a design of N runs

and m columns, the complexity of computing K2 is O(N2m) while the complexity of computing

A2 is O(Nm2). Therefore, K2 is much cheaper to compute than A2 when m is much larger than

N . However, when considering projections (e.g., m = 2), A2 is cheaper to compute than K2.

2.3 Connection with other optimality criteria

Let c1, . . . , cm be the columns of an (N, sm)-design D. Define

χ2(ci, cj) =
s−1∑
a=0

s−1∑
b=0

[nab −N/s2]2/(N/s2),
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where nab is the number of times that pair (a, b) appears as a row in columns ci and cj . Yamada and

Lin (1999) proposed the following two criteria to evaluate the maximum and average dependency

of columns:

max χ2 = max
1≤i<j≤m

χ2(ci, cj) and ave χ2 =
∑

1≤i<j≤m

χ2(ci, cj)/[m(m− 1)/2].

Xu (2001) showed that ave χ2 = NA2(D)/[m(m − 1)/2]. Therefore, the ave χ2 is a special case

of the GMA. Finally, for an (N, 2m)-design D, the popular E(s2) criterion can be defined as

E(s2) = N2A2(D)/[m(m− 1)/2].

3 Some optimality results

3.1 An improved lower bound

From the moment inequality K2(D) ≥ K1(D)2, Xu (2001) derived the following lower bound.

Lemma 2. For a balanced (N, sm)-design D, A2(D) ≥ [m(s− 1)(ms−m−N + 1)]/[2(N − 1)].

Noting that the number of coincidences, δij(D), is an integer, we can improve the moment

inequality as K2(D) ≥ K1(D)2 + η(1 − η), where η = K1(D) − bK1(D)c is the fraction part of

K1(D) and bxc is the largest integer that does not exceed x. Applying the equations in Lemma 1,

we obtain an improved lower bound of A2 as follows.

Theorem 1. For a balanced (N, sm)-design D,

A2(D) ≥ [m(s− 1)(ms−m−N + 1)]/[2(N − 1)] + (N − 1)s2η(1− η)/(2N),

where η = m(N − s)/((N − 1)s)− bm(N − s)/((N − 1)s)c.

The lower bound in Lemma 2 is achieved if and only if the number of coincidences, δij(D), is

a constant for all i < j. The lower bound in Theorem 1 is achieved if and only if the number of

coincidences, δij(D), differs by at most one for all i < j. The following lemma from Xu (2001) says

that such a design is optimal under GMA.

Lemma 3. If D is balanced and the difference among all δij(D), i < j, does not exceed one, then

D has minimum moment aberration and GMA.
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3.2 Optimal designs

Many optimal SSDs that achieve the lower bound in Theorem 1 can be derived from saturated

OAs. An OA(N, t, s, 2) is saturated if N − 1 = t(s− 1). The following lemma from Mukerjee and

Wu (1995) says that the number of coincidences between distinct rows is a constant for a saturated

OA.

Lemma 4. Suppose H is a saturated OA(N, t, s, 2) with t = (N − 1)/(s − 1). Then δij(H) =

(N − s)/[s(s− 1)] for any i < j.

Tang and Wu (1997) first proposed to construct optimal two-level SSDs by juxtaposing saturated

OAs derived from Hadamard matrices. This method can be extended to construct optimal multi-

level SSDs. Suppose D1, . . . , Dk are k saturated OA(N, t, s, 2) with t = (N − 1)/(s − 1). Let

D = D1∪· · ·∪Dk be the column juxtaposition, which may have duplicated or fully aliased columns.

It is evident that δij(D) = k(N − s)/[s(s− 1)] for any i < j. Then by Lemma 3, D is an optimal

SSD under GMA.

As Tang and Wu (1997) suggested, to construct an SSD with m = kt − j columns, 1 ≤ j < t,

we may simply delete the last j columns from D. Though the resulting design may not be optimal,

it has an A2 value very close to the lower bound in Theorem 1.

If one column is removed from or one balanced column is added to D, the resulting design

is still optimal. Cheng (1995) showed that for two-level SSDs, removing (and resp. adding) two

orthogonal columns from (and resp. to) D also results in an optimal SSD. This is not true for

multi-level SSDs in general. For N = s2, we have a stronger result in Lemma 4 that the number of

coincidences between any two rows is equal to 1. Then removing (and resp. adding) any number

of orthogonal columns from (and resp. to) D also results in an optimal SSD under GMA since the

resulting design has the property that the number of coincidences between any two rows differs by

at most one. In particular, for any m, the lower bound in Theorem 1 is tight.

Lin (1993) used half fractions of Hadamard matrices to construct two-level SSDs by taking

a column as the branching column. This method can be extended to construct multi-level SSDs

as follows. Taking any column of saturated OA(N, t, s, 2) as the branching column, we obtain s

fractions according to the levels of the branching column. All fractions are balanced after removing

the branching column and the number of coincidences between any two rows is a constant. The row

juxtaposition of any k fractions form an SSD(kNs−1, st−1) of which the number of coincidences

6



between any two rows differs by at most one. By Lemma 3, such a design is optimal under GMA.

For N = s2, any subdesign is also optimal since the number of coincidences between any two rows

is either 0 or 1.

Since a saturated OA(sn, (sn−1)/(s−1), s, 2) exists for any prime power s, we have the following

result.

Theorem 2. Suppose s is a prime power.

(i) For any n and k, there exists an optimal SSD(sn, sm) that achieves the lower bound in

Theorem 1, where m = k(sn − 1)/(s− 1) or m = k(sn − 1)/(s− 1)± 1.

(ii) For any n and k < s, there exists an optimal SSD(ksn−1, sm) that achieves the lower bound

in Theorem 1, where m = (sn − 1)/(s− 1)− 1.

(iii) For any m, there exists an optimal SSD(s2, sm) that achieves the lower bound in Theorem

1.

(iv) For any m ≤ s and k < s, there exists an optimal SSD(ks, sm) that achieves the lower

bound in Theorem 1.

The above optimal SSDs may contain fully aliased columns. We will study construction methods

that produce optimal SSDs without fully aliased columns in the next section.

3.3 Periodicity of optimal supersaturated designs

We show here that A2-optimal SSDs are periodic when the number of columns is large enough.

Chen and Wu (1991) showed a similar periodicity property of maximum resolution and minimum

aberration designs.

Given N and s, let a2(m) = min{A2(D) : D is an SSD(N, sm)}, where designs may have fully

aliased columns.

Lemma 5. Suppose H is a saturated OA(N, t, s, 2) with t = (N − 1)/(s− 1) and D is a balanced

(N, sm)-design. Let D ∪H be the column juxtaposition of D and H. Then A2(D ∪H) = A2(D) +

m(s− 1).

Proof. By Lemma 4, δij(D ∪ H) = δij(D) + δij(H) = δij(D) + (N − s)/[s(s − 1)]. Then K2(D ∪

H) = K2(D) + 2(N − s)/[s(s − 1)]K1(D) + (N − s)2/[s(s − 1)]2. Applying Lemma 1, with some

straightforward algebra, we get A2(D ∪H) = A2(D) + m(s− 1).
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When N = s2, Theorem 2(iii) implies that a2(m + s + 1) = a2(m) + m(s − 1) for any m ≥ 1.

The following result shows that for certain N , a2(m) is periodic when m is large enough.

Theorem 3. Suppose a saturated OA(N, t, s, 2) exists with t = (N − 1)/(s− 1). Then there exists

a positive integer m0 such that for m ≥ m0, a2(m + t) = a2(m) + m(s− 1).

Proof. Let b(m) = a2(m)− (s− 1)m(m− t)/(2t). Lemma 2 implies that b(m) ≥ 0. From Lemma

5, a2(m + t) ≤ a2(m) + m(s − 1); therefore, b(m + t) ≤ b(m). Note that N2a2(m) is an integer,

so does N2b(m). Therefore, for any 1 ≤ r ≤ t, N2b(kt + r) is a decreasing integer sequence in

k and has a lower bound. There must exist a positive integer k0 = k0(r) such that for k ≥ k0,

N2b(kt + r) = N2b(k0t + r). Let m0 = max{(k0(r) + 1)t : 1 ≤ r ≤ t}, then for any m ≥ m0,

b(m + t) = b(m), or equivalently, a2(m + t) = a2(m) + m(s− 1).

4 Construction

The construction methods are applicable to any prime power. Throughout this section, we assume

s > 2 is a prime power. Let Fs be a Galois field of s elements. For clarity, all proofs are given in

the next section.

4.1 Half Addelman-Kempthorne orthogonal arrays

Addelman and Kempthorne (1961) described a method for constructing OA(2sn, 2(sn − 1)/(s −

1) − 1, s, 2) for any prime power s and any n. Such arrays can be naturally decomposed into two

arrays of sn runs. Each array is an SSD(sn, sm) with m = 2(sn − 1)/(s− 1)− 1. We now describe

how to construct an SSD in general.

In the construction the columns of an array are labeled with linear or quadratic polynomials

in n variables X1, . . . , Xn and the rows are labeled with points from Fn
s . Let f1(X1, . . . , Xn) and

f2(X1, . . . , Xn) be two functions, linear or nonlinear. They correspond to two columns of length sn

when evaluated at Fn
s . The two functions (or columns) are fully aliased if the pair has only s level

combinations, each combination occurring sn−1 times; and orthogonal if the pair has s2 distinct

level combinations, each combination occurring sn−2 times. A pair of fully aliased columns has

projected A2 = s− 1 and a pair of orthogonal columns has projected A2 = 0.

Following Addelman and Kempthorne (1961), f1(X1, . . . , Xn) and f2(X1, . . . , Xn) are said to

be semi-orthogonal to each other if (i) for s odd, the pair has (s+1)s/2 distinct level combinations,
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s combinations occurring sn−2 times and s(s − 1)/2 combinations occurring 2sn−2 times and (ii)

for s even, the pair has s2/2 distinct level combinations each occurring 2sn−2 times. A pair of

semi-orthogonal columns has projected A2 = (s− 1)/s for s odd and projected A2 = 1 for s even.

This result can be easily verified from the connection between the ave χ2 statistic and A2 described

in Section 2.3.

Let L(X1, . . . , Xn) be the set of all nonzero linear functions of X1, . . . , Xn, i.e.,

L(X1, . . . , Xn) = {c1X1 + · · ·+ cnXn : ci ∈ Fs, not all ci are zero}.

Every function in L(X1, . . . , Xn) corresponds to a balanced column. Two functions f1 and f2 in

L(X1, . . . , Xn) are dependent if there is a nonzero constant c ∈ Fs such that f1 = cf2; otherwise,

they are independent. Clearly, dependent linear functions correspond to the same column up to

level permutation and thus they are fully aliased while independent linear functions correspond to

orthogonal columns. A set of (sn−1)/(s−1) independent linear functions generate an OA(sn, (sn−

1)/(s− 1), s, 2). The traditional convention is to assume the first nonzero element being 1 for each

column. For convenience, we assume the last nonzero element being 1 for each column. In particular,

let H(X1, . . . , Xn) be the set of all nonzero linear functions of X1, . . . , Xn such that the last nonzero

coefficient is 1. When evaluated at Fn
s , H(X1, . . . , Xn) is a saturated OA(sn, (sn− 1)/(s− 1), s, 2).

This is indeed the regular fractional factorial design and the construction is called the Rao-Hamming

construction by Hedayat, Sloane and Stufken (1999, Section 3.4).

The key idea of the Addelman-Kempthorne construction is to use quadratic functions in addition

to linear functions. Let

Q∗
1(X1, . . . , Xn) = {X2

1 + aX1 + h : a ∈ Fs, h ∈ H(X2, . . . , Xn)} (1)

and Q1(X1, . . . , Xn) = {X1} ∪Q∗
1(X1, . . . , Xn).

H(X1, . . . , Xn) has (sn − 1)/(s − 1) columns and Q∗
i (X1, . . . , Xn) has (sn − 1)/(s − 1) − 1

columns. The column juxtaposition of H(X1, . . . , Xn) and Q∗
1(X1, . . . , Xn) forms an SSD(sn, sm)

with m = 2(sn − 1)/(s− 1)− 1, which is a half of an Addelman-Kempthorne OA.

Example 1. Consider s = 3 and n = 2. The functions are

H(X1, X2) = {X1, X2, X1 + X2, 2X1 + X2},

Q∗
1(X1, X2) = {X2

1 + X2, X
2
1 + X1 + X2, X

2
1 + 2X1 + X2},

Q1(X1, X2) = {X1, X
2
1 + X2, X

2
1 + X1 + X2, X

2
1 + 2X1 + X2}.
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H(X1, X2) is an OA(9, 4, 3, 2) when the functions are evaluated at F 2
3 ; so does Q1(X1, X2). They

are isomorphic [indeed there is only one unique OA(9, 4, 3, 2) up to isomorphism]. The column

juxtaposition of H(X1, X2) and Q∗
1(X1, X2) forms an SSD(9, 37), which is isomorphic to the first

(and last) 9 rows of the commonly used OA(18, 7, 3, 2) (e.g., Table 7C.2 of Wu and Hamada (2000)).

This SSD has an overall A2 = 6 and achieves the lower bound in Theorem 1. Furthermore, there

are no fully aliased columns. Each column of Q∗
1(X1, X2) is semi-orthogonal to three columns of

H(X1, X2) with projected A2 = 2/3.

In general, we have the following results.

Lemma 6. When evaluated at Fn
s , Q1(X1, . . . , Xn) is an OA(sn, (sn − 1)/(s− 1), s, 2).

Theorem 4. The column juxtaposition of H(X1, . . . , Xn) and Q∗
1(X1, . . . , Xn) forms an optimal

SSD(sn, sm) with m = 2(sn− 1)/(s− 1)− 1. Column X1 is orthogonal to all other columns. It has

an overall A2 = sn − s and achieves the lower bound in Theorem 1. Furthermore, it has no fully

aliased columns for s > 2.

(i) For s odd, the possible projected A2 values are 0 and (s− 1)/s. There are s(sn − s)/(s− 1)

pairs of semi-orthogonal columns with projected A2 = (s− 1)/s.

(ii) For s even, the possible projected A2 values are 0 and 1. There are sn − s pairs of semi-

orthogonal columns with projected A2 = 1.

Both Q1(X1, . . . , Xn) and H(X1, . . . , Xn) are saturated OAs of the same parameters. It is of

interest to know whether they are isomorphic. Example 1 shows that they are isomorphic for n = 2

and s = 3. This is true as long as n = 2. When n > 2 and s > 2, they are not isomorphic. The

following corollary summarizes the result.

Corollary 1. (i) For n = 2, Q1(X1, X2) is isomorphic to the regular design H(X1, X2).

(ii) For n > 2 and s > 2, Q1(X1, . . . , Xn) is not isomorphic to H(X1, . . . , Xn).

Corollary 1(ii) implies that Q1(X1, . . . , Xn) is a nonregular design for n > 2 and s > 2.

4.2 Juxtaposition of saturated orthogonal arrays

As a by-product of the half Addelman-Kempthorne construction, we have constructed a saturated

OA, Q1(X1, . . . , Xn), besides the regular OA, H(X1, . . . , Xn). For any h ∈ H(X1, . . . , Xn), we can

construct a saturated OA, Qh(X1, . . . , Xn), as follows. Let h = c1X1 + · · · + cnXn and k be the
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last position that ci 6= 0, then ck = 1 and ci = 0 for all i > k. Let Y1 = h, Yi = Xi−1 for 2 ≤ i ≤ k,

and Yi = Xi for k < i ≤ n. It is clear that H(X1, . . . , Xn) is equivalent to H(Y1, . . . , Yn) up to row

and column permutations. Define Q∗
h(X1, . . . , Xn) = Q∗

1(Y1, . . . , Yn) as in (1) by replacing Xi with

Yi and Qh(X1, . . . , Xn) = Q1(Y1, . . . , Yn).

Since there are (sn−1)/(s−1) columns in H(X1, . . . , Xn), we obtain (sn−1)/(s−1) saturated

OA(sn, (sn − 1)/(s − 1), s, 2). Although they are all isomorphic, we can obtain many optimal

multi-level SSDs by juxtaposing them.

Example 2. Consider s = 3 and n = 2. H(X1, X2) = {X1, X2, X1 + X2, 2X1 + X2}. For each

h ∈ H(X1, X2), we can define Qh(X1, X2) as follows.

QX1(X1, X2) = {X1, X
2
1 + X2, X

2
1 + X1 + X2, X

2
1 + 2X1 + X2},

QX2(X1, X2) = {X2, X
2
2 + X1, X

2
2 + X2 + X1, X

2
2 + 2X2 + X1},

QX1+X2(X1, X2) = {X1 + X2, (X1 + X2)2 + X1, (X1 + X2)2 + 2X1 + X2, (X1 + X2)2 + 2X2},

Q2X1+X2(X1, X2) = {2X1 + X2, (2X1 + X2)2 + X1, (2X1 + X2)2 + X2, (2X1 + X2)2 + 2X1 + 2X2}.

Each Qh(X1, X2) is a saturated OA(9, 4, 3, 2) and they are all isomorphic. The column juxtaposition

of all four Qh(X1, X2) has 16 columns: 4 linear and 12 quadratic. All linear columns are orthogonal

to each other. Each linear column is orthogonal to 3 quadratic columns, and semi-orthogonal to

other 9 quadratic columns. Each quadratic column is orthogonal to 1 linear column, semi-orthogonal

to other 3 linear columns, orthogonal to 2 quadratic columns, and partially aliased (projected

A2 = 4/9) with other 9 quadratic columns. The 16 columns together form an optimal SSD(9, 316)

with an overall A2 = 48. The 12 quadratic columns together form an optimal SSD(9, 312) with

an overall A2 = 24. For the latter design, each column is partially aliased with 9 columns with

projected A2 = 4/9.

Theorem 5. Let h1, h2 be two distinct functions in H(X1, . . . , Xn). The column juxtaposition of

Qh1(X1, . . . , Xn) and Qh2(X1, . . . , Xn) forms an optimal SSD(sn, sm) with m = 2(sn − 1)/(s− 1).

It has an overall A2 = sn − 1 and is optimal under GMA. Furthermore, there are no fully aliased

columns if s is odd or s > 4.

(i) For s odd, the possible projected A2 values are 0, (s − 1)/s, (s − 1)2/s2, and (s − 1)/s2.

There are 2s pairs with projected A2 = (s − 1)/s, s2 pairs with projected A2 = (s − 1)2/s2, and

s2(sn − s2)/(s− 1) pairs with projected A2 = (s− 1)/s2.
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(ii) For s even, the possible projected A2 values are 0, 1, 2 and 3.

(iii) For s = 4, the possible projected A2 values are 0, 1 and 3. There are one pair of fully

aliased columns with projected A2 = 3 and 4n − 4 pairs of partially aliased columns with projected

A2 = 1.

Theorem 5 states that the column juxtaposition of Qh1(X1, . . . , Xn) and Qh2(X1, . . . , Xn) has

the same projected A2 values and frequencies. It is of interest to note that they can have different

geometric structures and be non-isomorphic to each other. For example, when n = 3 and s = 3,

the column juxtaposition of QX1 and QX2 is not isomorphic to the column juxtaposition of QX1

and QX3 .

Extending Theorem 5, we have the following result.

Theorem 6. For 1 < k ≤ (sn−1)/(s−1), let h1, . . . , hk be k distinct functions in H(X1, . . . , Xn).

The column juxtaposition of Qhi
(X1, . . . , Xn), i = 1, . . . , k, forms an optimal SSD(sn, sm) with

m = k(sn−1)/(s−1). It has an overall A2 =
(
k
2

)
(sn−1) and is optimal under GMA. Furthermore,

there are no fully aliased columns if s is odd or s > 4.

(i) For s odd, the possible projected A2 values are 0, (s − 1)/s, (s − 1)2/s2, and (s − 1)/s2.

There are
(
k
2

)
2s pairs with projected A2 = (s − 1)/s,

(
k
2

)
s2 pairs with projected A2 = (s − 1)2/s2,

and
(
k
2

)
s2(sn − s2)/(s− 1) pairs with projected A2 = (s− 1)/s2.

(ii) For s even, the possible projected A2 values are 0, 1, 2 and 3.

(iii) For s = 4, the possible projected A2 values are 0, 1 and 3. There are
(
k
2

)
pairs of fully

aliased columns with projected A2 = 3 and
(
k
2

)
(4n − 4) pairs of partially aliased columns with

projected A2 = 1.

When k = (sn − 1)/(s − 1), the above SSD has [(sn − 1)/(s − 1)]2 columns, among which

(sn − 1)/(s− 1) columns are linear from H(X1, . . . , Xn) and the rest are quadratic. All quadratic

functions form another class of SSDs. This SSD does not have semi-orthogonal columns, which

have projected A2 = (s− 1)/s for s odd.

Theorem 7. Suppose s is odd. For 1 < k ≤ (sn−1)/(s−1), let h1, . . . , hk be k distinct functions in

H(X1, . . . , Xn). The column juxtaposition of Q∗
hi

(X1, . . . , Xn), i = 1, . . . , k, forms an SSD(sn, sm)

with m = k(sn− s)/(s− 1). There are no fully aliased columns and the possible projected A2 values

are 0, (s − 1)2/s2 and (s − 1)/s2. There are
(
k
2

)
s2 pairs with projected A2 = (s − 1)2/s2, and
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(
k
2

)
s2(sn − s2)/(s− 1) pairs with projected A2 = (s− 1)/s2. It has an overall A2 =

(
k
2

)
(sn − 2s + 1)

and is optimal under GMA if k = (sn − 1)/(s− 1)− 1 or (sn − 1)/(s− 1).

Corollary 2. For s odd, the column juxtaposition of Q∗
h(X1, X2), h ∈ H(X1, X2), forms an optimal

SSD(s2, s(s+1)s). It has an overall A2 = (s + 1)s(s − 1)2/2 and is optimal under GMA. Each

column is orthogonal to s − 1 columns and partially aliased with other s2 columns with projected

A2 = (s− 1)2/s2.

4.3 Fractions of saturated orthogonal arrays

First consider fractions of H(X1, . . . , Xn). Without loss of generality, taking X1 as the branching

column, we obtain s fractions according to the levels of X1. Each fraction has sn−1 runs and

(sn − 1)/(s − 1) columns: column X1 has one level only and all other columns have s levels. The

row juxtaposition of any k fractions forms an optimal SSD after removing the column X1.

Theorem 8. Take any column of H(X1, . . . , Xn) as a branching column. For k < s, the row

juxtaposition of any k fractions forms an optimal SSD(ksn−1, sm) with m = (sn − s)/(s− 1) after

removing the branching column. It has an overall A2 = (sn − s)(s− k)/(2k) and is optimal under

GMA. Furthermore, all possible projected A2 values are 0 and (s−k)/k. There are (sn−s)/2 pairs

of nonorthogonal columns with projected A2 = (s − k)/k. In particular, there are no fully aliased

columns for 1 < k < s.

Next consider fractions of Q1(X1, . . . , Xn). If X1 is used as the branching column, the row

juxtaposition of the fractions has the same property as that of H(X1, . . . , Xn). In the following

theorem, we take X2
1 + X2 as the branching column.

Theorem 9. Take column X2
1 +X2 of Q1(X1, . . . , Xn) as a branching column. The row juxtaposi-

tion of any k fractions forms an optimal SSD(ksn−1, sm) with m = (sn− s)/(s− 1) after removing

the branching column. It has an overall A2 = (sn − s)(s − k)/(2k) and is optimal under GMA.

Furthermore, there are no fully aliased columns for 1 < k < s.

(i) For s odd, there are s(sn − s2 + s − 1)/2 pairs of nonorthogonal columns, s(s − 1)/2 pairs

with projected A2 = (s− k)/k and s(sn − s2)/2 pairs with projected A2 = (s− k)/(ks).

(ii) For s even, there are at most (s−1)(sn−s2+s)/2 pairs of nonorthogonal columns, s(s−1)/2

pairs with projected A2 = (s− k)/k and at most (s− 1)(sn − s2)/2 pairs with projected A2 ≤ 1.
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(iii) For s = 4 and k = 2, there are (4n − 4)/2 pairs of nonorthogonal columns with projected

A2 = 1; for s = 4 and k = 3, there are 6 pairs of nonorthogonal columns with projected A2 = 1/3

and 3(4n − 16)/2 pairs with projected A2 = 1/9.

By branching other columns, we can obtain different SSDs as illustrated below.

Example 3. Consider n = 3 and s = 3. The columns of Q1(X1, X2, X3) are

X1, X
2
1 + X2, X

2
1 + X1 + X2, X

2
1 + 2X1 + X2, X

2
1 + X3, X

2
1 + X1 + X3,

X2
1 + 2X1 + X3, X

2
1 + X2 + X3, X

2
1 + X1 + X2 + X3, X

2
1 + 2X1 + X2 + X3,

X2
1 + 2X2 + X3, X

2
1 + X1 + 2X2 + X3, X

2
1 + 2X1 + 2X2 + X3.

Depending on the branching column, we obtain one of three types of optimal SSD(18, 312). The

frequencies of projected A2 values are:

A2 0 1/6 1/2

type 1 54 0 12
type 2 36 27 3
type 3 42 18 6

We obtain a type 1 SSD if X1 is used as the branching column, a type 2 SSD if X2
1 + aX1 + X2 is

used as the branching column, and a type 3 SSD if X2
1 + aX1 + bX2 + X3 is used as the branching

column, where a, b ∈ F3. A type 2 design is preferred in general because it has the smallest number

of maximum projected A2.

5 Some proofs

Additional notation and lemmas are needed for the proofs. Let F ∗
s be the set of nonzero elements

in Fs. An additive character of Fs is an homomorphism mapping χ : Fs → C such that for any

x, y ∈ Fs, |χ(x)| = 1 and χ(x+y) = χ(x)χ(y). Clearly χ(0) = 1 since χ(0) = χ(0)χ(0). A character

is called trivial if χ(x) = 1 for all x; otherwise, it is nontrivial. A nontrivial additive character has

the property that
∑

x∈Fs
χ(ax) = s if a = 0 and equals 0 otherwise.

Let χ be a nontrivial additive character. For u ∈ Fs, the function χu(x) = χ(ux) defines

a character of Fs. Then χ0 is a trivial character and all other characters χu are nontrivial. It

is important to note that {χu, u ∈ F ∗
s } forms a set of orthonormal contrasts defined in Xu and

Wu (2001), that is,
∑

x∈Fs
χu(x)χv(x) = s if u = v and equals 0 otherwise. As a result, we
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can use additive characters to compute the generalized wordlength pattern. In particular, for a

column x = (x1, . . . , xN )T , the orthonormal contrast coefficient matrix is (χu(xi)) where u ∈ F ∗
s

and i = 1, . . . , N . Then the projected A2 value of a pair of columns x = (x1, . . . , xN )T and

y = (y1, . . . , yN )T is

A2(x, y) = N−2
∑

u1∈F ∗s

∑
u2∈F ∗s

∣∣∣∣∣
N∑

i=1

χ(u1xi + u2yi)

∣∣∣∣∣
2

. (2)

Let s = pr where p is a prime. Define a mapping Tr : Fs → Fp, called the trace, as follows:

Tr(x) = x + xp + xp2
+ · · ·+ xpr−1

for any x ∈ Fs. Let

χ(x) = e2πiTr(x)/p for any x ∈ Fs. (3)

This is a nontrivial additive character and called the canonical additive character of Fs.

An element c ∈ Fs is called a quadratic residue if there exists a ∈ Fs such that c = a2.

Lemma 7. For s odd, let b ∈ Fs and c ∈ F ∗
s .

(i) If c is a quadratic residue, the number of solutions of x2
1 − cx2

2 = b in F 2
s is equal to 2s− 1

for b = 0 and s− 1 for b 6= 0.

(ii) If c is not a quadratic residue, the number of solutions of x2
1 − cx2

2 = b in F 2
s is equal to 1

for b = 0 and s + 1 for b 6= 0.

Proof. It follows from Lemma 6.24 of Lidl and Niederreiter (1997).

Lemma 8. For s odd, let a ∈ F ∗
s , b, c ∈ Fs, and χ be a nontrivial additive character. Then∣∣∑

x∈Fs
χ(ax2 + bx + c)

∣∣2 = s.

Proof. Note that χ(ax2 + bx + c) = χ(a(x + b0)2 + c0) = χ(a(x + b0)2)χ(c0), where b0 = b/(a + a)

and c0 = c − ab2
0. Then

∣∣∑
x∈Fs

χ(ax2 + bx + c)
∣∣2 =

∣∣∑
x∈Fs

χ(a(x + b0)2)
∣∣2 =

∣∣∑
x∈Fs

χ(ax2)
∣∣2.

On the other hand,∣∣∣∣∣∑
x∈Fs

χ(ax2)

∣∣∣∣∣
2

=
∑
x∈Fs

χ(ax2)
∑
y∈Fs

χ(−ay2) =
∑
x∈Fs

∑
y∈Fs

χ(a(x2 − y2)).

By Lemma 7(i), x2−y2 has s levels, level 0 occurring (2s−1) times and other s−1 levels occurring

(s−1) times. Therefore,
∑

x∈Fs

∑
y∈Fs

χ(a(x2−y2)) = s+(s−1)
∑

z∈Fs
χ(az) = s since a 6= 0.

The following lemma is from Lidl and Niederreiter (1997, Corollary 5.35).
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Lemma 9. For s even, let a, b ∈ Fs and χ be the canonical additive character of Fs defined in (3).

Then
∑

x∈Fs
χ(ax2 + bx) = s if a = b2 and equals 0 otherwise.

Lemma 10. Let G be a subset of Fs, |G| = k and χ be a nontrivial additive character. Then∑
u∈F ∗s

∣∣∑
x∈G χ(ux)

∣∣2 = (s− k)k.

Proof. ∣∣∣∣∣∑
x∈G

χ(ux)

∣∣∣∣∣
2

=
∑
x∈G

χ(ux)
∑
y∈G

χ(−uy) =
∑
x∈G

∑
y∈G

χ(u(x− y)).

∑
u∈Fs

∣∣∣∣∣∑
x∈G

χ(ux)

∣∣∣∣∣
2

=
∑
u∈Fs

∑
x∈G

∑
y∈G

χ(u(x− y)) =
∑
x∈G

∑
y∈G

(∑
u∈Fs

χ(u(x− y))

)
= sk.

The last equation is due to the fact that
∑

u∈Fs
χ(u(x− y)) is equal to s if x = y and 0 otherwise.

Then
∑

u∈F ∗s

∣∣∑
x∈G χ(ux)

∣∣2 =
∑

u∈Fs

∣∣∑
x∈G χ(ux)

∣∣2 − k2 = sk − k2.

Proof of Lemma 6. Consider a pair of columns: X2
1 + a1X1 + h1 and X2

1 + a2X1 + h2, where

h1, h2 ∈ H(X2, . . . , Xn) and a1, a2 ∈ Fs. With z1, z2 ∈ Fs, the number of times that (z1, z2)

appears as a row in this subarray is equal to the number of solutions of (X1, . . . , Xn) such that

X2
1 + a1X1 + h1 = z1 and X2

1 + a2X1 + h2 = z2. (4)

If h1 6= h2, then for each value of X1 we have two independent linear equations in X2, . . . , Xn,

which leads to sn−3 solutions. Since there are s choices for X1, there are sn−2 solutions to (4).

Therefore, the two columns are orthogonal. If h1 = h2 and a1 6= a2, then (a1 − a2)X1 = z1 − z2.

There is a unique solution for X1. Given X1, there are sn−2 solutions in X2, . . . , Xn. The total

number of solutions to (4) is still sn−2. Therefore, the two columns are orthogonal. Similarly, X1

is orthogonal to X2
1 + aX1 + h for any a ∈ Fs and h ∈ H(X2, . . . , Xn). Therefore, Q1(X1, . . . , Xn)

is an OA.

Lemma 11. Consider columns X2
1 + a1X1 + h1 and a2X1 + h2, where h1, h2 ∈ L(X2, . . . , Xn) and

a1, a2 ∈ Fs.

(i) If h1 and h2 are independent, they are orthogonal.

(ii) For s odd, if h1 and h2 are dependent, they are semi-orthogonal.

(iii) For s even, if h1 and h2 are dependent and a1h2 = a2h1, they are orthogonal.

(iv) For s even, if h1 and h2 are dependent and a1h2 6= a2h1, they are semi-orthogonal.
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Proof. It follows from Lemmas 1–4 and 5a of Addelman and Kempthorne (1961).

Proof of Theorem 4. The columns of Q1(X1, . . . , Xn) are X1 and X2
1 +a1X1 +h1, and the columns

of H(X1, . . . , Xn) are X1 and a2X1 + h2, where ai ∈ Fs and hi ∈ H(X2, . . . , Xn). Since both

H(X1, . . . , Xn) and Q1(X1, . . . , Xn) are saturated OAs and they share column X1, the optimality

of the column juxtaposition of H(X1, . . . , Xn) and Q∗
1(X1, . . . , Xn) follows from Lemmas 3 and 4.

By Lemma 5, the overall A2(H ∪ Q∗
1) = A2(Q∗

1) + [(sn − s)/(s − 1)](s − 1) = (sn − s) since Q∗
1 is

an OA.

(i) When s is odd, by Lemma 11, X2
1 +a1X1 +h1 and a2X1 +h2 are semi-orthogonal if h1 = h2.

Therefore, each column of Q∗
1(X1, . . . , Xn) is semi-orthogonal to s columns of H(X1, . . . , Xn). Since

there are (sn − 1)/(s− 1)− 1 columns in Q∗
1(X1, . . . , Xn), there are in total s(sn − s)/(s− 1) semi-

orthogonal pairs of columns with projected A2 = (s− 1)/s.

(ii) When s is even, by Lemma 11, X2
1 +a1X1 +h1 and a2X1 +h2 are semi-orthogonal if h1 = h2

and a1 6= a2. Therefore, each column of Q∗
1(X1, . . . , Xn) is semi-orthogonal to s − 1 columns of

H(X1, . . . , Xn). Since there are (sn − 1)/(s− 1)− 1 columns in Q∗
1(X1, . . . , Xn), there are in total

sn − s semi-orthogonal pairs of columns with projected A2 = 1.

Proof of Corollary 1. (i) Let Y1 = X1 and Y2 = X2
1 + X2. It is a one-to-one mapping from (Y1, Y2)

to (X1, X2). The columns of Q1(X1, X2) are X1 = Y1 and X2
1 +aX1 +X2 = aY1 +Y2, where a ∈ Fs.

Therefore, Q1(X1, X2) = H(Y1, Y2) is isomorphic to H(X1, X2).

(ii) It follows from Theorems 8 and 9 to be proven later.

Lemma 12. Suppose hi ∈ L(X3, . . . , Xn) and ai, bi ∈ Fs for i = 1, 2.

(i) If h1 and h2 are independent, X2
1 + a1X1 + b1X2 + h1 and X2

2 + a2X2 + b2X1 + h2 are

orthogonal.

(ii) If b2 6= 0, X2
1 + a1X1 + b1X2 + h1 and X2

2 + a2X2 + b2X1 are orthogonal.

(iii) If h1 and h2 are dependent, the pair of columns X2
1 + a1X1 + b1X2 + h1 and X2

2 + a2X2 +

b2X1 + h2 has projected A2 = (s− 1)/s2 for s odd and A2 = 0 or 1 for s even.

(iv) For s odd, the pair of columns X2
1 + a1X1 + X2 and X2

2 + a2X2 + X1 has projected A2 =

(s− 1)2/s2.

(v) For s even, the pair of columns X2
1 + a1X1 +X2 and X2

2 + a2X2 +X1 has projected A2 = 0,

1, 2 or 3.
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(vi) For s = 4, the pair of columns X2
1 + a1X1 + X2 and X2

2 + a2X2 + X1 has projected A2 = 3

if a1 = a2 = 0, A2 = 1 if both a1 6= 0 and a2 6= 0, and A2 = 0 otherwise.

Proof. (i) and (ii) The proofs are similar to that of Lemma 6.

(iii) Let h1 = ch2, where c ∈ F ∗
s . Let z1 = x2

1 + a1x1 + b1x2 and z2 = x2
2 + a2x2 + b2x1. Let χ

be the canonical additive character defined in (3). By (2), the projected A2 value of the pair is

A2 = s−2n
∑

u1∈F ∗s

∑
u2∈F ∗s

∣∣∣∣∣∣
∑

(x1,...,xn)∈F n
s

χ(u1(z1 + h1) + u2(z2 + h2))

∣∣∣∣∣∣
2

= s−2n
∑

u1∈F ∗s

∑
u2∈F ∗s

∣∣∣∣∣∣
∑

(x1,x2)∈F 2
s

χ(u1z1 + u2z2)
∑

(x3,...,xn)∈F n−2
s

χ(u1h1 + u2h2)

∣∣∣∣∣∣
2

.

Since h1 = ch2, the last summation is equal to sn−2 if cu1 + u2 = 0 and 0 otherwise. Therefore,

A2 = s−4
∑

u1∈F ∗s

∣∣∣∣∣∣
∑

(x1,x2)∈F 2
s

χ(u1(z1 − cz2))

∣∣∣∣∣∣
2

= s−4
∑

u1∈F ∗s

∣∣∣∣∣∣
∑

x1∈Fs

χ(u1x
2
1 + (u1a1 − cu1b2)x1)

∑
x2∈Fs

χ(−cu1x
2
2 + (−cu1a2 + u1b1)x2)

∣∣∣∣∣∣
2

.

For s odd, A2 = s−4(s− 1)s2 = (s− 1)/s2 follows from Lemma 8. For s even, from Lemma 9, A2

is equal to the number of u1 ∈ F ∗
s such that u1 = (u1a1 − cu1b2)2 and −cu1 = (−cu1a2 + u1b1)2.

Clearly, the two equations have at most one solution in F ∗
s . Therefore, A2 is equal to 0 or 1.

(iv) Similar to (iii), we have

A2 = s−4
∑

u1∈F ∗s

∑
u2∈F ∗s

∣∣∣∣∣∣
∑

x1∈Fs

χ(u1x
2
1 + (u1a1 + u2)x1)

∑
x2∈Fs

χ(u2x
2
2 + (u2a2 + u1)x2)

∣∣∣∣∣∣
2

. (5)

Since s is odd, A2 = s−4(s− 1)2s2 = (s− 1)2/s2 follows from Lemma 8.

(v) As in (iv), we have (5). Since s is even, by Lemma 9, A2 is equal to the number of u1 ∈ F ∗
s

and u2 ∈ F ∗
s such that

u1 = (u1a1 + u2)2 and u2 = (u2a2 + u1)2. (6)

We show that the number of solutions to (6) is at most 3; therefore, A2 = 0, 1, 2 or 3. From (6),

u1(u2a2 + u1)2 = u2(u1a1 + u2)2. Let c = u−1
1 u2. The last equation simplifies to (ca2 + 1)2 =

c(a1 + c)2. There are at most three solutions for c ∈ F ∗
s as long as it is a cubic polynomial in c.

For each c ∈ F ∗
s , there is a unique solution to (6): u1 = (a1 + c)−2 and u2 = (a2 + c−1)−2, provided

the inverses exist.
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(vi) When s = 4, the equation (ca2 + 1)2 = c(a1 + c)2 is the same as c3 + a2
2c

2 + a2
1c + 1 = 0.

It is easy to verify that it has three solutions if a1 = a2 = 0, one solution if a1 6= 0 and a2 6= 0,

and no solution otherwise. For each c, there is a unique solution to (6): u1 = (a1 + c)−2 and

u2 = (a2 + c−1)−2.

Remark 1. For s odd, if Lemma 7 is used instead of Lemma 8, the statement in (iii) can be

strengthened as follows. The pair has all s2 level combinations. Suppose h1 = ch2. If c is a

quadratic residue, s combinations occurring (2s−1)sn−3 times and s(s−1) combinations occurring

(s − 1)sn−3 times; otherwise, s combinations occurring sn−3 times and s(s − 1) combinations

occurring (s + 1)sn−3 times.

Proof of Theorem 5. Without loss of generality, we assume h1 = X1 and h2 = X2. Since both

QX1(X1, . . . , Xn) and QX2(X1, . . . , Xn) are saturated OAs, the GMA optimality and the overall

A2 = sn − 1 follow from Lemmas 3, 4 and 5.

(i) The columns of QX1(X1, . . . , Xn) fall into three types: (a) X1, (b) X2
1 + a1X1 + X2, and

(c) X2
1 + a1X1 + b1X2 + g1, where a1, b1 ∈ Fs and g1 ∈ H(X3, . . . , Xn). Similarly, the columns of

QX2(X1, . . . , Xn) fall into three types: (a) X2, (b) X2
2 +a2X2 +X1, and (c) X2

2 +a2X2 + b2X1 +g2,

where a2, b2 ∈ Fs and g2 ∈ H(X3, . . . , Xn). The projected A2 values of all possible pairs can be

found in Lemmas 11(ii), 11(i), 12(iv), 12(ii), and 12(i)(iii), respectively. In summary, we have the

following aliasing patterns:

X2 X2
2 + a2X2 + X1 X2

2 + a2X2 + b2X1 + g2

X1 0 (s− 1)/s 0
X2

1 + a1X1 + X2 (s− 1)/s (s− 1)2/s2 0
X2

1 + a1X1 + b1X2 + g1 0 0 δg1,g2(s− 1)/s2

where δg1,g2 is equal to 1 if g1 and g2 are dependent and 0 otherwise. Each type (c) column in

QX1(X1, . . . , Xn) is partially aliased with s2 type (c) columns in QX2(X1, . . . , Xn). The result

follows from the fact that the numbers of columns for each type are (a) 1, (b) s, and (c) (sn −

s2)/(s− 1), respectively.

(ii) From Lemmas 11 and 12, the possible projected A2 values are 0, 1, 2 or 3.

(iii) From Lemmas 11 and 12, the possible projected A2 values are 0, 1 or 3. Lemma 12(vi)

shows that there is one fully aliased pair: X2
1 + X2 and X2

2 + X1, which has projected A2 = 3.

Since the overall A2 = 4n − 1, there must be 4n − 4 pairs with projected A2 = 1.
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Proof of Theorem 6. It follows from Theorem 5.

Proof of Theorem 7. We only need prove the GMA optimality. Since all linear functions form a

saturated OA, the number of coincidences between any pair of rows of the resulting SSD is a

constant when k = (sn − 1)/(s − 1) and differs by at most one when k = (sn − 1)/(s − 1) − 1.

Therefore, the GMA optimality follows from Lemma 3.

Lemma 13. Let G ⊂ Fs and |G| = k. Suppose X1 takes on values from G only and all other Xi

take on values from Fs. Suppose h1, h2 ∈ L(X2, . . . , Xn) and a1, a2 ∈ Fs.

(i) If h1 and h2 are independent, a1X1 + h1 and a2X1 + h2 are orthogonal .

(ii) If h1 = h2 and a1 6= a2, the pair of columns a1X1 + h1 and a2X1 + h2 has projected

A2 = (s− k)/k.

Proof. (i) It is obvious.

(ii) Let χ be a nontrivial additive character of Fs. By (2), the projected A2 value of the pair is

A2 = (ksn−1)−2
∑

u1∈F ∗s

∑
u2∈F ∗s

∣∣∣∣∣∣
∑

x1∈G

∑
(x2,...xn)∈F n−1

s

χ(u1(a1x1 + h1) + u2(a2x1 + h2))

∣∣∣∣∣∣
2

= (ksn−1)−2
∑

u1∈F ∗s

∑
u2∈F ∗s

∣∣∣∣∣∣
∑

x1∈G

χ((u1a1 + u2a2)x1)
∑

(x2,...xn)∈F n−1
s

χ(u1h1 + u2h2)

∣∣∣∣∣∣
2

.

The last summation is equal to sn−1 if u1h1 + u2h2 = 0 and 0 otherwise. Since h1 = h2, A2 =

k−2
∑

u1∈F ∗s

∣∣∑
x1∈G χ(u1(a1 − a2)x1)

∣∣2 = (s− k)/k follows from Lemma 10.

Proof of Theorem 8. Without loss of generality, take X1 as the branching column. The columns

are aX1 +h, where a ∈ Fs and h ∈ H(X3, . . . , Xn). By Lemma 13, each column is partially aliased

with s− 1 columns with projected A2 = (s−k)/k and orthogonal to all other columns. Since there

are (sn − s)/(s − 1) columns, there are (sn − s)/2 pairs of nonorthogonal columns with projected

A2 = (s − k)/k. Therefore, the overall A2 = (sn − s)(s − k)/(2k). Finally, the GMA optimality

follows from Lemmas 3 and 4.

Lemma 14. Let G ⊂ Fs and |G| = k. Take X2
1 + X2 as the branching column of Q1(X1, . . . , Xn),

that is, suppose all Xi, i 6= 2 take on values from Fs and X2
1 + X2 takes on values from G only.

Suppose h ∈ H(X2, . . . , Xn) and a1, a2, b1, b2 ∈ Fs.

(i) The pair of columns X1 and X2
1 + a1X1 + X2 has projected A2 = (s− k)/k.
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(ii) If a1 6= a2, the pair of columns X2
1 + a1X1 + X2 and X2

1 + a2X1 + X2 has projected

A2 = (s− k)/k.

(iii) For s odd, if b1 6= b2, the pair of columns X2
1 +a1X1 + b1X2 +h and X2

1 +a2X1 + b2X2 +h

has projected A2 = (s− k)/(ks).

(iv) For s even, if b1 6= b2 and a1 6= a2, the pair of columns X2
1 + a1X1 + b1X2 + h and

X2
1 + a2X1 + b2X2 + h has projected A2 ≤ 1.

(v) For s = 4, if b1 6= b2 and a1 6= a2, the pair of columns X2
1 + a1X1 + b1X2 + h and

X2
1 + a2X1 + b2X2 + h has projected A2 = 0 or 1 for k = 2, and projected A2 = 1/9 for k = 3.

Proof. Let Y = X2
1 + X2. Then Y are independent of Xi for i 6= 2.

(i) and (ii) The proofs are similar to Lemma 13(ii).

(iii) Let χ be a nontrivial additive character of Fs. Let zi = x2
1+aix1+bix2 = (1−bi)x2

1+aix1+biy

for i = 1, 2. By (2), the projected A2 value of the pair is

A2 = (ksn−1)−2
∑

u1∈F ∗s

∑
u2∈F ∗s

∣∣∣∣∣∣
∑

x1∈Fs

∑
y∈G

∑
(x3,...,xn)∈F n−2

s

χ(u1(z1 + h) + u2(z2 + h))

∣∣∣∣∣∣
2

= (ksn−1)−2
∑

u1∈F ∗s

∑
u2∈F ∗s

∣∣∣∣∣∣
∑

x1∈Fs

∑
y∈G

χ(u1z1 + u2z2)
∑

(x3,...,xn)∈F n−2
s

χ((u1 + u2)h)

∣∣∣∣∣∣
2

.

The last summation is equal to sn−2 if u1 + u2 = 0 and 0 otherwise. Then,

A2 = (ks)−2
∑

u1∈F ∗s

∣∣∣∣∣∣
∑

x1∈Fs

∑
y∈G

χ(u1(z1 − z2))

∣∣∣∣∣∣
2

= (ks)−2
∑

u1∈F ∗s

∣∣∣∣∣∣
∑

x1∈Fs

χ(u1(b2 − b1)x2
1 + u1(a1 − a2)x1)

∑
y∈G

χ(u1(b1 − b2)y)

∣∣∣∣∣∣
2

. (7)

Since s is odd, by Lemma 8 and then Lemma 10,

A2 = (ks)−2
∑

u1∈F ∗s

s

∣∣∣∣∣∣
∑
y∈G

χ(u1(b1 − b2)y)

∣∣∣∣∣∣
2

= (s− k)/(ks).

(iv) Let χ be the canonical additive character defined in (3). As in (iii), we have (7). Since s is

even, by Lemma 9, (7) is simplified to

A2 = (ks)−2s2

∣∣∣∣∣∣
∑
y∈G

χ(−(b1 − b2)2/(a1 − a2)2y)

∣∣∣∣∣∣
2

≤ k−2

∣∣∣∣∣∣
∑
y∈G

1

∣∣∣∣∣∣
2

= 1.
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(v) As in (iv), A2 = k−2
∣∣∣∑y∈G χ(uy)

∣∣∣2, where u = −(b1 − b2)2/(a1 − a2)2 6= 0. Since χ is the

canonical additive character and s = 4, χ(·) = ±1. Therefore, for k = 2, A2 = 0 or 1; for k = 3,

A2 = 1/9.

Proof of Theorem 9. The GMA optimality follows from Lemmas 3 and 4. Since both designs in

Theorems 8 and 9 have GMA, they must have the same overall A2 = (sn − s)(s− k)/(2k).

(i) The columns of Q1(X1, . . . , Xn) are X1, X2
1 + aX1 + X2 and X2

1 + aX1 + bX2 + h, where

a, b ∈ Fs and h ∈ H(X3, . . . , Xn). By Lemma 14(i), the pair of columns X1 and X2
1 + aX1 + X2

has projected A2 = (s − k)/k when a 6= 0, and there are s − 1 such pairs; by Lemma 14(ii), the

pair of columns X2
1 + a1X1 + X2 and X2

1 + a2X1 + X2 has projected A2 = (s− k)/k when a1 6= a2,

and there are
(
s−1
2

)
such pairs since column X2

1 +X2 is removed; and by Lemma 14(iii), the pair of

columns X2
1 + a1X1 + b1X2 + h and X2

1 + a2X1 + b2X2 + h has projected A2 = (s− k)/(ks) when

b1 6= b2, and there are s2
(
s
2

)
(sn−2 − 1)/(s − 1) = s(sn − s2)/2 such pairs. It is easy to verify that

all other pairs of columns are orthogonal.

(ii) and (iii) The proofs are similar to (i) and are omitted.

6 Some small designs and comparison

Applying the construction methods, we can get many optimal multi-level SSDs. Tables 1–3 list

the frequencies of projected nonzero A2 values for some optimal 3-, 4-, and 5-level SSDs. All SSDs

have the property that the number of coincidences between any pair of rows differs from each other

by at most one; therefore, their overall A2 values achieve the lower bound in Theorem 1 and they

are optimal under GMA.

When s = 4 and n = 2, according to Theorem 6, the column juxtaposition of all five saturated

OAs has 10 pairs of fully aliased columns. After removing one column from each pair, we obtain 15

columns with projected A2 = 0 or 1. It can be verified that the overall A2 value is 45 and achieves

the lower bound in Theorem 1; therefore, this SSD is optimal under GMA. Similarly, when s = 4

and n = 3, the column juxtaposition of all 21 saturated OAs has 210 pairs of fully aliased columns.

After removing one column from each pair, we obtain 231 columns with projected A2 = 0 or 1.

It can be verified that the overall A2 value is 3465 and achieves the lower bound in Theorem 1;

therefore, this SSD is also optimal under GMA.

Yamada et al. (1999) constructed some 3-level SSDs with N = 9, 18 and 27 runs. Fang et al.
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(2000) constructed some multi-level SSDs with N = 9, 16, 18, 25 and 27 runs. Here we compare

their designs with ours. Since our designs are optimal under GMA, we compare the maximum

aliasing among the columns. Table 4 compares their designs with ours in terms of the maximum

projected A2 values. For N = 9, 25, 27, we have two classes of SSDs from Theorems 6 and 7. The

latter designs have smaller maximum projected A2 values than the former designs (although the

latter designs may have larger overall A2 values than the former designs). In Table 4, our designs

have the smallest maximum projected A2 values except in one case. For N = 18, s = 3 and m = 12,

the design by Fang et al. has the smallest maximum projected A2 value. However, their design has

an overall A2 = 7.72 and is not optimal while the other two designs have an overall A2 = 6 and is

optimal.

The advantage of our construction methods over the algorithms of Yamada et al. and Fang

et al. is evident from Table 4. Neither algorithm is efficient in controlling the maximum aliasing

among columns when the number of runs, columns or levels is large. In contrast, our construction

methods work efficiently for large and small SSDs. Moreover, since the columns are represented

by linear and quadratic polynomials, we can study in depth the aliasing among columns, which is

useful in factor assignment. For example, since one column is orthogonal to all other columns in

the half Addelman-Kempthorne array, the experimenter should assign the most important factor

to this column.
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Table 1: Some optimal three-level supersaturated designs

Projected A2 Values
N m 2/3 1/2 4/9 2/9 1/6 Source

6 3 3 Theorem 8, n = 2, k = 2
9 7 9 Theorem 4, n = 2
9 12 54 Theorem 7, n = 2, k = 4
9 16 36 54 Theorem 6, n = 2, k = 4

18 12 12 Theorem 8, n = 3, k = 2
18 12 3 27 Theorem 9, n = 3, k = 2
27 25 36 Theorem 4, n = 3
27 156 702 6318 Theorem 7, n = 3, k = 13
27 169 468 702 6318 Theorem 6, n = 3, k = 13
54 40 36 Theorem 8, n = 4, k = 2
54 40 3 108 Theorem 9, n = 4, k = 2

Table 2: Some optimal four-level supersaturated designs

Projected A2 Values
N m 1 1/3 1/9 Source

8 4 6 Theorem 8, n = 2, k = 2
12 4 6 Theorem 8, n = 2, k = 3
16 9 12 Theorem 4, n = 2
16 15 45 Theorem 6a, n = 2
32 20 30 Theorem 8, n = 3, k = 2
48 20 30 Theorem 8, n = 3, k = 3
48 20 6 72 Theorem 9, n = 3, k = 3
64 41 60 Theorem 4, n = 3
64 231 3465 Theorem 6a, n = 3

a The design is obtained by removing fully aliased columns.
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Table 3: Some optimal five-level supersaturated designs

Projected A2 Values
N m 3/2 4/5 16/25 2/3 3/10 1/4 2/15 Source

10 5 10 Theorem 8, n = 2, k = 2
15 5 10 Theorem 8, n = 2, k = 3
20 5 10 Theorem 8, n = 2, k = 4
25 11 25 Theorem 4, n = 2
25 30 375 Theorem 7, n = 2, k = 6
25 36 150 375 Theorem 6, n = 2, k = 6
50 30 60 Theorem 8, n = 3, k = 2
50 30 10 250 Theorem 9, n = 3, k = 2
75 30 60 Theorem 8, n = 3, k = 3
75 30 10 250 Theorem 9, n = 3, k = 3

Table 4: Comparison of supersaturated designs in terms of maximum projected A2 values

N s m Authors Fang et al. Yamada et al.

9 3 12 .44 or .67 .67 .67
9 3 16 .67 .67 .67
16 4 15 1 1.12
18 3 12 .5 .44 .5b

25 5 24 .64 or .8 2.48
25 5 30 .64 or .8
25 5 36 .8
27 3 52 .44 or .67 .59 .67
27 3 156 .44 or .67 1.11
27 3 169 .67 1.11

b This design is constructed according to their Theorem 3.
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