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Infiltration on sloping terrain and its role on runoff generation and slope
stability
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A B S T R A C T

A modified Green-and-Ampt model is formulated to quantify infiltration on sloping terrain underlain by
homogeneous soil wetted by surficial water application. This paper’s theory for quantifying infiltration relies on
the mathematical statement of the coupled partial differential equations (pdes) governing infiltration and runoff.
These pdes are solved by employing an explicit finite-difference numerical method that yields the infiltration,
the infiltration rate, the depth to the wetting front, the rate of runoff, and the depth of runoff everywhere on the
slope during external wetting. Data inputs consist of a water application rate or the rainfall hyetograph of a
storm of arbitrary duration, soil hydraulic characteristics and antecedent moisture, and the slope’s hydraulic and
geometric characteristics. The presented theory predicts the effect an advancing wetting front has on slope
stability with respect to translational sliding. This paper’s theory also develops the 1D pde governing suspended
sediment transport and slope degradation caused by runoff influenced by infiltration. Three examples illustrate
the application of the developed theory to calculate infiltration and runoff on a slope and their role on the
stability of cohesive and cohesionless soils forming sloping terrain.

1. Introduction

This paper develops and tests a numerical model for the prediction
of infiltration, runoff, and soil stability in slopes subjected to water
application by rainfall or other forms of surficial water application (e.g.,
irrigation). Our work also develops the 1D pde governing suspended
sediment transport and slope degradation caused by runoff influenced
by infiltration. Fig. 1 depicts the geometry considered in this work,
showing a slope with angle θ, length L, and width b perpendicular to
the plane of the figure. A water application rate or rainfall rate r t( ) wets
the slope. The rate of water application could be caused by artificial
means, such as irrigation. The water application rate may cause runoff
on the slope if it exceeds the infiltration rate g. In that case the variable
depth of runoff is denoted by d in Fig. 1. The water pressure exerted by
a water depth d equals d cosθ γ· · w, as shown in Fig. 1, with γw denoting
the unit weight of water (=9.81 kN/m3).

The equations governing runoff and infiltration on sloping terrain
are derived relying on Cartesian coordinates s and z shown in Fig. 1.
The axis of the s coordinate is parallel to the slope surface and s in-
creases downslope. The axis of the coordinate z is normal to the axis s
and increases downwards from the slope surface. The runoff on the
slope varies with distance s and with time, and is denoted by q s t( , ). It is
seen in Fig. 1 that the infiltration rate has components equal to g θcos

and g θsin along the coordinates z and s, respectively. The slope’s soil
has a volumetric water-content deficit equal to = −w n vo o prior to the
onset of infiltration, in which n denotes the porosity of the soil and vo
represents the antecedent volumetric water content. The depth to the
wetting front varies along the slope and is represented by two variables,
zvf and zf . The former variable is measured vertically downward from
the slope surface, and the latter is measured downward from the slope
surface along the coordinate axis z as depicted in Fig. 1. The infiltra-
tion, is denoted by G (units of length), whose time derivative equals the
infiltration rate (i.e., ∂ ∂ =G t g/ ) (units of length over time). The volume
of water entering the soil fills the available pore space ( −n vo) as it
moves vertically downward. On a per unit area of slope such volume of
water equals the infiltration G, which, in turn, equals the depth of water
penetration times the available pore space that fills with entering water.
This reasoning, in conjunction with the geometry of the coordinates
aligned with the vertical axis and with the axis normal to the slope
surface, leads to Eqs. (1) and (2) expressing respectively the depths zvf
and zf in terms of the infiltration and the volumetric water-content
deficit as follows:

=
−

z G
n vvf

o (1)
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=
−

z G
n v

θcosf
o (2)

The soil–water tension along the wetting front is denoted by hpf
(units of length) in Fig. 1. The soil–water tension equals the negative of
the pore pressure head along the wetting front, and, thus, is a positively
valued variable given that the pore pressure in unsaturated soil is ne-
gative (i.e., less than atmospheric). The soil water tension on the wet-
ting front hpf is a hydraulic characteristic that varies with soil texture
(see, e.g., Rawls and Brakensiek, 1983; Rawls et al., 1992).

This work introduces a modified version of the classic Green and
Ampt infiltration model (see Green and Ampt, 1911) applicable to
sloping terrain subjected to time-variable surficial wetting. A review of
the Green and Ampt model (the G&A model, henceforth) and its un-
derlying assumptions can be found in Dingman (2015), among others.
This work’s modified G&A model calculates coupled infiltration and
runoff on sloping terrain, and resolves the effect of infiltration depth on
slope stability. Furthermore, this paper presents the 1D pde describing
the combined erosive power of slope runoff and infiltration. The erosion
rate is expressed as function of the runoff rate, infiltration rate, and
suspended-sediment concentration under approximate steady-state
conditions. The simultaneous calculation of slope wetting, infiltration,
runoff, and erosion constitutes this paper’s theoretical novelty. The
numerical algorithms for the calculation of slope infiltration, runoff,
and slope stability constitute the practical result of this paper’s theory.
The original G&A infiltration model estimates the infiltration in a
homogeneous and isotropic soil underlying level ground. The classic G&
A model has been implemented by several authors (see, e.g., Mein and
Larson, 1973; Morel-Seytoux, 1980; Hydrologic Engineering Center,
2000). Chen and Young (2006) reported a model for G&A infiltration in
sloping surfaces. The latter work did not address the effect of infiltra-
tion on slope stability and slope degradation, as this paper does. The G&
A model has been shown to comply well with the Richards equation
results under the model assumptions (Salvucci and Entekhabi, 1995).
Loáiciga (2005) reported calculation of groundwater recharge to
sloping aquifers. Loáiciga and Huang (2007) presented a G&A infiltra-
tion model that accounted for temporally variable rainfall with inter-
spersed dry periods in which the ponding depth was depleted by

infiltration and evaporation. Several authors have reported simulations
of surface flow affected by infiltration on sloping terrain relying on
models other than the G&A formulation. Strelkoff and Clemmens
(1994), for example, calculated surface flow in sloping-border irrigation
by solving the Saint Venant equations with infiltration described by
Kostiakov’s formula. Bradford and Katopodes (2001) presented a finite-
volume model for unsteady, two-dimensional, shallow water flow to
simulate the advance and infiltration of an irrigation wave in non-level
basins. Wöhling et al. (2004) reported a surface–subsurface flow model
for furrow irrigation employing the Hydrus 2D model for subsurface
simulation of water flow. Zerihun et al. (2005) developed a hydraulic
model coupled to a surface model (Hydrus 1D) for flow and solute
transport in irrigation borders and basins. The four latter publications
on irrigation models did not address slope stability by soil wetting.
Weill et al. (2009) reported a numerical model for coupled surface and
subsurface flow simulation with the objective of elucidating water dy-
namics in catchments with consideration to the surface/subsurface in-
terface employing a generalized Richards equation. Their model was
not concerned with the analysis of slope stability or erosion caused by
slope wetting. Morbidelli et al. (2018) presented a review of research
dealing with infiltration on sloping terrain.

This paper’s contribution is the development of the G&A model for
infiltration on sloping ground coupled with kinematic-wave modeling
of runoff. The infiltration-runoff model solves the coupled equations of
runoff and infiltration driven by time-variable water input on sloping
terrain. This paper generalizes the work of Johnson and Loáiciga (2017)
by considering the existence of lateral subsurface flow downslope, by
applying a time-variable upstream boundary condition (at s =0) for
infiltration that accounts for the temporal evolution of soil wetting at
the slope crown, and by elucidating the effect of infiltration on slope
erosion. Centrally, this paper resolves the effect an advancing wetting
front has on reducing the factor of safety (FS) against translational
sliding in sloping terrain formed by cohesive or cohesionless soils. Our
work generalizes the slope sliding model by Iverson (2000) by jointly
simulating infiltration and slope runoff and accounting for their com-
bined effect on translational slope stability. This paper’s analytical and
numerical methods complement experimental research of infiltration in
sloping terrain (Morbidelli et al., 2015, 2016). Lastly, this work

Fig. 1. Schematic of the variables describing runoff and infiltration on a slope (elevation view not drawn to scale).
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develops the pde governing suspended sediment continuity and sub-
merged slope degradation caused by external wetting and influenced by
infiltration.

Section 2 presents the geometric setting, hydrologic methods, and
numerical algorithms employed in this paper. Section 3 summarizes this
paper’s results. Section 4 outlines extensions to the theory presented in
Section 2. The extensions cover linearly variable antecedent water
content, and the development of the partial differential equations
governing suspended-sediment concentration, runoff, infiltration, and
slope degradation. Section 5 (Conclusion) summarizes this paper’s key
findings. The Appendix A develops the 2D Richards equation for un-
saturated soil in arbitrarily rotated Cartesian coordinates. All the
symbols employed in this paper are listed in Section 6 (Symbology). A
list of bibliographic references is found in the References section.

2. Theory and methods

2.1. The G&A infiltration equation in sloping terrain

This section develops a G&A infiltration model for sloping terrain.
Prior to the initiation of runoff at time tQ infiltration equals the cu-
mulative water input (R):

= ⩽ ⩽ ⩽ ⩽G s t R t t t s L( , ) ( ) 0 ; 0Q (3)

Once runoff begins a positive pressure head (=d θcos in Fig. 1)
forms on the slope surface ( =z 0), which gives rise to simultaneous and
coupled infiltration and runoff.

Fig. 2 depicts a representative elementary volume ABCD (REV)
whose sides are oriented parallel to the axes s and z introduced in
Fig. 1.

The third dimension of the REV shown in Fig. 2 is unitary and
perpendicular to the s and z axes. The hydraulic head (h) within the
REV is defined with respect to a datum on which the elevation head
zv =0, and zv increases in magnitude in a downward direction as
shown in Fig. 2. The pressure head within the REV is negative given
that it is partially saturated. The pressure head within the REV is de-
noted by −hp, in which hp represents the soil–water tension (positive, in
m). The hydraulic head within the REV equals = − −h z hv p. This choice
of variables and the geometry of Fig. 2 imply that =z z θΔ /Δ cosv and

=z s θΔ /Δ sinv . It follows that in the limit (as sΔ , zΔ , and zΔ v → 0) the
Darcian fluxes qs and qz along the axes s and z, respectively are given by
the following equations:

= − ∂
∂

= +
∂
∂

q K h
s

K θ K
h
s

sins
p

(4)

= − ∂
∂

= +
∂
∂

q K h
z

K θ K
h
z

cosz
p

(5)

in which K denotes the soil’s hydraulic conductivity. The unsaturated
hydraulic conductivity can be expressed in terms of the volumetric
water content according to the soil’s moisture-conductivity curve. Al-
ternatively, the unsaturated hydraulic conductivity is expressible as a
function of the soil–water tension relying on the soil’s moisture-char-
acteristic curve (Brooks and Corey, 1964; Campbell, 1974; van
Genuchten, 1980).

The modified G&A infiltration model expresses Eq. (5) for the sub-
surface water flux perpendicular to the slope in discrete form between
the slope surface (where z =0) and the wetting front (where =z zf ).
The pressure head equals d θcos on the slope surface, and −hpf on the
wetting front. Therefore (letting Ko denote the saturated hydraulic
conductivity), the Darcian flux along coordinate z is given by:

⎜ ⎟= + ⎛
⎝

+ ⎞
⎠

q K θ K
d θ h

z
cos ·

cos
z o o

pf

f (6)

The infiltration rate along the z coordinate equals g θcos , which
equals the Darcian flux given by Eq. (6). Furthermore, the infiltration
rate equals the time derivative of the infiltration G. Eq. (6) is valid after
the time (tQ) when runoff begins and generates a positive pressure head
on the slope surface. The G&A formulation of the Darcian flux in Eq. (6)
assumes a “piston”-like advance of the wetting front, with the pressure
head varying between d θcos on the slope surface and −hpf at the
wetting front. The (homogeneous) soil layer of thickness zf between the
slope surface and the wetting front is saturated. These conditions render
the G&A model of infiltration quite tractable compared to a formulation
based on the exact equation of unsaturated flow (i.e., the 2D Richards
equation). The exact formulation of infiltration on sloping terrain raises
several complex issues concerning the calculation of the time to runoff
initiation and the formulation of boundary conditions of the subsurface
flow domain that do not arise with the G&A model. The Appendix A
presents an analysis of the 2D Richards equation of unsaturated flow in
rotated coordinates, and explains the complexities that arise in solving
simultaneously the runoff and infiltration equations with the exact
formulation.

Eq. (6) is rewritten in terms of the infiltration (G), employing Eq. (2)
to express zf , and leveraging the fact that qz equals

= ∂ ∂g θ G t θcos ( / )cos :

∂
∂

= +
⎛

⎝
⎜⎜

+ ⎞

⎠
⎟⎟

−

G s t
t

θ K θ K
d s t θ h

θ
( , ) cos cos ·

( , )·cos

cos
o o

pf
G s t
n v

( , )
o (7)

Eq. (7) is rewritten as a conventional partial differential equation:

∂
∂

− − − = > ⩽ ⩽G G
t

K G a d a t t s L0 ;0o o Q1 (8)

where

= −a K n v
θ

( )
coso

o 0
(9)

=
−

a
K n v h

θ
( )
cos

o pf
1

0
2 (10)

The initial condition for infiltration is that infiltration equals the
cumulative rainfall (or cumulative water input, R t( Q)) at the time when
runoff begins (tQ):

= ⩽ ⩽G s t R t s L( , ) ( ) 0Q Q (11)

The infiltration increment over a time step equals the amount of
rain falling during that period whenever the runoff ceases and rainfall
continues to fall. The (upstream) boundary condition for infiltration
takes into account that at =s 0 the runoff depth (d) equals zero.
Therefore, setting =d 0 in Eq. (8) permits writing the infiltration

Fig. 2. A representative elementary REV of slope soil (elevation view not drawn
to scale).
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boundary condition in the following form that is useful for its numerical
integration:

∂
∂

= + >G t
t

K a
G t

t t(0, )
(0, )o Q

1

(12)

Eq. (12) expressing the boundary condition for infiltration is in-
tegrated by separation of variables to yield the following implicit re-
lation between time and infiltration:

⎜ ⎟− =
−

− ⎛
⎝

+
+

⎞
⎠

>t t
G t R t

K
a
K

ln K G t a
K R t a

t t
(0, ) ( ) (0, )

( )Q
Q

o

o

o Q
Q

0

1
2

1

1 (13)

Eq. (12) is the preferred formulation of the boundary condition for
the purpose of numerical solution of the infiltration problem. It is
worthy of mention that the G&A formulation of infiltration with water
application on a slope involves simple flow-domain geometry (depicted
in Fig. 1) and mathematical description of the boundary condition. No
assumption is necessary for a phreatic surface beneath the wetting
front.

Eqs. (8)(12) summarize the mathematical statement for infiltration
on sloping terrain. Eq. (8) involves the unknown runoff depth. A second
equation is needed for the runoff depth, which is derived employing
kinematic-wave theory in the Kinematic wave runoff section. A key
variable for slope stability analysis is the depth to the wetting front,
which is calculated with either Eqs. (1) or (2) once the infiltration is
resolved.

2.2. The time to the initiation of slope runoff (tQ)

The time required to initiate slope runoff (tQ) is defined by the in-
stant in which the component of the rainfall rate (or water-input rate, in
general) along the coordinate z first equals the infiltration rate along
that same coordinate. Employing Eq. (7) (with =d 0) we have:

= +
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

−

r t θ K θ K
h

θ
( )cos cos ·

cos
Q o o

pf
R t
n v

( )Q

o (14)

in which R t( )Q denotes the cumulative rainfall at time tQ. Eq. (14) must
be solved numerically for most instances of variable water input. The
case of constant water input ro leads to a closed-form solution for tQ:

=
−

−
t

r
K h n v
r K θ

1 ·
·( )

( )cosQ
o

o pf o

o o
2 (15)

where the (constant) water input (ro) must exceed the saturated hy-
draulic conductivity (Ko) to obtain physically meaningful results. An-
other case of interest in this work is that of a symmetric triangular
water-input rate over a duration D, as shown in Fig. 3. In Fig. 3 the
rising limb of the water-input rate is expressed as =r c t . In this case
the time tQ is the smallest root (positive and real valued) of the fol-
lowing third-order polynomial:

+ + =b t b t b 0o
3

1
2

2 (16)

where =b c θcoso
2 2 , = −b cK θcos1 0

2 , = − −b K h n v2 ·( )o pf o2 .
Determining the time (tQ) for rainfall rates specified as a time series

of discrete values of rain depth (rd) each occurring over a computational
time period ( tΔ ) requires a numerical solution of Eq. (14).

Fig. 4 depicts the United States Department of Agricultural’s Natural
Resources Conservation Service (NRCS) 24-h, Type I, rainfall hyeto-
graph, in this case scaled to produce a depth of rain equal to 0.400m.
Notice the high intensity of rainfall near half the duration of the storm.

Letting the index j denote the counter for time intervals, j =1, 2,
…, T , the cumulative rain at time j tΔ is calculated as follows:

∑=
=

R j t r l t( Δ ) ( Δ )
l

j
d1 (17)

The discrete form of Eq. (14) applied to estimate the time tQ takes
the form:

=
⎡

⎣

⎢
⎢

+
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎤

⎦

⎥
⎥

−

r j t t K K
h

θ
( Δ ) Δ · ·

cos
d o o

pf
R j t
n v

( Δ ) 2
o (18)

The value j that satisfies Eq. (18) for the first time is denoted by jQ,
and the time of runoff initiation is given by =t j t·ΔQ Q .

2.3. Kinematic wave runoff

Runoff on a slope surface is wide and shallow resulting in a hy-
draulic radius approximately equal to the depth of runoff d. This per-
mits the application of the kinematic-wave approximation to the flow
equation on a slope. Runoff is herein modeled with the kinematic-wave
approximation to the equation of 1-D of overland flow on a slope with
accretion by rainfall and depletion by infiltration. The kinematic flow
approximation expresses the flow rate as a function of the depth of flow
(see, e.g., Chow, 1959; Cunge et al., 1980; Chaudry, 1993; Johnson and
Loáiciga, 2017; Singh, 2017). The kinematic-wave flow equation is as
follows:

∂
∂

+ ∂
∂

= − = −−β m d d
s

d
t

r g r G· · m
t

1
(19)

in which d denotes the depth of runoff, g and r denote respectively the
infiltration rate and rainfall rate, and the derivative of the infiltration G
with respect to time is represented by Gt (=g). The coefficient m =5/3,
and β is defined as:

=β
N

S1 · 0 (20)

where N and S0 denote the Manning’s roughness coefficient and the
slope of the terrain, respectively. The initial condition of Eq. (19) is
defined as follows:

= = ⩽ ⩽d s t t s L( , ) 0 0Q (21)

in which tQ denotes the time when runoff emerges on the slope. The
depth of runoff equals zero prior to the time tQ. The boundary condition

Fig. 3. Constant (ro) and triangular rainfall rates lasting DR hours and producing
the same depth of rain (r Do R).

Fig. 4. NRCS type I, 24-h, rainfall hyetograph scaled to a total depth equal to
0.400m.
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of Eq. (19) at the upstream end is given by:

= = ⩾d s t t t( 0, ) 0 Q (22)

The overland flow q s t( , ) (in m3/s) at location s and time t is given by
Manning’s equation:

=q s t
N

S b d s t( , ) 1 · · ·( ( , ))0
5
3

(23)

The following section introduces a numerical method for the joint
solution of the infiltration and runoff equations outlined above.

2.4. Numerical solution of the infiltration and runoff equations

2.4.1. Explicit finite-difference formulation of the infiltration equation
The flow domain has +M 1 nodes with an inter-nodal separation

equal to sΔ , as shown in Fig. 1. The nodal index equals = …k M0,1,2,3, , .
The node at k =0 corresponds to the upstream boundary, where the
value of runoff depth equals zero. The time domain is divided into a
computational time step tΔ , with time index = …j T1,2, , . The finite-
difference, explicit, numerical discretization of the infiltration Eq. (8)
applied in this work is given by the following expression:

⎛

⎝
⎜

+ ⎞

⎠
⎟

⎛

⎝
⎜

− ⎞

⎠
⎟− ⎛

⎝
⎜

+ ⎞

⎠
⎟− ⎛

⎝
⎜

+ ⎞

⎠
⎟

− =

−
−
− − −

−
− −G G G G

t
K

G G
a

d d

a

2
·

Δ
·

2
·

2

0

k
j

k
j

k
j

k
j

o
k

j
k

j
k

j
k

j( 1)
1

( 1) ( ) ( 1) ( 1)
1

( 1)

0

( ) ( 1)

1 (24)

= …k M1,2,3, , , and = + + + …j j j j1, 2, 3,Q Q Q , where =t j t·ΔQ Q re-
presents the time of runoff initiation. The indexed notation applied in
Eq. (24) is such that:

= − −−
−G G k s j t(( 1)·Δ ,( 1)·Δ )k

j
1

( 1) (25)

= −−G G k s j t( ·Δ ,( 1)·Δ )k
j( 1) (26)

=G G k s j t( ·Δ , ·Δ )k
j( ) (27)

=d d k s j t( Δ , Δ )k
j( ) (28)

= −−d d k s j t( Δ ,( 1)Δ )k
j( 1) (29)

The initial condition associated with Eq. (24) is given by the fol-
lowing formula:

=G R t( )k
j

Q
( )Q (30)

= …k M0,1,2,3, , . The boundary condition of Eq. (24) is the discretized
form of Eq. (12) (at k =0):

= + +−
−G G K t a t

G
·Δ ·Δj j

o
o

j0
( )

0
( 1) 1

( 1) (31)

in which = + + + …j j j j1, 2, 3,Q Q Q .

2.4.2. Explicit finite-difference formulation of the kinematic-wave runoff
The kinematic wave pde (19) is a nonlinear hyperbolic pde (Smith,

1984). This paper implements a modified Lax-Wendroff explicit finite-
difference method for its solution (see Lax, 1954, and Smith, 1984, for
an exposition of the Lax-Wendroff method). The explicit numerical
scheme for kinematic wave runoff must meet the following numerical
Courant-Friedrichs-Lewy (CFL) stability condition (Courant et al., 1928;
Cunge et al., 1980; Smith, 1984; Hydrologic Engineering Center, 2000;
Johnson and Loáiciga, 2017):

⩽
∗ ∗

t s
g d

Δ Δ
· (32)

in which ∗g equals 981 cm/s2, and represents the acceleration of
gravity, and ∗d denotes an average depth of runoff. The selection of tΔ
and sΔ must be made judiciously to satisfy Eq. (32). Thus, for example,

sΔ may be set equal to 100 cm (1m) to calculate runoff depth and

infiltration with adequate spatial resolution, in which case by virtue of
Eq. (32) tΔ may not exceed 1.4 s for an average runoff depth ∗d =5 cm.
The explicit finite-difference formulation of the kinematic-wave runoff
equation is relatively simple, and it is stable and accurate when the
condition (32) is met and a suitable inter-nodal computational step is
chosen. It is obtained by discretizing Eq. (19) (the node at k =0 cor-
responds to the upstream boundary, where the value of runoff depth
equals zero):

−
+ ⎛

⎝
⎜

+ ⎞

⎠
⎟

⎛

⎝
⎜

− ⎞

⎠
⎟ = −⎛

⎝
⎜

− ⎞

⎠
⎟

− −
−
− − −

−
− −d d

t
β m

d d d d
s

r
G G

tΔ
· ·

2
·

Δ Δ
k

j
k

j
k

j
k

j m
k

j
k

j

k
j k

j
k

j( ) ( 1) ( 1)
1

( 1) 1 ( 1)
1

( 1)
( )

( ) ( 1)

(33)

= …k M1,2,3, , , and = + + + …j j j j1, 2, 3,Q Q Q . The following indexed
notation applies to −

−dk
j

1
( 1) and to the water-application rate (r) in Eq.

(33):

= − −−
−d d k s j t(( 1)·Δ ,( 1)·Δ )k

j
1

( 1) (34)

=r r j t( Δ )k
j( ) (35)

The initial condition associated with Eq. (33) is:

= = …d k M0 0,1,2,3, ,k
j( )Q (36)

The upstream boundary condition associated with Eq. (33) specifies
zero depth at the slope’s crown implying a Dirichlet boundary value
problem, whose (upstream) boundary condition is:

≡ = + + + …d j j j j0 1, 2, 3,j
Q Q Q0

( )
(37)

The kinematic-wave runoff rate is calculated with the following
equation:

=q
N

S b d1 · · ·( )k
j

k
j( )

0
( ) 5

3
(38)

= …k M1,2,3, , , and = + + + …j j j j1, 2, 3,Q Q Q

2.4.3. Explicit finite-difference solution of the infiltration and kinematic-
wave runoff equations

Eqs. (24) and (33) constitute a set of coupled, nonlinear, finite-
difference equations involving the unknowns dk

j( ) and Gk
j( ). The dis-

cretized infiltration Eq. (24) is rewritten in explicit form for the in-
filtration in the current time step:

= + +−
−

−
−

−G G a d b·k
j

k
j

k k
j

k
j

k k
j( ) ( 1)

, 1
( 1) ( )

, 1
( 1)

(39)

= …k M1,2,3, , , and = + + + …j j j j1, 2, 3,Q Q Q , in which:

=−
−

−
−a a

G2k k
j

k k
j, 1

( 1) 0

, 1
( 1)

(40)

=
+

−
−

−
−
−

G
G G

t2Δk k
j k

j
k

j

, 1
( 1)

( 1)
1

( 1)

(41)

= + +−
−

−
−

−
−

−

b K t a
G

a
G

d
Δ ·

2k k
j

o
k k

j
k k

j
k

j

, 1
( 1) 1

, 1
( 1)

0

, 1
( 1)

( 1)

(42)

The runoff depth Eq. (33) is rewritten in explicit form for the current
time step:

= − +−
−

−d d G fk
j

k
j

k
j

k k
j( ) ( 1) ( )
, 1

( 1)
(43)

in which:

= − + +−
−

−
− −f x r Gk k

j
k k

j
d k

j
k

j
, 1

( 1)
, 1

( 1)
,

( ) ( 1)
(44)

where =r r t·Δd k
j

k
j

,
( ) ( ) denotes the depth of water application in time step

j t·Δ at node k.

= ⎛

⎝
⎜

+ ⎞

⎠
⎟

⎛
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⎜
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−
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d d d d
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2
·
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j
k
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k

j
k

j

, 1
( 1)

( 1)
1

( 1) 1 ( 1)
1

( 1)

(45)
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Eq. (39) for Gk
j( ) is substituted into Eq. (43) to produce an explicit

equation for the runoff depth in the j -th computational time step:

= − − +−
− −

−
− −

−
−

−
−

−
−

−
−d h d h G h b h f· · · ·k

j
k k

j
k

j
k k

j
k

j
k k

j
k k

j
k k

j
k k

j( )
, 1

( 1) ( 1)
, 1

( 1) ( 1)
, 1

( 1)
, 1

( 1)
, 1

( 1)
, 1

( 1)
(46)

= …k M1,2,3, , , and = + + + …j j j j1, 2, 3,Q Q Q , (with boundary condi-
tion d j

0
( ) =0) in which:

=
+−

−

−
−h

a
1

1k k
j

k k
j, 1

( 1)

, 1
( 1)

(47)

The runoff depth calculated with Eq. (46) must be non-negative for
physical feasibility. The solution algorithm for coupled runoff and in-
filtration starts by solving Eq. (46) at time step +j t( 1)·ΔQ . Once the
runoff depth has been calculated it is used in Eq. (39) to solve for the
infiltration at time step +j t( 1)·ΔQ . The time index is then increased to

+j 2Q and the consecutive solutions for runoff depth and infiltration
are calculated at all active nodes. The solution algorithm is advanced to
the third and higher time steps by increasing the time index j by one
unit consecutively, solving for infiltration and runoff depth in each time
step until reaching the end of the simulation. The ratio
[|Input−Output|/Input]× 100 constitutes the percentage error in
mass balance associated with the calculated runoff and infiltration,
with Input= cumulative rainfall, and Output= cumulative runoff vo-
lume+ infiltration. The percentage error measures the accuracy of the
numerical solution scheme in preserving balance of inputs and outputs
(see, e.g., McDonald and Harbaugh, 1988). The accuracy of the nu-
merical algorithm is evaluated by checking the percentage error in mass
balance approaches zero upon termination of the numerical simulation,
as shown in the Results section. This paper’s simulation algorithm for
solving Eqs. (39) and (46) was written in the public-domain software R.
The program is accessible at https://github.com/mikejohnson51/
RainSlope for free download.

2.4.4. The depth to the wetting front
The depth to the wetting front is a key factor controlling slope

stability. It is calculated at any node k and time step j t·Δ with the
following equation:

=
−

z
G

n vvf
j k

j
( )

( )

0k (48)

in which = …k M0,1,2, , ; = …j 1,2,3, . Notice that for = …j t1,2,3, , Q the
infiltration Gk

j( ) equals the cumulative rainfall R j t( Δ ).

2.5. Slope infiltration and translational slope stability

The classic model for translational slope stability proposes that
subsurface water perches over a surface of hydraulic conductivity lower
than that of the overlying slope’s soil. The surface of hydraulic-con-
ductivity discontinuity is the slip surface along which overlying soil
may move downslope causing landslides. The rising thickness of sa-
turation above the slip surface reduces the (frictional) effective stress on
that surface and may cause sliding along the slip surface. Descriptions
of the classic “infinite” (read “long”) slope translational stability model
can be found in Duncan et al. (2014) and Loáiciga (2015), among
others. However, empirical evidence indicates slopes wetted by rainfall
commonly do not feature such zones of conductivity discontinuity. In
fact, many translational landslides occur in relatively homogeneous
soils driven by the downward advance of saturation, as depicted in
Fig. 5, and not by the rise of perched saturation above the slip surface as
proposed by the classic model of translational slope stability. It is
possible air may be entrapped along the wetting front when there is
rapid infiltration, thus hindering the advance of the wetting front, and
creating positive pore water pressure through the zone of saturation. It
might possible, also, that a reduction in hydraulic conductivity produce
a profile of positive pore water pressure through the zone of saturation.
These condition is propitious for shallow sliding wherever the advance

of the wetting front is retarded.
This work introduces a method for evaluating translational slope

stability considering coupled runoff and infiltration, soil characteristics,
and slope geometry. The soil saturated unit weight and the (antecedent)
unit weight prior to external wetting are denoted by γo and γ , respec-
tively, as shown in Fig. 5. Let ′c and ′ϕ denote respectively the effective
cohesion and the effective angle of friction of the slope’s soil. The ratio
of the resisting stress along the slip surface shown in Fig. 5 to the
driving stress that often destabilizes the slope along that surface is
called the factor of safety (FS). The slope is stable when the factor of
safety exceeds 1, is unstable when the factor of safety is less than 1, and
is in limiting equilibrium when the factor of safety equals 1. The factor
of safety (FSo) at a depth zvf is determined by force equilibrium and
geometric analyses of the soil block depicted in Figure. Prior to in-
filtration the factor of safety is given by the following expression (in
which the pressure head at depth zvf prior to saturation is denoted by

>h hp pf0 ):

⎜ ⎟=
′

+ ⎛
⎝

+ ⎞
⎠

′
FS c

z γ θ θ
h
z

γ
γ θ

ϕ
θcos sin

1 · · 1
cos

·
tan
tano

vf

po

vf

w
2 (49)

As water infiltrates it changes the water content of the slope’s soil.
At the advancing wetting front the soil–water tension (at depth zvf )
equals hpf and the factor safety equals:

⎜ ⎟=
′

+ ⎛
⎝

+ ⎞
⎠

′
FS c

z γ θ θ
h
z

γ
γ θ

ϕ
θcos sin

1 · · 1
cos

·
tan
tanvf o

pf

vf

w

o
2 (50)

Eq. (50) demonstrates the factor of safety decreases with increasing
depth of the wetting front (zvf ). Therefore, the deeper a wetting front
driven by infiltration advances, the greater the reduction of the factor of
safety would be with concomitant reduction of slope stability. A com-
parison of Eqs. (49) and (50) demonstrates the factor of safety with
infiltration (Eq. (50) is less than that without infiltration for the same
depth zvf because Eq. (50) features a larger unit weight (saturated unit
weight γo) and a smaller soil–water tension (hpf ).

Rapid infiltration may trap air in the soil along the wetting front,
which may slow down or impede further infiltration. In this instance
the water pressure would equal d cosθ γ· · w on the slope surface (see
Fig. 1) and +d cosθ z cos θ γ( · )·vf w

2 along the wetting front. This situation
may also arise if the hydraulic conductivity is reduced at depth zvf , yet
it would be caused by induced saturation from the slope surface
downward, rather than by perching of soil water over a soil

Fig. 5. Schematic of a sliding soil block on a slope. Elevation view not drawn to
scale.
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discontinuity as assumed in the classic model of slope stability
(Loáiciga, 2015). Either one of these two situations is associated with a
factor of safety given by:

⎜ ⎟=
′

+ ⎛
⎝

− ⎞
⎠

′
FS c

z γ θ θ
γ γ

γ
ϕ
θcos sin

·
tan
tanvf o

o w

o (51)

From Eq. (51) follows the maximum angle a slope of cohesionless
soil ( ′ =c 0) may have and be stable:

⎜ ⎟⎜ ⎟= ⎛

⎝

⎛
⎝

− ⎞
⎠

′⎞

⎠
−θ tan

γ γ
γ

tanϕ·o w

o

1

(52)

Eq. (52) states the maximum angle natural or constructed slopes
may have when induced soil saturation produces air trapping along the
wetting front or a reduction of hydraulic conductivity occurs at any
depth.

The Results section offers examples of the effect of infiltration on
translational slope stability.

3. Results

3.1. Cohesive soil

The first example illustrates this paper’s theory with a cohesive soil
(with negligible friction strength) whose factor of safety against sliding
is given by the first term of the right-hand side of eq. (50). Two 24-h
storms were employed in separate applications of this paper’s runoff-
infiltration method and slope stability analysis. Table 1 lists the slope
geometry and hydraulic parameters applied in this example. The spatial
computation step was set to sΔ =1m, and the time step tΔ =1 s. Nu-
merical calculations were also conducted with combinations of sΔ and

tΔ that satisfied the CFL stability condition (32), while keeping sΔ less
than 2m. The numerical simulation produced identical results with all
chosen combinations of sΔ and tΔ . Two distinct rainfall distributions
were employed, one of the storms had a constant intensity yielding a
total depth of 0.400m over 24 h (see diagram in Fig. 3, with the rainfall
rate r0= 4.63×10−6 m/s). The other storm features a symmetric tri-
angular rainfall rate as depicted in Fig. 3 (with the slope coefficient in
Fig. 3 having magnitude ±2.14335×10−10 m/s2 in the rising and re-
cession limbs, respectively) also yielding 0.400m of rain over 24 h.

Table 2 lists the cohesive soil’s characteristics used in this example,
which in this case are the porosity (n), (volumetric) water content (v0),
water tension at the wetting front (hpf ), hydraulic conductivity (K0)
effective cohesion ( ′c ), and saturated unit weight ((γo).

Fig. 6 illustrates the determination of the time of runoff initiation
(tQ) corresponding to the constant rainfall rate; tQ equals 3610 s in this
case, which is the time when the rainfall rate equals the infiltration rate.
Notice the relatively high rate of infiltration at early time.

Fig. 7 displays the diagram illustrating the determination of the time
of runoff initiation associated with the triangular rainfall rate, in which
case tQ =15,858 s. It is seen in Fig. 7 the constant rainfall rate generates
runoff at a much earlier time (tQ =3610 s) than the symmetric trian-
gular rainfall rate. It is seen in Fig. 7 the relatively high value of the
infiltration rate at early time.

Fig. 8 displays the variation of the runoff depth calculated for var-
ious times since the beginning of constant rainfall that delivers 0.400m
of water in 24 h. The graphs shown in Fig. 8 demonstrate the runoff

depth converges to a steady state after 1365min of uniform rainfall,
and so does the runoff rate because it is a function of the depth in the
kinematic wave formulation (see Eq. (23)). The infiltration rate corre-
sponding to the runoff depth that approaches steady state is derived
from Eq. (8) to yield the following expression (when →d s t d s( , ) ( )):

= + +g s t K a d s a
G s t

( , ) ( )
( , )o

o 1

(53)

Fig. 9 displays the calculated runoff depth (d) associated with the
constant and triangular symmetric rainfall rates. The runoff depth was
calculated at the toe of the slope ( =s L =300m), where it reaches its
maximum magnitude. It is seen in Fig. 9 the earlier appearance of
runoff produced by the constant rainfall rate. The runoff depth pro-
duced by constant rainfall increases rapidly until the time when the

Table 1
Slope geometry and runoff data for first example of slope stability.

Slope and slope
angle (S θ;o )

Roughness
coeff. (N )

Length
(L, m)

Width
(b, m)

Rainfall (r , m)

5H:1V ( = °θ 11.31 ) 0.20 300 50 0.400m constant
or triangular
(Fig. 3)

Table 2
Cohesive soil properties.

Porosity (n) Water
content
(v0)

Water
tension
(hpf , m)

Conductivity
(K0, m/s)

Cohesion
( ′c , kN/m2)

Unit
weight
(γo, kN/
m3)

0.30 0.15 0.25 1.39× 10−6 10 20

Fig. 6. Graphical determination of the time of runoff initiation (constant
rainfall).

Fig. 7. Graphical determination of the time of runoff initiation (symmetric
triangular rainfall).
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entire slope is contributing to runoff at the toe of slope, which happens
at about 9000 s when the runoff depth is about 7mm. Thereafter, the
runoff depth increases slowly from about 7mm to about 9mm of depth
at the end of the rainfall event (24 h=86,400 s). The graph of runoff
depth corresponding to the triangular rainfall indicates the rate of in-
crease of the runoff depth is largest between 0 and 20,600 s, peaking at
the latter time, when the runoff depth equals 5.7 mm. At this time the
entire slope is contributing runoff to the slope’s toe.

The runoff depth caused by the triangular rainfall increases until
reaching a maximum at about 44,000 s, when it equals about 15.5 mm
at the slope’s toe. Thereafter, it decreases to a nil value at 82,400 s. The
overall shapes of the runoff-depth diagrams associated with the con-
stant and triangular rainfalls at all other locations along the slope
( < <s L0 ) are similar to those depicted in Fig. 9, but with the depth (d)
progressively scaled down as each approaches the upstream boundary
(where d =0 for all times).

Fig. 10 displays the calculated depth to the wetting front associated
with the constant and triangular rainfalls. The depths to the wetting
front were calculated at the times of initiation of runoff (tQ) corre-
sponding to the constant and triangular rainfalls, which were 3610 and
15,858 s, respectively, and at the end of rainfall (86,400 s). The depth to
the wetting front at the end of rainfall is of special importance because
it represents the critical condition for slope stability, as shown below.

Fig. 10 indicates the depth to the wetting front is fairly uniform
along the slope, reaching its largest magnitude at the slope toe. The
depths to the wetting fronts associated with constant rainfall and tri-
angular rainfall at the slope toe equal 1.30 and 1.13, respectively.
Evidently, infiltration is more effective when the water application rate
is constant, all other factors being equal. Therefore, the constant

rainfall poses a greater hazard to slope stability than the triangular
rainfall due to its deeper penetration depth. The percentage error in
mass balance was less than 0.1% in this example, which demonstrates
the accuracy of the calculated infiltration and cumulative runoff.

The factor of safety shown in Fig. 11 was calculated with the first
term on the right-hand side of Eq. (50) for a soil exhibiting cohesive
strength only, which, as listed in Table 2 is typical of a very soft co-
hesive soil ( ′c =10 kN/m2 in this example). Nevertheless, the results of
Fig. 11 indicate this slope would remain stable when the wetting front
reaches its maximum value equal to 1.30m, which has a corresponding
factor of safety equal to 2. The factor of safety was extrapolated to a
depth of the wetting front equal to 2.60m in Fig. 11, which is the depth
the wetting front would need to penetrate to cause a translational slide.
The results from this example establish that translational slides are
unlikely to occur even in soft cohesive soils by external wetting, unless
the soil is sensitive and its structure collapses under wetting. Cohesive
homogeneous soils are more prone to fail along circular or logarithmic
spiraled, deep-seated, slip surfaces (Lambe and Whitman, 1969;
Griffiths and Marquez, 2007; Duncan et al., 2014; Loáiciga, 2015).

3.2. Cohesionless soil

Cohesionless soils (effective cohesion ′ =c 0) are known to be prone
to translational sliding by rainfall wetting (Cedegren, 1989; Loáiciga,
2015), and they cause substantial loss of life and property annually the
world over (see, e.g., Schuster et al., 2002). The factor of safety against
sliding of a cohesionless soil is given by the second term on the right-
hand side of Eq. (50). The calculation of coupled runoff and infiltration
and their effect on slope stability is illustrated in this second example
relying on the NRCS 24-h, Type I, rainfall hyetograph scaled to a total
depth of rainfall equal to 0.400m, shown in Fig. 4.

Fig. 8. Runoff depth on the slope for various times since the beginning of
constant rainfall.

Fig. 9. Runoff depth at the slope toe ( =s L =300m) caused by constant and
triangular rainfall rates.

Fig. 10. Calculated depths to the wetting fronts corresponding to the constant
and triangular rates at the initiation of runoff and at the end of rainfall.

Fig. 11. The factor of safety (FS) for slope stability associated with constant
rainfall.
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Table 3 lists the hydraulic and geometric properties applied in this
second example, in which the computational steps sΔ and tΔ were set to
10m and 10 s, respectively. Numerical calculations were also con-
ducted with combinations of sΔ and tΔ that satisfied the CFL stability
condition (32), while keeping sΔ less than 10m. Numerical simulations
produced identical results with all chosen combinations of sΔ and tΔ .

The slope used in this second example is steeper than in the first
example. Table 4 lists the cohesionless soil’s properties applied in this
example, which in this case are the porosity (n), (volumetric) water
content (v0), water tension at the wetting front (hpf ), hydraulic con-
ductivity (K0), effective friction angle ( ′ϕ ), and saturated unit weight
((γo).

One remarkable feature of the cohesionless soil employed in this
example is that it is ten times more permeable than the cohesive soil of
the first example (compare the K0 values in Tables 2 and 4). The friction
angle of the cohesionless soil (35°) is less than the slope angle (39.81°)
meaning the cohesionless soil is stable so long as the friction stress
induced by soil–water tension is sufficient to overcome the deficit of
frictional strength that would occur on the same dry slope with the
given geometric characteristics.

Fig. 12 displays the time history of the rainfall rate, infiltration rate,
the time of initiation of runoff t( Q =34,740 s), and the infiltration (G)
at the slope toe. It is evident the duration of excess rainfall generating
runoff is short lived, starting at the time of initiation of runoff
(tQ =34,740 s). The infiltration at the slope toe equals 0.326m at the
end of rainfall, meaning 0.074m of the total rainfall (=0.400m) drains

from the slope as runoff at that location.
Fig. 13 displays the calculated runoff depth (d) and the depth to the

wetting front at the toe of the slope (zvf ). Runoff begins at time 34,740 s
and ends at 46,630 s at this location. This is the time interval when
rainfall is most intense, which causes the wetting front to advance at its
fastest rate during the 24-h period of rainfall. The depth to the wetting
front reached a maximum equal to 2.17m. The calculated percentage
error in mass balance was less than 0.1% in this example, proving the
accuracy of the numerical algorithm.

Fig. 14 depicts the factor of safety (FS) calculated for the cohe-
sionless soil with properties listed in Table 4.

The factor of safety graphed in Fig. 14 was calculated with the
second term on the right-hand side (the frictional term) of Eq. (50). It is
evident from Fig. 14 the slope would fail in this case when the depth to
the wetting front reaches 0.65m, which corresponds to 0.0975m of
infiltration (=0.65×0.15, where 0.15 equals the water-content deficit

−n v0). This shows permeable soil receiving rainfall depth on the order
of 0.0975m could experience sliding.

Eq. (52) can be employed to calculate the maximum slope angle for
which slope stability is maintained when the advance of the wetting
front is impeded by compressed air or a reduction of hydraulic con-
ductivity at any depth thus causing positive pressure from the slope
surface through the wetting front. Using a saturated unit weight equal
to 20 kN/m3 and angle of effective friction equal to 35° as before, it is
determined the maximum angle the slope may have to be stable equals
19.6°.

Table 3
Slope geometry and runoff data used in the second example of slope stability.

Slope and slope
angle (S θ;o )

Roughness
coeff. (N )

Length
(L, m)

Width
(b, m)

Rainfall
(r , m)

1.2H:1V
( = °θ 39.81 )

0.20 300 50 0.400m NRCS
Type I, 24-h
(Fig. 4)

Table 4
Cohesionless soil properties.

Porosity
(n)

Water
content (v0)

Water tension
(hpf , m)

Conductivity
(K0, m/s)

Friction
angle ( ′ϕ )

Unit weight
(γo, kN/m

3)

0.30 0.15 0.15 1.39× 10−5 35 20

Fig. 12. Rainfall rate, infiltration rate, the time of initiation of runoff (tQ), and
the infiltration associated with the NRCS type I storm event.

Fig. 13. The runoff depth and the depth to the wetting front calculated at the
slope toe and corresponding to the NRCS type I storm event.

Fig. 14. Factor of safety for the example involving a cohesionless soil.
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4. Extensions of this paper’s theory

4.1. Linearly variable antecedent (volumetric) water content

The theory presented in this work assumes a constant antecedent
volumetric water content (v )o . This section describes an extension of
this paper’s theory to include an antecedent water content that varies
linearly with depth, as shown in Fig. 15. The antecedent volumetric
water content (vo) is given by the following expression:

= +v z a e z( ) ·o 0 (54)

in which the coefficients a and e0 describe the variation of the ante-
cedent water content with depth as depicted in Fig. 15. The antecedent
water content vo increases (or decreases) with increasing depth (z)
when the coefficient e0 is positive (or negative).

The component of infiltration along the axes equals the integral of
the water-content deficit from the slope surface to the depth of the
wetting front (zf ):

∫= − = − −
=

G θ n v z dz n a z e zcos ( ( )) ( )·
2z

z
f f0 0

2f

(55)

Substituting Eq. (54) into Eq. (7) produces the following partial
differential equation for the depth to the wetting front:

− −
∂
∂

− − + =n a e z z
z
t

K θ z K d s t θ h(( ) · )· ( cos )· ·( ( , )·cos ) 0f f
f

o f o pf (56)

By solving Eq. (56) (numerically) for z s t( , )f one can obtain the in-
filtration from Eq. (55):

= ⎡
⎣

− − ⎤
⎦

G s t
θ

n a z e z( , ) 1
cos

( )·
2f f

2
(57)

Eq. (56) involves the runoff depth (d s t( , )). The numerical solution of
Eqs. (56) and (57) for infiltration, and of Eq. (19) for the runoff depth
proceeds similarly to the explicit-finite difference algorithm described
in this paper for the case when =e 0 (i.e., constant antecedent water-
content deficit ( −n vo)).

The calculation of the time to the initiation of runoff (tQ) when the
antecedent water content varies linearly with depth is needed to solve
the runoff and infiltration equations. Recall slope runoff begins when
the rainfall rate first equals the infiltration rate and exceeds it im-
mediately thereafter. This condition is determined resorting to Eq. (6)
to yield the following equality:

= +r t K K
h

z s t θ
( ) ·

( , )cosQ o o
pf

f Q (58)

in which z s t( , )f Q must be written in terms of the infiltration at time tQ,
or G s t( , )Q , which in turn equals the cumulative rainfall at time tQ (i.e.,

=G s t R t( , ) ( )Q Q ). The formula expressing z s t( , )f Q in terms of the cu-
mulative rainfall R t( )Q is obtained by solving the quadratic Eq. (57) to
yield the following result in this instance:

=
− − − −

z s t
n a n a eR t θ

e
( , )

( ) ( ) 2 ( )cos
f Q

Q
2

(59)

where the following condition must be met for Eq. (59) to produce a
real-valued answer when the coefficient e is positive:

− ⩾ >n a
e

R t θ if e( )
2

( )cos 0Q
2

(60)

Eq. (60) for z s t( , )f Q must be substituted in Eq. (56), and, subse-
quently the time tQ is that which achieves equality of the right-hand and
left-hand sides of Eq. (58). The depth z s t( , )f Q represents the initial
boundary condition of the pde (56). The upstream boundary condition
of Eq. (56) for time >t tQ is derived by setting the runoff depth to zero
in Eq. (56) at =s 0 such that:

− −
∂

∂
−= +n a e z t z t

z t
t

K θ z t K h(( ) · (0, ))· (0, )
(0, )

( cos )· (0, ) ·f f
f

o f o pf (61)

The upstream boundary condition for infiltration is derived from Eq.
(57) once the depth to the wetting front at that location (z t(0, )f ) is
solved for numerically:

= ⎡
⎣

− − ⎤
⎦

G t
θ

n a z t e z t(0, ) 1
cos

( )· (0, )
2

·[ (0, )]f f
2

(62)

The set of equations derived in this section, plus those presented
governing runoff, can be solved to quantify infiltration, runoff, and
translational slope stability when the antecedent water content varies
linearly with increasing depth.

4.2. Continuity of suspended sediment and slope degradation: the role of
infiltration

Water moving on the surface of the earth is a key agent of landform
change. The processes of erosion, sediment transport, and sedimenta-
tion (or deposition) control how the land surface undergoes aggrada-
tion (rise of its elevation) or degradation (lowering of its elevation). The
factors and processes governing erosion, sediment transport, and sedi-
mentation by moving water are complex (Renard et al., 1997; Julien,
2010). This paper has shown infiltration influences slope runoff (and
vice versa). This section develops the advective pde of 1D suspended
sediment continuity involving slope degradation driven by runoff and
infiltration. Fig. 16 depicts the variables and geometry that control the
continuity (or conservation) of suspended sediment and slope de-
gradation. Fig. 16 displays the (vertically-averaged) concentration of
suspended sediment (C s t( , )SS ) and the thickness of slope degradation
(z s t( , )vd ). The concentration of suspended sediment is herein defined as
the volume of sediment (detached from the slope surface) per unit
volume of water in the water column of depth d as shown in Fig. 16.
The suspended sediment discharge (qSS) advected by runoff equals the
runoff rate multiplied by the sediment concentration, or =q qCSS SS (it
has units of volume of suspended sediment per unit time).

Slope degradation results from the detachment of sediment (or soil)
from the slope surface that undergoes two types of downslope transport
processes. One process produces the motion of detached sediment that
remains in contact with the eroding surface as it rolls and slides
downslope. The volume of sediment transported in this manner is called
the “bed load”. The bed load does not contribute to suspended sediment
in the water column. The second process transports detached sediment
in suspension. The volume of sediment transported in this manner is
called the “suspended load”. Sediment detachment occurs when the
shear stress on the slope surface exerted by moving water exceeds the
critical shear stress necessary to mobilize soil particles.

Fig. 15. Diagram of a linearly variable antecedent water content (elevation
view not drawn to scale).
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The transport of detached sediment particles depends on the specific
runoff and particle characteristics. The critical shear stress of cohesive
soils is commonly too large to be exceeded by the tractive shear exerted
by shallow slope runoff (Smerdon and Beasley, 1961; Moody and Smith,
2005; Shan et al., 2015). The impact of raindrops, however, can exert
stresses that break up the bonds between cohesive-soil particles prior to
the initiation of runoff. Those particles may be transported by runoff
thereafter as either bed load or suspended load depending on runoff and
particle characteristics.

Let zvb and zvS denote respectively the thicknesses of slope de-
gradation caused by bed-load and suspended-load transport. The cor-
responding volume of transported sediment are denoted respectively by
Vvb and VvS. The total slope degradation is the sum of the degradations
caused by bed-load and suspended-load transport, = +z z zvd vb vS, with
a corresponding volume of transported sediment denoted by Vvd. The
time-rate of change of the total volume of sediment transport equals the
sum of the time-rate of change of the volume of sediment that is
transported as bed load plus the time-rate of change of the volume of
sediment transported as suspended load expressed by the following
formula:

∂
∂

= ∂
∂

+ ∂
∂

= ⎛
⎝

∂
∂

+ ∂
∂

⎞
⎠

−V
t

V
t

V
t

z
t

z
t

θ s b ncos ·Δ · ·(1 )vd vb vS vb vS

(63)

in which n denotes the porosity of the slope soil. The equation of
continuity of suspended load (or suspended sediment) developed in this
section considers (i) the sediment load advected with runoff, (ii) the
sediment load carried onto the slope surface by infiltration, and (iii) the
volume of sediment eroded from the slope surface that becomes sus-
pended load in the overlying water column (VvS). The balance of the
rates of sediment in and out of the fluid control volume ABCD shown in
Fig. 16 determines the rate of change of the concentration of suspended
load in the control volume. The control body of water ABCD en-
compasses a volume equal to b d sΔ , in which sΔ denotes its dimension
along the coordinate axis s. The pde describing the continuity of sus-
pended sediment is given by the following expression:

−
∂

∂
− ∂

∂
+ − ∂

∂
= ∂
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s
C θ G

t
θ n z

t
C d

t
1 ( )

cos cos ·(1 ) ( )SS
SS F

vS ss
(64)

where nF represents the porosity of the sediment fraction that becomes
suspended. The initial condition associated with Eq. (64) prescribes
zero sediment concentration at time tQ when slope runoff begins. The

upstream boundary condition of Eq. (64) specifies the sediment con-
centration at s =0 is equal to zero for all time following the initiation
of runoff. The runoff depth (d, see the pde (19)) and the infiltration rate
(see the pde (8)) are coupled with the sediment concentration (CSS)
governed by the pde (64). This constitutes a set of three coupled non-
linear pdes. The rate of slope degradation by suspension and transport
of detached sediment (∂ ∂z t/vS ) must be specified to solve the runoff,
infiltration, and sediment continuity equations. That rate must be ex-
pressed as a function of the runoff regime and sediment characteristics,
including its resistance to shear detachment (see, e.g., Simons et al.,
1981; Schiettecatte et al., 2008). In general, the rate of slope de-
gradation introduces a fourth equation that must be coupled with the
pdes for sediment transport, runoff, and infiltration to yield a tetrad of
nonlinear equations. Their solution remains an unresolved research
problem.

The rate of slope degradation can be solved for from Eq. (64) if
steady-state conditions are approached (see Figs. 8 and 9). Setting the
runoff rate equal to its steady-state value ( →q s t q s( , ) ( )) in Eq. (64) and
assuming the suspended sediment concentration converges to a steady-
state condition after sustained external constant wetting we have the
following result:
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q s C s
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C s
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·cos ·(1 )

[ ( )· ( )] ( )
(1 )

vS

F

SS SS
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Eq. (65) states the rate of slope degradation is proportional to the
sum of the change of suspended sediment with respect to slope location
plus the deposition of suspended sediment induced by infiltration.

5. Conclusions

This paper presented a theory for the calculation of slope runoff and
infiltration, and for the assessment of translational slope stability based
on a generalization of the G&A model to the case of sloping terrain.
Several examples involving external water application (by rainfall) with
different temporal distributions, and relying on soil and hydraulic
characteristics, demonstrated the solution capacity of this paper’s so-
lution algorithm. The solution algorithm was found numerically stable
and accurate, and its execution for several runs involving constant,
triangular, or NRCS rainfall patterns required processing times of less
than 10min each in a standard laptop computer. This paper’s results
demonstrated long and sustained water application produces larger
infiltration than triangular or NRCS-type rainfall distributions of the
same duration and the same total depth of precipitation. Evidently,
infiltration is more effective when the water application rate is con-
stant, all other factors being equal. Therefore, the constant rainfall or
water application poses a greater hazard to slope stability than the
other rainfall types or water applications.

This paper introduced a novel interpretation of and solution method
for the long-slope stability problem. It was shown by quantitative
analysis that cohesionless and unsaturated soils forming sloping terrain
are prone to translational sliding as the wetting front descends through
the soil profile. This work demonstrated the stability of long slopes
formed by cohesionless soils depends on basic factors, such as slope
geometry, the water application rate, the depth of penetration of the
wetting front, and the soil hydraulic and strength characteristics. There
is no requirement in this paper’s slope stability theory for dis-
continuities of hydraulic conductivity within the wetted soil profile or
the formation of a perched groundwater flow system to explain slope
stability. It was demonstrated, however, that compressed air or reduc-
tion of the hydraulic conductivity at any depth imposes a limiting slope
angle to preserve stability. On the other hand, this paper has shown
long slopes formed by cohesive soils are not likely to undergo shallow
sliding by a penetrating wetting front.

The pde relating the continuity of suspended sediment to the rate of
slope degradation caused by slope runoff and influenced by infiltration
was developed in this work. The pde governing suspended sediment

Fig. 16. Variables and geometry that control slope erosion. Elevation view not
drawn to scale.
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concentration must be coupled with the pdes governing infiltration and
runoff to form a system of three nonlinear pdes from which to calculate
sediment concentration, runoff, and infiltration, provided the rate of
slope degradation is unknown or is formulated in terms of runoff and
soil resistance characteristics. The joint solution of the runoff, infiltra-
tion, sediment transport, and slope degradation equations for sloping
terrain remains an unresolved research problem.

6. Symbology

The symbols L∗ and t∗ denote units of length and time, respectively;
kN and kPa denote kilo Newtons and kilo Pascals, respectively.

a: antecedent volumetric water content at the slope surface depicted
in Fig. 15 (dimensionless);

ao: coefficient defined in Eq. (9) (L∗ t∗−1);
a1: coefficient defined in Eq. (10) (L∗2 t∗−1);

−
−ak k

j
, 1

( 1) : recursive equation defined in Eq. (40) (dimensionless);
b: slope width (L∗);
bo: coefficient in the polynomial of Eq. (16) (L∗2 t∗−4);
b1: coefficient in the polynomial of Eq. (16) (L∗2 t∗−3);
b2: coefficient in the polynomial of Eq. (16) (L∗ t∗−2);

−
−bk k

j
, 1

( 1) : recursive coefficient defined in Eq. (42) (L∗);
c: slope of the rising limb of triangular rainfall depicted in Fig. 3

(L t∗−2);
′c : effective cohesion of the slope soil (kPa);

CSS: suspended sediment concentration (L∗3 sediment L∗−3 water);
d: runoff depth (L∗);
d j

0
( ): runoff depth at node =k 0 and time j tΔ (L∗);

dk
j( )Q : runoff depth at node =k 0 and time j tΔQ when runoff begins

(L∗);
dk

j( ): runoff depth at node k and time j tΔ (L∗);
−dk

j( 1): runoff depth at node k and time −j t( 1)Δ (L∗);

−
−dk

j
1

( 1): runoff depth at node −k 1 at time −j t( 1)Δ (L∗);
∗d : average depth of runoff (L∗)

D :R duration of rainfall (t∗);
DS: specific water capacity (L∗−1);
e0: slope of the antecedent volumetric water content deficit with

depth shown in Fig. 15 (L∗−1);
f s z( , ): equation describing the geometry of a boundary condition;

−
−fk k

j
, 1

( 1) : recursive coefficient defined in Eq. (44) (L∗);
FS: factor of safety (dimensionless);
FSo: factor of safety prior to slope wetting (antecedent factor of

safety) (dimensionless);
g: infiltration rate (L∗ t∗−1);

∗g : the acceleration of gravity (L∗ t∗−2);
G: infiltration or infiltration depth (L∗);
Gt : derivative of infiltration with respect to time; it equals the in-

filtration rate (L∗ t∗−1);
G :j

0
( ) the infiltration at node =k 0 and time j tΔ (L∗):

Gk
j( ): infiltration at node k and time j tΔ (L∗);

Gk
j( )Q : the infiltration at node k and time j tΔQ when runoff begins

(L∗);
−G :k

j( 1) infiltration at node k and time −j t( 1)Δ ;

−
−Gk

j
1

( 1): infiltration depth at node −k 1 and time step −j t( 1)Δ (L∗);

−
−Gk k

j
, 1

( 1) : recursive coefficient defined in Eq. (41) (L∗ t∗−1);
h: hydraulic head (L∗);
h :p soil–water tension (positive), it is equal to the negative of the

pressure head (L∗);
h :pf soil–water tension at the wetting front (L∗);
hpo: initial soil–water tension (at time=0) (L∗);

−
−hk k

j
, 1

( 1) : recursive coefficient defined in Eq. (47) (dimensionless);
j: time index (= 1, 2, …, T) (dimensionless);
jQ: time index describing the initiation of runoff at time j tΔQ

(dimensionless);
k: Index for computational node (= 1, 2, …, M) (dimensionless);

K : unsaturated hydraulic conductivity (L∗ t∗−1);
Ko: saturated hydraulic conductivity (L∗ t∗−1);
n :F Khp: the derivative of the unsaturated hydraulic conductivity

with respect to the soil–water tension (t∗−1);
L: slope length (L∗);
m: exponent in the kinematic-wave runoff equation (= 5/3);
n: porosity of the soil forming the slope (dimensionless);
n :F porosity of the sediment fraction that is detached to become

suspended load (dimensionless);
N : Manning’s or hydraulic roughness coefficient of the slope surface

(seconds ⋅ meter−1/3 to produce velocity in meter·s−1);
r : rainfall rate (L∗ t∗−1);
ro: constant rainfall rate (L∗ t∗−1);
rd: discrete value of rain depth occurring over a computational time

step tΔ (L∗);
rk

j( ): rainfall depth falling on node k during time step tΔ beginning at
time j tΔ and ending at time +j t( 1)Δ (L∗);

R: cumulative rainfall (L∗);
So: slope of the terrain (change in vertical elevation per unit hor-

izontal distance) (dimensionless);
q: runoff rate (L∗3 t∗−1);
qs: Darcian flux (specific discharge) along the coordinate s (L3 t∗−1);
qz: Darcian flux (specific discharge) along the coordinate z (L∗ t∗−1);
qSS: suspended sediment discharge (L∗3 sediment t∗−1);
s: coordinate parallel to the slope surface increasing downslope (L∗);
t : time;
tQ: time at which runoff begins;
vo: volumetric water content prior to rainfall (antecedent volumetric

water content) (dimensionless);
v: volumetric water content (dimensionless);
V :vb volume of soil eroded that becomes bed load (L∗3);
V :vd Volume of soil eroded that equals the volume of bed load plus

the volume of suspended load (L∗3);
V :vs volume of soil eroded that becomes suspended load (L∗3);
wo: antecedent volumetric water-content deficit (= −n v )o

(dimensionless);

−
−xk k

j
, 1

( 1) : recursive coefficient defined in Eq. (45) (L∗);
z: coordinate perpendicular to the slope surface increasing down-

wards from the surface (L∗);
z :v vertical coordinate increasing downwards from a datum (L∗);
z :vb thickness of soil eroded to become bed load (L∗);
z :vd the thickness of soil eroded that becomes bed load plus the

thickness of soil eroded that becomes suspended load (= zvb + zvs) (L∗);
zvf : depth of the wetting front along the coordinate zv (L∗);
z :vs thickness of soil eroded that becomes suspended load (L∗);
β: hydraulic coefficient defined by Eq. (20) (L∗1/3 t∗−1);
γ : unit weight of soil (or sediment) prior to external wetting

(kN/L∗3);
γo: unit weight of saturated soil (or sediment) (kN/L∗3);
γ :w Unit weight of water (kN/L∗3);

sΔ : distance increment along the coordinate s; also the inter-nodal
distance or computational distance step (L∗);

tΔ : computational time step;
θ: slope angle;

′ϕ : effective friction angle.
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Appendix A

The exact mathematical statement of the infiltration problem in sloping terrain

An Eulerian volumetric balance of water can be written for the REV of Fig. 2 that leads to the following 2D partial differential equation when the
dimensions of the REV tend to zero:

∂
∂

+
∂
∂

= − ∂
∂

q
s

q
z

v
t

s z

(A1)

in which v denotes the volumetric water content. The following steps are taken to transform Eq. (A1) into a partial differential equation written in
terms of the soil’s properties obtained from its characteristic curves that express the water content and the hydraulic conductivity as functions of the
soil water tension (see, e.g., van Genuchten, 1980; Lu et al., 2010): (i) substitute Eqs. (4) and (5) into Eq. (A1); (ii) introduce the rate of change of the
hydraulic conductivity with respect to the soil water tension ( =K dK dh/h pp ), (iii) introduce the time derivative of the volumetric water content with
respect to the water tension in terms of the specific water capacity = −D dv dh/S p (Hillel, 1982). Eq. (A1) is transformed into the following expression
once steps (i), (ii), and (iii) are implemented:
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Eq. (A2) is the 2D partial differential equation describing the variation of the soil–water tension. It relies on a system of rotated coordinates
aligned with axes parallel and perpendicular to the slope surface on the slope plane. Eq. (A2) reduces to the classic 2D Richards equation when the
slope angle =θ 0 and the coordinate axes are rotated clockwise 180° (see, e.g., Hillel, 1982, for a statement of the classic 2D Richards equation).

The initial condition associated with Eq. (A1) is given by:

= =h s z t h s z( , , 0) ( , )p po (A3)

in which h s z( , )po expresses the initial distribution of soil–water tension within the domain of soil under study. The boundary condition on the slope
surface ( =z 0) is given by the following formula up to the time of runoff initiation:

= = +
∂

∂
⩽ ⩽ ⩽ ⩽q r θ K θ K

h s t
z

s L t tcos cos
( ,0, )

0 ; 0z
p

Q (A4)

or by the following equation after runoff begins:

= ⩽ ⩽ >h s t d θ s L t t( ,0, ) cos 0 ;p Q (A5)

The time when runoff begins (tQ) occurs when the component of rainfall along the z coordinate (r θcos ) exceeds for the first time the component of
the infiltration rate expressed by the right-hand side of Eq. (A4). This time must be obtained by simulating the change in soil–water tension and the
hydraulic gradient of pressure head on the surface ( =z 0). Additionally, boundary conditions are necessary below the slope surface for full spe-
cification of the mathematical problem describing the variation of the soil–water tension within the slope soil caused by water application on the
slope surface. One possible approach to achieve such specification is to define (by educated guessing) a geometric boundary described by a function
f s z( , ) on which the soil–water tension is specified. Another possible approach is to define a boundary f s z( , ) describing the position of a phreatic
surface on which the soil water tension equals zero, if such phreatic surface exists. The models Hydrus 1D and Hydrus 2D/3D simulate the movement
of water, heat, and solutes in variably saturated media, and have several options for setting boundary conditions (see a review by Šimůnek et al.,
2016). Evidently, realistic subsurface boundary conditions must be assumed for any solution of Eq. (A2) to be meaningful. Field data may be
available to assist in the formulation of proper values for the subsurface boundary conditions. It is evident, thus, that a numerical solution of the
mathematically exact formulation of the infiltration problem on sloping terrain with surficial water input requires specifying the subsurface
boundary conditions and the determination of the time of initiation of runoff. These specifications introduce uncertainty not present when employing
the modified G&A infiltration model introduced in this work.

References

Bradford, S.F., Katopodes, N.D., 2001. Finite volume model for nonlevel basin irrigation.
J. Irrig. Drain. Eng. 127, 216–223. http://dx.doi.org/10.1061/(ASCE)0733-
9437(2001) 127:4(216).

Brooks, R.H., Corey, A.T., 1964. Hydraulic Properties of Porous Media. Hydrology Paper
3. Colorado State University, Fort Collins, Colorado.

Campbell, G.S., 1974. A simple method for determining unsaturated conductivity from
moisture retention data. Soil Sci. 117, 311–314.

Cedegren, H.R., 1989. Seepage, Drainage, and Flow Nets. John Wiley & Sons, New York.
Chaudry, H.C., 1993. Open-Channel Hydraulics. Prentice Hall, Upper Saddle River, New

Jersey.
Chen, L., Young, M.H., 2006. Green Ampt infiltration model for sloping surfaces. Water

Resour. Res. 42, W07420. http://dx.doi.org/10.1029/2005WR004468.
Chow, V.T., 1959. Open-Channel Flow. McGraw-Hill Kogakusha Ltd., Tokyo.
Courant, R., Friedrichs, K.O., Lewy, H., 1928. On the partial difference equations of

mathematical physics. Math. Ann. 100, 32–74.
Cunge, J.A., Holly Jr., F.M., Verwey, A., 1980. Practical Aspects of Computational River

Hydraulics. Pitman Publishing Ltd., London.
Dingman, S.L., 2015. Physical Hydrology. Waveland Press, Lone Grove, Illinois.
Duncan, J.M., Wright, S.G., Brandon, T.L., 2014. Soil Strength and Slope Stability. John

Wiley & Sons, Hoboken, New Jersey.

Green, W.H., Ampt, G.A., 1911. Studies on soil physics, part I: the flow of air and water
through soils. J. Agric. Sci. 4, 1–24.

Griffiths, D.V., Marquez, R.M., 2007. Three-dimensional slope stability by elasto-plastic
finite elements. Géotechnique 57 (6), 537–546.

Hillel, D., 1982. Introduction to Soil Physics. Academic Press Inc., Orlando, Florida.
Hydrologic Engineering Center, 2000. Hydrologic Modeling System HEC-HMS: Technical

Reference Manual. United States Corps of Engineers, Davis, California.
Iverson, R.M., 2000. Landslide triggering by rain infiltration. Water Resour. Res. 36 (7),

1897–1910.
Johnson, J.M., Loáiciga, H.A., 2017. Coupled infiltration and kinematic-wave runoff si-

mulation in slopes: implications for slope stability. Water 9, 327. http://dx.doi.org/
10.3390/w9050327.

Julien, P.Y., 2010. Erosion and Sedimentation, second ed. Cambridge University Press,
Cambridge, UK.

Lax, P.D., 1954. Weak solutions for nonlinear hyperbolic equations and their numerical
computations. Commun. Pure Appl. Math. 7, 157–193.

Lambe, T.W., Whitman, R.V., 1969. Soil Mechanics. John Wiley & Sons, New York.
Loáiciga, H.A., 2005. Steady-state phreatic surfaces in sloping aquifers. Water Resour.

Res. 41, W08402. http://dx.doi.org/10.1029/2004WR003861.
Loáiciga, H.A., Huang, A., 2007. Ponding analysis with Green-and-Ampt infiltration. J.

Hydrol. Eng. 12 (1), 109–112.
Loáiciga, H.A., 2015. Groundwater and earthquakes: screening analyses for slope stabi-

lity. Eng. Geol. 193, 276–287.

H.A. Loáiciga, J.M. Johnson Journal of Hydrology 561 (2018) 584–597

596

http://dx.doi.org/10.1061/(ASCE)0733-9437(2001) 127:4(216)
http://dx.doi.org/10.1061/(ASCE)0733-9437(2001) 127:4(216)
http://refhub.elsevier.com/S0022-1694(18)30276-2/h0010
http://refhub.elsevier.com/S0022-1694(18)30276-2/h0010
http://refhub.elsevier.com/S0022-1694(18)30276-2/h0015
http://refhub.elsevier.com/S0022-1694(18)30276-2/h0015
http://refhub.elsevier.com/S0022-1694(18)30276-2/h0020
http://refhub.elsevier.com/S0022-1694(18)30276-2/h0025
http://refhub.elsevier.com/S0022-1694(18)30276-2/h0025
http://dx.doi.org/10.1029/2005WR004468
http://refhub.elsevier.com/S0022-1694(18)30276-2/h0035
http://refhub.elsevier.com/S0022-1694(18)30276-2/h0040
http://refhub.elsevier.com/S0022-1694(18)30276-2/h0040
http://refhub.elsevier.com/S0022-1694(18)30276-2/h0045
http://refhub.elsevier.com/S0022-1694(18)30276-2/h0045
http://refhub.elsevier.com/S0022-1694(18)30276-2/h0050
http://refhub.elsevier.com/S0022-1694(18)30276-2/h0055
http://refhub.elsevier.com/S0022-1694(18)30276-2/h0055
http://refhub.elsevier.com/S0022-1694(18)30276-2/h0060
http://refhub.elsevier.com/S0022-1694(18)30276-2/h0060
http://refhub.elsevier.com/S0022-1694(18)30276-2/h0065
http://refhub.elsevier.com/S0022-1694(18)30276-2/h0065
http://refhub.elsevier.com/S0022-1694(18)30276-2/h0070
http://refhub.elsevier.com/S0022-1694(18)30276-2/h0075
http://refhub.elsevier.com/S0022-1694(18)30276-2/h0075
http://refhub.elsevier.com/S0022-1694(18)30276-2/h0080
http://refhub.elsevier.com/S0022-1694(18)30276-2/h0080
http://dx.doi.org/10.3390/w9050327
http://dx.doi.org/10.3390/w9050327
http://refhub.elsevier.com/S0022-1694(18)30276-2/h0090
http://refhub.elsevier.com/S0022-1694(18)30276-2/h0090
http://refhub.elsevier.com/S0022-1694(18)30276-2/h0095
http://refhub.elsevier.com/S0022-1694(18)30276-2/h0095
http://refhub.elsevier.com/S0022-1694(18)30276-2/h0100
http://dx.doi.org/10.1029/2004WR003861
http://refhub.elsevier.com/S0022-1694(18)30276-2/h0110
http://refhub.elsevier.com/S0022-1694(18)30276-2/h0110
http://refhub.elsevier.com/S0022-1694(18)30276-2/h0115
http://refhub.elsevier.com/S0022-1694(18)30276-2/h0115


Lu, N., Godt, J.W., Wu, D.T., 2010. A closed-form equation for effective stress in un-
saturated soil. Water Resour. Res. 46, W05515. http://dx.doi.org/10.1029/
2009WR008646.

McDonald, M.G., Harbaugh, A.W., 1988. A modular three-dimensional finite-difference
ground-water flow model: U.S. Geological Survey Techniques of Water-Resources
Investigations, book 6, chap. A1, 586 p. Reston, Virginia, USA.

Mein, R.G., Larson, C.L., 1973. Modeling infiltration during a steady rain. Water Resour.
Res. 9, 384–394.

Moody, J.A., Smith, J.D., 2005. Critical shear stress for erosion of cohesive soils subjected
to temperatures typical of wildfires. J. Geophys. Res. 110, F01004. http://dx.doi.org/
10.1029/2004JF000141.

Morbidelli, R., Saltalippi, C., Flammini, A., Cifrodelli, M., Corradini, C., Govindaraju, R.S.,
2015. Infiltration on sloping surfaces: laboratory experimental evidence and im-
plications for infiltration modeling. J. Hydrol. 523, 79–85.

Morbidelli, R., Saltalippi, C., Flammini, A., Cifrodelli, M., Picciafuoco, T., Corradini, C.,
Govindaraju, R.S., 2016. Laboratory investigation on the role of slope on infiltration
over grassy soils. J. Hydrol. 543, 542–547.

Morbidelli, R., Saltalippi, C., Flammini, A., Govindaraju., 2018. Role of slope on in-
filtration. J. Hydrol. 557, 878–886.

Morel-Seytoux, H.J., 1980. Application of Infiltration Theory in Hydrologic Practice,
HYDROWAR Program. CEP80-81HJM2. Engineering Research Center, Colorado
State University, Fort Collins, CO.

Rawls, W.J., Ahuja, L.R., Bakensiek, D.L., Shirmohammadi, A., 1992. Infiltration and soil
water movement. In: Maidment, D.R. (Ed.), Handbook of Hydrology (Chapter 5).
McGraw-Hill, New York.

Rawls, W.J., Brakensiek, D.L., 1983. A procedure to predict Green and Ampt infiltration
parameters. In: Advances in Infiltration. America Society of Agricultural Engineering,
St. Joseph, MI, pp. 102–112.

Renard, K.G., Foster, G.R., Weesies, G.A., McCool, D.K., Yoder, D.C., 1997. Predicting soil
erosion by water: a guide to conservation planning with the Revised Universal Soil
Loss Equation (RUSLE). United States Department of Agriculture (USDA)
Agricultural Handbook No. 703. US Government Printing Office, Washington, D.C.

Salvucci, G.D., Entekhabi, D., 1995. Ponded infiltration into soils bounded by a water
table. Water Resour. Res. 31, 2751–2759.

Schiettecatte, W., Verbist, K., Gabriels, D., 2008. Assessment of detachment and sediment

transport capacity of runoff by field experiments on a silt loam soil. Earth Surf.
Processes Landforms 33 (8), 1302–1314.

Schuster, R.L., Salcedo, D.A., Valenzuela, L., 2002. Overview of catastrophic landslides of
South America in the twentieth century. In: Evans, S.G., Degraff J.V. (Eds.),
Catastrophic landslides: Effects, Occurrence, and Mechanisms. Reviews in
Engineering Geology 15, 1-34, Geological Society of America.

Shan, H., Shen, J., Kilgore, R., Kerenyi, K., 2105. Scour in Cohesive Soils. Publication No.
FHWA-HRT-15-033, Federal Highway Administration, McLean, Virginia.

Simons, D.B., Li, R.M., Fullerton, W., 1981. Theoretically derived sediment transport
equations for Pima County, Arizona. In: Prepared for the Pima County Department of
Transportation and Flood Control District, Tucson, Arizona. Simons, Li & Associates,
Fort Collins, Colorado.

Šimůnek, J., van Genuchten, M.Th., Šejna, M., 2016. Recent developments and applica-
tions of the HYDRUS Computer Software Packages. Vadose Zone J. http://dx.doi.org/
10.2136/vzj2016.04.0033.

Singh, V.P., 2017. Kinematic wave theory of overland flow. Water Resour. Manage. 31,
3147–3160 (10.1007/s11269-017-1654-1).

Smerdon, E.T., Beasley, R.P., 1961. Critical cohesive forces in cohesive soils. Agric. Eng.
42, 26–29.

Smith, G.D., 1984. Numerical Solutions of Partial Differential Equations. Clarendon Press,
Oxford, UK.

Strelkoff, T.S., Clemmens, A.J., 1994. Dimensional analysis in surface irrigation. Irrig. Sci.
15, 58–82.

van Genuchten, M.T., 1980. A closed-form equation for predicting the hydraulic con-
ductivity of unsaturated soils. Soils Sci. Soc. Am. J. 44, 892–898.

Weill, S., Mouche, E., Patin, J., 2009. A generalized Richards equation for surface/sub-
surface flow modelling. J. Hydrol. 366, 9–20. http://dx.doi.org/10.1016/j.jhydrol.
2008.12.007.

Wöhling, Th., Singh, R., Schmitz, G.H., 2004. Physically based modeling of interacting
surface–subsurface flow during furrow irrigation advance. J. Irrig. Drain. Eng. 130,
349–356. http://dx.doi.org/10.1061/(ASCE)07339437(2004) 130:5(349).

Zerihun, D., Furman, A., Warrick, A.W., Sanchez, C.A., 2005. Coupled surface–subsurface
solute transport model for irrigation borders and basins. I. Model development. J.
Irrig. Drain. Eng. 131 (5).

H.A. Loáiciga, J.M. Johnson Journal of Hydrology 561 (2018) 584–597

597

http://dx.doi.org/10.1029/2009WR008646
http://dx.doi.org/10.1029/2009WR008646
http://refhub.elsevier.com/S0022-1694(18)30276-2/h0130
http://refhub.elsevier.com/S0022-1694(18)30276-2/h0130
http://dx.doi.org/10.1029/2004JF000141
http://dx.doi.org/10.1029/2004JF000141
http://refhub.elsevier.com/S0022-1694(18)30276-2/h0140
http://refhub.elsevier.com/S0022-1694(18)30276-2/h0140
http://refhub.elsevier.com/S0022-1694(18)30276-2/h0140
http://refhub.elsevier.com/S0022-1694(18)30276-2/h0145
http://refhub.elsevier.com/S0022-1694(18)30276-2/h0145
http://refhub.elsevier.com/S0022-1694(18)30276-2/h0145
http://refhub.elsevier.com/S0022-1694(18)30276-2/h0150
http://refhub.elsevier.com/S0022-1694(18)30276-2/h0150
http://refhub.elsevier.com/S0022-1694(18)30276-2/h0155
http://refhub.elsevier.com/S0022-1694(18)30276-2/h0155
http://refhub.elsevier.com/S0022-1694(18)30276-2/h0155
http://refhub.elsevier.com/S0022-1694(18)30276-2/h0160
http://refhub.elsevier.com/S0022-1694(18)30276-2/h0160
http://refhub.elsevier.com/S0022-1694(18)30276-2/h0160
http://refhub.elsevier.com/S0022-1694(18)30276-2/h0165
http://refhub.elsevier.com/S0022-1694(18)30276-2/h0165
http://refhub.elsevier.com/S0022-1694(18)30276-2/h0165
http://refhub.elsevier.com/S0022-1694(18)30276-2/h0170
http://refhub.elsevier.com/S0022-1694(18)30276-2/h0170
http://refhub.elsevier.com/S0022-1694(18)30276-2/h0170
http://refhub.elsevier.com/S0022-1694(18)30276-2/h0170
http://refhub.elsevier.com/S0022-1694(18)30276-2/h0175
http://refhub.elsevier.com/S0022-1694(18)30276-2/h0175
http://refhub.elsevier.com/S0022-1694(18)30276-2/h0180
http://refhub.elsevier.com/S0022-1694(18)30276-2/h0180
http://refhub.elsevier.com/S0022-1694(18)30276-2/h0180
http://dx.doi.org/10.2136/vzj2016.04.0033
http://dx.doi.org/10.2136/vzj2016.04.0033
http://refhub.elsevier.com/S0022-1694(18)30276-2/h0205
http://refhub.elsevier.com/S0022-1694(18)30276-2/h0205
http://refhub.elsevier.com/S0022-1694(18)30276-2/h0210
http://refhub.elsevier.com/S0022-1694(18)30276-2/h0210
http://refhub.elsevier.com/S0022-1694(18)30276-2/h0215
http://refhub.elsevier.com/S0022-1694(18)30276-2/h0215
http://refhub.elsevier.com/S0022-1694(18)30276-2/h0220
http://refhub.elsevier.com/S0022-1694(18)30276-2/h0220
http://refhub.elsevier.com/S0022-1694(18)30276-2/h0225
http://refhub.elsevier.com/S0022-1694(18)30276-2/h0225
http://dx.doi.org/10.1016/j.jhydrol.2008.12.007
http://dx.doi.org/10.1016/j.jhydrol.2008.12.007
http://dx.doi.org/10.1061/(ASCE)07339437(2004) 130:5(349)
http://refhub.elsevier.com/S0022-1694(18)30276-2/h0240
http://refhub.elsevier.com/S0022-1694(18)30276-2/h0240
http://refhub.elsevier.com/S0022-1694(18)30276-2/h0240

	Infiltration on sloping terrain and its role on runoff generation and slope stability
	Introduction
	Theory and methods
	The G&#x200B;&&#x200B;A infiltration equation in sloping terrain
	The time to the initiation of slope runoff (tQ)
	Kinematic wave runoff
	Numerical solution of the infiltration and runoff equations
	Explicit finite-difference formulation of the infiltration equation
	Explicit finite-difference formulation of the kinematic-wave runoff
	Explicit finite-difference solution of the infiltration and kinematic-wave runoff equations
	The depth to the wetting front

	Slope infiltration and translational slope stability

	Results
	Cohesive soil
	Cohesionless soil

	Extensions of this paper’s theory
	Linearly variable antecedent (volumetric) water content
	Continuity of suspended sediment and slope degradation: the role of infiltration

	Conclusions
	Symbology
	Acknowledgments
	Appendix A
	The exact mathematical statement of the infiltration problem in sloping terrain

	References




