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The population genetic perspective is that the processes shaping genomic variation can be revealed only through
simultaneous investigation of sequence polymorphism and divergence within and between closely related species.
Here we present a population genetic analysis of Drosophila simulans based on whole-genome shotgun sequencing of
multiple inbred lines and comparison of the resulting data to genome assemblies of the closely related species, D.
melanogaster and D. yakuba. We discovered previously unknown, large-scale fluctuations of polymorphism and
divergence along chromosome arms, and significantly less polymorphism and faster divergence on the X chromosome.
We generated a comprehensive list of functional elements in the D. simulans genome influenced by adaptive evolution.
Finally, we characterized genomic patterns of base composition for coding and noncoding sequence. These results
suggest several new hypotheses regarding the genetic and biological mechanisms controlling polymorphism and
divergence across the Drosophila genome, and provide a rich resource for the investigation of adaptive evolution and
functional variation in D. simulans.

Citation: Begun DJ, Holloway AK, Stevens K, Hillier LW, Poh YP, et al. (2007) Population genomics: whole-genome analysis of polymorphism and divergence in Drosophila
simulans. PLoS Biol 5(11): e310. doi:10.1371/journal.pbio.0050310

Introduction

Given the long history of Drosophila as a central model
system in evolutionary genetics beginning with the origins of
empirical population genetics in the 1930s, it is unsurprising
that Drosophila data have inspired the development of
methods to test population genetic theories using DNA
variation within and between closely related species [1–4].
These methods rest on the supposition of the neutral theory
of molecular evolution that polymorphism and divergence
are manifestations of mutation and genetic drift of neutral
variants at different time scales [5]. Under neutrality, poly-
morphism is a ‘‘snapshot’’ of variation, some of which
ultimately contributes to species divergence as a result of
fixation by genetic drift. Natural selection, however, may
cause functionally important variants to rapidly increase or
decrease in frequency, resulting in patterns of polymorphism
and divergence that deviate from neutral expectations [1,2,6].
A powerful aspect of inferring evolutionary mechanism in
this population genetic context is that selection on sequence
variants with miniscule fitness effects, which would be
difficult or impossible to study in nature or in the laboratory
but are evolutionarily important, may cause detectable
deviations from neutral predictions. Another notable aspect
of these population genetic approaches is that they facilitate

inferences about recent selection—which may be manifest as
reduced polymorphism or elevated linkage disequilibrium—
or about selection that has occurred in the distant past—
which may be manifest as unexpectedly high levels of
divergence. The application of these conceptual advances to
the study of variation in closely related species has resulted in
several fundamental advances in our understanding of the
relative contributions of mutation, genetic drift, recombina-
tion, and natural selection to sequence variation. However, it
is also clear that our genomic understanding of population
genetics has been hobbled by fragmentary and nonrandom
population genetic sampling of genomes. Thus, the full value
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of genome annotation has not yet been applied to the study
of population genetic mechanisms.

Combining whole-genome studies of genetic variation
within and between closely related species (i.e., population
genomics) with high-quality genome annotation offers several
major advantages. For example, we have known for more than
a decade that regions of the genome experiencing reduced
crossing over in Drosophila tend to show reduced levels of
polymorphism yet normal levels of divergence between
species [7–10]. This pattern can only result from natural
selection reducing levels of polymorphism at linked neutral
sites, because it violates the neutral theory prediction of a
strong positive correlation between polymorphism and
divergence [5]. However, we have no general genomic
description of the physical scale of variation in polymor-
phism and divergence in Drosophila and how such variation
might be related to variation in mutation rates, recombina-
tion rates, gene density, natural selection, or other factors.
Similarly, although several Drosophila genes have been targets
of molecular population genetic analysis, in many cases, these
genes were not randomly chosen but were targeted because of
their putative association with phenotypes thought to have a
history of adaptive evolution [11,12]. Such biased data make it
difficult to estimate the proportion of proteins diverging
under adaptive evolution. In a similar vein, the unique power
of molecular population genetic analysis, when used in
concert with genome annotation, could fundamentally alter
our notions about phenotypic divergence due to natural
selection. This is because our current understanding of
phenotypic divergence and its causes is based on a small
and necessarily highly biased description of phenotypic
variation. Alternatively, a comprehensive genomic investiga-
tion of adaptive divergence could use genome annotations to
reveal large numbers of new biological processes previously
unsuspected of having diverged under selection. Here we
present a population genomic analysis of D. simulans. D.
simulans and D. melanogaster are closely related and split from
the outgroup species, D. yakuba, several million years ago [13–
15]. The vast majority of D. simulans and D. yakuba euchro-

matic DNA is readily aligned to D. melanogaster, which permits
direct use of D. melanogaster annotation for investigation of
polymorphism and divergence and allows reliable inference
of D. simulans–D. melanogaster ancestral states over much of the
genome. Our analysis uses a draft version of a D. yakuba
genome assembly (aligned to the D. melanogaster reference
sequence) and a set of light-coverage, whole-genome shotgun
data from multiple inbred lines of D. simulans, which were
syntenically aligned to the D. melanogaster reference sequence.

Results/Discussion

Genomes and Assemblies
Seven lines of D. simulans and one line of D. yakuba were

sequenced at the Washington University Genome Sequencing
Center (the white paper can be found at http://www.genome.
gov/11008080). The D. simulans lines were selected to capture
variation in populations from putatively ancestral geographic
regions [16], recent cosmopolitan populations, and strains
encompassing the three highly diverged mitochondrial
haplotypes previously described for the species [17]. These
strains have been deposited at the Tucson Drosophila Stock
Center (http://stockcenter.arl.arizona.edu). A total of 2,424,141
D. simulans traces and 2,245,197 D. yakuba traces from this
project have been deposited in the National Center for
Biotechnology Information (NCBI) trace archive. D. simulans
syntenic assemblies were created by aligning trimmed,
uniquely mapped sequence traces from each D. simulans strain
to the euchromatic D. melanogaster reference sequence (v4).
Two strains from the same population, sim4 and sim6, were
unintentionally mixed prior to library construction; reads
from these strains were combined to generate a single, deeper,
syntenic assembly (see Materials and Methods), which is
referred to as SIM4/6. The other strains investigated are
referred to as C167.4, MD106TS, MD199S, NC48S, and w501.
Thus, six (rather than seven) D. simulans syntenic assemblies
are the objects of analysis. Details on the fly strains and
procedures used to create these assemblies, including the use
of sequence quality scores, can be found in Materials and
Methods. The coverages (in Mbp) for C167.4, MD106TS,
MD199S, NC48S, SIM4/6, and w501, are 56.9, 56.3, 63.4, 42.6,
89.8, and 84.8, respectively. A D. yakuba strain Tai18E2 whole-
genome shotgun assembly (v2.0; http://genome.wustl.edu/)
generated by the Parallel Contig Assembly Program (PCAP)
[18] was aligned to the D. melanogaster reference sequence
(Materials and Methods). The main use of the D. yakuba
assembly was to infer states of the D. simulans–D. melanogaster
ancestor. For many analyses, we used divergence estimates for
the D. simulans lineage or the D. melanogaster lineage (from the
inferred D. simulans–D. melanogaster ancestor) rather than the
pairwise (i.e., unpolarized) divergence between these species.
These lineage-specific estimates are often referred to as ‘‘D.
simulans divergence,’’ ‘‘D. melanogaster divergence,’’ or ‘‘polar-
ized divergence.’’
A total of 393,951,345 D. simulans base pairs and

102,574,197 D. yakuba base pairs were syntenically aligned to
the D. melanogaster reference sequence. Several tens of
kilobases of repeat-rich sequences near the telomeres and
centromeres of each chromosome arm were excluded from
our analyses (Materials and Methods). D. simulans genes were
conservatively filtered for analysis based on conserved
physical organization and reading frame with respect to the

PLoS Biology | www.plosbiology.org November 2007 | Volume 5 | Issue 11 | e3102535

Population Genomics of D. simulans

Author Summary

Population genomics, the study of genome-wide patterns of
sequence variation within and between closely related species,
can provide a comprehensive view of the relative importance of
mutation, recombination, natural selection, and genetic drift in
evolution. It can also provide fundamental insights into the
biological attributes of organisms that are specifically shaped by
adaptive evolution. One approach for generating population
genomic datasets is to align DNA sequences from whole-genome
shotgun projects to a standard reference sequence. We used this
approach to carry out whole-genome analysis of polymorphism and
divergence in Drosophila simulans, a close relative of the model
system, D. melanogaster. We find that polymorphism and diver-
gence fluctuate on a large scale across the genome and that these
fluctuations are probably explained by natural selection rather than
by variation in mutation rates. Our analysis suggests that adaptive
protein evolution is common and is often related to biological
processes that may be associated with gene expression, chromo-
some biology, and reproduction. The approaches presented here
will have broad applicability to future analysis of population
genomic variation in other systems, including humans.



D. melanogaster reference sequence gene models (Materials and
Methods). We took this conservative approach so as to retain
only the highest quality D. simulans data for most inferences.
The number of D. simulans genes remaining after filtering was
11,466. Ninety-eight percent of coding sequence (CDS)
nucleotides from this gene set are covered by at least one D.
simulans allele. The average number of lines sequenced per
aligned D. simulans base was 3.90. For several analyses in which
heterozygosity and divergence per site were estimated, we
further filtered the data so as to retain only genes or
functional elements (e.g., untranslated regions [UTRs]) for
which the total number of bases sequenced across all lines
exceeded an arbitrary threshold (see Materials and Methods).
The numbers of genes for which we estimated coding region
expected heterozygosity, unpolarized divergence, and polar-
ized divergence were 11,403, 11,439, and 10,150, respectively.
Coverage on the X chromosome was slightly lower than
autosomal coverage, which is consistent with less X chromo-
some DNA than autosomal DNA in mixed-sex DNA preps.
Variable coverage required analysis of individual coverage
classes (n ¼ 1–6) for a given region or feature, followed by
estimation and inference weighted by coverage (Materials and
Methods). The D. simulans syntenic alignments are available at
http://www.dpgp.org/. An alternative D. simulans ‘‘mosaic’’
assembly, which is available at http://www.genome.wustl.edu/,
was created independently of the D. melanogaster reference
sequence.

General Patterns of Polymorphism and Divergence
Nucleotide variation. We observed 2,965,987 polymorphic

nucleotides, of which 43,878 altered the amino acid sequence;
77% of sampled D. simulans genes were segregating at least
one amino acid polymorphism. The average, expected
nucleotide heterozygosity (hereafter, ‘‘heterozygosity’’ or
‘‘pnt’’) for the X chromosome and autosomes was 0.0135 and
0.0180, respectively. X chromosome pnt was not significantly
different from that of the autosomes (after multiplying X
chromosome pnt by 4/3, to correct for X/autosome effective
population size differences when there are equal numbers of

males and females; see [19]). However, X chromosome
divergence was greater than autosomal divergence in all
three lineages (50-kb windows; Table 1, Table S1, Figure 1,
Dataset S8). We will discuss this pattern in greater detail
below.
Not surprisingly, many patterns of molecular evolution

identified from previously published datasets were confirmed
in this genomic analysis. For example, synonymous sites and
nonsynonymous sites were the fastest and slowest evolving
sites types, respectively [20–24]. Nonsynonymous divergence
(dN) and synonymous divergence (dS) were positively, though
weakly, correlated (r2¼ 0.052, p , 0.0001) [25–27], and dN was
weakly, negatively correlated with CDS length (Spearman’s q
¼�0.03, p¼ 0.0005) [28,29]. More generally, longer functional
elements showed smaller D. simulans divergence than did
shorter elements (intron Spearman’s q ¼ �0.33; intergenic
Spearman’s q¼�0.39; 39 UTRs Spearman’s q¼�0.11: all show
p , 0.0001) [21,30].
Insertion/deletion (indel) variation. We investigated only

small indels (�10 bp), because they were inferred with high
confidence (Materials and Methods). Variants were classified
with respect to the D. melanogaster reference sequence;
divergence estimates were unpolarized. An analysis of trans-
posable element variation can be found in Text S1. Estimates
of small-indel heterozygosity for the X chromosome and
autosomes (Table S1) were lower than estimates of nucleotide
heterozygosity [31]. Interestingly, variation in nucleotide and
indel heterozygosity across chromosome arms was highly
correlated ([32], Figures 1 and 2; Spearman’s q between 0.45
and 0.69, p , 10�4 for each arm). Deletion heterozygosity and
divergence were consistently greater than insertion hetero-
zygosity and divergence (Figures S1 and S2, Datasets S11–S15)
for both the X chromosome and the autosomes, which
supports and extends previous claims, based on analysis of
repetitive sequences [33], of a general mutational bias for
deletions in Drosophila.
D. simulans autosomal pnt and divergence are of similar

magnitude. Mean polarized autosomal divergence (50-kb

Table 1. Autosome and X Chromosome Weighted Averages of Nucleotide Heterozygosity (p) and Lineage Divergence

Sequence Type Sites Chromosome p Divmel Divsim Divyak

Euchromatic Nonsynonymous X 0.0018 0.0067 0.0070 0.0253

A 0.0026 0.0061 0.0057 0.0223

Synonymous X 0.0199 0.0767 0.0519 0.2314

A 0.0352 0.0695 0.0524 0.2187

Intron X 0.0166 0.0248 0.0330 0.1175

A 0.0212 0.0240 0.0281 0.1028

59 UTR X 0.0079 0.0233 0.0258 0.1018

A 0.0108 0.0216 0.0203 0.0842

39 UTR X 0.0088 0.0199 0.0261 0.0957

A 0.0113 0.0186 0.0192 0.0775

Intergenic X 0.0153 0.0231 0.0299 0.1102

A 0.0204 0.0225 0.0265 0.0957

Heterochromatic Nonsynonymous X 0.0014 0.0088 0.0089 0.0269

A 0.0017 0.0083 0.0075 0.0354

Synonymous X 0.0132 0.0664 0.0493 0.2385

A 0.0136 0.0589 0.0523 0.2338

Divmel, D. melanogaster lineage divergence; Divsim, D. simulans lineage divergence; Divyak, D. yakuba lineage divergence (corresponds to divergence between D. yakuba and the
D. simulans/D. melanogaster common ancestor), see Materials and Methods.
doi:10.1371/journal.pbio.0050310.t001
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windows; 0.024) was only slightly greater than mean autoso-
mal pnt (0.018), even with regions of severely reduced pnt near
telomeres and centromeres included. Indeed, estimates of pnt
for several genomic regions are roughly equal to the genomic
average polarized divergence (Figure 1), suggesting the
existence of large numbers of shared polymorphisms in D.
simulans and D. melanogaster; such variants should be over-
represented in regions of higher nucleotide heterozygosity in
D. simulans. These patterns suggest that the average time to
the most recent common ancestor of D. simulans alleles is
nearly as great as the average time of the most recent
common ancestor of D. simulans and D. melanogaster. The
similarity in scale of polymorphism and divergence in D.
simulans also suggests that many of the neutral mutations that
have fixed in D. simulans were polymorphic in the common
ancestor of the two species. As we discuss below, this has
implications for interpreting chromosomal patterns of poly-
morphism and divergence in this species.

As expected under the neutral model, and given the
observation that much of the D. simulans lineage divergence
is attributable to polymorphism, D. simulans pnt and diver-
gence (50-kb windows) were highly, significantly correlated
(autosome Spearman’s q ¼ 0.56, p , 0.0001: X chromosome
Spearman’s q ¼ 0.48, p , 0.0001) [5]. Moreover, the genetic
and population genetic processes shaping patterns of
divergence along chromosome arms appear to operate in a
similar manner in D. simulans and D. melanogaster, as polarized
divergence (50-kb windows) for the two lineages was highly
correlated (Spearman’s q ¼ 0.74; p , 0.0001). Nevertheless,

some regions of the genome showed highly significant
increases in divergence in either the D. simulans or the D.
melanogaster lineage (see below).
Variation near centromeres and telomeres. Figure 1 and

Figure S1 support previous reports documenting severely
reduced levels of polymorphism in the most proximal and
distal euchromatic regions of Drosophila chromosome arms
[7,10,34–36]. The fact that divergence in such regions
(Materials and Methods) is only slightly lower (50-kb median
¼0.0238) than that of the rest of the euchromatic genome (50-
kb median¼ 0.0248) (Mann-Whitney U, p , 0.0001), supports
the hypothesis that reduced pnt in these regions is due to
selection at linked sites rather than reduced neutral mutation
rates [1,3,6]. Genes that are located in repetitive regions of
chromosomes near telomeres and centromeres (Materials and
Methods), which we refer to as ‘‘heterochromatic,’’ showed
moderately reduced nonsynonymous and synonymous heter-
ozygosity compared with other genes (Table 1, Dataset S6)
[37] and showed a substantially higher ratio of nonsynon-
ymous-to-synonymous polymorphism and divergence relative
to other genes (Table S2) [38].
Interestingly, the magnitude and physical extent of reduced

pnt near telomeres and centromeres appears to vary among
arms. Moreover, the physical scale over which divergence
varied along the basal region of 3R appears to be much
smaller than the scale for other arms, which is seen in Figure
1 as a more compressed, thick red line representing
divergence. These heterogeneous patterns of sequence
variation near centromeres and telomeres across chromo-

Figure 1. Patterns of Polymorphism and Divergence of Nucleotides along Chromosome Arms

Nucleotide p (blue) and div on the D. simulans lineage (red) in 150-kbp windows are plotted every 10 kbp. v[–log(p)] (olive) as a measure of deviation (þ
or –) in the proportion of polymorphic sites in 30-kbp windows is plotted every 10 kbp (see Materials and Methods). C and T correspond to locations of
centromeres and telomeres, respectively. Chromosome arm 3R coordinates correspond to D. simulans locations after accounting for fixed inversion on
the D. melanogaster lineage.
doi:10.1371/journal.pbio.0050310.g001
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some arms may reflect real differences. For example, genetic
data from D. melanogaster suggest that the centromere-
associated effects of reduced crossing-over are greater for
the autosomes than for the X chromosome and also suggest
that the X chromosome telomere is associated with a stronger
reduction in crossing-over compared with the autosomal
telomeres [39]. Alternatively, some of the heterogeneity
between chromosome arms in the centromere proximal
regions may reflect variation in the amount of repeat-rich
sequence excluded from the analysis (Materials and Methods).

X versus Autosome Divergence
Faster-X divergence. The X chromosome differs from the

autosomes in its genetics as well as in its population genetics
[40,41]. These differences have motivated several attempts to
compare patterns of polymorphism and divergence on these
two classes of chromosomes and to use such comparisons to
test theoretical population genetic models [19,41]. For
example, several population genetic models (e.g., recessivity
of beneficial mutations) predict faster evolution of X-linked
versus autosomal genes [42]. Nevertheless, there is currently
no statistical support for greater divergence of X-linked
versus autosomal genes in Drosophila [19,43,44].

The genomic data presented here clearly show that the X is
evolving faster than the autosomes. For example, median
(standard error [SE]) X versus autosome divergence for 50-kb
windows was 0.0274 (0.0003) versus 0.0242 (0.0001) for D.
simulans, 0.0233 (0.0002) versus 0.0223 (0.0007) for D. mela-
nogaster, and 0.1012 (0.0007) versus 0.0883 (0.0003) for D.
yakuba. The X evolves significantly faster than the autosomes in
D. simulans, D. melanogaster, and D. yakuba (Tables 1 and S1; 50-

kb windows, Mann-Whitney U; z¼4.99, 12.92, and 14.68 for D.
melanogaster, D. simulans, and D. yakuba respectively, all p ,

0.0001), although the faster-X effect appeared to be consid-
erably smaller in D. melanogaster than in D. simulans orD. yakuba.
Moreover, of the 18 lineage divergence estimates (six site types
and three lineages), only one, D. simulans synonymous sites,
failed to show faster-X evolution (Table 1). However, not all
classes of site/lineages showed statistically significant faster-X
evolution (Table S3). Thus, the faster-X effect is likely to be
general for Drosophila but vary in magnitude across lineages
and site types. Mean X chromosome divergence in previous
analyses of smaller datasets [19,43,44] was higher (though not
significantly so) than autosome divergence, in agreement with
these genomic results. Finally, indel divergence also showed a
faster-X effect (Mann-Whitney U, p , 0.0001 for both
insertions and deletions).
Interestingly, the lengths of coding regions, introns, inter-

genic regions, and 59 and 39 UTRs were significantly longer
(Mann-Whitney U, all five have p , 0.0001) for the X
chromosome than for the autosomes in D. melanogaster [45].
Longer introns, intergenic sequences, and genes tend to
evolve more slowly than shorter functional elements (above
and [45]), suggesting that the faster-X inference is conserva-
tive. Perhaps the X chromosome requires additional sequen-
ces for proper regulation through dosage compensation (e.g.,
[46–48]) or proper large-scale organization in the nucleus
[49]. Alternatively, if directional selection were more com-
mon on the X chromosome, then Hill-Robertson effects [50]
could favor insertions, because selection is expected to be
more effective when there is more recombination between
selected sites. However, the fact that X-linked deletion

Figure 2. Patterns of Polymorphism for Nucleotides, Small Insertions, and Small Deletions along Chromosome Arms

p for nucleotides (blue), p for small (� 10 bp) insertions (orange), and p for small (� 10 bp) deletions (orchid) among the D. simulans lines in 150-kbp
windows are plotted every 10 kbp (see Materials and Methods). C and T correspond to locations of centromeres and telomeres, respectively.
Chromosome arm 3R coordinates correspond to D. simulans locations after accounting for fixed inversion on the D. melanogaster lineage.
doi:10.1371/journal.pbio.0050310.g002
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divergence is much greater than insertion divergence, at least
for small indels (see below), does not support this idea.
Further analysis of larger indels could clarify this matter.
Finally, under the premise that ancestral polymorphism
makes a considerable contribution to D. simulans divergence,
lower X chromosome polymorphism (relative to ancestral
autosome polymorphism) would also make the faster-X
inference conservative.

As noted above, faster-X evolution has several possible
explanations, including recessivity of beneficial mutations,
underdominance, more frequent directional selection on
males than on females, higher mutation rates in females than
in males, or higher mutation rates on the X chromosome
versus the autosomes [19,40–42]. The fact that faster-X
evolution is observed across most site types is consistent with
the hypothesis that X chromosome mutation rates are greater
than autosomal mutation rates. The X chromosome is distinct
from the autosomes in that it is dosage compensated in males
through hypertranscription of X-linked genes [51–53]. Dosage
compensation of the Drosophila male germline [52] could
result in higher X-linked mutation rates if chromatin
conformation associated with hypertranscription increases
mutation rates. Indeed, cytological and biochemical studies of
the male Drosophila polytene chromosomes suggest that the X
has a fundamentally different chromatin organization than
the autosomes [54]. Alternatively, DNA repair in the hetero-
gametic male could have different properties than repair in
females. In addition to the possible contribution of elevated
X-linked mutation rates to faster-X evolution, some aspects of
the data support a role for selection in elevating X
chromosome substitution rates. For example, the three site
classes that showed the greatest X/autosome divergence ratio
in D. simulans (nonsynonymous, 59 UTR and 39 UTR) also
showed the strongest evidence for adaptive divergence in
contrasts of polymorphic and fixed variants in D. simulans (see
below). Furthermore, the observation of a significantly higher
frequency of derived polymorphic variants on the X relative
to the autosomes [55] (Table S4) is consistent with more
adaptive evolution on the X chromosome [56,57]. However,
there is no obvious enrichment of genes showing a history of
recurrent adaptive protein evolution on the X chromosome
(see below).

In addition to the overall faster rate of X chromosome
evolution, relative rate tests (Materials and Methods) revealed
that the deviations of observed numbers of substitutions from
neutral expectations are significantly greater for the X
chromosome than for autosomes in both D. simulans and D.
melanogaster (Mann-Whitney U, p¼ 1.3 3 10�13 and 1.4 3 10�4

for D. simulans and D. melanogaster, respectively). The
magnitude of the deviations of D. simulans substitutions from
expected numbers (Materials and Methods) varied along
chromosome arms (Table S5 and Figure S3), with the X
chromosome showing a particularly strong physical clustering
of unusual regions. Though these patterns could be explained
by natural selection [56,58], the possible role of demography
or differences in the distribution of ancestral polymorphism
within and among chromosome arms as factors contributing
to these patterns require further study.

Greater X-linked deletion divergence. Although nucleotide
and indel polymorphism and divergence showed similar
patterns across the genome, there was a great disparity
between X chromosome and autosome deletion divergence in

D. simulans (Figure S1). Whereas X chromosome nucleotide
divergence was only 14% higher than autosomal nucleotide
divergence, X chromosome deletion divergence (10-kb
window median ¼ 0.0056) was about 60% higher than
autosomal deletion divergence (10-kb window median ¼
0.0035). Furthermore, X chromosome deletion divergence
was much larger than X chromosome insertion divergence
(10-kb window median¼ 0.0035). The lack of a homologous X
chromosome for recombinational repair in G1 of the cell
cycle in males, or an X chromosome bias for gene conversion
of small deletions over small insertions, could contribute to
this pattern. However, any neutral equilibrium explanation
for accelerated X-linked deletion divergence should predict
that the X shows a disproportionately high ratio of deletion-
to-insertion heterozygosity relative to the autosomes, which
was not observed. More generally, the ratio of deletion-to-
insertion divergence was greater than the ratio of deletion-
to-insertion heterozygosity (Mann-Whitney U, p , 0.0001),
with the X showing a larger discrepancy than the autosomes
(Mann-Whitney U, p , 0.0001). This can be explained either
by invoking a change in the mutation process (e.g., a recent
mutational bias shift towards insertions) or by natural
selection (e.g., deletions more often favored relative to
insertions).

Chromosomal Gradients of Divergence
One of the main goals of large-scale investigations of

sequence divergence is to characterize the many biological
factors influencing variation in substitution rates throughout
the genome. Most analyses of Drosophila data focus on
variation in functional constraints or directional selection
as the main cause of heterogeneity in substitution rates across
genes or functional elements [20,21]. However, the available
data have been too sparse to detect any patterns of increasing
or decreasing divergence along chromosome arms.
Centromere proximal regions tend to be more divergent

than distal regions (Figure 1, Figure S4, and Table S5). This
pattern is more consistent for D. simulans than for D.
melanogaster. Proximal euchromatic regions tend to have
lower inferred ancestral GC content compared with distal
regions of chromosome arms (Figure S4 and Table S5), which
is consistent with the observation that D. simulans divergence
was negatively correlated with inferred ancestral GC content
(Materials and Methods) (50-kb windows, Spearman’s q ¼
�0.23, p¼ 1.43 10�26) [30]. The correlation between ancestral
GC content and divergence was much weaker and only
marginally significant for D. melanogaster (Spearman’s q ¼
�0.05, p ¼ 0.03). However, while chromosomal gradients of
divergence were observed for most chromosome arms (Figure
S4 and Table S5), inferred ancestral GC content tends to show
a less-consistent pattern. For example, some arms showed a
more U-shaped distribution, with euchromatic regions near
centromeres and telomeres tending to have higher estimated
ancestral GC content (Figure S5). More proximal and distal
regions also tend to have reduced crossing-over [39], which is
consistent with the observation that inferred ancestral GC
content is negatively correlated with cM/kb (Materials and
Methods) on the X chromosome (Spearman’s q ¼�0.33, p ¼
0.0002) [59], the only chromosome arm for which we
investigated correlates of recombination rate variation (see
below).
The neutral model of evolution predicts that gradients of
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divergence along chromosome arms are explained by
gradients of functional constraint or mutation rates. For
example, higher divergence in regions near centromeres
could be explained if such regions harbor a lower density of
functional elements (e.g., genes). However, with the exception
of chromosome arm 2L (Spearman’s q¼�0.19, p¼ 6 3 10�5),
variation in coding sequence density (CDS bases per 50-kb
window) showed no significant chromosomal proximal–distal
trend, suggesting that variation in constraint that is associ-
ated with coding density plays, at best, a small part in
explaining chromosomal gradients of divergence. More
generally, the expectation of a negative correlation between
coding density and nucleotide divergence in D. simulans was
not met. This seemingly counterintuitive result probably
reflects the fact that exons constitute a relatively small
fraction of the genome and were not dramatically less
diverged (0.016) compared with intergenic DNA (0.027).

If proximal–distal gradients of decreasing divergence along
chromosome arms result from variation in mutation rates,
then the neutral theory predicts that we should observe
similar gradients of polymorphism. This is the case for some
chromosome arms but not others (Figure 1 and Table S5),
after regions of reduced pnt in the most distal/proximal
regions are excluded (Materials and Methods; this result is
robust to variation in the extent of proximal and distal
chromosomal regions removed from the analysis). Thus,
variable neutral mutation rates alone is an insufficient
explanation for the overall genomic patterns of variation.
Below we address the possibility that recombination rate
variation contributes to variation in D. simulans pnt and
divergence across chromosome arms.

Fluctuations in Polymorphism and Divergence along
Chromosome Arms

There was considerable variance of polymorphism and
divergence across chromosome arms, even when regions of
severely reduced heterozygosity near centromeres and telo-
meres were excluded. Figure 1 clearly shows that variance in
polymorphism and divergence is not randomly arranged, but
rather appears to be spatially structured on the scale of several
tens of kilobases. These qualitative visual assessments were
supported by significant statistical autocorrelations (Materials
and Methods) for nucleotide heterozygosity and divergence
across all chromosome arms (Table S6) [60]. Furthermore, the
strength of this autocorrelation appeared to differ across arms,

because X and 3L show evidence of stronger correlations over
longer distances (Figure 1). The strength of autocorrelation is
consistently higher for heterozygosity than for divergence.
Under the neutral theory, fluctuations in polymorphism

and divergence could be the result of variation in gene
density, with windows that have more exons per kb showing
lower polymorphism and divergence. This expectation was
not met. Indeed, for 50-kb autosome windows (but not X-
linked windows), divergence is positively correlated with
coding density (Spearman’s q ¼ 0.12, p , 0.0001). This is
consistent with an important role of directional selection on
coding sequence to genome divergence, a point we will revisit
in several analyses below. In contrast to the positive
correlation between coding density and divergence, we found
a negative correlation between coding density and D. simulans
pnt (autosome Spearman’s q ¼ �0.10, p , 0.0001; X Spear-
man’s q ¼ 0.29, p , 0.0001). Overall, the contrasting
correlations between coding density and polymorphism
versus divergence suggest that directional selection in exon-
rich regions generates greater divergence and reduced
polymorphism due to hitchhiking effects [3,6,61].
Correlations between recombination rates and sequence

variation. One of the most unusual genomic regions, at around
3 Mb on the X chromosome (Figure 1), showed a large peak of
both polymorphism and divergence. A previous analysis
suggesting that this region might have higher-than-average
recombination rates in D. melanogaster [62] motivated a more
detailed investigation of the possible relationship between
crossing-over versus polymorphism and divergence. Most
estimates of crossing-over per base pair in D. melanogaster have
been generated using approaches that could obscure mega-
base-scale variation in crossing-over along chromosome arms
[63,64]. Figure 3 shows the results of a sliding window analysis
of D. simulans pnt, divergence, and cM/kb (see Materials and
Methods) along the D. melanogaster X chromosome, which has
the best genetic data of the five major chromosome arms.
There is a surprisingly strong correlation between D. mela-
nogaster X chromosome recombination rates andD. simulans pnt
(Spearman’s q¼ 0.45, p¼ 8.5 3 10�8), especially given the fact
that the genetic data are fromD. melanogaster. There is a weaker,
marginally significant correlation between recombination and
D. simulans divergence (Spearman’s q ¼ 0.17, p ¼ 0.03) and D.
melanogaster divergence (Spearman’s q¼ 0.19, p¼ 0.03).
Under neutrality, if neutral mutation rates were correlated

with recombination rates, regions with higher recombination

Figure 3. Rate of Crossing-Over per Base Pair (Green), Nucleotide Polymorphism (Blue) and Nucleotide Divergence (Red) along the X Chromosome

Nucletotide p (blue) and div on the D. simulans lineage (red) in 150-kbp windows are plotted every 10 kbp. Estimated rate of crossing-over (green) is
plotted for specific genomic segments (see Materials and Methods).
doi:10.1371/journal.pbio.0050310.g003
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rates would tend to be more polymorphic and diverged,
thereby explaining why recombination rates are positively
correlated with polymorphism and divergence. This neutral
explanation makes two predictions. First, regions of severely
reduced heterozygosity near telomeres and centromeres
should show severely reduced divergence. Second, the
correlation between recombination and divergence should
be greater than the correlation between recombination and
polymorphism. The second prediction reflects the fact that
selection at linked sites, the effects of which should be
correlated with recombination rates, is expected to reduce
the correlation between mutation rate and polymorphism
but not affect the correlation between mutation rate and
divergence. The first prediction was not met by our data
(Figure 1), and the converse of the second prediction was
observed. An alternative population genetic explanation is
that the observed correlations are partly attributable to
hitchhiking effects of beneficial mutations.

Although there is no expected effect of recent hitchhiking
on divergence at linked neutral sites [61], long-term, chronic
hitchhiking effects can induce a correlation between recom-
bination rates and both polymorphism and divergence
(Figure 4), especially when the ancestral genealogy is a
substantial part of divergence, as is the case in D. simulans
(see above). Regions of higher recombination are expected to
have experienced fewer hitchhiking effects, both in the recent
and more ancient past. Such regions are expected to be
associated with deeper genealogies in the ancestor and in
extant samples, and thus should be more diverged and more
polymorphic. The converse should be true for regions of
lower recombination. This model posits that hitchhiking
effects dominate chromosomal patterns of polymorphism in
D. simulans and that much of the genome harbors levels of
variation well below those expected in the absence of linked,
directional selection [3,6]. Under this model, lower levels of
nucleotide polymorphism in D. melanogaster than in D. simulans
[24,65] could be due mainly to differences in the scale of
hitchhiking effects in the two species. Furthermore, under

this model, an as-yet-undetected proximal–distal gradient of
recombination rate could contribute to proximal–distal
gradients of polymorphism and divergence. Correlations
between polymorphism and divergence may be weaker at
telomere and centromere proximal regions (e.g., tip of the X,
base of 3R) compared to other regions due to larger-scale,
recent hitchhiking effects on heterozygosity, which would
tend to reduce any correlation between polymorphism and
divergence induced by hitchhiking effects on ancestral
variation. An alternative population genetic hypothesis for
the high correlation between recombination and polymor-
phism is that the removal of deleterious variants by natural
selection reduces variants at linked sites [1,66], which is
referred to as background selection. We will address this issue
below.
Better meiotic exchange data for all of the chromosome

arms in D. simulans and D. melanogaster will be necessary to
investigate these ideas. If the X chromosome data are reliable,
we predict that variation in the spatial distribution of
crossing-over along chromosome arms is substantially differ-
ent for the X versus autosomes of D. simulans and D.
melanogaster [67]. Finally, we note that the region centered
on location 3 Mb of the D. simulans X (Figure 1) is near a D.
melanogaster meiotic ‘‘pairing site’’ [68] and harbors several
copies of the X chromosome–enriched 1.688 satellite
sequence [69]. It remains to be seen how the distribution of
such entities across the genome contributes to patterns of
polymorphism and divergence in Drosophila.
Correlated levels of nucleotide and indel polymorphism.

Although hitchhiking effects are expected to induce corre-
lated patterns of variation along chromosome arms for SNPs
versus indels, the extraordinarily high correlation observed
(Figure 2) suggests the possibility that regional variation in
mutation or repair could also contribute. Given that
mutation rates differ for early versus late replicating DNA
and that chromatin conformation affects both mutation and
DNA repair, we investigated polymorphism and divergence in
the context of genomic features related to replication [70].
Comparison of 10-kb windows (genomic data in Dataset S7)
that overlap early-replicating regions on 2L versus the
remaining 2L windows showed that early replicating origins
had slightly higher heterozygosity (0.0188 versus 0.0179, F ¼
5.94 p¼0.015) and divergence (0.0266 versus 0.0251, F¼13.40,
p ¼ 0.0003). Origin-of-replication complexes appear to
preferentially bind to AT-rich intron and intergenic sequen-
ces [70], consistent with the observation that the proximal
regions of chromosomes tend to have lower GC content and
greater divergence. Whole-genome data on origins of
replication, preferably from germline cells, will be necessary
to further investigate this issue. Nevertheless, the available
data suggest that the effect of origins-of-replication on
polymorphism and divergence is likely to be minor, and that
the correlation between SNP and indel heterozygosity is likely
caused by the effects of selection on linked sites.
It is also possible that spatial heterogeneity in transcription

across the genome is associated with variation in mutation
rates and thus, levels of polymorphism and divergence. Such
an association could result from a correlation between
transcription and replication [70,71] or because highly
transcribed regions are associated with different mutation
or repair than lowly transcribed regions. Though there are no
data specifically from Drosophila germline cells, which are the

Figure 4. Hitchhiking Effects Can Induce a Correlation between

Polymorphism and Divergence

Hypothetical gene geneoligies in ancestral populations (A or B) and
extant populations (C or D) for genomic regions of high crossing-over
and low crossing-over (respectively) experiencing different hitchhiking
effects. On average, time to the most recent common ancestor in the
ancestral population is greater in regions of higher crossing-over (A) and
therefore contributes more to the divergence, TH. Regions of lower
crossing-over have smaller gene genealogies (D versus C) and less
divergence (TL versus TH).
doi:10.1371/journal.pbio.0050310.g004
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only relevant cells for this question, to begin to address this
issue we analyzed published gene expression data from D.
melanogaster to identify a set of genes showing testis-biased
expression (Materials and Methods). Median intron diver-
gence in these genes (0.061) is much higher than the median
intron divergence for the rest of the genome (0.042) (Mann
Whitney U, p , 10�4), which is consistent with an association
between mutation and germline transcription.

Hitchhiking Effects in D. simulans
The analyses presented above, especially for the X

chromosome data, strongly suggest that hitchhiking effects
contribute to shaping patterns of polymorphism across the D.
simulans genome. To provide a more quantitative assessment
of the physical extent, magnitude, and biological basis of
these hitchhiking effects, we carried out a genomic analysis of
polymorphism and divergence in the context of the Hudson-
Kreitman-Aguade (HKA) test [2] (Materials and Methods).
The analysis should be thought of as a method for identifying
unusual genomic regions rather than as a formal test of a
specific model, since our data violate the assumptions of the
simple neutral model (neutral alleles sampled from a single,
equilibrium, panmictic population). The results (Figure 1,
Datasets S6, S16–S20) statistically support our earlier
contention and previous reports [7,8,10,34,36], that Drosophila
chromosomes show greatly decreased polymorphism, relative
to divergence, in both telomere- and centromere-proximal
regions. The fact that corrected X chromosome heterozygos-
ity was not significantly different from autosomal hetero-
zygosity, although X chromosome divergence was significantly
higher than autosomal divergence, supports a role for
hitchhiking effects reducing nucleotide variation on the X
chromosome.

Our previously mentioned result, that coding density is
positively correlated with divergence and negatively corre-
lated with polymorphism, suggested that hitchhiking effects
of directional selection are more common in exonic
sequence. The HKA-like analysis supports this contention.
We identified regions of the genome that had either two or
more consecutive, nonoverlapping 10-kb windows with p , 1
3 10�6 or four such windows with p , 0.01. The number of
coding nucleotides per 10 kb in these ‘‘hitchhiking windows’’
(n¼ 378 windows, mean coding density¼ 2,980 bp) was much
higher than coding density in other windows (n¼ 9,329, mean
coding density ¼ 1,860 bp) (Mann-Whitney U, p , 0.0001).

An alternative hypothesis for the strong correlation
between recombination and polymorphism and the high
density of coding sequence in regions showing reduced
heterozygosity-to-divergence ratios is background selection,
a phenomenon whereby the removal of deleterious mutations
reduces polymorphism at linked sites [1]. To address this
possibility, we calculated Fay and Wu’s H [56] for 10-kb
windows across the genome using only sites with a coverage of
five alleles and windows not located in extended regions of
reduced heterozygosity near the distal and proximal ends of
chromosome arms (Materials and Methods). Hitchhiking
effects of beneficial mutations are expected to cause an
excess of high-frequency derived alleles (and a more-negative
H statistic) relative to neutral theory predictions, while
background selection predicts no such excess [1,72]. We
compared the average H statistic for regions of the genome
showing four or more consecutive 10-kb windows with an

HKA-like test of p , 0.01 versus 10-kb windows from the rest
of the genome. For each chromosome arm, the H statistic was
significantly more negative in windows showing a reduced
heterozyogsity-to-divergence ratio (Mann Whitney U, p ,

10�4 for each arm), which strongly supports the proposition
that hitchhiking effects of beneficial variants is a major cause
of the fluctuations in heterozygosity across the genome. Note,
however, that this analysis does not rule out a contribution of
background selection [1].
Unusual genomic regions and the biology of recent

selection. Several large genomic regions (on the order of 20
to 400 kb) showed severely reduced polymorphism. We have
established University of California at Santa Cruz Genome
Browser tracks (http://rd.plos.org/pbio.0050310) reporting
(for nonoverlapping 10-kb windows) pnt, polarized nucleotide
divergence, coverage, and signed log10 of HKA p-values
(Datasets S16–S20) to facilitate investigation of these regions
and promote further investigation of polymorphism and
divergence across the D. simulans genome. As an example,
Figure 5 shows a Genome Browser snapshot from an unusual
region on 3R (as indicated by large, negative HKA p-values)
containing 23 genes, including three testis-biased genes, scpr-
A, scpr-B, and scpr-C, which are located near the center of the
region.
To investigate whether particular biological functions were

more likely to be associated with genomic regions showing
reduced polymorphism (relative to divergence), we used the
genes encompassed by ‘‘hitchhiking’’ windows (n¼ 880 genes
for � two 10-kb windows and n ¼ 728 genes for � four
windows) to search for overrepresented gene ontology (GO)
terms (Materials and Methods). The most obvious trend
(Table S7) was the frequency of GO terms associated with the
nucleus and transcription, which were also common in the
McDonald-Kreitman3GO analysis (see below) [4]. This trend
supports the proposition that genomic regions of reduced
heterozygosity are caused by the spread of beneficial
mutations and suggests that biological functions that are
targets of recent selection also tend to be targets of recurrent
directional selection. Moreover, these patterns suggest that
important agents of directional selection are likely related to
chronic biological conflict such as meiotic drive, segregation
distortion, sexual selection, or host-pathogen/parasite inter-
actions.
Regions of strong linkage disequilibrium. A genomic

region that has experienced the recent spread of a strongly
favored allele to intermediate frequency should not exhibit a
major reduction of heterozygosity. Nevertheless, such regions
should show strong linkage disequilibrium, because a single
haplotype may constitute a significant proportion of sampled
chromosomes. Although the average sample size per base in
the D. simulans syntenic assembly (n ¼ 3.9) is too small for
generating reliable estimates of pairwise correlations among
polymorphic sites, the high levels of nucleotide polymor-
phism and relatively low levels of linkage disequilibrium in
this species [73,74] suggest that unusual regions of strong
linkage disequilibrium spanning many kilobases could be
detectable in our data. We investigated the variance of
pairwise nucleotide differences [75,76] across the D. simulans
genome using 150-kb overlapping windows (Materials and
Methods). Because the mean and variance of pairwise
differences showed the expected positive correlation, we
used the coefficient of variation (CV) of heterozygosity to
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summarize the magnitude of large-scale, multilocus linkage
disequilibrium for each window (Figure S3). Use of the
‘‘chimeric’’ SIM4/6 assembly may reduce our power to detect
unusual genomic regions but should not lead us to mistakenly
identify such regions. At least two salient points emerged
from this analysis. First, large regions of the genome showing
a severely reduced heterozygosity-to-divergence ratio, such as
the tip of the X chromosome, tend to have high levels of
linkage disequilibrium. Second, some regions of the genome
showing unremarkable HKA p-values nevertheless have
unusually high linkage disequilibrium. Such regions may be
candidates for recent selective spread of extended haplo-
types. However, several regions showing high linkage dis-
equilibrium are adjacent to regions showing significantly
reduced polymorphism. This suggests that such regions are
generated by hitchhiking effects of fixed or high-frequency
beneficial alleles [77,78] rather than beneficial mutations,
which are currently at intermediate frequency on their
sojourn through the population.

Reduced polymorphism associated with colonization. D.
simulans probably originated in East Africa or Madagascar
and recently colonized the rest of the world in association
with humans [16]. Lower nucleotide polymorphism in
recently established versus ‘‘ancient’’ populations is consis-

tent with this scenario [79–82]. However, directional selection
could favor certain alleles in recently established populations,
thereby resulting in a further reduction of polymorphism
beyond those due to demographic effects [83–85]. To detect
such effects, we used 10-kb nonoverlapping windows of the
ratio of United States/(Africa þ Madagascar) pnt to identify
regions of the genome showing a disproportionate reduction
of variation in the US sample (Materials and Methods).
Consistent with previous results [79–81], we found the US

sample to be significantly less polymorphic than the Africaþ
Madagascar sample for all chromosome arms (p , 0.001).
Variation in US genomes is largely a subset of the variation in
the Old World genomes. The reduction of polymorphism in
the US versus non-US sample is heterogeneous across
chromosomes. Although all chromosomes are different from
one another (p , 0.05), the X is clearly the most unusual (Table
S8), supporting the finding that recently established popula-
tions are relatively depauperate of X-linked variation [19,86].
Several genomic regions (Tables S9 and S10) show

substantial stretches of disproportionately reduced US
heterozygosity. The most significant genomic region, which
is located on the X chromosome, spans over 100 kb and has
severely reduced heterozygosity in the US sample. One
interesting gene in the region, CG1689 (lz), is associated with

Figure 5. Snapshot of UCSC Browser Tracks in a Genomic Region Showing Significantly Reduced Heterozygosity Relative to Divergence

Nucletotide p (blue, labeled ‘‘PI 10K’’) and div on the D. simulans lineage (black), labeled ‘‘DIV 10K’’ in 10-kbp windows are plotted every 10 kbp.
v2[-log(p)] (green, labeled ‘‘HKA 10K’’) as a measure of deviation (þ or�) in the proportion of polymorphic sites in 10-kbp windows is plotted every 10
kbp (see Materials and Methods). The genes scpr-A, scpr-B, and scpr-C exhibit high levels of expression in the testes and are indicated in red.
doi:10.1371/journal.pbio.0050310.g005

PLoS Biology | www.plosbiology.org November 2007 | Volume 5 | Issue 11 | e3102543

Population Genomics of D. simulans



several functions, including defense response and sperma-
theca development. Another interesting region (chromosome
arm 2L) contains the PI kinase Pi3K21B. A related gene was
recently shown to be associated with diapause variation in
natural D. melanogaster populations [87]. Table S11 shows the
GO terms that are significantly overrepresented in significant
regions (not Bonferroni corrected), many of which are
associated with protein metabolism. Of note is the highly
significant term ‘‘transmission of nerve impulse,’’ which is
consistent with selection associated with insecticides [88] in
recently established populations. Inferences regarding recent
selection in D. simulans are weakened by the small sample size,
large physical scale of significant regions, and the absence of
explicit demographic models in the analysis. Additional data
and analyses will be required to address these issues more fully.

Lineage Effects on Divergence
Several factors can generate lineage differences in diver-

gence. For example, higher divergence in a lineage (relative to
the lineage of its sister species) could be due to higher
mutation rates, shorter generation times, or stronger direc-
tional selection. Investigating which classes of mutations or
functional elements tend to show different levels of diver-
gence in two lineages can inform our understanding of the
causes of rate variation.

Previously collected data from coding regions suggest that
D. melanogaster evolves faster than D. simulans [89,90]. We
found a similar pattern in that dN and dS are greater in D.
melanogaster (median ¼ 0.0045 and 0.0688) than in D. simulans
(median ¼ 0.0036 and 0.0507) (Table 1 and S3). This pattern
has been interpreted as reflecting the reduced efficacy of
selection against slightly deleterious variants in D. melanogast-
er, supposedly resulting from its smaller effective population
size relative to D. simulans [89]. However, a different pattern is
observed on a genome-wide scale, as median D. simulans
divergence (50-kb windows; 0.025), though only slightly
greater than D. melanogaster (50-kb windows; 0.022), is
consistently greater across a large proportion of windows
(Wilcoxon sign rank test, p ¼ 1.8 3 10�275). We consider the
genomic faster D. simulans finding as provisional due the
potential biases associated with D. melanogaster-centric align-
ments. For example, genomic regions that are evolving
quickly only in D. melanogaster may drop out of the D.
melanogaster–D. yakuba alignment, whereas regions evolving
quickly only in D. simulans may be retained because of the
relatively short D. melanogaster–D. simulans branch. Analysis of
rate variation across site types (Table 1 and Table S3) reveals
a more complex pattern. For example, D. simulans shows
greater divergence than D. melanogaster for intergenic, intron,
and 39 UTR sites, whereas D. melanogaster shows greater
divergence than D. simulans for 59 UTRs, nonsynonymous
sites, and synonymous sites.

Adaptive Protein Evolution
A decades-old issue in population genetics is the extent to

which directional selection determines protein divergence.
Several analytic strategies for investigating the prevalence of
adaptive protein divergence between closely related species
have been proposed (reviewed in [91]). Here we focused on
two approaches. First, we used comparisons of synonymous
and nonsynonymous polymorphic and fixed variants in
individual genes to test the neutral model. Second, we

identified proteins that show very different divergence
estimates in D. simulans versus D. melanogaster.
Population genetic analysis of recurrent adaptive protein

evolution. McDonald and Kreitman [4] proposed a test
(hereafter, MK test) that contrasts the numbers of polymor-
phic versus fixed/nonsynonymous versus synonymous variants
to detect non-neutral protein evolution. The test is based on
the neutral theory prediction that the ratio of the number of
nonsynonymous-to-synonymous polymorphisms should be
similar to the ratio of the number of nonsynonymous-to-
synonymous fixations. Recurrent directional selection is
expected to result in an increased ratio of nonsynonymous-
to-synonymous fixations. We carried out MK tests out for all
genes that showed n . 6 for each of polymorphisms, fixations,
synonymous variants, and nonsynonymous variants (Dataset
S1). The filtered data set of unpolarized MK tests contained
6,702 genes, of which 1,270 (19%) were significant (in the
direction of adaptive evolution) at the 0.05 critical value and
539 (8%) genes were significant at a 0.01 critical value. Given
that MK tests can only detect directional selection when
multiple beneficial mutations have fixed, these results provide
a conservative view of the prevalence of adaptive protein
divergence. There was a slight enrichment of significant
unpolarized MK tests on the autosomes relative to the X
chromosome (Fisher’s Exact test, p ¼ 0.0014). However,
conclusions regarding the incidence of directional selection
on autosomes versus the X chromosome should be tempered
by the fact that the average numbers of polymorphic and
fixed variants per gene may differ between the two types of
chromosomes, which affects the power of the MK test to
reject neutrality. We observed no enrichment of significant
tests in regions of the X chromosome hypothesized to
experience greater versus lower rates of crossing over. Several
of the most highly significant MK test statistics are from genes
with known functions and in many cases, known names and
mutant phenotypes. More generally, among the genes with no
associated GO term, a smaller proportion had significant
unpolarized MK tests compared to the proportion for genes
associated with one or more GO terms (0.16 versus 0.20, p¼ 3
3 10�5).

Included among the most highly significant genes in the
unpolarized MK tests (Table S12) were several with repro-
duction-related functions. For example, the sperm of males
carrying mutations in Pkd2 (CG6504), the gene with the
smallest MK p-value in the genome, are not properly stored in
females, suggesting sperm–female interactions (perhaps
associated with sperm competition) as a possible agent of
selection [92,93]. Other examples include Nc (CG8091), which
plays a role in sperm individualization [94]; Acxc (CG5983), a
sperm-specific adenylate cyclase [95]; and Dhc16F (CG7092),
which is a component of the axonemal dynein complex
(suggesting a possible role of selection on sperm motility).
For polarized MK tests, we used the D. yakuba genome to

infer which fixed differences between D. simulans and D.
melanogaster occurred along the D. simulans lineage (Materials
and Methods). These fixations were then compared to D.
simulans polymorphisms. This reduced, filtered dataset con-
tained 2,676 genes of which 384 (14%) and 169 (6%) were
significant at the 0.05 and 0.01 levels, respectively (deviating
in the direction of adaptive evolution; Datasets S1). Twenty-
three genes showed evidence of a significant (p , 0.05) excess
of amino acid polymorphism, of which the five that were
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significant at p , 0.01 are presented in Table S13. We found
no evidence of more recurrent, adaptive protein evolution on
the X chromosome, as significant polarized MK tests were not
more common for X-linked versus autosomal genes (Fisher’s
Exact test, p ¼ 0.74).

Table S14 lists the genes associated with the smallest p-
values in the polarized MK tests. As expected, there was
considerable overlap between the most highly significant
genes in the polarized and unpolarized analyses. However,
some genes are highly significant in the polarized analysis, but
not significant in the unpolarized analysis. For example, Pvr
(CG8222) plays a role in male genitalic development (in
addition to the roles noted in Table S14) in D. melanogaster
[96]. Male genitalic traits evolve very quickly in Drosophila (e.g.,
[97]), presumably due to some form of sexual selection. Pvr
thus becomes an attractive candidate gene for investigating
the molecular basis of genitalic divergence between D.
simulans and its relatives. Another interesting gene is Gap1
(CG6721), which can act as a modifier of minichromosome
transmission in D. melanogaster [98], suggesting a possible role
in normal chromosome segregation and potentially meiotic
drive. Many proteins under recurrent directional selection,
such as nuclear pore and cytoskeleton components, have
fundamental and diverse cell biological functions. A naı̈ve
view would be that pleiotropy associated with mutations in
such proteins would be so ubiquitous that rapid adaptive
evolution would be unlikely. The genomic data suggest that
this view is incorrect.

Adaptive protein evolution and gene function. We inves-
tigated the broader biological basis of adaptive protein
evolution by determining whether certain GO terms are
overrepresented among the genes found to be significant (p ,

0.05) in unpolarized (Table S15) or polarized (Table S16) MK
tests. The unpolarized analysis revealed 26 cellular compo-
nents, 40 molecular functions, and 96 biological processes
significantly enriched for genes under recurrent directional
selection. Of particular note among the significant cellular
function terms were chromosome, heterochromatin, nuclear
envelope, nuclear pore, and polytene chromosome chromo-
center, all of which showed p , 0.001. Molecular function
terms that were enriched (p , 0.001) among genes with
significant MK tests included adenlyate cyclase activity,
chromatin binding, glucose transporter activity, histone
methlytransferase activity, lipase activity, microtubule motor
activity, and ubiquitin-specific protease activity. Finally, the
biological processes terms with p , 0.001 were establishment/
maintenance of chromatin architecture, female meiosis
chromosome segregation, fusome organization/biogenesis,
histone methylation, mRNA processing, regulation of cell
growth and size, protein deubiquitination, and reproduction.

The polarized analysis revealed eight cellular components,
17 molecular functions, and 47 biological processes that were
significant (we use p , 0.05, because there were fewer data for
each polarized test), including actin binding, glucose trans-
porter activity, ubiquitin-specific protease activity, amino
acid biosynthesis, cell motility, cytoplasm and cytoskeleton
organization and biogenesis, mRNA processing, and protein
import into nucleus.

Overall, biological functions that appear to be under
particularly frequent directional selection include those
regulating chromosome biology (including motor proteins
and chromatin regulation), those regulating movement of

material between nucleus and cytoplasm, and those involved
in meiosis and reproduction. These findings support spec-
ulation based on small datasets [99,100] that intragenomic
conflicts relating to gametogenesis may be a major cause of
adaptive evolution in Drosophila. Sperm competition, sperm-
female interactions, or cytoplasmic parasites [101–103] could
also result in directional selection on phenotypes related to
spermatogenesis. The data and analyses presented here
motivate comprehensive investigation of the functional
biology of adaptively evolving proteins in D. simulans and
the role of such proteins in the evolution of reproductive
isolation.
Adaptive protein evolution and gene expression. We used

several published gene expression experiments (Materials and
Methods) to investigate whether the proportion of genes
showing significant MK tests in a given expression category
was significantly greater than expected by chance (Table S17).
The strongest result was that genes primarily expressed in
males are more likely to be under recurrent directional
selection, which is consistent with our aforementioned results
from MK tests and previously reported results from smaller
datasets [104]. We also found evidence that genes expressed
primarily in females are enriched for significant MK tests,
although only in the polarized analysis. The finding that both
male- and female-biased genes are enriched for adaptively
evolving proteins supports the idea that antagonistic male–
female interactions [105] may drive protein divergence.
However, we found no evidence that genes expressed in the
sperm-storage organs of mated females are more likely to be
under recurrent directional selection than a random sample
of genes.
Adaptive evolution and protein–protein interactions. We

used published data on Drosophila protein–protein interac-
tions (Materials and Methods) to ask whether proteins
showing evidence of recurrent directional selection (based
on the MK test) are more likely to interact physically with
other such proteins. We found no significant genomic
association between protein interactions and positive selec-
tion. However, there were interesting individual cases in
which interacting proteins appear to have diverged under
positive selection. For example, as noted here and in previous
work [106], nuclear pore components appear to be frequent
targets of adaptive evolution. Another interesting case is the
Nc gene, which has one of the most significant unpolarized
MK tests in the genome. The Nc protein, which has several
roles including sperm individualization [94], may physically
interact with products of at least eight other genes (Ice,
Laminin A, tramtrack, BTB protein-VII, Apaf-1 related killer, Dodeca
satellite binding protein 1, CG4282, and CG6767; see [107]).
Annotations associated with these proteins include sperm
individualization and chromatin condensation, assembly, or
disassembly. All four of the eight genes for which we could
carry out an unpolarized MK test (LamininA, Apaf-1 related
killer, Dodeca satellite binding protein 1, and CG4282) rejected the
neutral model. These data suggest a history of selection on
the molecular components of sperm individualization and
differentiation and provide yet further evidence that male
reproductive functions are frequent targets of directional
selection in Drosophila. The causes of such selection are still
unclear, but could include gametic selection in Drosophila
males [108,109], exclusion of cytoplasmic parasites during
spermatogenesis [101,103], or selection on aspects of sperm
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morphology associated with sperm competition or sperm–
female interactions [110]. The role of physically interacting,
adaptively evolving proteins that function in spermatogenesis
for hybrid sterility remains an intriguing, open question.

Proteins showing increased divergence. Genes that show
relatively low nonsynonymous divergence in D. yakuba and D.
melanogaster but high nonsynonymous divergence in D.
simulans may have a history of adaptive evolution in D.
simulans. Similarly, genes showing elevated nonsynonymous
divergence only in D. melanogaster may have a history of
adaptive evolution in this species. Although this approach
does not exploit the D. simulans polymorphism data, it
permits investigation of genes that show little polymorphism
due to hitchhiking effects or low sequence coverage.
Although directional selection is the most plausible explan-
ation for a lineage-specific rate increase, a change in the
neutral mutation rate could also lead to a rate increase.
However, three results support the proposition that an
inflated lineage-specific dN is associated with natural selec-
tion. First, the median relative rate v2 statistic for dN is
greater for genes with significant unpolarized MK tests (1.91)
than for genes with nonsignificant test (1.69) (Mann-Whitney
U, p , 1310�20). Second, of the 352 genes showing significant
(p , 0.05) D. simulans dN rate accelerations and which had
sufficient data for polarized MK tests (see below), 28% (99) of
the tests were significant (p , 0.05). Of the 2,301 non-
significant genes, only 12% (285) had significant polarized
MK tests. Finally, the median synonymous pnt/D. simulans dS
for genes that showed significant D. simulans dN rate increases
(n¼743, median¼0.46) is dramatically lower than the median
for nonsignificant genes (n ¼ 9300, median ¼ 0.63, Mann-
Whitney U; p¼2.1310�23), which is consistent with recurrent
selection inflating protein divergence while reducing hetero-
zygosity at closely linked synonymous sites.

The genes (n ¼ 25) showing the largest test statistics
consistent with lineage-specific protein acceleration are
shown in Tables S18 and S19 for D. simulans and D.
melanogaster, respectively. Many of the top 25 genes in each
lineage are named and associated with considerable func-
tional information. Thus, genes with important functions
may still be subject to strong, lineage-specific rate accel-
eration.

Accelerated protein divergence and gene function. We used
permutation tests to gain a broader view of enrichment of
particular protein functions with dN v2 test statistics in D.
simulans (Table S20). The GO terms with p , 0.001 and n . 10
genes include nuclear envelope, nuclear pore, amino acid-
polyamine transporter activity, ubiquitin-specific protease
activity, protein deubiquitination, and protein import into
the nucleus. Results from a comparable analysis of D.
melanogaster protein evolution are shown in Table S21. Using
the same criteria of n . 10 genes and p , 0.001, we find only
FAD binding and antimicrobial humoral response GO terms.
However, several other GO terms are significant (e.g., choline
dehydrogenase activity, endopeptidase inhibitor activity,
oxidoreductase activity, and dosage compensation) and
worthy of further investigation in D. melanogaster.

Adaptive Evolution of Noncoding Elements
The same logic originally proposed in the MK test using

nonsynonymous and synonymous variation can be extended
to any setting in which variant types can be categorized, a

priori. We tested variation in individual noncoding elements
(introns, UTRs, and intergenic sequences) relative to varia-
tion at tightly linked synonymous sites (Materials and
Methods) using the same criteria described for the MK tests;
we present only polarized analyses (Datasets S2–S5). The
proportion of tests (Materials and Methods) that rejected (p ,

0.05) the null model for 59 UTR, 39 UTR, intron, and
intergenic sites are 0.13, 0.13, 0.12, and 0.17, respectively.
However, unlike the case for the nonsynonymous versus
synonymous polarized MK tests, of which only 6% of the
significant tests deviated in the direction of excess poly-
morphism (relative to synonymous sites), a much greater
proportion of noncoding MK tests deviated in this direc-
tion—0.13, 0.24, 0.28, and 0.28 for 59 UTR, 39 UTR, intron,
and intergenic regions, respectively. Thus, the proportion of
noncoding elements showing evidence of adaptive evolution
for 59 UTR, 39 UTR, intron, and intergenic sites is 0.12, 0.10,
0.08, and 0.12, respectively, which is similar to the proportion
of coding sequences inferred (by polarized MK tests) to be
under direction selection (0.14). It would be tempting to
conclude from this result that intergenic variants are as likely
to be under directional selection as nonsynonymous variants.
However, such an interpretation ignores the fact that the
number of variants per element for each MK test is much
greater for intergenic sequence (median ¼ 87) compared to
the numbers for coding regions (median ¼ 42), 59 UTRs
(median ¼ 34), 39 UTRs (median ¼ 35), or introns (median ¼
64). Thus, there is more power to reject the neutral model for
intergenic sequence and introns than for exonic sequence.
The fact that MK p-values are significantly negatively
correlated with the total number of observations per test is
consistent with this explanation. There was no evidence of
different proportions of significant versus nonsignificant
tests for X-linked versus autosomal elements.
Tables S22–S24 report data from the ten most highly

significant MK tests (average coverage . 2) indicative of
directional selection on 59 UTRs, 39 UTRs, and intron
sequences, respectively. Among the most unusual 59UTRs
are those associated with genes coding for proteins associated
with the cytoskeleton or the chromosome, categories that also
appeared as unusual in the MK tests on protein variation.
Two of the top-ten 39 UTRs are associated with the SAGA
complex, a multi-subunit transcription factor involved in
recruitment of RNA Pol II to the chromosome [111]. Among
the extreme introns, two are from genes coding for
components of the ABC transporter complex and two are
from genes coding for centrosomal proteins, again pointing
to the unusual evolution of genes associated with the
cytoskeleton and chromosome structure and movement. As
previously noted, a large number of significant UTRs deviate
in the direction of excess polymorphism (relative to
synonymous mutations). Given the potential importance of
the UTRs in regulating transcript abundance and local-
ization, translational control, and as targets of regulatory
microRNAs [112], such UTRs could be attractive candidates
for functional investigation. Contingency tests of significant
versus nonsignificant MK test for amino acids versus each of
the noncoding elements yielded p-values of 0.65, 0.04, and
0.07 for 59 UTRs, 39 UTRs, and introns, respectively. Thus,
there is weak evidence that genes under directional selection
on amino acid sequences tend to have 39 UTRs and introns
influenced by directional selection as well.
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Whole-Genome Analysis of Polymorphic and Fixed
Variants

Up to this point, our analyses have investigated various
attributes of polymorphism and divergence based on win-
dows or genes. An alternative approach for understanding
the causes of variation and divergence is to analyze poly-
morphism and divergence across site types. Table 2 shows
whole-genome counts of polymorphic and polarized fixed
variants for UTRs, synonymous sites, nonsynonymous sites,
introns, and intergenic sites. We also provide data for
polarized, synonymous preferred or unpreferred variants.
Almost all preferred versus unpreferred codons in D.
melanogaster end in GC versus AT, respectively [113]; thus,
preferred versus unpreferred codons can be thought of as
GC-ending versus AT-ending codons.

Nonsynonymous sites showed the smallest ratio of poly-
morphic-to-fixed variants, which is consistent with the MK
tests and supports the idea that such sites are the most likely
to be under directional selection. Nonsynonymous poly-
morphisms also occur at slightly lower frequency than do
noncoding variants (Table S25). Synonymous sites have the
highest ratio of polymorphic-to-fixed variants, which sup-
ports the previously documented elevated ratio of polymor-
phic-to-fixed unpreferred synonymous variants in D. simulans
[89]. The confidence intervals of the ratio of polymorphic-to-
fixed variants among site types are nonoverlapping with the
exception of intron and intergenic sites. If preferred
synonymous mutations are, on average, beneficial [89,114],
then the smaller polymorphic-to-fixed ratio for nonsynon-
ymous and UTR variants versus preferred variants implies
that a large proportion of new nonsynonymous and UTR
mutations are beneficial. Using similar reasoning, the data in
Table 2 suggest that directional selection plays a larger role in
nonsynonymous and UTR divergence compared to intron
and intergenic divergence [20,115,116]. These conclusions are
consistent with estimates of a [11,117], the proportion of sites
fixing under directional selection (assuming that synonymous
sites are neutral and at equilibrium) for different site types.

Base Composition Evolution
Determining the relative contributions of various muta-

tional and population genetic processes to base composition

variation and inferring the biological basis of selection on
base composition remain difficult problems. Much of the
previously published data on base composition variation in D.
simulans have been from synonymous sites [55,89,90,118].
Several lines of evidence [55,89,90,113,118] suggest that on
average, preferred codons have higher fitness than unpre-
ferred codons, with variation in codon usage being main-
tained by AT-biased mutation, weak selection against
unpreferred codons, and genetic drift [23,114]. However,
the possibilities of nonequilibrium mutational processes and/
or natural selection favoring different base composition in
different lineages have also been addressed [119]. The D.
simulans population genomic data allow for a thorough
investigation of the population genetics and evolution of
base composition for both coding and noncoding DNA
[59,120]. The analyses discussed below use parsimony to
polarize polymorphic and fixed variants. Complete genomic
and gene-based data are available as Datasets S9 and S10.
Synonymous sites. Previous reports suggested that D.

simulans synonymous sites are evolving towards higher AT
content, although the excess of AT over GC fixations is small
[55]. That trend was confirmed in this larger dataset; there are
many more ancestral preferred codons that have fixed an
unpreferred codon (coverage classes four–six, n ¼ 21,156) in
D. simulans compared with ancestral unpreferred codons that
have fixed a preferred codon (coverage classes four–six, n ¼
15,409). Furthermore, the population genomic data also
support previous reports [89] that D. melanogaster synonymous
sites are becoming AT-rich at a faster rate than D. simulans
synonymous sites (Table S26), contributing to the higher
median dS in D. melanogaster (0.069) compared to D. simulans
(0.051, Wilcoxon Signed Rank, p , 0.0001).
The data also support previous reports [89] in that 2 3 2

contingency tables of polymorphic versus fixed, preferred
versus unpreferred variants are highly significant for the X
chromosome and the autosomes (Table S27). Under the
mutation-selection-drift model [89,114], this pattern has been
interpreted as reflecting a disproportionate contribution of
borderline deleterious unpreferred variants to the synon-
ymous polymorphism in D. simulans. This model predicts that
unpreferred polymorphisms should occur at lower average

Table 2. Whole-Genome Counts of Polarized Polymorphic and Fixed Variants

Variant Polymorphic Fixed Poly/Fix Ratio Poly/Fix Ratio CI Versus All Synonymous Variants Versus Preferred Variants n

a a CI p-Value a a CI

Preferred 29,601 25,051 1.18 1.15–1.21 — — — — — —

Unpreferred 76,506 32,632 2.34 2.29–2.40 — — — — — —

Synonymous 143,076 81,554 1.75 1.72–1.79 — — — — — 10,065

Nonsynonymous 23,599 29,254 0.81 0.78–0.83 0.54 0.525–0.554 ,10�15 0.32 0.293–0.339 10,065

Intron 412,465 248,406 1.66 1.62–1.70 0.07 0.043–0.098 ,10�15 –0.41 �(0.431–0.339) 7,924

Intergenic 887,158 552,510 1.61 1.58–1.63 0.07 0.055–0.094 ,10�15 –0.36 �(0.366–0.302) 12,316

5’UTR 10,276 9,363 1.10 1.05–1.15 0.37 0.345–0.404 ,10�9 0.07 (�0.013)–0.096 3,338

3’UTR 16,808 14,002 1.20 1.16–1.25 0.32 0.290–0.345 0.2112 –0.02 (�0.106)–0.002 3,764

Numbers of polymorphic and fixed variants in different categories (only Gold Collection UTRs were analyzed). a was estimated separately for each category versus all synonymous variants
or versus preferred variants. Confidence intervals (CI) (95%) were determined by bootstrapping (10,000 permuted datasets). n¼number of genes/elements for different categories. All 2 3

2 contingency tables analyzing synonymous variants were highly significant by Fisher’s Exact test; p-values for 2 3 2 contingency tables using preferred variants are provided.
doi:10.1371/journal.pbio.0050310.t002
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frequency than preferred variants. Indeed, contingency tests
(coverage-five sites) showed that this is the case (Table S28).

Previous results showing higher levels of codon bias for the
X chromosome versus autosomes suggest the possibility of
more effective selection against X-linked unpreferred var-
iants [58]. The population genomic data revealed that the
ratio of preferred-to-unpreferred fixations was not signifi-
cantly different for the X versus autosomes (coverage classes
four and five p-values ¼ 0.28 and 0.11, respectively), which
shows that rates of codon bias evolution are not detectably
different for X chromosomes and autosomes. However, two
additional aspects of the data support the idea that selection
on codon bias differs between the X chromosome and the
autosomes. First, the ratio of unpreferred-to-preferred poly-
morphisms is significantly smaller for the X chromosome
compared to the autosomes (coverage classes four and five, p-
values , 0.0001 and 0.003, respectively). Second, unpreferred
polymorphisms occur at significantly lower frequency on the
X chromosome than on the autosomes (Table S28; coverage
five sites, p ¼ 0.0014). Both of these observations are
consistent with an increased efficacy of natural selection
against X-linked unpreferred mutations [58].

Finally, we note that the ratio of preferred-to-unpreferred
fixations in D. simulans was slightly higher (p ¼ 0.002) among
the genes associated with a significant polarized MK test (0.83)
compared to those associated with a nonsignificant test (0.75).
This is consistent with the notion that amino acid variants

experiencing directional selection are more likely to fix if
they are associated with preferred codons (Table S29).
Noncoding sites. Because selection on codon bias occurs

only in protein-coding regions, comparisons of base compo-
sition variation in protein-coding versus noncoding regions
can serve to rule out some explanations for codon bias or
point to general explanations for base composition variation
that are unrelated to selection on codons.
Although synonymous sites are evolving toward higher AT

content in D. simulans, analysis of noncoding sites clearly
demonstrate that GC fixations are significantly more com-
mon than AT fixations (coverage classes two–six; 277,005 GC
versus 218,302 AT). This observation is inconsistent with
predictions of equilibrium base composition (binomial
probability, p , 1 3 10�6). The D. simulans genome is
becoming more GC-rich, as the large GC fixation bias for
intron and intergenic sites greatly outweighs the counter-
vailing AT fixation bias at synonymous sites (Table S30).
To gain further insight into base composition evolution, we

investigated polymorphic and fixed AT versus GC variants in
intergenic and intron DNA (coverage five sites in Table 3). We
found that the ratio of polymorphic-to-fixed AT variants was
much larger than the corresponding ratio for GC variants for
both intron and intergenic sequence. These data are
consistent with selection favoring GC over AT mutations;
although if this is the case, such GC mutations are apparently
favored significantly less strongly than preferred mutations,
as the polymorphic-to-fixed ratio for GC is much higher for

Table 3. Counts (Frequencies) of Variants for the X and Autosomes (A) for Sites with Coverage of Five D. simulans Alleles

Chromosome Base Composition

Variant

Frequency Class/

Polymorphic-to-Fixed Ratio

Unpreferred Intergenic Intron

X AT 1/5 978 (0.68) 4568 (0.62) 1483 (0.63)

2/5 224 (0.16) 1292 (0.16) 410 (0.17)

3/5 132 (0.09) 832 (0.11) 288 (0.12)

4/5 100 (0.07) 653 (0.09) 168 (0.07)

All Polymorphisms 1434 7345 2349

Fixations 894 5270 1675

Poly:Fix 1.6 1.39 1.4

A AT 1/5 14684 (0.64) 56259 (0.66) 17424 (0.65)

2/5 4469 (0.19) 15484 (0.18) 4834 (0.18)

3/5 2312 (0.10) 7587 (0.09) 2541 (0.10)

4/5 1502 (0.07) 5814 (0.07) 1890 (0.07)

All Polymorphisms 22967 85144 26599

Fixations 6947 29736 9647

Poly:Fix 3.31 2.86 2.76

X GC 1/5 295 (0.51) 4719 (0.54) 1633 (0.54)

2/5 124 (0.21) 1733 (0.20) 624 (0.21)

3/5 75 (0.13) 1156 (0.13) 394 (0.13)

4/5 88 (0.15) 1091 (0.13) 350 (0.12)

All Polymorphisms 582 8699 3001

Fixations 710 7632 2536

Poly:Fix 0.82 1.14 1.18

A GC 1/5 4205 (0.53) 47436 (0.57) 15373 (0.57)

2/5 1711 (0.21) 16576 (0.20) 5343 (0.20)

3/5 1126 (0.14) 9759 (0.12) 3191 (0.12)

4/5 965 (0.12) 8814 (0.11) 2935 (0.11)

All Polymorphisms 8007 82585 26842

Fixations 5062 41108 13498

Poly:Fix 1.58 2.01 1.99

doi:10.1371/journal.pbio.0050310.t003
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intron/intergenic variants than for synonymous variants.
Alternatively, biased gene conversion favoring GC could
increase the frequency of GC variants. Although configura-
tions of polymorphic versus fixed variants were generally
similar for intron and intergenic DNA (Table S30), autosomal
data from coverage-six sites (Dataset S9) suggest that the ratio
of polymorphic-to-fixed AT variants is greater for introns
(3.12) than for intergenic DNA (2.76; v2¼ 30.4, p¼ 3 3 10�8).

We further investigated base composition variation by
comparing the frequency spectrum of derived GC versus AT
polymorphisms in noncoding DNA for coverage-five sites.
For the X chromosome and the autosomes, intergenic and
intron GC polymorphisms occurred at significantly higher
average frequencies than AT polymorphisms (Table 3; v2, p ,

10�4 for all tests). As expected, if gene conversion favoring GC
variants contributes to their higher frequency and if most
gene conversion occurs during female meiosis, the X
chromosome has significantly higher frequencies of GC
polymorphisms (Table 3, v2, p , 10�4). We also compared
GC-to-AT ratios for the X versus autosome polymorphisms in
coverage-six sites (sites at which a base was called in all six D.
simulans syntenic assemblies). In agreement with predictions
for biased gene conversion, the ratio of GC-to-AT poly-
morphisms was greater on the X chromosome than on the
autosomes for each frequency class (Table S31), although
frequency class 1 was the only one that individually had a
significantly greater GC-to-AT ratio on the X (1.06) than on
the autosomes (0.89) (v2 ¼ 25.8, degrees of freedom ¼ 1).
Overall, these results support a role for biased gene
conversion favoring GC or more-effective selection favoring
GC on the X.

The observation that ancestral GC content is negatively
correlated with D. simulans divergence (50-kb windows;
described above) may be understood as a consequence of
the fact that genomic regions having higher ancestral AT
content have more, new GC mutations that may be favored by
genic selection or biased gene conversion compared with
regions that ancestrally were more GC rich. The question
remains as to why fewer preferred codons have fixed
compared to unpreferred codons given that the former may
be favored by genic selection due to translational efficiency
or accuracy, as well as by biased gene conversion. One
possibility is that ancestral codons were so enriched for
preferred variants that the mutation rate to unpreferred
variants has outweighed selection against such variants.
Alternatively, selection on base composition could be
stronger for noncoding than for coding sequence. However,
these interpretations do not help us explain the basic
conundrum: the D. simulans genome is far from base
composition homogeneity and stationarity for many site
types. The biological explanation for evolving base compo-
sition remains a mystery.

Conclusions and Prospects
The genomic analysis of polymorphism and divergence

based on alignments to a reference sequence is poised to
become a central component of biological research. Here we
have demonstrated that such analysis can be based on high-
quality whole-genome syntenic assemblies from light shotgun
sequence data; accounting for variable coverage and data
quality is fundamentally important. Several, noteworthy new
results have been reported here. First, our genome-level

investigation of adaptive protein evolution has revealed a
large number of proteins and biological processes that have
experienced directional selection, setting the stage for a
general analysis of functional protein divergence under
selection in Drosophila. Second, we identified several UTRs,
introns, and intergenic sequences showing the signature of
adaptive evolution. The functional biology of such noncoding
elements and their connections to adaptive protein and gene
expression evolution is open to investigation. Third, D.
simulans populations exhibit large-scale chromosomal pat-
terning of polymorphism and divergence that is poorly
explained by current genome annotations. Variation in
recombination rates across chromosomes may contribute to
these patterns. Fourth, the population genetics of the X
chromosome differs in several ways from that of the
autosomes. It evolves faster, harbors less polymorphism, and
shows a different spatial scale of variation of polymorphism
and divergence compared to the autosomes. Finally, base
composition is evolving in both coding and noncoding
sequences, for reasons that are as of yet unclear. This project
is, in many ways, a first step toward population genomics in
general, and in the Drosophila model specifically. For example,
the average number of alleles sampled per base is too small
for investigating many interesting properties of variation.
Some genomic regions have been excluded due to low
coverage, their repetitive nature, or very high divergence
from D. melanogaster. Many aspects of biological annotation
have not been investigated here, and many new Drosophila
annotations will be produced in the near future as compa-
rative and functional annotations of the D. melanogaster
genome move forward. Nevertheless, the data are a stun-
ningly rich source of material for functional and population
genetic investigation of D. simulans polymorphism and
divergence. It will be interesting to compare the processes
determining polymorphism and divergence in D. simulans to
those controlling variation in D. melanogaster (http://www.
dpgp.org) and in other species, such as humans. Such
comparisons are likely to result in new insights into the
genetic, biological, and population genetic factors respon-
sible for similarities and differences among species in the
genomic distribution of sequence variation.

Materials and Methods

Drosophila stocks. D. simulans 4 (males and females). This strain was
established by ten generations of sibling mating from a single,
inseminated female collected by D. Begun in the Wolfskill orchard,
Winters, California, USA, summer 1995.

D. simulans 6 (males and females). This strain was established by ten
generations of sibling mating from a single, inseminated female
collected by D. Begun in the Wolfskill orchard, Winters, California,
summer 1995.

D. simulans w501(males and females). This strain carries a white (eye
color) mutation. It has been in culture since the mid 20th century,
likely descended from a female collected in North America. The
strain used for sequencing was sib-mated for nine generations by D.
Barbash at UC Davis. Libraries for sequencing were prepared from
DNA isolated from embryos.

D. simulans MD106TS (males and females). This strain was
descended from a single, inseminated female collected by J. W. O.
Ballard in Ansirabe, Madagascar on 19 March 1998. It has the siII
mitochondrial genotype, and was cured of Wolbachia by tetracycline.
The strain was sib-mated for five generations in the Ballard lab,
followed by an additional five generations of sib-mating by D. Begun.

D. simulans MD199S (females). This strain was descended from a
single, inseminated female collected by J. W. O. Ballard in Joffreville,
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Madagascar on 28 March 1998. It has the siIII mitochondrial
genotype, and probably lost Wolbachia infection. The strain was sib-
mated for five generations in the Ballard lab, followed by an
additional five generations of sib-mating by D. Begun. All-female
DNA was made to assist in assembly of the Y chromosome by
comparison to mixed-sex libraries of other lines.

D. simulans NC48S (males and females). This strain was descended
from a collection by F. Baba-Aissa in Noumea, New Caledonia in
1991. It has the siImitochondrial genotype, and was sib-mated for five
generations in the Ballard lab, followed by an additional five
generations of sib-mating by D. Begun.

D. simulans C167.4 (males and females). This strain was descended
from a collection in Nanyuki, Kenya. It is unusual in that can produce
fertile females when hybridized to D. melanogaster. The line used for
genome project was obtained from the Ashburner laboratory via D.
Barbash, and was subjected to a total of 13 generations of sib- mating.

D. yakuba Tai18E2 (males and females). This strain derives from a
single inseminated female captured in 1983 by D. Lachaise in the Taı̈
rainforest, on the border of Liberia and Ivory Coast. This line was sib-
mated for ten generations by A. Llopart and J. Coyne. Inspection of
21 salivary gland polytene chromosomes showed no chromosomal
rearrangements segregating within the strain. Therefore, Tai18E2
appears homokaryotypic for the standard arrangement in all
chromosome arms, save 2R, which is homokaryotypic for 2Rn.

DNA extraction. DNA preparations for sequencing all lines except
w501 and Tai18E2 were made from adults. Drosophila nuclei were
isolated following Bingham et al. [121]. For all lines except w501 and
Tai18E2, DNA was isolated by phenol/chloroform extraction of nuclei
followed by ethanol precipitation. For lines w501 and Tai18E2,
embryos were collected using standard procedures [122] followed
by DNA isolation on CsCl gradients [121].

D. yakuba sequencing and assembly. Sequence data were obtained
from paired-end plasmids and fosmids (Table S32) using standard
Washington University Genome Sequencing Center laboratory
protocols (http://genome.wustl.edu). A highly automated production
pipeline using a 384-well format ensured the integrity of the paired-
end data.

We determined the nucleotide-level accuracy by reviewing the
quality values of the D. yakuba consensus assembly and by comparison
to manually edited D. yakuba sequence. More than 97% of the D.
yakuba genome sequence had quality scores of at least 40 (Q40),
corresponding to an error rate of �10�4. Further, we extracted reads
from two local fosmid-sized regions (68 kb, defined by fosmid-end
sequence pairs, one on chromosome X and one on chromosome 3L)
of the assembly and reassembled using Phrap (P. Green, unpublished
data). The resulting ‘‘fosmids’’ were manually reviewed and edited.
Comparison of the sequence to these manually edited regions
revealed a high-quality discrepancy rate of 2 3 10�4 substitutions
and 1 3 10�4 insertion/deletion errors, consistent with the above
estimates based on consensus base quality. We also found no
evidence of misassembly when comparing the WGS assembly to
these projects.

Repetitive content was estimated both in D. yakuba and D.
melanogaster using RECON to generate the repeat families and
RepeatMasker to then identify those repeats in the genomes. The D.
yakuba genome was ;27% repetitive overall (of which ;2.5% is
simple sequence repeats/low complexity sequence) and 8% in the
euchromatic portion of the genome. The D. melanogaster genome was
;11% repetitive overall (of which 2.3% is simple sequence repeats/
low complexity sequence) and ;7% in the euchromatic portion of
the genome.

The first step in creating D. yakuba chromosomal fasta files was to
align the D. yakuba WGS assembly data against the D. melanogaster
genome. D. yakuba supercontigs were artificially broken into 1,000-bp
fragments and aligned against the D. melanogaster genome using BLAT
[123]. An alignment was defined as ‘‘unique’’ if its best scoring match
had a score of at least twice that of its next best scoring alignment. Of
the 139.5 Mb of D. yakuba supercontigs that uniquely aligned to the D.
melanogaster genome (4.2 Mb of which aligned uniquely to D.
melanogaster unlocalized sequence, chrU), only 16 supercontigs total-
ing 15.1 Mb contained unique assignments to more than one
chromosome arm. Eleven of these involved alignments to hetero-
chromatin where only less than ;5% of the supercontig aligned
uniquely to the D. melanogaster genome. These contigs were assigned
to either chrU or the heterochromatic portion of the chromosome
for cases where the contig aligned to both the heterochromatic and
nonheterochromatic portion of the same chromosome. One 200-kb
contig had only 6.2 kb that uniquely mapped to the D. melanogaster
genome, 3.8 kb mapping to chr2R, and 2.4 kb mapping to chrX. This
supercontig was assigned to chrU. The remaining four supercontigs

were alignments to chromosome arms 2L and 2R, the location of a
known pericentric inversion between D. melanogaster and D. yakuba.

The D. yakuba contigs were initially ordered by their position along
the assigned D. melanogaster chromosomes. Because there are
rearrangements in D. yakuba as compared to D. melanogaster, we
allowed one portion of a D. yakuba supercontig to align to one region
of a chromosome and the remaining portion to align elsewhere along
that chromosome. For example, four supercontigs aligned to both
chromosome arms 2L and 2R. However, these 2L/2R cross-overs and
other interspecific nonlinearities are expected given the known
chromosome inversions [124] between D. yakuba and D. melanogaster.
This initial ordering for 2L, 2R, 3L, 3R, and X was used as the starting
point for manually introducing inversions in the D. melanogaster-
ordered D. yakuba supercontigs. The goal was to minimize the total
number of inversions required to ‘‘rejoin’’ all D. yakuba supercontigs
previously assigned to distant chromosomal regions based on D.
melanogaster alignments (L. Hillier, unpublished data). Inversions were
only introduced between contigs and not within contigs. Using this
process, we created the final chromosomal D. yakuba sequence.

D. simulans sequencing. Sequence data were obtained from paired-
end plasmids from the various D. simulans strains using standard
laboratory protocols (http://genome.wustl.edu). A genomic assembly
was also created. We began by generating an ;43WGS assembly of D.
simulans w501 using PCAP [18]. The w501contigs were initially
anchored, ordered, and oriented by alignment with the D. melanogaster
genome in a manner similar to that described above for alignments
between the D. yakuba and D. melanogaster genome. The assembly was
then examined for places where the w501 assembly suggested
inversions with respect to the D. melanogaster assembly. One major
inversion was found, confirming the already-documented inversion
found by [124]. Six other D. simulans lines (C167.4,MD106TS,MD199S,
NC48S, SIM4, and SIM6) were also assembled using PCAP with ;13
coverage. Using the 43WGS assembly of the D. simulans w501 genome
as a scaffold, contigs and unplaced reads from the 13 assemblies of
the other individual D. simulans lines were used to cover gaps in the
w501 assembly where possible. Thus, the resulting assembly is a
mosaic containing the w501 contigs as the primary scaffolding, with
contigs and unplaced reads from the other lines filling gaps in the
w501 assembly (L. Hillier, unpublished data). The D. simulans w501

whole-genome shotgun assembly can be accessed at GenBank.
D. simulans syntenic assembly. The goal was to align unique D.

melanogaster reference sequence assembly v4 to orthologous D.
simulans sequence. The D. melanogaster genome was preprocessed to
soft mask all 24mers that were not unique, as such sequences were not
expected to have a discriminating effect during mapping of D.
simulans reads. Transposable elements in the reference sequence were
also masked.

The D. simulans WGS reads were quality trimmed prior to assembly
based on their phred-score derived error probability. These error
probabilities were used to trim the read back to the longest
contiguous interval with an average probability of error less than
0.005. Each end was then examined and trimmed until its terminal 10
bp had an average probability of error less than 0.005. If the read was
less than 50 bp after this process, it was discarded. These criteria
resulted in 164,480 discarded reads from a total 2,424,141 reads. See
Table S33 for read and trim statistics.

A dynamic programming algorithm was used to create a
maximum-likelihood description of the evolutionary path between
sequences from the two species with respect to the standard
alignment model, which was extended to incorporate the possibility
of sequencing error. To improve the accuracy of the alignments,
optimal parameters were estimated with respect to the overall
expected evolutionary distance between the two species. This was
done from a first-pass assembly using the method described in [129].
Because dynamic programming is not feasible on a genomic scale, we
determined candidate locations for each read using the MegaBLAST
(http://www.ncbi.nlm.nih.gov/BLAST/docs/megablast.html) algorithm.
A read was then realigned to each candidate location as a single
contiguous alignment using a derivative of the Smith-Waterman
algorithm, which was adapted to incorporate the expected divergence
and the error probabilities provided by Phred quality scores.
Alignments were ranked by score. Reads were considered unambig-
uously mapped if their alignment covered at least 90% of the
sequence and showed more than two high-quality differences
between the putative best orthologous location and a possible
secondary candidate location. Reads were incorporated into the
assembly on a clone-by-clone basis only if both mate-pairs were
unambiguously mapped with the proper orientation and appropriate
distance from each other.

For each D. simulans line, the aligned reads were coalesced into
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syntenic contigs using their overlap with respect to the D. melanogaster
genome. Note that ‘‘overhanging’’ or unaligned sequence that may
represent transposable elements, other repetitive sequence, or highly
diverged sequence, was not considered. This ‘‘master–slave’’ multiple
alignment contains reads that are aligned ‘‘optimally’’ with respect to
the D. melanogaster reference sequence. However, this does not ensure
that the reads are optimally aligned with respect to each other. For
instance, small, identical insertion or deletion variants may not be
mapped to precisely identical locations in all D. simulans reads. To
address this problem, the D. melanogaster reference sequence was set
aside, and the method of Anson and Meyers [125] was used to
optimize the alignment of each component read of each D. simulans
line with respect to a D. simulans–only consensus sequence. This
method, which minimizes the sum of differences between each of the
reads and the consensus sequence, belongs to the class of expectation
maximization algorithms [125]. The round robin, align-and-update
algorithm converges on a consensus sequence and alignment that
most parsimoniously describe the differences between each read and
the consensus. This has the effect of coalescing deletions and aligning
insertions. The end result of the assembly is a multi-tiered alignment
with associated quality scores for (i) the trimmed reads, (ii) the
assembled sequences within lines, and (iii) a species consensus
sequence, all aligned to the D. melanogaster reference sequence. A
reference sequence was produced for each D. simulans line by
concatenating the syntenically assembled contigs that were padded
with respect to the D. melanogaster reference sequence. The result is a
set of D. simulans genomes onto which D. melanogaster annotation can
be directly mapped.

Empirical validation of syntenic assembly. Nine regions, including
coding and noncoding DNA, were chosen to cover a range of
polymorphism levels as predicted by an early version of the syntenic
assembly. These regions were amplified from lines C167.4, MD106TS,
NC48S, and w501, and sequenced at UNC-Chapel Hill High-
Throughput Sequencing Facility. Sequences were assembled using
Consed; a minimum quality score of 30 was required. Approximately
27,500 bp were sequenced per line. The per-base discrepancy
between these sequences and the current syntenic assembly
(insertions, deletions, and masked bases omitted) was estimated as
0.00043.

Alignment of D. yakuba to the D. melanogaster reference sequence.
An orthology map (with respect to the D. melanogaster reference
sequence) of D. yakuba assembly (v1.0) was generated by the Mercator
program (http://rd.plos.org/pbio.0050310a). The MAVID [126] aligner
was run on each orthologous segment in the map. MAVID uses
protein-coding hits reported by Mercator to anchor its alignment of
each segment. It recursively finds additional anchors and then runs
the Needleman-Wunsch algorithm in between the anchors to obtain a
single, global alignment of the entire orthologous segment.

Heterochromatic regions. These regions were filtered based on
manual examination of the density of annotated repetitive sequence
in the centromere and telomere proximal regions of the five large
arms. The transition from the ‘‘typical’’ euchromatic density of large
repeats to the typical ‘‘beta heterochromatic’’ pattern is obvious. The
‘‘euchromatic/heterochromatic boundaries’’ were drawn roughly at
the edges of the first annotated gene within each euchromatic arm.

The following regions were excluded from analysis: (i) X 1 to
171944 AND 19740624 to END; (ii) 2L 1 to 82455 AND 21183096 to
END; (iii) 2R 1 to 2014072 AND 20572063 to END; (iv) 3L 1 to 158639
AND 22436835 to END; and (v) 3R 1 to 478547 AND 27670982 to
END.

Consensus and quality scores. The sequence for each line is
derived from the multiple alignment of reads to the D. melanogaster
reference assembly (v4). For each line and each column (nucleotide
position) corresponding to a D. melanogaster base, a likelihood model
was used to determine the quality score for each of the four bases.
The quality score was calculated as �10log(1 – probability base is
correct). To compute the probability a base call is correct, we assume
that each read is an observation of a random variable with equal
likelihoods for all four bases with some probability of error. From the
definition of a phred score, the probability of error for a particular
observed call is: 10(phred score/–10 ). We assumed that a base in error is
equally likely to be any one of the three other bases. Then, for a given
position A, Bayes theorem implies the probability (Pr) that the call is
correct is

Pr½A is correct� ¼ ½Pr½A�3Pr½ObservationsjA is correct��
=Pr½Observations�

Where Pr[A]¼ 1/4, Pr[ObservationsjA is correct]¼ likelihood of A

observations being correct and non-A observations being incorrect,
and Pr[Observations] ¼ likelihood of seeing observed values given
frequency and error rates.

Quality scores were truncated at 90. The sequences for each line
were investigated for regions containing unusually high densities of
high-quality discrepancies, which are due to residual heterozygosity,
duplication, and erroneous sequence. These regions were filtered
from subsequent analysis (see below). For each line, the support for
each alternative (A, G, C, and T) at each aligned base was the sum of
the qualities, with the highest quality base assigned as the base for
that line/position. Implicit in this approach is that a base is called
only if the highest quality base has a quality score that is 30 or more
greater than that of the next highest quality base. The combined
SIM4/SIM6 consensus was also treated in this manner.

Filtering of high-quality discrepancies within lines. Residual
heterozygosity within lines or duplications present in D. simulans but
not D. melanogaster can lead to regions with excess high-quality
discrepancies between reads within lines. We refer to these as single-
nucleotide discrepancies. We derived a distribution of the number of
discrepancies per site over each chromosome for each D. simulans line.
We based the distributions on counts of within-line discrepancies per
site in 500-bp windows that had 250-bp overlap. We took the
conservative approach of filtering windows in all the lines that fell
into the top 0.5% of the distribution in any single line. In other words,
a window with a high-quality discrepancy in one line was filtered from
the entire dataset, even if the other lines had no discrepancy. Overall,
334,500 base pairs were filtered from the genome. The number of sites
filtered for each chromosome armwere 39 kb for 2L, 86.5 kb for 2R, 58
kb for 3L, 73 kb for 3R, and 78 kb for X.

Inversion on the D. melanogaster lineage. One large inversion on
chromosome arm 3R distinguishes the two species. Phylogenetic
analysis of the cytogenetic data suggested that the inversion fixed in
the D. melanogaster lineage [39]. Thus, D. simulans 3R is rearranged with
respect to the D. melanogaster reference sequence. We used D.
melanogaster/D. simulans alignments provided by the UC Santa Cruz
Genome Browser to locate the putative breakpoints of the inversion
as Chr3R: 3874907 and 17560827.

Features. All features were defined in the D. melanogaster v4.2
annotation (http://flybase.org). For each gene, the longest isoform (i.e.,
the isoform the with greatest number of codons) was chosen for
analyses. Exons that were not part of the longest isoform were
excluded from all feature-based analyses, but were included in
window analyses. The analyzed introns correspond to these longest
isoforms; all introns were included in window analyses. Intronic
sequences within annotated UTRs or that overlapped any coding
sequence were excluded. UTRs investigated for this paper were
restricted to those inferred from ‘‘Gold Collection’’ genes with
completely sequenced cDNAs (http://www.fruitfly.org/EST/
gold_collection.shtml). All annotated CDS sequences were used
regardless of the associated empirical support. Intergenic regions
were defined as noncoding segments between annotated genic
regions (UTRs, coding sequence, and noncoding RNAs) regardless
of strand. Defined intergenic regions from v4.2 annotation were
checked against all known coding and UTR coordinates; any
nucleotides that overlapped a genic region were removed from the
intergenic set before analysis.

Defining the D. simulans syntenically aligned gene set. We
established a conservative gene set for analyses (base composition
analyses excepted) by including only genes for which the start codon
(ATG or otherwise), splice junctions (canonical or otherwise), and
termination codon position agreed with the D. melanogaster reference
sequence. We took the conservative approach of excluding from the
gene-based analysis any gene for which any of the six D. simulans gene
models disagreed with the D. melanogaster gene model.

Insertions and deletions. Long insertions and deletions (indels) are
difficult to identify using only aligned reads. As indel length
increases, the likelihood that indels are missed increases because
they are either too long or occur near the end of a read, which
compromises alignment. Furthermore, indel error probabilities are
difficult to estimate. These considerations led us to restrict our
analysis to indels of 10 bp or less and to restrict our analysis of
divergence to the D. simulans versus D. melanogaster comparison.
Variants were classified as insertions or deletions relative to the D.
melanogaster reference sequence. The quality score for an insertion
was the average quality score of sequence in that insertion; the quality
score for a deletion was the minimum of qualities of the two flanking
nucleotides. Qualities were determined this way to provide a metric
of overall sequence quality in the region of a putative indel, thereby
allowing a quantitatively defined cutoff for inferring indel variants;

PLoS Biology | www.plosbiology.org November 2007 | Volume 5 | Issue 11 | e3102551

Population Genomics of D. simulans



only indels of high quality (over phred 40) were considered in the
analysis.

Estimation and inferences. Light, variable coverage of each line
requires that statistical estimation and inference account for cover-
age variation. When appropriate (e.g., contingency tables of
frequency variation), counts of variants within a coverage category
were used. In other estimation and inference settings, the familiar
estimators were applied to each coverage class and then averaged,
weighting by the proportion of total covered base pairs in the window
or other feature.

Heterozygosity. The expected nucleotide, insertion, and deletion
heterozyogsity was estimated as the average pairwise differences
between D. simulans alleles as follows:

pi is the coverage-weighted average expected heterozygosity of
nucleotide variants (i ¼ nt), deletions (i ¼D) or insertions (i ¼ ,) per
base pair. ‘‘Expected heterozygosity’’ assumes the six sequenced
genomes were drawn from a single, randomly mating population.
Variable coverage over sites led us to extend the typical calculation of
expected heterozygosity [127,128] to the following:

pi ¼
1X6
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where nc is the number of aligned base pairs in the genomic region
(e.g., gene feature or window) with sequencing coverage c. kcj is the
number of sites in this region with coverage c at which the derived
state (nt, n, or ,) occurs in j out of the c sequences. This estimator
was used for 10-kb windows, 50-kb windows, 30-kb sliding windows
(10-kb increments), 150-kb sliding windows (10-kb increments), and
210-kb windows (10-kb increments), including all windows for which
coverage was .200 bp. Expected heterozygosity was also estimated
for genomic features (exons, introns, UTRs, and intergenic sequence)
that had a minimum size and coverage [i.e., n(n – 1)3 s � 100, where n
¼ average number of alleles sampled and s ¼ number of sites]. For
coding regions, the numbers of silent and replacement sites were
counted using the method of Nei and Gojobori [129]. The pathway
between two codons was calculated as the average number of silent
and replacement changes from all possible paths between the pair.

The variance of pairwise differences in sliding windows (150-kb
windows, 10-kb increments) was used as a method of summarizing the
magnitude of linkage disequilibrium across the D. simulans genome.
For each window, we calculated coverage weighted variance of the
expected heterozygosity (see above) for all pairs of alleles.

Divergence. Unpolarized (i.e., pairwise) divergence between D.
simulans and D. melanogaster was estimated for 10-kb windows, 50-kb
windows, 30-kb sliding windows (10-kb increments), 150-kb sliding
windows (10-kb increments), 210-kb windows (10-kb increments), and
genomic feature that had a minimum number of nucleotides
represented [i.e., n 3 s . 100, with n and s as above in calculations
of p. Unpolarized divergence was calculated as the average pairwise
divergence at each site, which was then summed over sites and
divided by the total number of sites. A Jukes-Cantor [130] correction
was applied to account for multiple hits. For coding regions, the
numbers of silent and replacement sites were counted using the
method of Nei and Gojobori [129]. The pathway between two codons
was calculated as the average number of silent and replacement
changes from all possible paths between the pair. Estimates of
unpolarized divergence over chromosome arms were calculated for
each feature with averages weighted by the number of sites per
feature.

Lineage-specific divergence was estimated by maximum likelihood
using PAML v3.14 [131] and was reported as a weighted average over
each line with greater than 50 aligned sites in the segment being
analyzed. Maximum likelihood estimates of divergence were calcu-
lated over 10-kb windows, 50-kb windows, 30-kb sliding windows (10-
kb increments), 150-kb sliding windows (10-kb increments), 210-kb
windows (10-kb increments), and gene features (exons, introns, and
UTRs). PAML was run in batch mode using a BioPerl wrapper [132].
For noncoding regions and windows, we used baseml with HKY as the

model of evolution to account for transition/transversion bias and
unequal base frequencies [133]; for coding regions, we used codeml
with codon frequencies estimated from the data.

Insertion and deletion divergence was calculated as divi, the
coverage-weighted average divergence of deletions (i ¼ n) or
insertions (i ¼,) per base pair.

divi ¼
1X6
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where nc is the number of aligned base pairs in the genomic region
(e.g., gene feature or window) with sequencing coverage c. kcj is the
number of sites in this region with coverage c at which the derived
state with respect to the D. melanogaster reference sequence (n or ,)
occurs in j out of the c sequences.

MK tests (unpolarized and polarized). Unpolarized MK tests [4]
used D. simulans polymorphism data and the D. melanogaster reference
sequence for counting fixed differences. Polarized MK tests used D.
yakuba to infer the D. simulans/D. melanogaster ancestral state. For both
polarized and unpolarized analyses, we took the conservative
approach of retaining for analysis only codons for which there were
no more than two alternative states. For cases in which two
alternative codons differed at more than one position, we used the
pathway between codons that minimized the number of nonsynon-
ymous substitutions. This is conservative with respect to the
alternative hypothesis of adaptive evolution. Polymorphic codons at
which one of the D. simulans codons was not identical to the D.
melanogaster codon were not included. To reduce multiple testing
problems, we filtered the data to retain for further analysis only genes
that exceeded a minimum number of observations; we required that
each row and column in the 2 3 2 table (two variant types and
polymorphic versus fixed) sum to six or greater. Statistical signifi-
cance of 2 3 2 contingency tables was determined by Fisher’s Exact
test. MK tests were also carried out for introns and Gold Collection
UTRs by comparing synonymous variants in the associated genes with
variants in these functional elements. For intergenic MK tests, we
used synonymous variants from genes within 5 kb of the 59 and/or
39boundary of the intergenic segment. For some analyses, we
restricted our attention to MK tests that rejected the null in the
direction of adaptive evolution. This categorization was determined
following Rand and Kann [134].

Polarized 2 3 2 contingency tables were used to calculate a, which
under some circumstances can be thought of as an estimate of the
proportion of variants fixing under selection [11]. Bootstrap
confidence intervals of a and of the ratio of polymorphic-to-fixed
variants for each functional element (Table 2) were estimated in R
using bias correction and acceleration [135].

Rate variation. Our approach takes overall rate variation among
lineages into account when generating expected numbers of
substitutions under the null model and allows for different rates of
evolution among chromosome arms (e.g., a faster-X effect). For
example, the number of substitutions for all X-linked 50-kb windows
was estimated using PAML (baseml), allowing different rates for each
lineage. All D. simulans lines were used, with the estimated
substitution D. simulans rate for each window being the coverage-
weighted average. This generated an empirically determined branch
length of the X chromosome for the average over each of the D.
simulans lines (from all three way comparisons with D. melanogaster
and D. yakuba) weighted by the number of bases covered. We carried
out a relative rate test for windows or features in D. simulans and D.
melanogaster by generating the expected number of substitutions for
each window/feature/lineage based on the branch length of the entire
chromosome in each lineage (PAML) and the coverage of the
window/feature in question in each lineage. We then calculated the
deviation from the expected number of substitutions as (observed –
expected substitutions)2/expected substitutions for any window/
feature/lineage.

GO by MK permutations. For each GO term associated with at least
five MK tests, we calculated the proportion of significant (p , 0.05)
tests. We then randomly selected n p-values from the set of all MK p-
values, where n is the number of tests in the ontology category. We
repeated this procedure 10,000 times to get the empirical distribu-
tion of the proportion significant p-values for each GO term.

GO by dN permutations. The relative rate v2 for dN was calculated
for each gene as described above. Genes showing a significant (p ,
0.05) acceleration of dN in the D. simulans lineage were identified as
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described in the previous section. The probabilities of observing as
many, or more, significant relative rate v2 tests for dN were
determined by permutation as described in the previous section.

GO terms under ‘‘hitchhiking’’ windows. We retrieved ontology
terms associated with genes that fell under windows of interest in
linked selection analyses. Then, for each term, we divided the number
of instances that the term was represented in the windows of interest
by the total number of genes in the genome that are associated with
the ontology term. This gave us a proportional representation of each
GO term in windows of interest. We compared this proportion for
each GO term with the empirical distribution of proportions derived
from permuted datasets. For each permuted dataset, we randomly
picked a nonoverlapping set of windows that were the same size in
numbers of base pairs as the observed windows. Each window was
guaranteed to contain at least one gene, given that windows of
interest have higher-than-average gene density. We then retrieved the
ontology terms associated with the genes under the random set of
windows. We next calculated the proportion of each term as
described above for the observed windows. We repeated this
procedure 1,000 times to obtain an empirical distribution of
proportions of each term in random windows. The proportion of
each GO term in the original observed windows of interest was
compared to this empirical distribution to obtain a probability of
observing that proportion of each term in windows of interest.

GO clustering. We wanted to know whether ontology terms were
clustered in the genome. We tested whether each ontology term was
significantly clustered by calculating the coefficient of variation based
on occurrence in 1-Mb, nonoverlapping windows and compared that
to the coefficient of variation from permuted datasets in which we
randomized the locations of genes on each chromosome arm.

Gene expression. Genes were assigned to expression categories,
with the goal of determining whether certain categories had a greater
proportion of significant MK tests for adaptive protein divergence
than expected by chance. Two types of data, expressed sequence tag
(EST) collections and microarray experiments, were used. Genes
associated with EST collections from D. melanogaster (head, ovary, and
testis from Flybase and spermatheca from Swanson et al [136]) were
assigned to that tissue expression category. Female-mating responsive
genes were those defined by microarray experiments [137]. Male- and
female-biased genes were defined based on microarray experiments
of Parisi et al. [138] and Arbeitman et al. [139]. Male- and female-
biased genes from Parisi et al. [138] were obtained directly from their
Tables S41 and S42. Arbeitman et al. [139] measured expression over
the D. melanogaster life cycle for adult males and females. We averaged
expression for each gene over the time points taken for each stage.
For example, there were 30 time point measurements during the egg
stage; we used the average expression over those 30 time points. We
repeated this for larvae, metamorph, adult female, and adult male
stages. Each gene was provisionally designated as having biased
expression for the stage with the maximum average expression, which
we will call the biased stage. For each gene, we calculated the average
difference between the biased stage expression value and the other
stage expression values. This generated a distribution of differences
for each comparison of stages. A gene was finally determined to have
biased expression if the average difference between the biased stage
and the other stages fell into top half for that stage distribution. This
procedure resulted in 592, 374, 223, 466, and 296 stage-biased genes
for egg, larvae, metamorph, adult male, and adult female stages,
respectively. We calculated the proportion of genes in a group (e.g.,
male-biased) that had significant MK tests (p , 0.05). We used
permutation testing to determine whether the proportion of
significant polarized MK tests deviating in the direction of adaptive
protein evolution exceeded the 95% tail of the empirical distribu-
tion, based on 10,000 datasets of randomly selected MK tests, sampled
without replacement.

Protein–protein interactions. We tested whether pairs of proteins
that interact with one another were more likely to show evidence of
adaptive protein divergence than random pairs of proteins with no
evidence of interaction. Data were from Giot et al. [140]. We
considered pairs of genes to have a significant interaction if the
probability of interaction was greater than 0.5. We calculated the
proportion of interacting pairs where both members had significant
evidence of adaptive evolution (MK p-values , 0.05). We compared
this proportion to the distribution of proportion generated from
permuted datasets generated by randomly drawing pairs of genes
without replacement from the Giot et al. [140] dataset.

Polymorphism versus divergence. Hudson, Kreitman, and Aquadé
[2] proposed a test of the neutral theory of molecular evolution in
which the numbers of polymorphic and (fixed) divergent sites are
contrasted between two independent loci (genomic regions). The

distribution of a v2-like test statistic can be determined by simulation
for any assumed values of recombination within each locus. However,
given the small sample size here and the genomic scale of the data, we
used an analogous statistic for polymorphisms and fixations on the D.
simulans lineage in various sizes of sliding windows, combined over
coverage classes. First, the average proportion of segregating sites in
D. simulans and parsimony-inferred fixed differences for each
chromosome arm in D. simulans was determined for each coverage
class over a range of sliding window sizes (10 kbp to 510 kbp). The
test statistic is a simple two-cell v2, in which the observed numbers
(summed over coverage classes) of segregating and fixed sites are
contrasted with their expected numbers (summed over coverage
classes, the chromosome arm average for each coverage class times
the total numbers of segregating and fixed sites in that class). Only
sites for which unambiguous, parsimony-inferred D. simulans/D.
melanogaster ancestral states could be determined were included in
the analysis. In a number of figures, v[–log10(p)] is plotted; –log10 of p,
critical value for this v2, was given the sign of the difference, observed
numbers of segregating site – expect number of segregating sites. As expected
(Figure 1), there is a clear tendency for the level of polymorphism
(both pnt and proportion of segregating sites) to decline proximal to
the telomeres and centromeres. Therefore, the test statistics
discussed in this section were determined by generating expected
values as described above, but only including the ‘‘central euchro-
matic’’ regions. These were defined as the regions bounded by the
first and last position on each chromosomes arm for which the
proportion of segregating sites was greater than or equal to the
chromosome arm average in a 510-kbp window. While this makes
deviations in the centromere and telomere proximal regions appear
greater, it removes the obvious bias toward positive deviations (i.e.,
excess polymorphism) that would be created by including large
genomic regions known to show reduced polymorphism when
generating expectations. Minimum values for the expected numbers
of segregating and fixed sites were one (unless otherwise indicated).
Windows with coverage ,200 bp were dropped (unless otherwise
indicated).

Autocorrelation of nucleotide heterozygosity and divergence.
Expected nucleotide heterozygosity and polarized divergence were
calculated for 10-kb and 50-kb nonoverlapping windows spanning
each chromosome arm as described above. For each arm, autocorre-
lation between successive windows was calculated as:

r ¼

Xn�1
t¼1
½ðxt � �xÞðxtþ1 � �xÞ�

Xn
t¼1
ðxt � �xÞ2

where there are n windows along an arm, and xt represents the value
of nucleotide heterozyogsity or divergence for the t-th window.
Significance of r for all arms for both polymorphism and divergence
was calculated by permutation. All calculations were carried out in R
(http://www.r-project.org).

Reduced variation associated with colonization. We set out to find
putative selective sweeps that occurred concomitantly with migration
by D. simulans out of Africa/Madagascar. We expect the signature of
these sweeps to be low variation in New World (NW) lines, defined
here as w501 and SIM4/6, compared to Old World (OW) lines, defined
here as C167.4, MD199S, and MD106TS. The method described here
addresses the issue of autocorrelated loci. Our approach was to
simulate datasets with the same degree of autocorrelation as that of
the observed data, and to determine whether there are longer runs of
windows with disproportionately low NW p in the actual data than
one would expect by chance. All data manipulation, calculations, and
simulations were carried out in R using functions available within the
‘‘base’’ and ‘‘stats’’ packages. Mean nucleotide diversity (p) from 10-kb
nonoverlapping windows throughout the genome from the two NW
and three OW lines were used. Adjacent 10-kb windows were
averaged (weighted by coverage) to obtain 20-kb windows. Remaining
windows for which no estimate of p was available were conservatively
estimated by interpolation. There were no gaps in the 20-kb window
data longer than three consecutive windows in either population. For
each window, the ratio of NW p:OW p (p NW:pOW) was measured.
Maximum likelihood estimates of first-order coefficients of autocor-
relation for each of the chromosome arms were found (all were
significant).

Monte Carlo simulations of the ratio pNW:pOW were performed
according to the following procedure. We first randomly sampled
ratios of p NW: pOW from the data with replacement for each arm
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separately; this ensures that our simulated data has the same mean
and variance as the actual data. A first-order autoregressive filter was
then applied to the randomly sampled data using the estimate of
autocorrelation for the given chromosomal arm, according to the
following relationship:

Xi� ¼ lþ qðXi�1 � lÞ þ Xi; jqj � 1; i ¼ 1; 2; :::;

where parameter l is the mean of the sampled data, q is the
autocorrelation, Xi – 1 is previous value in the series, and Xi is the
original sampled measure for the ith window. This filter imposes the
observed autocorrelation onto the sampled data to mimic the
observed autocorrelation, resulting in a new value, Xi*, for each
window. Variance and estimated first-order autocorrelation of the
simulations were similar to those of the empirical data without
altering this procedure.

A lower threshold of p NW: pOW, below which 5% of the empirical
data points reside, was determined. Significance of runs of windows
below this threshold was determined by comparison to the
distribution of the run lengths in 10,000 Monte Carlo simulation
runs for each chromosome arm, performed as described above. P-
values for each arm were corrected for multiple comparisons
conservatively via Bonferroni correction (Dunn-Sidak corrections
did not result in an increased number of significant sweeps).

Preferred/unpreferred codons and base composition analyses.
Parsimony was used to infer D. simulans/D. melanogaster ancestral
states; D. yakuba was the outgroup. Only codons with one synonymous
variant among the three species were included in these analyses. The
preferred codon set was defined following Akashi [113]. For some
analyses, preferred and unpreferred substitution rates were deter-
mined by dividing the number of substitutions of each type by the
number of ancestral codons of the appropriate ancestral state
(unpreferred ancestors for the preferred substitution rate and
preferred ancestors for the unpreferred substitution rate), all
inferred by parsimony. In principle, excess unpreferred polymor-
phisms at synonymous sites could erroneously lead one to infer
directional selection on other sites. However, the ratio of preferred-
to-unpreferred polymorphisms is not significantly different (pooled
across genes or gene-by-gene) for UTRs that had significant versus
nonsignificant MK tests in contrasts of synonymous and UTR sites.
For introns that showed a significant MK test versus synonymous
sites, there was a slightly larger ratio of unpreferred-to-preferred
polymorphisms compared to the ratio for introns that were not
significant. However, this was seen only in the pooled analysis and not
in the gene-by-gene analysis. We found that significant intron and
UTR MK tests had more similar coverages (e.g., 59 UTR versus
synonymous) compared to tests that were not significant, suggesting
that the large number of significant noncoding versus synonymous
tests cannot be explained by relatively small coverage differences
across site-types. Overall, these data suggest that most of the highly
significant MK tests of noncoding DNA are not explained by excess
unpreferred polymorphisms or coverage variation.

Base composition analyses on noncoding DNA were carried out in
a similar fashion, with parsimony being used to infer the D. simulans/D.
melanogaster ancestor. Only unambiguous parsimony-inferred sites
were used in these analyses.

Estimates of cM/kb across the X chromosome. All X-linked genes
for which Flybase reported genetic and physical locations (first
nucleotide of the gene in Flybase annotation of D. melanogaster v4.2)
were used. Genetic and physical distances were determined for 12-
gene intervals, sliding one gene at a time; estimates of cM/kb per
interval were used as estimates of recombination rate per physical
length. Mean physical and genetic distances per interval were 1.55 Mb
and 5 cM, respectively. Two intervals with negative estimates of cM/
kb, indicative of discordant genetic and physical data were removed,
leaving estimates of cM/kb for 150 intervals. The physical location of
the interval was defined as the midpoint between physical locations of
the first and last gene. For analyses investigating correlations of 50-kb
windows of polymorphism and divergence with crossing-over,
midpoints were rounded to the nearest 50,000. If multiple intervals
were rounded to the same number, the distal interval was used in the
analyses.

Transposable elements. Cloned elements. The ‘‘hanging ends’’ of well-
mapped plasmid clones that were not fully aligned to D. melanogaster
were examined by BLAST for extensive (100 bp or greater), high-
quality (90% or greater) sequence similarity to known transposable
elements of D. melanogaster (v 9.2, http://www.fruitfly.org/p_disrupt/
TE.html). The coordinates are slightly rounded to facilitate finding
duplicates slightly off in alignment.

Clustered elements. This analysis used plasmid clones for which only

one mate pair mapped uniquely and unambiguously to the genome
according to the method described previously. The other mate pair
was compared to the D. melanogaster transposable element database
v9.2. If the read mapped uniquely and unambiguously to a trans-
posable element (90% coverage, 90% identity, at least two high
quality differences to a secondary candidate), a transposable element
was considered as mapped to the general genomic location of its mate
pair. The estimated location begins at the end of the mate pair read
and ends 10 kb away in the appropriate direction determined by the
direction of the alignment. Transposable elements from the same
family located within 5 kb of each other in the same D. simulans line
were considered the same element, and therefore, were clustered.

Supporting Information

Dataset S1. Estimates of Polymorphism, Divergence, and Counts of
Polymorphic and Fixed Sites for CDS

Found at doi:10.1371/journal.pbio.0050310.sd001 (2.1 MB TXT).

Dataset S2. Estimates of Polymorphism, Divergence, and Counts of
Polymorphic and Fixed Sites for Introns

Found at doi:10.1371/journal.pbio.0050310.sd002 (956 KB TXT).

Dataset S3. Estimates of Polymorphism, Divergence, and Counts of
Polymorphic and Fixed Sites for Gold Collection 59 UTRs

Found at doi:10.1371/journal.pbio.0050310.sd003 (346 KB TXT).

Dataset S4. Estimates of Polymorphism, Divergence, and Counts of
Polymorphic and Fixed Sites for Gold Collection 39 UTRs

Found at doi:10.1371/journal.pbio.0050310.sd004 (396 KB TXT).

Dataset S5. Estimates of Polymorphism, Divergence, and Counts of
Polymorphic and Fixed Sites for Intergenic Regions

Found at doi:10.1371/journal.pbio.0050310.sd005 (1.7 MB TXT).

Dataset S6. Estimates of Polymorphism, Divergence, and Counts of
Polymorphic and Fixed Sites for CDS in Heterochromatic Regions

Found at doi:10.1371/journal.pbio.0050310.sd006 (53 KB TXT).

Dataset S7. Estimates of Polymorphism and Divergence for 10-kb
Windows.

Coordinates reflect D. melanogaster genomic organization.

Found at doi:10.1371/journal.pbio.0050310.sd007 (855 KB TXT).

Dataset S8. Estimates of Polymorphism and Divergence for 50-kb
Windows.

Coordinates reflect D. melanogaster genomic organization.

Found at doi:10.1371/journal.pbio.0050310.sd008 (177 KB TXT).

Dataset S9. Frequencies of Synonymous and Nonsynonymous
Variants and Base Composition Variants for Coverage Classes
Three–Six

P and U are preferred and unpreferred, respectively (e.g., up ¼
unpreferred-to-preferred).

Found at doi:10.1371/journal.pbio.0050310.sd009 (60 KB XLS).

Dataset S10. Counts of Polymorphic and Fixed Variants of Preferred
and Unpreferred Codons

Found at doi:10.1371/journal.pbio.0050310.sd010 (133 KB TXT).

Dataset S11. X Chromosome Insertion and Deletion Polymorphism
and Divergence Estimates for 150-kb Sliding Windows (Sliding by 10
kb)

Found at doi:10.1371/journal.pbio.0050310.sd011 (108 KB TXT).

Dataset S12. 2L Chromosome Insertion and Deletion Polymorphism
and Divergence Estimates for 150-kb Sliding Windows (Sliding by 10
kb)

Found at doi:10.1371/journal.pbio.0050310.sd012 (116 KB TXT).

Dataset S13. 2R Chromosome Insertion and Deletion Polymorphism
andDivergenceEstimates for150-kbSlidingWindows (Slidingby10kb)

Found at doi:10.1371/journal.pbio.0050310.sd013 (105 KB TXT).

Dataset S14. 3L Chromosome Insertion and Deletion Polymorphism
andDivergenceEstimates for150-kbSlidingWindows (Slidingby10kb)

Found at doi:10.1371/journal.pbio.0050310.sd014 (123 KB TXT).
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Dataset S15. 3R Chromosome Insertion and Deletion Polymorphism
andDivergenceEstimates for150-kbSlidingWindows (Slidingby10kb)

Coordinates reflect D. simulans genomic organization by accounting
for the inversion fixed on 3R in D. melanogaster.
Found at doi:10.1371/journal.pbio.0050310.sd015 (150 KB TXT).

Dataset S16. X Chromosome Nucleotide Polymorphism and Diver-
gence Estimates and HKA test statistics for 10-kb Windows

Found at doi:10.1371/journal.pbio.0050310.sd016 (87 KB TXT).

Dataset S17. 2L Chromosome Nucleotide Polymorphism and Diver-
gence Estimates and HKA test statistics for 10-kb Windows

Found at doi:10.1371/journal.pbio.0050310.sd017 (93 KB TXT).

Dataset S18. 2R Chromosome Nucleotide Polymorphism and Diver-
gence Estimates and HKA test statistics for 10-kb Windows

Found at doi:10.1371/journal.pbio.0050310.sd018 (86 KB TXT).

Dataset S19. 3L Chromosome Nucleotide Polymorphism and Diver-
gence Estimates and HKA test statistics for 10-kb Windows

Found at doi:10.1371/journal.pbio.0050310.sd019 (100 KB TXT).

Dataset S20. 3R Chromosome Nucleotide Polymorphism and Diver-
gence Estimates and HKA test statistics for 10-kb Windows.

Coordinates reflect D. simulans genomic organization by accounting
for the inversion fixed on 3R in D. melanogaster.
Found at doi:10.1371/journal.pbio.0050310.sd020 (122 KB TXT).

Figure S1. Patterns of Polymorphism and Divergence of Small
Deletions along the Chromosome Arms

p for small deletions (blue) and the divergence from D. melanogaster
(red) in 150-kbp windows are plotted every 10 kbp. v[–log(p)] (olive) as
a measure of the deviation (þ/-) in the proportion of polymorphic
deletions in 30-kbp windows is plotted every 10 kbp; see Materials
and Methods.

Found at doi:10.1371/journal.pbio.0050310.sg001 (586 KB PDF).

Figure S2. Patterns of Polymorphism and Divergence of Small
Insertions along the Chromosome Arms

p, average number of insertions per bp (blue) and the pairwise
divergence from D. melanogaster per bp (red) in 150 kbp windows are
plotted every 10kbp. v[–log(p)] (olive) as a measure of the deviation
(þ/-) in the proportion of polymorphic insertions in 30-kb windows is
plotted every 10 kbp; see Materials and Methods.

Found at doi:10.1371/journal.pbio.0050310.sg002 (582 KB PDF).

Figure S3. Patterns of the Relative Rate Test, Nucleotide Divergence,
and Deviation of Proportion of Divergence Nucleotide Sites

The v2 (red) for the relative rate test in 150-kbp windows is plotted
every 10 kbp. CV(p) (orange), the coefficient of variation of nucleotide
p in 150-kbp windows, is plotted every 10 kbp. v[–log(p)] (olive) as a
measure of deviation (þ/-) in the proportion of sites in a 150-kbp
windows is plotted every 10 kbp.

Found at doi:10.1371/journal.pbio.0050310.sg003 (559 KB PDF).

Figure S4. Patterns of TEs Insertions, Nucleotide Divergence, and GC
Content along Chromosome Arms

Distribution of total numbers of ‘‘clustered transposable elements’’
(TEs) in nonoverlapping 210-kbp windows (olive) along each of the
arms of D. simulans (pooled across lines). The dashed (olive) lines are
the regression lines of TEs numbers on position (bp), with the outliers
(orange) masked from the data. Note the gapped scales for total TEs
on the right. Average divergence on the D. simulans lineage (red) in
150-kbp windows are plotted every 10 kbp for reference along with
the dashed regression line. GC content in D. simulans (blue) in 150-
kbp windows are plotted every 10 kbp for reference along with the
dashed regression line.

Found at doi:10.1371/journal.pbio.0050310.sg004 (553 KB PDF).

Figure S5. Copy Numbers of TE Families in D. simulans and D.
melanogaster
The numbers of each TE family in the D. melanogaster reference
sequence is plotted against the numbers identified in the D. simulans
genomes (see Materials and Methods). The lower-left panel is an
enlargement of the lower ranges.
Red, Long Terminal Repeat (LTR) containing retrotransposons; blue,

non-LTR retrotransposons; orange, foldback elements; olive, inverted
repeat elements; and black, MITE and SINE-like.

Found at doi:10.1371/journal.pbio.0050310.sg005 (38 KB PDF).

Table S1. Coding and Noncoding Nucleotide Heterozygosity in D.
simulans; Lineage-Specific Nucleotide Divergence in D. simulans, D.
melanogaster, and D. yakuba; and Pairwise Nucleotide Divergence for D.
simulans-D. melanogaster
UTRs are from the Gold Collection genes.

Found at doi:10.1371/journal.pbio.0050310.st001 (142 KB DOC).

Table S2. Nonsynonymous (NS) and Synonymous (S) Variants in
Heterochromatic versus Euchromatic Genes

Found at doi:10.1371/journal.pbio.0050310.st002 (38 KB DOC).

Table S3. Comparisons of D. simulans versus D. melanogaster Divergence
and X versus Autosome Divergence for D. simulans, D. melanogaster, and
D. yakuba
Found at doi:10.1371/journal.pbio.0050310.st003 (58 KB DOC).

Table S4. Comparison of X and Autosome Polarized Polymorphic
Variants in Different Frequency Classes for Sites with Coverage n¼ 5
or n ¼ 6 D. simulans Alleles
Found at doi:10.1371/journal.pbio.0050310.st004 (51 KB DOC).

Table S5. Spearman Correlations of Nucleotide Heterozygosity,
Nucleotide Divergence, Relative Rate v2 Tests, Ancestral GC Content,
and D. simulans Transposable Element Density (all Measured in 50-kb
Windows) versus Proximal–Distal Location along Chromosome Arms

Positive correlations for 2L, 3L, and X, and negative correlations for
2R and 3R indicate increasing values closer to centromeres. Inv3R
was used for D. simulans lineage inferences. Trimmed data indicates
analyses for which regions of low heterozygosity were removed
(Materials and Methods).

Found at doi:10.1371/journal.pbio.0050310.st005 (70 KB DOC).

Table S6. Autocorrelations of D. simulans Nucleotide Polymorphism
and Divergence (10- and 50-kb Windows) along Chromosome Arms

All are significant at p , 0.0001.

Found at doi:10.1371/journal.pbio.0050310.st006 (52 KB DOC).

Table S7. GO Terms Overrepresented among Genes in HKA
Windows Having Unusually Low Ratios of Nucleotide Heterozygosity
to Divergence

CC, MF, and BP are cellular component, molecular function, and
biological process, respectively.

Found at doi:10.1371/journal.pbio.0050310.st007 (113 KB DOC).

Table S8. Mean (SE) Ratio of Nucleotide Heterozygosity (50-kb
Windows, Weighted by Coverage) for New World versus Old World
Lines

Found at doi:10.1371/journal.pbio.0050310.st008 (27 KB DOC).

Table S9. Regions of the Genome Showing Disproportionate
Reductions of Nucleotide Heterozygosity in the US Sample

Found at doi:10.1371/journal.pbio.0050310.st009 (29 KB DOC).

Table S10. >Genes Located in Genomics Regions Showing Dispropor-
tionate Reductions of Nucleotide Heterozygosity in the US Sample

Found at doi:10.1371/journal.pbio.0050310.st010 (68 KB DOC).

Table S11. GO Terms Overrepresented in Windows from Out-of-
Africa/Madagascar Analysis.

MF and BP, molecular function and biological process, respectively

Found at doi:10.1371/journal.pbio.0050310.st011 (50 KB DOC).

Table S12. GO Terms Associated with the Top 20 Genes with the
Smallest Unpolarized MK Test p-Value
Found at doi:10.1371/journal.pbio.0050310.st012 (118 KB DOC).

Table S13. Genes Showing Excess Protein Polymorphism (p , 0.01) in
Polarized MK Tests

Found at doi:10.1371/journal.pbio.0050310.st013 (65 KB DOC).

Table S14. GO Terms Associated with the Top 20 Genes with the
Smallest Polarized MK Test p-Values
Found at doi:10.1371/journal.pbio.0050310.st014 (111 KB DOC).
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Table S15. GO Categories Enriched among Genes with Significant (p
, 0.05) Unpolarized MK Tests

Found at doi:10.1371/journal.pbio.0050310.st015 (74 KB DOC).

Table S16. GO Categories Enriched among Genes with Significant (p
, 0.05) Polarized MK Tests

Found at doi:10.1371/journal.pbio.0050310.st016 (145 KB DOC).

Table S17. Tissue-Specific or Developmental Stage–Specific Expres-
sion Patterns Enriched with Significant (p , 0.05) MK Tests

Found at doi:10.1371/journal.pbio.0050310.st017 (53 KB DOC).

Table S18. Genes Having the Greatest Relative Rate Test v2 Statistics
for dN in the D. simulans Lineage
Found at doi:10.1371/journal.pbio.0050310.st018 (68 KB DOC).

Table S19. Genes Having the Greatest Relative Rate Test v2 Statistics
for dN in the D. melanogaster Lineage
Found at doi:10.1371/journal.pbio.0050310.st019 (63 KB DOC).

Table S20. GO Categories Enriched among Proteins Showing
Accelerated Protein Evolution (v Test p-Value , 0.01) in the D.
simulans Lineage
Found at doi:10.1371/journal.pbio.0050310.st020 (215 KB DOC).

Table S21. GO Categories Enriched among Proteins Showing
Accelerated Protein Evolution (v2 Test p-Value , 0.01) in the D.
melanogaster Lineage
Found at doi:10.1371/journal.pbio.0050310.st021 (205 KB DOC).

Table S22. Genes Associated with the Most-Significant 59 UTR
Polarized MK Tests (Average Coverage per Site . 2)

Found at doi:10.1371/journal.pbio.0050310.st022 (55 KB DOC).

Table S23. Genes Associated with the Most-Significant 39 UTR
Polarized MK Tests (Average Coverage per Site . 2)

Found at doi:10.1371/journal.pbio.0050310.st023 (52 KB DOC).

Table S24. Genes Associated with the Most-Significant Intron MK
Tests (Average Coverage per Site . 2)

Found at doi:10.1371/journal.pbio.0050310.st024 (64 KB DOC).

Table S25. Number (Frequency) of Nonsynonymous and Noncoding
Polymorphisms (Sites with Coverage of n ¼ 5 or n ¼ 6 D. simulans
Alleles) for Different Frequency Classes

Found at doi:10.1371/journal.pbio.0050310.st025 (40 KB DOC).

Table S26. Counts and Substitution Rates per Site of Preferred and
Unpreferred Variants ‘‘Fixed’’ along the D. simulans and D. mela-
nogaster Lineages (Inferred by Parsimony)

Substitution rates were determined by dividing the number of
preferred/unpreferred fixations by the number of unpreferred/
preferred ancestral bases.

Found at doi:10.1371/journal.pbio.0050310.st026 (74 KB DOC).

Table S27. X and A, Polymorphic and Fixed, Preferred and
Unpreferred Variants for Sites with Coverages Four, Five, or Six

Found at doi:10.1371/journal.pbio.0050310.st027 (33 KB DOC).

Table S28. Unpreferred Polymorphisms (Coverage Five Sites) Occur
at Lower Frequency than Preferred Polymorphisms

Found at doi:10.1371/journal.pbio.0050310.st028 (30 KB DOC).

Table S29. Genes with Significant Polarized MK Tests Have a Higher
Proportion of Preferred Fixations than Genes with Nonsignificant
MK Tests

Found at doi:10.1371/journal.pbio.0050310.st029 (27 KB DOC).

Table S30. Preferred, Unpreferred, and Noncoding GC/AT Fixed
Variants across the Genome (Coverage Classes Three–Six)

Found at doi:10.1371/journal.pbio.0050310.st030 (27 KB DOC).

Table S31. Polymorphic GC Variants Occur at Higher Frequency
than Polymorphic AT Variants

X-linked polymorphic GC variants occur at higher frequency than
autosomal polymorphic GC variants (coverage-six polymorphisms
from intergenic and intron DNA).

Found at doi:10.1371/journal.pbio.0050310.st031 (32 KB DOC).

Table S32. D. yakuba Genome Input and Assembly Statistics

Statistics presented are for the whole-genome assembly before it was
anchored using alignments to D. melanogaster. ‘‘Contigs’’ are con-
tiguous sequences not interrupted by gaps, and ‘‘supercontigs’’ are
ordered and oriented ‘‘contigs’’ including estimated gap sizes. The
N50 statistic is defined as the largest length L such that 50% of all
nucleotides are contained in contigs of size at least L. The total contig
size was 167 Mb, with 97% of the consensus base pairs having quality
scores of at least 40 (Q40) (expected error rate of less than or equal to
10�4) and 98% are at least Q20.

Found at doi:10.1371/journal.pbio.0050310.st032 (59 KB DOC).

Table S33. Read and Trim Statistics for D. simulans Syntenic
Assemblies

Found at doi:10.1371/journal.pbio.0050310.st033 (35 KB DOC).

Table S34. Correlation (Kendall’s s) between Copy Numbers of TE
Families in ‘‘Trimmed’’ Euchromatic Regions of D. simulans and D.
melanogaster
The simulans TEs are the ‘‘clustered’’ TEs. The melanogaster TEs are
those annotated in release 4.0.

Found at doi:10.1371/journal.pbio.0050310.st034 (31 KB DOC).

Table S35. Tests of the Homogeneity of the Proportions of Each
Family across Six D. simulans Lines, Homogeneity of Classes across
Lines, and Homogeneity of Families within Classes across Lines

Found at doi:10.1371/journal.pbio.0050310.st035 (33 KB DOC).

Table S36. Test of the Homogeneity of Relative Family Copy
Numbers across the Five Chromosome Arms (Pooled across Lines)
for All TEs and within the Four Classes

Found at doi:10.1371/journal.pbio.0050310.st036 (33 KB DOC).

Table S37. Test of the Homogeneity of Relative Family Copy
Numbers on the X chromosome versus the Autosomes (Pooled across
Lines) for All TEs and within the Four Classes

Found at doi:10.1371/journal.pbio.0050310.st037 (32 KB DOC).

Table S38. Heterogeneity of ‘‘Cloned’’ TE Numbers in Various Gene
Annotation Elements

Found at doi:10.1371/journal.pbio.0050310.st038 (29 KB DOC).

Table S39. Comparison of Expected D. simulans Nucleotide Hetero-
zygosity and Divergence for 30-kb Windows Centered on the
Estimated Position of ‘‘Clustered’’ TEs (þ) Compared to Windows
without Clustered TEs (–)

The difference between the distributions (TEs:þ/-) was tested with the
Mann-Whitney U test; the p-value is in the upper position in the last
column (probability , / ratio). The ratio of the means is also shown
(lower in last column).

Found at doi:10.1371/journal.pbio.0050310.st039 (50 KB DOC).

Text S1. Transposable Elements

Found at doi:10.1371/journal.pbio.0050310.sd021 (48 KB DOC).

Accession Numbers

The GenBank (http://www.ncbi.nlm.nih.gov/Genbank/) accession num-
ber for D. yakuba is AAEU01000000 (version 1) and for the D. simulans
w501 whole-genome shotgun assembly is TBS-AAEU01000000 (version
1).
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