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Abstract

The production system formulation plays an impor-
tant role in models of cognition. However, there do
not exist neurally plausible realizations of production
systems that can support fast and automatic process-
ing of productions involving variables and n-ary rela-
tions. In this paper we show that the neurally plau-
sible model for rapid reasoning over facts and rules
involving n-ary predicates and variables proposed by
Ajjanagadde and Shastri can be interpreted as such a
production system. This interpretation is significant
because it suggests neurally motivated constraints on
the capacity of the working memory of a production
system capable of fast parallel processing. It shows
that a large number of rules — even those containing
variables — may fire in parallel and a large number of
facts may reside in the working memory, provided no
predicate is instantiated more than a small number
of times (22 3) and the number of distinct entities ref-
erenced by the facts in the working memory remains
small (= 10).

Introduction

Understanding language is a complex task and in-
volves, among other things, recognizing words, access-
ing lexical items, disambiguating word senses, pars-
ing, and carrying out inferences to establish referen-
tial and causal coherence, recognize speaker’s plans
and make predictions.! Nevertheless we can under-
stand written language at the rate of several hundred
words per minute (Carpenter & Just 1977). In view
of the complexity of the language understanding task,
the rapid rate at which we can understand language
has strong implications and poses a challenge to com-
putational models of cognition. In particular, it sug-
gests that certain kinds of inferences can be drawn
within a few hundred milliseconds and significant syn-
tactic processing can occur in a similar time frame.
The speed and spontaneity with which we understand
language also highlights our ability to perform a class

*This work was supported by NSF grant IRI 88-05465 and ARO
grant DAAL 03-89-C-0031.

II'E}l'npirica] data suggests that inferences required to establish
referential and causal coherence occur rapidly and automatically
during text understanding (see e.g., McKoon & Ratcliff 1980; McK-
oon & Ratcliff 1981, Keenan, Baillet, and Brown 1984). The evi-
dence for the automatic occurrence of elaborative or predictive in-
ferences however, is mixed (see e.g., Kintsch 1988, Potts, Keenan,
and Golding 1933).
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of inferences automatically and without conscious ef-
fort — as though they are a reflez response of our cog-
nitive apparatus. In view of this we have described
such reasoning as reflezive (Shastri 1990).2

Motivated by a concern for explaining reflexive
(rapid) reasoning, Ajjanagadde and Shastri have pro-
posed a connectionist model — let us call it SHRUTI —
that can encode a large body of specific facts, general
rules involving n-ary predicates and variables, as well
as IS-A relationships between concepts, and perform
a range of reasoning with extreme efficiency (Shastri
& Ajjanagadde 1990; Ajjanagadde & Shastri 1991,
Mani & Shastri 1991). The system performs a class
of inferences in time that is independent of the size of
the ‘knowledge base’ and is only proportional to the
length of the shortest chain of reasoning leading to the
conclusion. The reasoning system solves the dynamic
(variable) binding problem SFeldman 1982; Malsburg
1986) in a neurally plausible manner: It maintains
and propagates variable bindings using temporally
synchronous firing of appropriate nodes. This com-
putational model has also been used by Henderson
(1991) to design a parser for English. The parser’s
speed is independent of the size of the lexicon and
the grammar, and it offers a natural explanation for
certain center embedding phenomena.

In this paper we interpret SHRUTI as a production
system and examine the functional properties of the
resulting production system. Such an interpretation
is motivated by several factors. First, it leads to a
production system with novel and interesting working
memory characteristics. Second, it points the way to
a neurally plausible realization of production systems.
Third, it helps relate the working memory capacity of
such a system and the time taken by each production
cycle, to basic biological parameters. The interpre-
tation also helps specify the syntactic properties of
productions that can participate in reflexive process-
ing. This aspect, however, is not discussed in this
paper. The interested reader may refer to (Shastri &
Ajjanagadde 1990; Shastri 1992).

A number of cognitive models are based on the

2 A formal characterization of reflexive reasoning in terms of
time and space complexity is given in (Shastri 1992): Reflexive
reasoning occurs in time that is independent of the size of the
long-term knowledge base and is proportional only to the length
of the shortest chain of inference leading to a conclusion. Also the
number of nodes required to encode a long-term knowledge base
should be at most linear in the size the knowledge base.
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production system formalism; two of the most com-
prehensive being ACT* (Anderson 1983) and SOAR
(Newell 1990). Neurally plausible realizations of these
models, however, have not been proposed. Although
several aspects of ACT* such as its use of levels of ac-
tivation, weighted links and decay of activation had
neural underpinnings, it had not been shown how cer-
tain critical aspects of the model could be realized
in a neurally plausible manner. For example, AcT*
represented productions with variables, but Ander-
son did not suggest a neurally plausible account of
how variable bindings are propagated and matched.
In his exposition of SOAR, Newell has used the time
course of neural processes to estimate how long vari-
ous SOAR operations should take, but he has not sug-
gested how a soAR-like system may be realized in a
neurally plausible manner (see p. 440 Newell, 1990).
Although a complete mapping of comprehensive sys-
tems such as SOAR and ACT* to a neurally plausible
architecture still remains an open problem, SHRUTI
does provide a a concrete basis for a neurally plausible
realization of production systems. Of particular sig-
nificance are the specific and biologically motivated
constraints SHRUTI suggests on the capacity of the
working memory of a production system capable of
supporting rapid ‘knowledge level’ parallelism.

Other researchers have proposed connectionist pro-
duction systems. However, the functional character-
istics of SHRUTI when interpreted as a production sys-
tem are quite distinct from these connectionist mod-
els (for a detailed discussion refer to (Shastri & Aj-
janagadde 1990)). For example, DCPs the distributed
connectionist production system (Touretzky & Hin-
ton 1988) only deals with productions containing a
single variable. DcCPs is also serial at the knowledge
level and it can only apply one rule at a time. Thus in
terms of efficiency, DCPs is like a traditional (serial)
production system and must deal with the combina-
torics of search and the associated problem of back-
tracking. TPPS a production system based on the ten-
sor product encoding (Dolan & Smolensky 1989), and
Conposit a system based on relative position encod-
ing (Barnden & Srinivas 1991), are also serial at the
knowledge level. Hence these systems are inappropri-
ate for modeling reflexive processing. A connectionist
system that does support knowledge level parallelism
is ROBIN (Lange & Dyer 1989). However, the variable
binding mechanism incorporated by ROBIN does not
lead to the sort of biologically motivated constraints
on working memory suggested by SHRUTI.

A Brief Overview of SHRUTI

Refer to the schematic representation of some predi-
cates and individual concepts shown in Fig. 1. Nodes
drawn as circles are what we call p-btu nodes. These
nodes have the following idealized behavior: On re-
ceiving a periodic spike train, a p-btu node produces
a periodic spike train that is in-phase with the driv-
ing input. Thus oscillatory activity in a p-btu node
can lead to synchronous activity in a p-btu node con-
nected to it. We assume that p-btu nodes can respond
in this manner as long as the period of oscillation,
w, lies in the interval [Tpmin, Tmaz], where Tmin and
Tmaz correspond to the highest and lowest frequen-
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Figure 1: Encoding of predicates, individual con-
cepts, and the rules: Vz,y,z [give(z,y,z) =
own(y,z)], Vz,y [own(z,y) = can-sell(z,y)], and
Vz,y [buy(z,y) = own(z,y)].

cies, respectively, at which p-btu nodes can sustain
oscillatory activity. 3

An n-ary predicate is represented by a cluster of n
p-btu nodes (the rectangular ‘nodes’ shown in Fig. 1
are not relevant to our discussion). Nodes such as
John and Mary are also p-btu nodes and correspond
to focal nodes of the complete representations of the
individuals ‘John’ and ‘Mary’ (Shastri 1988; Feld-
man 1989). A rule is encoded by linking the argu-
ments of the antecedent and consequent predicates
in accordance with the correspondence between ar-
guments specified in the rule. For example, the rule
give(z,y,z) = own(y,z) is encoded by connecting
the arguments recip and g-obj of give to the argu-
ments owner and o-obj of own, respectively.

SHRUTI represents dynamic bindings using syn-
chronous — 1.e., in-phase — firing of the appropri-
ate argument and concept nodes. With reference to
the nodes in Fig. 1, the dynamic representation of
the bindings (giver=John,recip=Mary,g-obj=Bookl
(i.e., the dynamic fact give(John, Mary, Book1)) will
be represented by the rhythmic pattern of activity
shown in Fig. 2. Observe that while John, Mary and
Bookl1 are firing in distinct phases, giver is firing in
synchrony with John, recip in synchrony with Mary,
and g-obj in synchrony with Bookl.

By virtue of the interconnections between ar-
gument nodes of the predicates give, own, and
can-sell, the state of activation described by the
rhythmic pattern shown in Fig. 2 will lead to
the rhythmic activation pattern shown in Fig. 3,
where the firing pattern of nodes corresponcfs to

the dynamic bindings (giver=John, recip=Mary, g-

3We can generalize the behavior of a p-btu node to account for
weighted links by assuming that a node will fire if and only if the
weighted sum of synchronous inputs is greater than or equal to n.
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Figure 2: Rhythmic pattern of activation representing
the dynamic bindings (giver = John, recipient =
Mary, give-object = Bookl).
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Figure 3: Pattern of activation representing the dy-
namic bindings (giver = John, recipient = Mary,
give-object = Bookl, owner = Mary, own-object =
Bookl, potential-seller = Mary, can-sell-object =
Book1).

obj=Bookl, owner=Mary, o-obj=Bookl, p-seller=
Mary, cs-obj=Bookl1) which encode the dynamic facts
give(John,Mary, Bookl), own(Mary, Bookl), and can-
sell(Mary,Bookl!). In other words, given ‘John gave
Mary Bookl’, the network has inferred ‘Mary owns
Book1’ and ‘Mary can sell Book1’ by using the ‘rules’
give(z,y,2z) = own(y,z) and own(u,w) = can-
sell(u, w).

Observe that the (multiple) bindings between
Mary and the arguments recip, owner, and p-seller
are represented by these argument nodes firing in-
phase with Mary.

Conceptually, the rule application process corre-
sponds to a parallel breadth-first traversal of a di-
rected inferential dependency graph and a large num-
ber of rules may fire in parallel. In general, the time
taken to generate a chain of inference is independent
of the total number of rules and facts and is just equal
to Ixm+a where [ equals the length of the chain of infer-
ence, 7 equals the period of oscillation of the nodes,
and « is the number of cycles required for a p-btu
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node to synchronize with a connected p-node.

The system allows a large number of bindings —
and hence, dynamic facts — to be represented simul-
taneously, and it also allows a large number of rules
to fire simultaneously. The number of distinct enti-
ties involved in simultaneous dynamic bindings, how-
ever, is bounded by the ratio 7,4, /w, where Tmaz is
the period corresponding to the lowest frequency at
which p-btu nodes can sustain and propagate oscilla-
tions, and w is the width of the window of synchrony
(i.e., two nodes firing with a lead or lag of w/2 can be
considered to be firing in synchrony).

Other Representational Aspects of SHRUTI
SHRUTI can also encode long-term facts. The encod-
ing of a long-term fact encodes the static bindings
pertaining to the fact and rapidly recognizes that the
static bindings it encodes, match the dynamic bind-
ings existing in the system’s state of activation. Given
that SHRUTI represents dynamic bindings as tempo-
ral patterns, the encoding of a long-term fact behaves
like a temporal patlern matcher and is described in
(Shastri & Ajjanagadde 1990). With the encoding of
long-term facts, SHRUTI can answer queries that fol-
low from the encoded long-term facts and rules.

The network in Fig. 1 can only represent one dy-
namic instance per predicate and concept. The en-
coding may be extended to represent a bounded num-
ber of instantiations of each predicate and concept
(for details see (Mani & Shastri 1992)). This allows
SHRUTI to deal with ‘bounded recursion’. However,
a significant cost has to be paid for encoding mul-
tiple instantiations and as discussed below, this has
implications on the working memory capacity of the
associated production system.

SHRUTI can be combined with the representation of
a type (IS-A) hierarchy (Mani & Shastri 1991). Such
an integration allows the occurrence of types (cate-
gories) as well as instances in rules, facts, and queries.
The resulting system can combine rule-based reason-
ing with type inheritance. For example, the system
can infer ‘Tweety is scared of Sylvester’, based on
the generic fact ‘Cats prey on birds’, the rule ‘If z
preys on y then y is scared of £’ and the IS-A rela-
tions ‘Sylvester is a Cat’, “Tweety is a Canary’, and
‘Canaries are birds’. The integrated system can also
use type information to specify restrictions on the
types of argument fillers and encode context sensi-
tive rules such as: Yz : animate, y : solid-obj walk-
into(z,y) = hurt(z). This rule will fire only if the
first and second arguments of ‘walk-into’ are bound
to fillers of the type ‘animate’ and ‘solid-object’, re-
spectively.

Finally, SHRUTI can also encode rules involving mul-
tiple antecedents, thus it can encode a rule such as
Vz,y,z love(z,y) A love(y,2) A notequal(z,z) =
jealous(z, z).

Biological Plausibility of SHRUTI and
Neurally Plausible Parameter Values

The potential of synchronous oscillation in neu-
ral representation has long been recognized (Hebb
1949; Freeman 1981; Malsburg 1981; Sejnowski 1981;
Abeles 1982; Damasio 1989). Compelling evidence



of the existence of synchronous activity in the brain
comes from recent findings of stimulus-related syn-
chronous oscillations in the cat visual cortex (Eck-
horn et al. 1988; Gray et al. 1989). The data sug-
gests that synchronous and rhythmic activity occurs
in the brain and the time course of such activity is
consistent with the requirements of reflexive reason-
ing. We summarize some relevant aspects of the data:
1) Synchronous oscillations have been observed in the
frequency range of 35 — 80 Hz (Eckhorn et al. 1988)
and 35 - 65 Hz (Gray et al. 1991). Thus the ob-
served oscillatory activity has periods ranging from
about 12 to 28 msecs.; ii) Synchronization of neural
activity can occur within a few (sometimes even one)
periods of oscillations (Gray et al. 1991); iii) In a large
number of cases synchronization occurs with precise
phase-locking (zero time lag) and in most cases it oc-
curs with a lag or lead of less than 3 msec. (Gray et
al. 1991); and iv) Once achieved, synchrony may last
several hundred msecs. (Gray et al. 1991).

The above data provides a basis for making coarse
estimates of neurally plausible values of some of
SHRUTI's parameters. The data indicates that a plau-
sible estimate of the maximum period of oscillation,
Tmaz, May be 28 msecs. and a conservative estimate
of w, the width of the window of synchrony, may be
6 msecs.

SHRUTI as a Production System

As may be evident, there exists a correspondence be-
tween SHRUTI and the production system formula-
tion. The correspondence for the declarative memory
and the production memory of a production system is
straightforward: the declarative memory corresponds
to the collection of long-term facts and the production
memory corresponds to the collection of rules encoded
in SHRUTI (each rule is a production).

Observe that dynamic bindings, and hence, dy-
namic (active) facts are represented in SHRUTI as
a rhythmic pattern of activity over nodes in the
network. In functional terms, this transient state
of activation temporarily holds information during
an episode of reflexive reasoning and corresponds to
SHRUTI’s working memory: aproduction fires if its an-
tecedents match the contents of the working memory
and introduces facts into the working memory. Ob-
serve that SHRUTI is a parallel production system that
allows a large number of rules — including rules with
variables — to fire in parallel as long as the capac-
ity of the working memory is not exceeded (explained
below). Furthermore, the time taken to compute a
result is independent of the size of the declarative
and production memory, and only depends upon the
length of the sequence of productions required to pro-
duce the result.

Functional Characteristics of the
Production System Implied by sHruUTI

Estimates of the working memory capacity of pro-
duction system models range from very small (about
7 elements) to essentially unconstrained. SHRUTI pre-
dicts that the capacity of the working memory under-
lying reflezive reasoning (WMRR) is very large, but
constrained in critical ways. The number of dynamic
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facts that can be present in the working memory at
any given time is kop, where ko is a system param-
eter (see below) and p is the number of predicates
represented in the system. Thus the number of dy-
namic facts that may potentially be present in the
working memory is very high. But as discussed be-
low, there exist constraints that limit the number of
dynamic facts that may actfually be present in the
working memory at any given time.

Before moving on, let us clarify that the dynamic
facts represented in the WMRR during an episode of
reflexive reasoning should not be confused with the
small number of short-term facts an agent may overtly
keep track of during reflective processing and prob-
lem solving. In particular, the WMRR should not be
confused with the short-term memory implicated in
various memory span tasks (Baddeley 1986).

A Bound on the Number of Distinct Entities
Referenced in the Working Memory During an
episode of reflexive reasoning, each entity involved in
dynamic bindings occupies a distinct phase in the
rhythmic pattern of activity. Hence the number of
distinct entities? that can occur as argument-fillers in
the dynamic facts represented in the working memory
cannot exceed |7,z /w], where T,z is the maximum
period at which p-btu nodes can sustain oscillations
and w equals the width of the window of synchrony.

As pointed out above, a neurally plausible value of
Tmaz 18 about 28 and a conservative estimate of w is
around 6. This suggests that as long as the number
of distinct entities referenced by the dynamic facts
in the working memory is five or less, there will es-
sentially be no cross-talk among the dynamic facts.
If more entities occur as argument-fillers in dynamic
facts, the window of synchrony w would have to shrink
appropriately in order to accommodate all the enti-
ties. For example, the value of w would have to shrink
to 4 msecs. in order to accommodate 7 entities. As w
shrinks, the possibility of cross-talk between dynamic
bindings would increase until eventually, the cross-
talk would become excessive and disrupt the system’s
ability to perform systematic reasoning. The exact
bound on the number of distinct entities that may
fill arguments in dynamic facts would depend on the
smallest feasible value of w. Given the noise and
variation indicated by the data on synchronous ac-
tivity, it appears unlikely that w can be less than 3
msecs. Hence we predict that a neurally plausible up-
per bound on the number of distinct entities that can
occur in the dynamic facts represented in the working
memory is about 10.

It is remarkable that the bound on the number of
entities that may be referenced by the dynamic facts
in the working memory relates so well to 7+2, the ro-
bust measure of short-term memory capacity (Miller
1956). This unexpected coincidence suggests that
temporal synchrony may also underlie other short-
term and dynamic representations.

In a large system made up of several SHRUTI-like
modules, the bounds on the number of distinct enti-
ties referenced by the working memory of one mod-

*Note that 'Tweety', ‘Tweety the Canary’, ‘Tweety the bird’,
and 'Tweety the animal' may be active simultaneously and all these
count as only one entity.



ule is independent of similar bounds on the working
memories of other modules. As we discuss in (Shas-
tri & Ajjanagadde 1990), dynamic structures in the
working memory of other subsystems may refer to dif-
ferent sets of entities using phase distributions local
to those subsystems. Aaronson (1991) has described
a connectionist interface that allows two suruTI-like
modules, each with its own phase structure, to ex-
change binding information in a consistent and rapid
manner.
A Bound on the Multiple Instantiation of
Predicates The capacity of the working memory
is also limited by the constraint that it may only con-
tain a bounded number of dynamic facts pertaining to
each predicate. This constraint follows directly from
the limitation that each predicate can only be instan-
tiated a bounded number (k;) times. The cost of
maintaining multiple instantiations of a predicate is
significant in terms of space and time. The number of
nodes required to represent a predicate and associated
long-term facts is proportional to k; while the num-
ber of nodes required to encode a rule for backward
reasoning is proportional to the square of k9.5 Thus
a system that can represent three dynamic instantia-
tions of each predicate will have anywhere from three
to nine times as many nodes as a system that can only
represent one instantiation per predicate. Further-
more, the worst case time required for propagating
multiple instantiations of a predicate also increases
by a factor of k3 . In view of the additional space and
time costs associated with multiple instantiation, and
Eiven the necessity of keeping these resources within
ounds in the context of reflexive reasoning, we pre-
dict that the value of kg is quite small, perhaps no
more than 3.
Bound on the Number of Rule Firings SHRUTI
implies a production system in which any number
of rules — even those containing variables — may
fire in parallel as long as no relation (predicate) is
instantiated more than kg times (where ks is = 3)
and the number of distinct entities referenced by
the active facts in the working memory remains less
than Hrma,/wj (=~ 10). This may be compared with
Newell’s suggestion (1980) that while productions
without variables can be executed in parallel, pro-
ductions with variables may have to be executed in a
serial fashion.
Some Typical Retrieval and Inference Timings
If the values of appropriate system parameters are set
to the neurally plausible values identified in Section
3.1, sHrRUTI performs systematic reasoning within a
few hundred milliseconds. Note that we are only re-
ferring to the time taken by the internal (reflexive)
reasoning process, and not considering the time taken
by other perceptual, linguistic and motor processes.®

We choose 7 to be 20 msecs., assume that p-btu
nodes can synchronize within two periods of oscilla-

5 A detailed discussion of the relation between ko and the num-
ber of nodes required to encode rules appears in (Mani & Shastri
1992).

SThe following results were obtained using the simulator for

SHRUTI described in (Mani 1992).
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tions (i.e., o equals 2), and pick the bound on the
maximum number of instantiations per predicate to
be 3 (i.e., k2 equal to 3). The system takes 320 msecs.
to infer ‘John is jealous of Tom’ after being given
the dynamic facts ‘John loves Susan’ and ‘Susan loves
Tom’ (this involves the production ‘if z loves y and y
loves z then z is jealous of z). The system takes 260
msecs. to infer ‘John is a sibling of Jack’ given ‘Jack
is a sibling of John’ (this involves the production ‘if
z is a sibling of y then y is a sibling of z). Similarly,
the system takes 320 msecs. to infer ‘Susan owns a
cat’ after its internal state is initialized to represent
‘Susan bought a Rolls-Royce’ (using the production
‘if ¢ buys y then z owns y’ and the IS-A relation,
‘Rolls-Royce is a car’).

If SHRUTI’s declarative memory includes ‘John
bought a Rolls-Royce’, SHRUTI will take 140 msecs.,
420 msecs., and T40 msecs., respectively, to answer
‘yes’ to the queries ‘Did John buy a Rolls-Royce’,
‘Does John own a car?’ and ‘Can John sell a car?
(the last query also makes use of the production ‘if z
owns y then z can sell y). Note that while the first
query amounts to recognizing an existing long-term
fact, the second and third queries also involve infer-
ences using other productions and IS-A relations in
SHRUTI’s declarative or production memory.

The above times are independent of the sizes of
the declarative or production memories and do not
increase when additional productions, facts, and IS-
A relationships are added. If anything, these times
may decrease if a new rule is added as a result of
chunking.

Conclusion

We have shown that the neurally plausible model
for rapid reasoning over facts and rules involving n-
ary predicates and variables proposed by Ajjanagadde
and Shastri can be interpreted as a production sys-
tem. This interpretation leads to neurally motivated
constraints on the capacity of the working memory
of a production system engaged in fast parallel (re-
flexive) processing and helps in the estimation of the
time it would take to perform such processing.
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