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Abstract
Objective: The discovery and validation of electroencephalography (EEG) bio-
markers often rely on visual identification of waveforms. However, bias toward 
visually striking events restricts the search space for new biomarkers, and low 
interrater reliability can limit rigorous validation. We present a data-driven 
approach to biomarker discovery called scalp EEG Pattern Identification and 
Categorization (s-EPIC), which enables automated, unsupervised identification 
of EEG waveforms. S-EPIC is validated on Lennox–Gastaut syndrome (LGS), an 
epilepsy that is difficult to diagnose and assess due to its variable presentation and 
insidious evolution of symptoms.
Methods: We retrospectively collected 10-min scalp EEG clips during non–rapid 
eye movement (NREM) sleep from 20 subjects with LGS and 20 approximately 
age-matched healthy controls. For s-EPIC, EEG events of interest (EOIs) were 
detected in all subjects using time-frequency analysis. The 11 705 EOIs were char-
acterized based on 11 features and were collectively grouped using both k-means 
clustering and feature categorization. To provide clinical context, 1350 EOIs were 
visually reviewed and classified by three epileptologists.
Results: s-EPIC identified four clusters as candidate biomarkers of LGS, each hav-
ing significantly more LGS EOIs than control EOIs. Two clusters contained EOIs 
resembling known LGS biomarkers such as interictal epileptiform discharges and 
generalized paroxysmal fast activity. The other two LGS-associated EEG clusters 
contained short bursts of power in beta and gamma frequency bands that were 
primarily unrecognized by epileptologists. This approach also uncovered signifi-
cant differences in sleep spindles between LGS and control cohorts.
Significance: s-EPIC provides a quantitative approach to waveform identifica-
tion that could be broadly applied to EEG from both healthy subjects and those 
with suspected pathology. s-EPIC can objectively identify and characterize rele-
vant EEG waveforms without visual review or assumptions about the waveform's 
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1   |   INTRODUCTION

The discovery of electroencephalography (EEG) biomark-
ers has historically relied on identifying waveforms during 
visual review. Initially, descriptions of such waveforms 
are based on repeated visual observations across multi-
ple patients. This leads to an empirical definition, which 
can be used to establish potential clinical utility as a bio-
marker.1 For example, sleep spindles were first described 
as waxing-and-waning 10–16 Hz oscillations lasting .5–2 s 
during sleep.2–5 They were later associated with memory 
consolidation and intelligence and found to be altered in 
patients with epilepsy.6,7 Similarly, high-frequency oscil-
lations (HFOs) were first observed in rat hippocampus8 
and were later associated with epileptogenesis in humans 
after visual review of intracranial EEG.9 Successful valida-
tion studies can lead to protracted use of visual review, 
despite the labor cost and generally low interrater reliabil-
ity. Sleep spindles,10 HFOs,11–13 and interictal epileptiform 
discharges (IEDs)14 have all followed this path.

The drawbacks of visual review often spur the creation of 
automated algorithms. This can enable fast, objective identi-
fication of EEG waveforms in large data sets while ensuring 
consistent detection criteria. Some algorithms analyze the 
EEG signal in the time domain and aim to match the visually 
derived empirical definition of the EEG waveform as closely 
as possible. For example, IED detectors have been designed 
using the energy of the signal and its slope at various points 
during the spike15 and comparison to a template based on 
averaged IEDs.16 HFO detectors often use an amplitude 
threshold,17 or peak amplitude, as a detection criterion.18 
Time–frequency analysis is a complementary approach that 
can isolate activity in individual frequency bands and enable 
rejection of common artifacts or other false-positive detec-
tions.19 This method has been successfully applied to the 
automated detection of HFOs20–23 and the identification of 
interictal spikes in refractory epilepsies.24,25

However, the algorithm-development process has critical 
limitations. The detection criteria for waveforms are often 
based on empirical definitions derived from their visual ap-
pearance rather than the underlying physiology. In these 
cases, the detection accuracy is often calculated using visual 
markings as the “ground truth,” thus limiting accuracy by 
the ability of raters to consistently mark the waveforms. For 

example, the Persyst IED detector (Persyst Development 
Corporation, USA) currently has the highest reported sen-
sitivity and the highest interrater agreement with experts 
across commercial automated spike detectors, and has 
utility as a screening tool for epilepsy,26 but it also has high 
variance in IED count compared to human experts and low 
interrater agreement with clinical markings.26

These challenges with biomarker discovery and valida-
tion are exemplified by Lennox–Gastaut syndrome (LGS), 
a severe form of childhood-onset epilepsy characterized by 
multiple types of refractory seizures, a variety of interictal 
EEG patterns, and intellectual disability. The LGS popula-
tion is heterogeneous, varying in seizure type, seizure bur-
den, interictal EEG abnormalities, etiology, and pathology. 
LGS is often diagnosed years after epilepsy onset, as the vari-
ability across seizure types and interictal EEG abnormalities 
associated with the disease obfuscate the diagnostic crite-
ria.27,28 Moreover, patients are often seizure-free for several 
years following the resolution of early life seizures, such as 
infantile epileptic spasms syndrome, prior to the insidious 
emergence of LGS.29 This quiescent period is an attractive 

morphology and could therefore be a powerful tool for the discovery and refine-
ment of EEG biomarkers.

K E Y W O R D S

epilepsy, epileptic encephalopathy, generalized paroxysmal fast activity, interictal epileptiform 
discharge, machine learning, sleep spindle

Key points

•	 Automated, unsupervised time-frequency 
analysis can identify electroencephalography 
(EEG) waveforms specific to Lennox–Gastaut 
syndrome (LGS) and those specific to healthy 
controls.

•	 Our method independently identified clusters 
of waveforms consistent with epileptiform 
discharges and generalized paroxysmal fast 
activity.

•	 Sleep spindles were less frequent in LGS sub-
jects than controls, with shorter duration, lower 
electrode spread, and lower peak frequency.

•	 Short bursts of beta and gamma power were 
strongly associated with LGS and have poten-
tial as a novel biomarker.

•	 This time–frequency approach could more 
broadly facilitate EEG biomarker discovery in 
healthy people and those with pathologies.
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target for the development of biomarkers to help prevent or 
mitigate the impact of impending LGS.

One promising EEG biomarker for LGS is generalized 
paroxysmal fast activity (GPFA), a unique waveform that 
occurs primarily during non–rapid eye movement (NREM) 
sleep.28 Despite the visual descriptions of GPFA28,30 and 
its associations with intractable epilepsy31 and increased 
seizure counts,32 the interrater reliability for GPFA using 
visual identification remains low.33 An automatic GPFA 
detector identified EEG waveforms with time–frequency 
properties similar to manually marked GPFA, but it re-
quired individualized patient settings and achieved only 
40%–80% agreement with visual markings.34 This suggests 
that EEG biomarkers for LGS demonstrate limited clinical 
utility, in part due to the low reliability of visual identifi-
cation, similar to IEDs and HFOs.

To address this, we developed an objective, data-driven 
approach to EEG biomarker discovery that does not rely 
on visual review of the data or pre-established clinical 
definitions. This automated, unsupervised approach iden-
tifies EEG waveforms in the time–frequency space that are 
specific to patients with LGS. We show that this process 
cannot only identify known biomarkers of LGS, such as 
slow spike–wave and GPFA, but it can also lead to the dis-
covery of novel candidate biomarkers.

2   |   MATERIALS AND METHODS

2.1  |  Subject information

Approval for this retrospective observational study was 
obtained from the institutional review boards of the 
Children's Hospital of Orange County (CHOC) and the 
University of California, Los Angeles (UCLA), with the 
requirement for informed consent waived. We identified 
20 subjects diagnosed with LGS (7 female, median age 
7.4 years, age range 1.0–18.8 years) who received care at 
CHOC between January 2012 and June 2020. We also 
identified 50 children who had EEG studies at UCLA be-
tween February 2014 and July 2018 but were determined 
to be neurologically normal.35 Twenty of these controls 
(8 female, median age 8.2 years, age range 1.0–17.7 years) 
were selected to be approximately age-matched to the LGS 
cohort. See Supplementary Methods—Data  S1 for addi-
tional details on subject selection.

2.2  |  EEG acquisition and preprocessing

Control and LGS EEG data were both recorded using 19 
scalp electrodes placed according to the International 
10–20 system, sampled at 200 Hz. EEG data were collected 

overnight and manually sleep scored by a board-certified 
pediatric electroencephalographer to identify epochs of 
NREM sleep with no arousals or movement artifacts (see 
Supplementary Methods—Data  S1). For each subject, 
we analyzed one, 10 min segment of clean, continuous, 
NREM sleep EEG with no artifacts, detected automati-
cally35,36 and visually. EEG data were re-referenced to the 
common average, bandpass filtered from .5–55 Hz with a 
zero-phase shift digital filter, and analyzed using the Scalp 
EEG Pattern Identification and Categorization (s-EPIC) 
method.

2.3  |  Scalp EEG Pattern 
Identification and Categorization (s-EPIC)

2.3.1  |  Identifying events of interest (EOIs)

The EEG data were pre-whitened in the time-domain 
using first-order backward differencing.37–39 Each channel 
in every EEG was decomposed into the time–frequency 
domain using the Stockwell transform for frequencies 
from 1 to 50 Hz, with a step size of 1 Hz (Figure 1A).32,40

For each subject, we used the EEG time–frequency 
decomposition to identify periods in the Fz EEG channel 
where the power at any frequency exceeded a threshold p 
for at least 100 ms. We defined these windows of EEG as 
“events of interest” (EOIs). The threshold was fixed across 
all subjects and all frequency bands. EOIs were selected 
using the Fz electrode for two reasons: (1) the fronto-
central location should be minimally impacted by eye 
movements and muscle artifact, and (2) Fz is maximally 
sensitive to known EEG waveforms such as sleep spindles 
and GPFAs.41 A minimum time of 100 ms was chosen to 
fully capture the duration of an epileptic spike, which was 
the shortest EEG waveform we expected to see. Epileptic 
spikes last 20–70 ms in the time domain but can have lon-
ger duration in the time–frequency space, especially at 
low frequencies.33

2.3.2  |  EOI features

Each EOI was associated with a time–frequency image 
(TFI), a binary image in the time–frequency domain 
(Figure  1A). For each EOI, 11 features were calculated 
based on the temporal, spectral, and spatial proper-
ties (for full mathematical details, see Supplementary 
Methods—Data S1):

1.	 Height: The difference between the highest frequency 
and lowest frequency in the TFI (Figure  1B).

2.	 Length: The duration of the TFI in seconds (Figure 1C).
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3.	 Spread: The percentage overlap of the Fz TFI with TFIs 
in other electrodes, in time and frequency (Figure 1D).

4.	 Density: TFI area (number of data points within the 
TFI) divided by its length and the maximum height 
(50 Hz) (Figure 1E).

5.	 Frequency of Peak Power (FPP): The frequency at 
which the EOI had maximum power (Figure 1F).

6.	 Band Power (BP): The mean band power across all time 
points in the EOI within the delta (2≤δ<4 Hz), theta 
(4≤θ<7 Hz), alpha (8≤α<12 Hz), sigma (12≤σ<15 Hz), 
beta (15≤β<30 Hz), and gamma (30≤γ<50 Hz) fre-
quency bands (Figure 1G).

2.3.3  |  Clustering and feature categorization

Prior to clustering, each feature value was normalized by 
dividing by the range of feature values across all EOIs.42 

All EOIs were clustered using k-means based on their 11 
normalized features.43 For visualization purposes, clusters 
were sorted in descending order based on the sum of the 
11 z-scores, such that Cluster 1 had the highest sum of 
features.

One limitation of clustering is the variability of the re-
sults using a different dataset or new subjects. As a com-
plement to clustering, we implemented a second method 
that categorized each EOI based on the median feature 
values of the height, length, spread, and density. Each 
of these features was classified as weak (lower than the 
median) or strong (higher than the median). Each EOI 
was then categorized using a five-character string starting 
with the frequency of highest BP (δ, θ, α, σ, β, γ), followed 
by characters indicating weak/strong height (h/H), length 
(l/L), spread (s/S), and density (d/D). For example, an EOI 
with peak power in the alpha band and height and spread 
above the median was categorized as “αHlSd.”

F I G U R E  1   Examples of EOI identification and TFI features. (A) The broadband EEG signal is first pre-whitened, followed by time–
frequency decomposition using the Stockwell transform for the entire EEG clip. EOIs were defined as consecutive time points in which the 
EEG power in the time–frequency decomposition exceeded a threshold for a minimum duration. Each EOI then had a corresponding region 
called a TFI. For example, the yellow, red, and green regions in the bottom subfigure represent three different TFIs, each one associated 
with an EOI in the EEG. (B) Shows an example TFI with high height, (C) high length, (D) high spread, and (E) high density. The spread 
is visually represented using electrodes adjacent to Fz, where yellow regions indicate overlap of the TFI in electrode Fz with the TFI for 
adjacent electrodes and green indicates regions where the TFI for adjacent electrodes does not overlap with the TFI for Fz. The other 
features used to characterize EOIs were (F) frequency of peak power, indicated by a white dashed line, and (G) mean band power in six 
frequency bands; a sample TFI with high theta band power (indicated by white dashed lines) is shown. EEG, electroencephalography; EOI, 
event of interest; TFI, time–frequency image.
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2.4  |  Visual classification and 
labelling of EOIs

To provide a clinical interpretation of each cluster, we se-
lected a subset of 1350 EOIs for visual analysis by three 
board-certified pediatric epileptologists from two different 
institutions (CHOC and UCLA).44 The selection proce-
dure, detailed in Hu et al.,44 aimed to represent the broad 
range of EOIs, with approximately equal selection from 
LGS and control subjects. Each rater classified 900 EOIs 
using a 15 s clip of the surrounding EEG and was blinded 
to subject type, subject number, and the time at which the 
EEG was recorded. Each EOI was independently marked 
by at least two different raters. Raters classified each 
EOI as one of the following: (1) IED, (2) trains of IEDs 
(IEDTs), (3) GPFA, (4) seizure, (5) sleep spindle, (6) vertex 
sharp, (7) muscle, (8) artifact, (9) other waveform, or (10) 
nothing.

2.5  |  Automated sleep spindle detection

To complement the time–frequency analysis, we also ap-
plied an automated sleep spindle detector45 to the EEG for 
all subjects. (See Supplementary Methods—Data  S1 for 
details.)

3   |   RESULTS

3.1  |  LGS EOIs have higher 
values of spatial and spectral time–
frequency features than control EOIs

A power threshold of p = 250 was selected using histo-
grams of all power values in each cohort (Figure  S1). 
Overall, the EEG recordings of patients with LGS had 
higher power than controls. This threshold was chosen 
to select ~5% of time–frequency values, balanced be-
tween the two cohorts, enabling detection of both patho-
logical and physiological EOIs. Using p = 250 resulted in 
the identification of 11 705 EOIs across all 40 subjects. A 
total of 6743 EOIs were from 20 controls (ncontrols = 365.0 
[259.0–442.5]; reported as the median [Q1–Q3] for all re-
sults) and 4962 were from 20 LGS subjects (nLGS = 232.0 
[156.0–324.5]).

The height, spread, FPP, density, sigma BP, beta BP, 
and gamma BP of EOIs from LGS subjects were signifi-
cantly greater than those from controls (Figure S2; p < .05, 
Mann–Whitney U test, Bonferroni corrected, n = 11). To 
test the impact of the threshold on EOI selection, we re-
peated the analysis with p = 200 and p = 300, and we found 
qualitatively similar results (Figure S3).

3.2  |  EOIs unique to LGS subjects were 
isolated by clustering

To generate 12 clusters, k-means was applied to all EOIs. 
On average, subjects had EOIs in 9.5 clusters; each cluster 
contained EOIs from multiple subjects (Figure 2A). Each 
cluster's centroid was characterized by a different com-
bination of the 11 features (Figure  3). The results were 
not dependent on the power threshold, as thresholds of 
p = 200 and p = 300 produced qualitatively similar cluster 
centroids (Figure  S4). These results were also robust to 
the number of clusters, as using 6, 9, 15, and 18 clusters 
similarly resulted in LGS-dominated groups of EOIs with 
similar mean centroids (Figure S5).

3.3  |  s-EPIC identified known and novel 
candidate biomarkers of LGS

Clusters 1, 2, 4, and 7 had significantly more LGS EOIs 
than control EOIs, and thus represent potential bio-
markers for LGS (Figure  2B; p < .05, permutation test, 
Bonferroni corrected, n = 12). Representative control and 
LGS EOIs with features most similar to each cluster cen-
troid are shown in Figure 4.

3.3.1  |  EOIs in Cluster 1 were identified as 
GPFA in LGS subjects and sleep spindles in 
healthy controls

Cluster 1 consisted of 427 EOIs, 71 from 5 controls and 356 
from 15 LGS subjects. These EOIs lasted ~1.2 s and had 
high height, electrode spread, density, and high alpha, 
sigma, and beta BP (Figure 3). Of the 37 visually labeled 
control EOIs, 83.8% of events were agreed to be sleep spin-
dles by both raters; of the 124 labeled LGS EOIs, 58.1% 
were labeled as GPFA by at least one rater (Figure 4A). In 
total, 85.7% of all GPFAs with two-rater agreement were 
contained in Cluster 1.

3.3.2  |  EOIs in Cluster 2 were identified 
as IEDTs

Cluster 2 had 490 EOIs, 18 from 9 controls and 472 from 
17 LGS subjects. Events in Cluster 2 had the highest 
mean EOI length (4.9 s), high height, length, electrode 
spread, and high delta, theta, and alpha BP (Figure 3). 
The EOIs in Cluster 2 had consistent rater agreement, 
with 96.9% of the 195 marked LGS events labeled as 
IEDTs by at least one rater and 79.0% as IEDTs with 



546  |      HU et al.

two-rater agreement. In contrast, there were no con-
sistent labels across the 18 reviewed control events 
(Figure 4B).

3.3.3  |  EOIs in Clusters 4 and 7 have high 
beta and gamma power and are novel candidate 
biomarkers of LGS

In Cluster 4, 111 EOIs were found across 9 controls and 461 
across 13 LGS subjects; in Cluster 7, 156 EOIs were found 
across 13 controls and 469 EOIs across 17 LGS subjects. 
These clusters are distinguished by their low length, with 
high gamma BP and FPP of 36.1 Hz in Cluster 4, and high 
beta BP and FPP of 24.9 Hz in Cluster 7 (Figure 3). Events 
in Cluster 7 have a significantly lower height, spread, and 
density compared to Cluster 4 (p < .05, Mann–Whitney U 
test, Bonferroni corrected, n = 11), although these features 
have low values relative to those in Clusters 1 and 2. Rater 
labels for Clusters 4 and 7 were inconclusive for both LGS 
and control EOIs. In Cluster 4, 88.2% of LGS EOIs and 
94.1% of control EOIs were labeled as “nothing” or were 
given mismatched labels by the two raters; similarly, this 
was true for 96.4% of LGS EOIs and 87.5% control EOIs in 
Cluster 7 (Figure 4C,D). The frequent occurrence of these 
EOIs in LGS subjects compared to controls, combined 
with a lack of recognition by clinicians, suggests that they 
may be novel candidate biomarkers of LGS.

3.4  |  Alterations to sleep spindles in LGS 
subjects compared to controls

The substantially reduced number of sleep spindles in 
LGS subjects warranted further investigation, as only five 
EOIs had two-rater agreement on sleep spindles in LGS, 
compared to 113 in controls. Within those EOIs, LGS spin-
dles had a shorter length, lower height, lower electrode 
spread, and a lower FPP compared to spindles in healthy 
controls (p < .05, Mann–Whitney U test, Bonferroni cor-
rected, n = 4). To independently validate this finding, we 
ran an automatic sleep spindle detector45 on the EEG 

F I G U R E  2   Four clusters had EOIs primarily originating from 
LGS subjects. (A) Heatmap of the number of EOIs in each cluster 
for all controls (top) and LGS subjects (bottom). (B) The percentage 
of control and LGS EOIs in each cluster. Clusters 1, 2, 4, and 7 had 
a significantly greater number of EOIs from LGS subjects compared 
to controls and are formatted in bold text with asterisks. Significance 
level is p < .05, with p-values corrected using the Bonferroni method. 
EOI, event of interest; LGS, Lennox–Gastaut syndrome.
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recordings from all subjects. Sleep spindles were de-
tected more frequently in healthy controls (n = 96.5 [64.5–
123.0]) than LGS subjects (n = 25.5 [18.5–44.0]) (Figure 5). 
Moreover, the mean LGS spindle was significantly lower 
in length, global spread, and peak frequency compared to 
that of healthy controls (p < .05, Mann–Whitney U test, 
Bonferroni corrected, n = 4) (Figure 5). These results mir-
ror the s-EPIC results, suggesting sleep spindle occurrence 
and characteristics as candidate biomarkers of LGS.

3.5  |  Analysis of EOIs using feature 
categorization

To complement the clustering analysis, we also placed 
each EOI into one of 96 categories, as described in the 
Methods section on Feature Categorization. The median 
EOI feature values were a height of 7 Hz, length of 360 ms, 
spread of 26.3%, and density of 6.4%. Eighty-three of the 
96 categories had at least one EOI, with a median of 43.5 
[6–167.0] EOIs per category.

3.5.1  |  EOIs with high beta and gamma band 
power are potential biomarkers of LGS

Twenty-two categories had significantly more EOIs from 
LGS subjects than controls (Table 1A; p < .05, permuta-
tion test, Bonferroni corrected, n = 96). Seven significant 
categories had peak BP in delta, theta, alpha, or sigma, 
with high height and density; most also had high spread 
and low length. In contrast, the nine categories with peak 

beta BP and six with peak gamma BP included combina-
tions of high and low feature values (Table 1A). The wide 
variety of feature combinations suggests a broader rela-
tionship between LGS and beta/gamma band EOIs. For 
example, in the beta band, nine of 16 categories were sig-
nificantly associated with LGS, and the remaining seven 
categories each contained fewer than two EOIs. Similarly, 
only 5 of 16 gamma band categories had more than one 
EOI, with all 5 containing significantly more LGS than 
control EOIs (Table 1A). This suggests that simply iden-
tifying EOIs with beta or gamma peak BP, without any 
further clustering or categorization, can distinguish LGS 
subjects from controls. Doing this, we find that across all 
EOIs, those with peak beta BP or peak gamma BP orig-
inated from LGS subjects 84.1% and 78.2% of the time, 
respectively.

3.5.2  |  Feature categorization identified EOIs 
strongly associated with the control group

Twenty-three feature categories had significantly more 
control EOIs than LGS EOIs (Table 1B). Most of these 
categories were characterized by peak alpha or sigma 
BP; 52.0% of all EOIs in the 23 categories had peak BP 
in the alpha or sigma frequency. Events in these cat-
egories generally had low feature values, with 82.2% 
of them having low height, 60.8% having low length, 
64.2% having low spread, and 78.0% having low den-
sity. Only three control-associated categories had peak 
beta or gamma BP, and each one contained a single EOI 
(Table 1B).

F I G U R E  3   Mean feature values 
for each cluster. The opacity of the cells 
indicates the feature value relative to the 
maximum in each column, with a value 
of zero appearing white. Clusters with a 
significantly greater number of LGS EOIs 
than control EOIs are formatted in bold 
text and indicated by asterisks. Numbers 
are reported as mean (standard deviation 
[SD]). Significance level is p<0.05, with 
p-values corrected using the Bonferroni 
method. EOI, event of interest; LGS, 
Lennox–Gastaut syndrome.
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4   |   DISCUSSION

Here, we presented s-EPIC, a novel technique to dis-
cover EEG biomarkers using time–frequency analysis. 
When applied to patients with LGS, s-EPIC identified 

EOIs consistent with known clinical biomarkers, spe-
cifically IEDTs and GPFA. It also uncovered significant 
differences in sleep spindles between LGS subjects and 
healthy controls and suggested beta/gamma band EOIs 
as novel candidate biomarkers of LGS, as they occurred 

F I G U R E  4   Breakdown of reviewer classifications in clusters with significantly more LGS EOIs than control EOIs: (A) Cluster 1, (B) 
Cluster 2, (C) Cluster 4, and (D) Cluster 7. For each cluster, the left column shows a representative EEG waveform for controls (blue) 
and LGS subjects (red), selected using the minimum Euclidean distance from the cluster centroid. The bar graph in the middle shows 
the occurrence of each label for control and LGS EOIs marked by a single rater or two raters, with the latter indicating rater agreement 
on the EOI label. The right column shows confusion matrices for rater labels applied to control (blue) and LGS (red) EOIs. EEG, 
electroencephalography; EOI, event of interest; LGS, Lennox–Gastaut syndrome.
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predominantly in LGS subjects but were unrecognized by 
epileptologists. These results, encompassing both known 
and previously unknown EEG waveforms, speak to the 
potential power of this approach.

4.1  |  Comparison to prior time–
frequency image analyses

Prior implementations of time–frequency analysis have 
been used primarily to create automated detectors for spe-
cific EEG waveforms, such as GPFA,34 IED,24 or HFOs.20,22 
One study used time–frequency image features, such as 
area, entropy, width, and height,20 to quantify HFOs; 
another HFO study used features of the time–frequency 
spectrogram, such as flux, energy concentration, and 
skewness.22 Time–frequency analysis has also been ap-
plied to EEG from children with focal epilepsies to detect 
IEDs using power spectrum changes.24 Our work im-
proves on these prior studies. First, we broadly detect all 
anomalies in the time–frequency domain without requir-
ing empirical definitions of waveforms, preset parameters, 
or annotated EEG data. Second, our method can equally 
analyze EEG of both epilepsy patients and healthy con-
trols, rather than being tailored to epilepsy-related event 
detection. This enabled us to identify clusters of EOIs that 
were pathological (occurring mostly in LGS subjects) and 
physiological (occurring mostly in controls). Third, our 
method is the first to enable the detection of EOIs of vari-
able length, rather than relying on the assumption of a 
fixed event duration.

4.2  |  Time–frequency 
characteristics of GPFA

Visually reviewed EOIs labeled as GPFA by at least one 
clinician were found in 40% of LGS subjects33; this is lower 
than a prior study, which reported generalized paroxys-
mal fast rhythms in 66% of patients with genetic general-
ized epilepsy using a 24 h EEG recording.46 The relative 
rarity of GFPA in our data set was expected, given that 
we analyzed only 10 min of sleep EEG, compared to the 
multiple hours of EEG often needed to see the first gener-
alized polyspike activity.47

There is currently no consensus on GPFA character-
istics. One study of scalp EEG reported GPFA to have a 
mean amplitude of 293 uV, length of 1.6 s, and frequency 
of 11.1 Hz48; another study reported a mean amplitude of 
88.3 uV, length of 1–4 s, and frequencies of 11–20 Hz.41 An 
automated GPFA detector found bursts as low as 3 Hz in 
some subjects and up to 16–18 Hz in others.34 GPFA in 
Cluster 1 had a mean length of 1.9 s, FPP of 19.6 Hz, alpha 
BP of 467.8, and sigma BP of 500.0. This characterization 
may be a useful benchmark for future studies, including 
differentiating GPFA from generalized polyspike trains, 
which have overlapping features.31,47

4.3  |  Aberration of sleep spindles in LGS

The lower spindle rate in LGS subjects compared to healthy 
controls is consistent with lower global rates of sleep 
spindles during N2 sleep reported in other epilepsies.49,50 

F I G U R E  5   Mean features of 
automatically detected sleep spindles 
across all control and LGS subjects. 
Sleep spindles in healthy controls had a 
significantly greater (A) spindle count, 	
(B) spindle length, (C) spindle spread, and 
(D) peak frequency compared to spindles 
in LGS subjects. Significance levels are 
*p < .05, **p < .01, and ***p < .001, with 
p-values modified using the Bonferroni 
method. LGS, Lennox–Gastaut syndrome.
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However, LGS subjects have significantly less stage 2 sleep 
compared to age-matched controls,50 which could reduce 
the likelihood of spindles occurring within the NREM 
EEG clips in our study. The presence of sleep spindles in 
LGS can also be masked by concurrent epileptiform activ-
ity, which confounds visual classification.

4.4  |  Candidate high frequency EEG 
biomarkers for LGS

Our automated time–frequency analysis identified beta and 
gamma band EOIs as candidate EEG biomarkers of LGS. 
These events, found in Clusters 4 and 7, had generally low 
feature values, similar to controls, yet 78% of the events in 
these categories originated from LGS subjects. The EOIs 
in both clusters were unrecognizable to epileptologists, as 
64.6% of all EOIs in Cluster 4 and 83.3% of EOIs in Cluster 7 
were labeled as “nothing” by at least one rater.

It is noteworthy that the remaining EOIs in Clusters 4 
and 7 were not interpreted to be muscle artifacts. Muscle 
artifact has outlying high amplitude, long duration, and 
high electrode spread in the temporal and frontopolar 
channels, in contrast to the features described in these 
two clusters.51,52 However, the EOIs in Clusters 4 and 7 
do share characteristics with paroxysmal EEG waveforms 
suggested to be a biomarker of epileptogenesis in chil-
dren, which have peak frequencies in the beta and gamma 
bands and durations >200 ms.53

4.5  |  Limitations and future directions

There are several limitations to our study. EOIs were 
detected solely in the Fz channel, although our time–
frequency method could be adapted to multi-channel de-
tection, with additional criteria to avoid double-counting 
EOIs that span multiple channels. This expanded approach 

(A) Significant LGS categories (B) Significant control categories

No. EOIs No. LGS EOI (%) Category No. EOIs NO. LGS EOI (%) Category

393 291 (74.1%) δHLSD 180 48 (26.7%) δhLSd

57 38 (66.7%) θHlSD 839 248 (29.6%) θhlsd

711 463 (65.1%) θHLSD 371 87 (23.4%) θhlSd

20 17 (85.0%) αHlSd 421 71 (16.9%) θhLSd

109 80 (73.4%) αHlSD 256 82 (32.0%) θHLsD

147 83 (56.5%) σHlsD 144 33 (22.9%) θHLSd

214 168 (78.5%) σHlSD 862 217 (25.2%) αhlsd

77 61 (79.2%) βhlsD 143 34 (23.8%) αhlsD

7 7 (100%) βhlSd 255 79 (31.0%) αhlSd

39 35 (89.7%) βhlSD 107 10 (9.4%) αhLsD

245 194 (79.2%) βHlsD 74 13 (17.6%) αhLSd

1 1 (100%) βHlSd 82 7 (8.5%) αhLSD

221 194 (87.8%) βHlSD 62 14 (22.6%) αHLsd

1 1 (100%) βHLsd 254 53 (20.9%) αHLsD

17 17 (100%) βHLsD 327 94 (28.8%) σhlsd

68 65 (95.6%) βHLSD 27 1 (3.7%) σhLsD

6 6 (100%) γhlsD 35 2 (5.7%) σhLSd

1 1 (100%) γhlSD 65 5 (7.7%) σhLSD

259 180 (69.5%) γHlsD 78 16 (20.5%) σHLsD

281 231 (82.2%) γHlSD 22 3 (13.6%) σHLSd

13 12 (92.3%) γHLsD 1 0 (0%) βhLsD

56 53 (94.6%) γHLSD 1 0 (0%) γHlsd

1 0 (0%) γHlSd

Note: The five-character strings indicate the frequency of highest band power (δ, θ, α, σ, β, γ), followed 
by characters indicating low/high height (h/H), length (l/L), spread (s/S), and density (d/D), based on a 
comparison to the median value across all subjects.
Abbreviations: EOI, event of interest; LGS, Lennox–Gastaut syndrome.

T A B L E  1   Feature categories with 
significantly more LGS or control EOIs.
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would be supported by the use of high-resolution EEG, 
which would also improve the estimates of EOI spread. In 
addition, the 10 min of EEG analyzed for each subject is 
a relatively short duration for characterizing paroxysmal 
activity, as prior studies used recordings of up to 24 h.46,47 
The amount of EEG data available for analysis can be in-
creased through automated removal of artifact, such as 
muscle activity.54 This would enable analysis of EEG re-
corded during wakefulness and automated selection of 
EEG epochs to reduce the bias associated with manual 
selection. The use of high sampling rate EEG (≥1000 Hz) 
would also facilitate this approach. The computational ef-
ficiency of this work can also be improved through im-
plementation of the fast S-transform, enabling analysis of 
longer EEG recordings with a higher sampling rate and a 
larger subject population.55 The EEG visual analysis pro-
cedure was also different from standard clinical review, as 
raters viewed 15 s of isolated EEG surrounding the EOI, 
rather than scrolling through continuous recordings.

Future work may focus on improving the clustering 
techniques. The k-means provided broad separation be-
tween features but was ineffective for differentiating EEG 
waveforms with overlapping properties, such as sleep 
spindles and GPFA. Other clustering methods, such as 
hierarchical clustering or decision trees, may be able to 
address this limitation. Further validation of our findings 
with an independent data set comprising healthy controls, 
children with LGS, and patients with other types of pedi-
atric epilepsy, is paramount.

5   |   CONCLUSION

s-EPIC is a robust computational approach to biomarker 
discovery based on the time–frequency features of EEG. 
This method can be applied to normal or abnormal EEG 
recordings to help establish quantitative definitions of 
EEG biomarkers without visual review. Ultimately, this 
can reduce the reliance on empirical definitions of EEG 
waveforms, increase the accuracy of known EEG bio-
markers, and facilitate the discovery of novel biomarkers 
of health and disease.
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