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Abstract
Objective: The	discovery	and	validation	of	electroencephalography	(EEG)	bio-
markers	often	rely	on	visual	identification	of	waveforms.	However,	bias	toward	
visually	striking	events	restricts	 the	search	space	 for	new	biomarkers,	and	 low	
interrater	 reliability	 can	 limit	 rigorous	 validation.	 We	 present	 a	 data-	driven	
approach	 to	 biomarker	 discovery	 called	 scalp	 EEG	 Pattern	 Identification	 and	
Categorization	(s-	EPIC),	which	enables	automated,	unsupervised	identification	
of	EEG	waveforms.	S-	EPIC	is	validated	on	Lennox–Gastaut	syndrome	(LGS),	an	
epilepsy	that	is	difficult	to	diagnose	and	assess	due	to	its	variable	presentation	and	
insidious	evolution	of	symptoms.
Methods: We	retrospectively	collected	10-	min	scalp	EEG	clips	during	non–rapid	
eye	movement	(NREM)	sleep	from	20	subjects	with	LGS	and	20	approximately	
age-	matched	healthy	controls.	For	 s-	EPIC,	EEG	events	of	 interest	 (EOIs)	were	
detected	in	all	subjects	using	time-	frequency	analysis.	The	11	705	EOIs	were	char-
acterized	based	on	11	features	and	were	collectively	grouped	using	both	k-	means	
clustering	and	feature	categorization.	To	provide	clinical	context,	1350	EOIs	were	
visually	reviewed	and	classified	by	three	epileptologists.
Results: s-	EPIC	identified	four	clusters	as	candidate	biomarkers	of	LGS,	each	hav-
ing	significantly	more	LGS	EOIs	than	control	EOIs.	Two	clusters	contained	EOIs	
resembling	known	LGS	biomarkers	such	as	interictal	epileptiform	discharges	and	
generalized	paroxysmal	fast	activity.	The	other	two	LGS-	associated	EEG	clusters	
contained	short	bursts	of	power	in	beta	and	gamma	frequency	bands	that	were	
primarily	unrecognized	by	epileptologists.	This	approach	also	uncovered	signifi-
cant	differences	in	sleep	spindles	between	LGS	and	control	cohorts.
Significance: s-	EPIC	provides	a	quantitative	approach	to	waveform	identifica-
tion	that	could	be	broadly	applied	to	EEG	from	both	healthy	subjects	and	those	
with	suspected	pathology.	s-	EPIC	can	objectively	identify	and	characterize	rele-
vant	EEG	waveforms	without	visual	review	or	assumptions	about	the	waveform's	
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1 	 | 	 INTRODUCTION

The	discovery	of	electroencephalography	(EEG)	biomark-
ers	has	historically	relied	on	identifying	waveforms	during	
visual	 review.	 Initially,	 descriptions	 of	 such	 waveforms	
are	 based	 on	 repeated	 visual	 observations	 across	 multi-
ple	patients.	This	leads	to	an	empirical	definition,	which	
can	be	used	to	establish	potential	clinical	utility	as	a	bio-
marker.1	For	example,	sleep	spindles	were	first	described	
as	waxing-	and-	waning	10–16	Hz	oscillations	lasting	.5–2	s	
during	sleep.2–5	They	were	later	associated	with	memory	
consolidation	and	intelligence	and	found	to	be	altered	in	
patients	with	epilepsy.6,7	Similarly,	high-	frequency	oscil-
lations	 (HFOs)	 were	 first	 observed	 in	 rat	 hippocampus8	
and	were	later	associated	with	epileptogenesis	in	humans	
after	visual	review	of	intracranial	EEG.9	Successful	valida-
tion	 studies	 can	 lead	 to	 protracted	 use	 of	 visual	 review,	
despite	the	labor	cost	and	generally	low	interrater	reliabil-
ity.	Sleep	spindles,10	HFOs,11–13	and	interictal	epileptiform	
discharges	(IEDs)14	have	all	followed	this	path.

The	drawbacks	of	visual	review	often	spur	the	creation	of	
automated	algorithms.	This	can	enable	fast,	objective	identi-
fication	of	EEG	waveforms	in	large	data	sets	while	ensuring	
consistent	detection	criteria.	Some	algorithms	analyze	 the	
EEG	signal	in	the	time	domain	and	aim	to	match	the	visually	
derived	empirical	definition	of	the	EEG	waveform	as	closely	
as	possible.	For	example,	IED	detectors	have	been	designed	
using	the	energy	of	the	signal	and	its	slope	at	various	points	
during	the	spike15	and	comparison	to	a	template	based	on	
averaged	 IEDs.16	 HFO	 detectors	 often	 use	 an	 amplitude	
threshold,17	 or	 peak	 amplitude,	 as	 a	 detection	 criterion.18	
Time–frequency	analysis	is	a	complementary	approach	that	
can	isolate	activity	in	individual	frequency	bands	and	enable	
rejection	of	common	artifacts	or	other	false-	positive	detec-
tions.19	 This	 method	 has	 been	 successfully	 applied	 to	 the	
automated	detection	of	HFOs20–23	and	the	identification	of	
interictal	spikes	in	refractory	epilepsies.24,25

However,	the	algorithm-	development	process	has	critical	
limitations.	The	detection	criteria	 for	waveforms	are	often	
based	on	empirical	definitions	derived	from	their	visual	ap-
pearance	 rather	 than	 the	 underlying	 physiology.	 In	 these	
cases,	the	detection	accuracy	is	often	calculated	using	visual	
markings	as	the	“ground	truth,”	thus	limiting	accuracy	by	
the	ability	of	raters	to	consistently	mark	the	waveforms.	For	

example,	 the	 Persyst	 IED	 detector	 (Persyst	 Development	
Corporation,	USA)	currently	has	the	highest	reported	sen-
sitivity	 and	 the	 highest	 interrater	 agreement	 with	 experts	
across	 commercial	 automated	 spike	 detectors,	 and	 has	
utility	as	a	screening	tool	for	epilepsy,26	but	it	also	has	high	
variance	in	IED	count	compared	to	human	experts	and	low	
interrater	agreement	with	clinical	markings.26

These	challenges	with	biomarker	discovery	and	valida-
tion	 are	 exemplified	 by	 Lennox–Gastaut	 syndrome	 (LGS),	
a	severe	form	of	childhood-	onset	epilepsy	characterized	by	
multiple	types	of	refractory	seizures,	a	variety	of	 interictal	
EEG	patterns,	and	intellectual	disability.	The	LGS	popula-
tion	is	heterogeneous,	varying	in	seizure	type,	seizure	bur-
den,	interictal	EEG	abnormalities,	etiology,	and	pathology.	
LGS	is	often	diagnosed	years	after	epilepsy	onset,	as	the	vari-
ability	across	seizure	types	and	interictal	EEG	abnormalities	
associated	 with	 the	 disease	 obfuscate	 the	 diagnostic	 crite-
ria.27,28	Moreover,	patients	are	often	seizure-	free	for	several	
years	following	the	resolution	of	early	life	seizures,	such	as	
infantile	epileptic	spasms	syndrome,	prior	to	the	insidious	
emergence	of	LGS.29	This	quiescent	period	is	an	attractive	

morphology	and	could	therefore	be	a	powerful	tool	for	the	discovery	and	refine-
ment	of	EEG	biomarkers.

K E Y W O R D S

epilepsy,	epileptic	encephalopathy,	generalized	paroxysmal	fast	activity,	interictal	epileptiform	
discharge,	machine	learning,	sleep	spindle

Key points

•	 Automated,	 unsupervised	 time-	frequency	
analysis	 can	 identify	 electroencephalography	
(EEG)	 waveforms	 specific	 to	 Lennox–Gastaut	
syndrome	 (LGS)	 and	 those	 specific	 to	 healthy	
controls.

•	 Our	 method	 independently	 identified	 clusters	
of	 waveforms	 consistent	 with	 epileptiform	
discharges	 and	 generalized	 paroxysmal	 fast	
activity.

•	 Sleep	 spindles	 were	 less	 frequent	 in	 LGS	 sub-
jects	than	controls,	with	shorter	duration,	lower	
electrode	spread,	and	lower	peak	frequency.

•	 Short	 bursts	 of	 beta	 and	 gamma	 power	 were	
strongly	 associated	 with	 LGS	 and	 have	 poten-
tial	as	a	novel	biomarker.

•	 This	 time–frequency	 approach	 could	 more	
broadly	 facilitate	 EEG	 biomarker	 discovery	 in	
healthy	people	and	those	with	pathologies.
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target	for	the	development	of	biomarkers	to	help	prevent	or	
mitigate	the	impact	of	impending	LGS.

One	promising	EEG	biomarker	for	LGS	is	generalized	
paroxysmal	fast	activity	(GPFA),	a	unique	waveform	that	
occurs	primarily	during	non–rapid	eye	movement	(NREM)	
sleep.28	 Despite	 the	 visual	 descriptions	 of	 GPFA28,30	 and	
its	associations	with	 intractable	epilepsy31	and	increased	
seizure	counts,32	the	interrater	reliability	for	GPFA	using	
visual	 identification	 remains	 low.33	 An	 automatic	 GPFA	
detector	 identified	EEG	waveforms	with	 time–frequency	
properties	 similar	 to	 manually	 marked	 GPFA,	 but	 it	 re-
quired	 individualized	patient	 settings	and	achieved	only	
40%–80%	agreement	with	visual	markings.34	This	suggests	
that	EEG	biomarkers	for	LGS	demonstrate	limited	clinical	
utility,	in	part	due	to	the	low	reliability	of	visual	identifi-
cation,	similar	to	IEDs	and	HFOs.

To	address	this,	we	developed	an	objective,	data-	driven	
approach	to	EEG	biomarker	discovery	that	does	not	rely	
on	 visual	 review	 of	 the	 data	 or	 pre-	established	 clinical	
definitions.	This	automated,	unsupervised	approach	iden-
tifies	EEG	waveforms	in	the	time–frequency	space	that	are	
specific	 to	patients	with	LGS.	We	show	that	 this	process	
cannot	only	 identify	known	biomarkers	of	LGS,	such	as	
slow	spike–wave	and	GPFA,	but	it	can	also	lead	to	the	dis-
covery	of	novel	candidate	biomarkers.

2 	 | 	 MATERIALS AND METHODS

2.1	 |	 Subject information

Approval	 for	 this	 retrospective	 observational	 study	 was	
obtained	 from	 the	 institutional	 review	 boards	 of	 the	
Children's	 Hospital	 of	 Orange	 County	 (CHOC)	 and	 the	
University	 of	 California,	 Los	 Angeles	 (UCLA),	 with	 the	
requirement	for	informed	consent	waived.	We	identified	
20	 subjects	 diagnosed	 with	 LGS	 (7	 female,	 median	 age	
7.4	years,	 age	 range	 1.0–18.8	years)	 who	 received	 care	 at	
CHOC	 between	 January	 2012	 and	 June	 2020.	 We	 also	
identified	50	children	who	had	EEG	studies	at	UCLA	be-
tween	February	2014	and	July	2018	but	were	determined	
to	 be	 neurologically	 normal.35	 Twenty	 of	 these	 controls	
(8	female,	median	age	8.2	years,	age	range	1.0–17.7	years)	
were	selected	to	be	approximately	age-	matched	to	the	LGS	
cohort.	 See	 Supplementary	 Methods—Data  S1	 for	 addi-
tional	details	on	subject	selection.

2.2	 |	 EEG acquisition and preprocessing

Control	and	LGS	EEG	data	were	both	recorded	using	19	
scalp	 electrodes	 placed	 according	 to	 the	 International	
10–20	system,	sampled	at	200	Hz.	EEG	data	were	collected	

overnight	and	manually	sleep	scored	by	a	board-	certified	
pediatric	 electroencephalographer	 to	 identify	 epochs	 of	
NREM	sleep	with	no	arousals	or	movement	artifacts	(see	
Supplementary	 Methods—Data  S1).	 For	 each	 subject,	
we	 analyzed	 one,	 10	 min	 segment	 of	 clean,	 continuous,	
NREM	 sleep	 EEG	 with	 no	 artifacts,	 detected	 automati-
cally35,36	and	visually.	EEG	data	were	re-	referenced	to	the	
common	average,	bandpass	filtered	from	.5–55	Hz	with	a	
zero-	phase	shift	digital	filter,	and	analyzed	using	the	Scalp	
EEG	 Pattern	 Identification	 and	 Categorization	 (s-	EPIC)	
method.

2.3	 |	 Scalp EEG Pattern 
Identification and Categorization (s- EPIC)

2.3.1	 |	 Identifying	events	of	interest	(EOIs)

The	 EEG	 data	 were	 pre-	whitened	 in	 the	 time-	domain	
using	first-	order	backward	differencing.37–39	Each	channel	
in	 every	 EEG	 was	 decomposed	 into	 the	 time–frequency	
domain	 using	 the	 Stockwell	 transform	 for	 frequencies	
from	1	to	50	Hz,	with	a	step	size	of	1	Hz	(Figure 1A).32,40

For	 each	 subject,	 we	 used	 the	 EEG	 time–frequency	
decomposition	to	identify	periods	in	the	Fz	EEG	channel	
where	the	power	at	any	frequency	exceeded	a	threshold	p	
for	at	least	100	ms.	We	defined	these	windows	of	EEG	as	
“events	of	interest”	(EOIs).	The	threshold	was	fixed	across	
all	 subjects	and	all	 frequency	bands.	EOIs	were	selected	
using	 the	 Fz	 electrode	 for	 two	 reasons:	 (1)	 the	 fronto-	
central	 location	 should	 be	 minimally	 impacted	 by	 eye	
movements	and	muscle	artifact,	and	(2)	Fz	is	maximally	
sensitive	to	known	EEG	waveforms	such	as	sleep	spindles	
and	GPFAs.41	A	minimum	time	of	100	ms	was	chosen	to	
fully	capture	the	duration	of	an	epileptic	spike,	which	was	
the	shortest	EEG	waveform	we	expected	to	see.	Epileptic	
spikes	last	20–70	ms	in	the	time	domain	but	can	have	lon-
ger	 duration	 in	 the	 time–frequency	 space,	 especially	 at	
low	frequencies.33

2.3.2	 |	 EOI	features

Each	 EOI	 was	 associated	 with	 a	 time–frequency	 image	
(TFI),	 a	 binary	 image	 in	 the	 time–frequency	 domain	
(Figure  1A).	 For	 each	 EOI,	 11	 features	 were	 calculated	
based	 on	 the	 temporal,	 spectral,	 and	 spatial	 proper-
ties	 (for	 full	 mathematical	 details,	 see	 Supplementary	
Methods—Data S1):

1.	 Height:	The	difference	between	 the	highest	 frequency	
and	 lowest	 frequency	 in	 the	 TFI	 (Figure  1B).

2.	 Length:	The	duration	of	the	TFI	in	seconds	(Figure 1C).
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3.	 Spread:	The	percentage	overlap	of	the	Fz	TFI	with	TFIs	
in	other	electrodes,	in	time	and	frequency	(Figure 1D).

4.	 Density:	 TFI	 area	 (number	 of	 data	 points	 within	 the	
TFI)	 divided	 by	 its	 length	 and	 the	 maximum	 height	
(50	Hz)	(Figure 1E).

5.	 Frequency	 of	 Peak	 Power	 (FPP):	 The	 frequency	 at	
which	the	EOI	had	maximum	power	(Figure 1F).

6.	 Band	Power	(BP):	The	mean	band	power	across	all	time	
points	 in	 the	 EOI	 within	 the	 delta	 (2≤δ<4	Hz),	 theta	
(4≤θ<7	Hz),	 alpha	 (8≤α<12	Hz),	 sigma	 (12≤σ<15	Hz),	
beta	 (15≤β<30	Hz),	 and	 gamma	 (30≤γ<50	Hz)	 fre-
quency	bands	(Figure 1G).

2.3.3	 |	 Clustering	and	feature	categorization

Prior	to	clustering,	each	feature	value	was	normalized	by	
dividing	by	the	range	of	feature	values	across	all	EOIs.42	

All	EOIs	were	clustered	using	k-	means	based	on	their	11	
normalized	features.43	For	visualization	purposes,	clusters	
were	sorted	in	descending	order	based	on	the	sum	of	the	
11	 z-	scores,	 such	 that	 Cluster	 1	 had	 the	 highest	 sum	 of	
features.

One	limitation	of	clustering	is	the	variability	of	the	re-
sults	using	a	different	dataset	or	new	subjects.	As	a	com-
plement	to	clustering,	we	implemented	a	second	method	
that	 categorized	 each	 EOI	 based	 on	 the	 median	 feature	
values	 of	 the	 height,	 length,	 spread,	 and	 density.	 Each	
of	 these	 features	 was	 classified	 as	 weak	 (lower	 than	 the	
median)	 or	 strong	 (higher	 than	 the	 median).	 Each	 EOI	
was	then	categorized	using	a	five-	character	string	starting	
with	the	frequency	of	highest	BP	(δ,	θ,	α,	σ,	β,	γ),	followed	
by	characters	indicating	weak/strong	height	(h/H),	length	
(l/L),	spread	(s/S),	and	density	(d/D).	For	example,	an	EOI	
with	peak	power	in	the	alpha	band	and	height	and	spread	
above	the	median	was	categorized	as	“αHlSd.”

F I G U R E  1  Examples	of	EOI	identification	and	TFI	features.	(A)	The	broadband	EEG	signal	is	first	pre-	whitened,	followed	by	time–
frequency	decomposition	using	the	Stockwell	transform	for	the	entire	EEG	clip.	EOIs	were	defined	as	consecutive	time	points	in	which	the	
EEG	power	in	the	time–frequency	decomposition	exceeded	a	threshold	for	a	minimum	duration.	Each	EOI	then	had	a	corresponding	region	
called	a	TFI.	For	example,	the	yellow,	red,	and	green	regions	in	the	bottom	subfigure	represent	three	different	TFIs,	each	one	associated	
with	an	EOI	in	the	EEG.	(B)	Shows	an	example	TFI	with	high	height,	(C)	high	length,	(D)	high	spread,	and	(E)	high	density.	The	spread	
is	visually	represented	using	electrodes	adjacent	to	Fz,	where	yellow	regions	indicate	overlap	of	the	TFI	in	electrode	Fz	with	the	TFI	for	
adjacent	electrodes	and	green	indicates	regions	where	the	TFI	for	adjacent	electrodes	does	not	overlap	with	the	TFI	for	Fz.	The	other	
features	used	to	characterize	EOIs	were	(F)	frequency	of	peak	power,	indicated	by	a	white	dashed	line,	and	(G)	mean	band	power	in	six	
frequency	bands;	a	sample	TFI	with	high	theta	band	power	(indicated	by	white	dashed	lines)	is	shown.	EEG,	electroencephalography;	EOI,	
event	of	interest;	TFI,	time–frequency	image.
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2.4	 |	 Visual classification and 
labelling of EOIs

To	provide	a	clinical	interpretation	of	each	cluster,	we	se-
lected	a	subset	of	1350	EOIs	 for	visual	analysis	by	 three	
board-	certified	pediatric	epileptologists	from	two	different	
institutions	 (CHOC	 and	 UCLA).44	 The	 selection	 proce-
dure,	detailed	in	Hu	et al.,44	aimed	to	represent	the	broad	
range	 of	 EOIs,	 with	 approximately	 equal	 selection	 from	
LGS	and	control	subjects.	Each	rater	classified	900	EOIs	
using	a	15	s	clip	of	the	surrounding	EEG	and	was	blinded	
to	subject	type,	subject	number,	and	the	time	at	which	the	
EEG	was	recorded.	Each	EOI	was	independently	marked	
by	 at	 least	 two	 different	 raters.	 Raters	 classified	 each	
EOI	 as	 one	 of	 the	 following:	 (1)	 IED,	 (2)	 trains	 of	 IEDs	
(IEDTs),	(3)	GPFA,	(4)	seizure,	(5)	sleep	spindle,	(6)	vertex	
sharp,	(7)	muscle,	(8)	artifact,	(9)	other	waveform,	or	(10)	
nothing.

2.5	 |	 Automated sleep spindle detection

To	complement	the	time–frequency	analysis,	we	also	ap-
plied	an	automated	sleep	spindle	detector45	to	the	EEG	for	
all	 subjects.	 (See	 Supplementary	 Methods—Data  S1	 for	
details.)

3 	 | 	 RESULTS

3.1	 |	 LGS EOIs have higher 
values of spatial and spectral time–
frequency features than control EOIs

A	power	 threshold	of	p	=	250	was	selected	using	histo-
grams	 of	 all	 power	 values	 in	 each	 cohort	 (Figure  S1).	
Overall,	 the	 EEG	 recordings	 of	 patients	 with	 LGS	 had	
higher	power	than	controls.	This	threshold	was	chosen	
to	 select	 ~5%	 of	 time–frequency	 values,	 balanced	 be-
tween	the	two	cohorts,	enabling	detection	of	both	patho-
logical	and	physiological	EOIs.	Using	p	=	250	resulted	in	
the	identification	of	11	705	EOIs	across	all	40	subjects.	A	
total	of	6743	EOIs	were	from	20	controls	(ncontrols	=	365.0	
[259.0–442.5];	reported	as	the	median	[Q1–Q3]	for	all	re-
sults)	and	4962	were	from	20	LGS	subjects	(nLGS	=	232.0	
[156.0–324.5]).

The	 height,	 spread,	 FPP,	 density,	 sigma	 BP,	 beta	 BP,	
and	 gamma	 BP	 of	 EOIs	 from	 LGS	 subjects	 were	 signifi-
cantly	greater	than	those	from	controls	(Figure S2;	p	<	.05,	
Mann–Whitney	 U	 test,	 Bonferroni	 corrected,	 n	=	11).	 To	
test	the	impact	of	the	threshold	on	EOI	selection,	we	re-
peated	the	analysis	with	p	=	200	and	p	=	300,	and	we	found	
qualitatively	similar	results	(Figure S3).

3.2	 |	 EOIs unique to LGS subjects were 
isolated by clustering

To	generate	12	clusters,	k-	means	was	applied	to	all	EOIs.	
On	average,	subjects	had	EOIs	in	9.5	clusters;	each	cluster	
contained	EOIs	from	multiple	subjects	(Figure 2A).	Each	
cluster's	 centroid	 was	 characterized	 by	 a	 different	 com-
bination	 of	 the	 11	 features	 (Figure  3).	 The	 results	 were	
not	 dependent	 on	 the	 power	 threshold,	 as	 thresholds	 of	
p	=	200	and	p	=	300	produced	qualitatively	similar	cluster	
centroids	 (Figure  S4).	 These	 results	 were	 also	 robust	 to	
the	number	of	clusters,	as	using	6,	9,	15,	and	18	clusters	
similarly	resulted	in	LGS-	dominated	groups	of	EOIs	with	
similar	mean	centroids	(Figure S5).

3.3	 |	 s- EPIC identified known and novel 
candidate biomarkers of LGS

Clusters	 1,	 2,	 4,	 and	 7	 had	 significantly	 more	 LGS	 EOIs	
than	 control	 EOIs,	 and	 thus	 represent	 potential	 bio-
markers	 for	 LGS	 (Figure  2B;	 p	<	.05,	 permutation	 test,	
Bonferroni	corrected,	n	=	12).	Representative	control	and	
LGS	EOIs	with	features	most	similar	to	each	cluster	cen-
troid	are	shown	in	Figure 4.

3.3.1	 |	 EOIs	in	Cluster	1	were	identified	as	
GPFA	in	LGS	subjects	and	sleep	spindles	in	
healthy	controls

Cluster	1	consisted	of	427	EOIs,	71	from	5	controls	and	356	
from	 15	 LGS	 subjects.	 These	 EOIs	 lasted	 ~1.2	s	 and	 had	
high	 height,	 electrode	 spread,	 density,	 and	 high	 alpha,	
sigma,	and	beta	BP	(Figure 3).	Of	the	37	visually	labeled	
control	EOIs,	83.8%	of	events	were	agreed	to	be	sleep	spin-
dles	 by	 both	 raters;	 of	 the	 124	 labeled	 LGS	 EOIs,	 58.1%	
were	labeled	as	GPFA	by	at	least	one	rater	(Figure 4A).	In	
total,	85.7%	of	all	GPFAs	with	two-	rater	agreement	were	
contained	in	Cluster	1.

3.3.2	 |	 EOIs	in	Cluster	2	were	identified	
as	IEDTs

Cluster	2	had	490	EOIs,	18	from	9	controls	and	472	from	
17	 LGS	 subjects.	 Events	 in	 Cluster	 2	 had	 the	 highest	
mean	EOI	 length	 (4.9	s),	high	height,	 length,	electrode	
spread,	and	high	delta,	 theta,	and	alpha	BP	(Figure 3).	
The	EOIs	 in	Cluster	2	had	consistent	 rater	agreement,	
with	 96.9%	 of	 the	 195	 marked	 LGS	 events	 labeled	 as	
IEDTs	 by	 at	 least	 one	 rater	 and	 79.0%	 as	 IEDTs	 with	



546 |   HU et al.

two-	rater	 agreement.	 In	 contrast,	 there	 were	 no	 con-
sistent	 labels	 across	 the	 18	 reviewed	 control	 events	
(Figure 4B).

3.3.3	 |	 EOIs	in	Clusters	4	and	7	have	high	
beta	and	gamma	power	and	are	novel	candidate	
biomarkers	of	LGS

In	Cluster	4,	111	EOIs	were	found	across	9	controls	and	461	
across	13	LGS	subjects;	in	Cluster	7,	156	EOIs	were	found	
across	13	controls	and	469	EOIs	across	17	LGS	subjects.	
These	clusters	are	distinguished	by	their	low	length,	with	
high	gamma	BP	and	FPP	of	36.1	Hz	in	Cluster	4,	and	high	
beta	BP	and	FPP	of	24.9	Hz	in	Cluster	7	(Figure 3).	Events	
in	Cluster	7	have	a	significantly	lower	height,	spread,	and	
density	compared	to	Cluster	4	(p	<	.05,	Mann–Whitney	U	
test,	Bonferroni	corrected,	n	=	11),	although	these	features	
have	low	values	relative	to	those	in	Clusters	1	and	2.	Rater	
labels	for	Clusters	4	and	7	were	inconclusive	for	both	LGS	
and	 control	 EOIs.	 In	 Cluster	 4,	 88.2%	 of	 LGS	 EOIs	 and	
94.1%	of	control	EOIs	were	labeled	as	“nothing”	or	were	
given	mismatched	labels	by	the	two	raters;	similarly,	this	
was	true	for	96.4%	of	LGS	EOIs	and	87.5%	control	EOIs	in	
Cluster	7	(Figure 4C,D).	The	frequent	occurrence	of	these	
EOIs	 in	 LGS	 subjects	 compared	 to	 controls,	 combined	
with	a	lack	of	recognition	by	clinicians,	suggests	that	they	
may	be	novel	candidate	biomarkers	of	LGS.

3.4	 |	 Alterations to sleep spindles in LGS 
subjects compared to controls

The	 substantially	 reduced	 number	 of	 sleep	 spindles	 in	
LGS	subjects	warranted	further	investigation,	as	only	five	
EOIs	had	two-	rater	agreement	on	sleep	spindles	in	LGS,	
compared	to	113	in	controls.	Within	those	EOIs,	LGS	spin-
dles	 had	 a	 shorter	 length,	 lower	 height,	 lower	 electrode	
spread,	and	a	lower	FPP	compared	to	spindles	in	healthy	
controls	 (p	<	.05,	 Mann–Whitney	 U	 test,	 Bonferroni	 cor-
rected,	n	=	4).	To	independently	validate	this	finding,	we	
ran	 an	 automatic	 sleep	 spindle	 detector45	 on	 the	 EEG	

F I G U R E  2  Four	clusters	had	EOIs	primarily	originating	from	
LGS	subjects.	(A)	Heatmap	of	the	number	of	EOIs	in	each	cluster	
for	all	controls	(top)	and	LGS	subjects	(bottom).	(B)	The	percentage	
of	control	and	LGS	EOIs	in	each	cluster.	Clusters	1,	2,	4,	and	7	had	
a	significantly	greater	number	of	EOIs	from	LGS	subjects	compared	
to	controls	and	are	formatted	in	bold	text	with	asterisks.	Significance	
level	is	p	<	.05,	with	p-	values	corrected	using	the	Bonferroni	method.	
EOI,	event	of	interest;	LGS,	Lennox–Gastaut	syndrome.
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recordings	 from	 all	 subjects.	 Sleep	 spindles	 were	 de-
tected	more	frequently	in	healthy	controls	(n	=	96.5	[64.5–
123.0])	than	LGS	subjects	(n	=	25.5	[18.5–44.0])	(Figure 5).	
Moreover,	the	mean	LGS	spindle	was	significantly	lower	
in	length,	global	spread,	and	peak	frequency	compared	to	
that	 of	 healthy	 controls	 (p	<	.05,	 Mann–Whitney	 U	 test,	
Bonferroni	corrected,	n	=	4)	(Figure 5).	These	results	mir-
ror	the	s-	EPIC	results,	suggesting	sleep	spindle	occurrence	
and	characteristics	as	candidate	biomarkers	of	LGS.

3.5	 |	 Analysis of EOIs using feature 
categorization

To	 complement	 the	 clustering	 analysis,	 we	 also	 placed	
each	 EOI	 into	 one	 of	 96	 categories,	 as	 described	 in	 the	
Methods	section	on	Feature	Categorization.	The	median	
EOI	feature	values	were	a	height	of	7	Hz,	length	of	360	ms,	
spread	of	26.3%,	and	density	of	6.4%.	Eighty-	three	of	the	
96	categories	had	at	least	one	EOI,	with	a	median	of	43.5	
[6–167.0]	EOIs	per	category.

3.5.1	 |	 EOIs	with	high	beta	and	gamma	band	
power	are	potential	biomarkers	of	LGS

Twenty-	two	categories	had	significantly	more	EOIs	from	
LGS	subjects	 than	controls	 (Table 1A;	p	<	.05,	permuta-
tion	test,	Bonferroni	corrected,	n	=	96).	Seven	significant	
categories	had	peak	BP	 in	delta,	 theta,	alpha,	or	 sigma,	
with	high	height	and	density;	most	also	had	high	spread	
and	low	length.	In	contrast,	the	nine	categories	with	peak	

beta	BP	and	six	with	peak	gamma	BP	included	combina-
tions	of	high	and	low	feature	values	(Table 1A).	The	wide	
variety	of	 feature	combinations	suggests	a	broader	rela-
tionship	between	LGS	and	beta/gamma	band	EOIs.	For	
example,	in	the	beta	band,	nine	of	16	categories	were	sig-
nificantly	associated	with	LGS,	and	the	remaining	seven	
categories	each	contained	fewer	than	two	EOIs.	Similarly,	
only	5	of	16	gamma	band	categories	had	more	than	one	
EOI,	 with	 all	 5	 containing	 significantly	 more	 LGS	 than	
control	EOIs	(Table 1A).	This	suggests	that	simply	iden-
tifying	EOIs	with	beta	or	gamma	peak	BP,	without	any	
further	clustering	or	categorization,	can	distinguish	LGS	
subjects	from	controls.	Doing	this,	we	find	that	across	all	
EOIs,	those	with	peak	beta	BP	or	peak	gamma	BP	orig-
inated	 from	 LGS	 subjects	 84.1%	 and	 78.2%	 of	 the	 time,	
respectively.

3.5.2	 |	 Feature	categorization	identified	EOIs	
strongly	associated	with	the	control	group

Twenty-	three	feature	categories	had	significantly	more	
control	EOIs	than	LGS	EOIs	(Table 1B).	Most	of	these	
categories	 were	 characterized	 by	 peak	 alpha	 or	 sigma	
BP;	52.0%	of	all	EOIs	in	the	23	categories	had	peak	BP	
in	 the	 alpha	 or	 sigma	 frequency.	 Events	 in	 these	 cat-
egories	 generally	 had	 low	 feature	 values,	 with	 82.2%	
of	 them	 having	 low	 height,	 60.8%	 having	 low	 length,	
64.2%	 having	 low	 spread,	 and	 78.0%	 having	 low	 den-
sity.	Only	three	control-	associated	categories	had	peak	
beta	or	gamma	BP,	and	each	one	contained	a	single	EOI	
(Table 1B).

F I G U R E  3  Mean	feature	values	
for	each	cluster.	The	opacity	of	the	cells	
indicates	the	feature	value	relative	to	the	
maximum	in	each	column,	with	a	value	
of	zero	appearing	white.	Clusters	with	a	
significantly	greater	number	of	LGS	EOIs	
than	control	EOIs	are	formatted	in	bold	
text	and	indicated	by	asterisks.	Numbers	
are	reported	as	mean	(standard	deviation	
[SD]).	Significance	level	is	p<0.05,	with	
p-	values	corrected	using	the	Bonferroni	
method.	EOI,	event	of	interest;	LGS,	
Lennox–Gastaut	syndrome.
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4 	 | 	 DISCUSSION

Here,	 we	 presented	 s-	EPIC,	 a	 novel	 technique	 to	 dis-
cover	 EEG	 biomarkers	 using	 time–frequency	 analysis.	
When	 applied	 to	 patients	 with	 LGS,	 s-	EPIC	 identified	

EOIs	 consistent	 with	 known	 clinical	 biomarkers,	 spe-
cifically	 IEDTs	 and	 GPFA.	 It	 also	 uncovered	 significant	
differences	 in	 sleep	 spindles	 between	 LGS	 subjects	 and	
healthy	 controls	 and	 suggested	 beta/gamma	 band	 EOIs	
as	novel	 candidate	biomarkers	of	LGS,	as	 they	occurred	

F I G U R E  4  Breakdown	of	reviewer	classifications	in	clusters	with	significantly	more	LGS	EOIs	than	control	EOIs:	(A)	Cluster	1,	(B)	
Cluster	2,	(C)	Cluster	4,	and	(D)	Cluster	7.	For	each	cluster,	the	left	column	shows	a	representative	EEG	waveform	for	controls	(blue)	
and	LGS	subjects	(red),	selected	using	the	minimum	Euclidean	distance	from	the	cluster	centroid.	The	bar	graph	in	the	middle	shows	
the	occurrence	of	each	label	for	control	and	LGS	EOIs	marked	by	a	single	rater	or	two	raters,	with	the	latter	indicating	rater	agreement	
on	the	EOI	label.	The	right	column	shows	confusion	matrices	for	rater	labels	applied	to	control	(blue)	and	LGS	(red)	EOIs.	EEG,	
electroencephalography;	EOI,	event	of	interest;	LGS,	Lennox–Gastaut	syndrome.
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predominantly	in	LGS	subjects	but	were	unrecognized	by	
epileptologists.	These	results,	encompassing	both	known	
and	 previously	 unknown	 EEG	 waveforms,	 speak	 to	 the	
potential	power	of	this	approach.

4.1	 |	 Comparison to prior time–
frequency image analyses

Prior	 implementations	 of	 time–frequency	 analysis	 have	
been	used	primarily	to	create	automated	detectors	for	spe-
cific	EEG	waveforms,	such	as	GPFA,34	IED,24	or	HFOs.20,22	
One	 study	 used	 time–frequency	 image	 features,	 such	 as	
area,	 entropy,	 width,	 and	 height,20	 to	 quantify	 HFOs;	
another	HFO	study	used	 features	of	 the	 time–frequency	
spectrogram,	 such	 as	 flux,	 energy	 concentration,	 and	
skewness.22	 Time–frequency	 analysis	 has	 also	 been	 ap-
plied	to	EEG	from	children	with	focal	epilepsies	to	detect	
IEDs	 using	 power	 spectrum	 changes.24	 Our	 work	 im-
proves	on	these	prior	studies.	First,	we	broadly	detect	all	
anomalies	in	the	time–frequency	domain	without	requir-
ing	empirical	definitions	of	waveforms,	preset	parameters,	
or	annotated	EEG	data.	Second,	our	method	can	equally	
analyze	 EEG	 of	 both	 epilepsy	 patients	 and	 healthy	 con-
trols,	rather	than	being	tailored	to	epilepsy-	related	event	
detection.	This	enabled	us	to	identify	clusters	of	EOIs	that	
were	pathological	(occurring	mostly	in	LGS	subjects)	and	
physiological	 (occurring	 mostly	 in	 controls).	 Third,	 our	
method	is	the	first	to	enable	the	detection	of	EOIs	of	vari-
able	 length,	 rather	 than	 relying	 on	 the	 assumption	 of	 a	
fixed	event	duration.

4.2	 |	 Time–frequency 
characteristics of GPFA

Visually	 reviewed	EOIs	 labeled	as	GPFA	by	at	 least	one	
clinician	were	found	in	40%	of	LGS	subjects33;	this	is	lower	
than	 a	 prior	 study,	 which	 reported	 generalized	 paroxys-
mal	fast	rhythms	in	66%	of	patients	with	genetic	general-
ized	 epilepsy	 using	 a	 24	h	 EEG	 recording.46	 The	 relative	
rarity	 of	 GFPA	 in	 our	 data	 set	 was	 expected,	 given	 that	
we	analyzed	only	10	min	of	sleep	EEG,	compared	to	 the	
multiple	hours	of	EEG	often	needed	to	see	the	first	gener-
alized	polyspike	activity.47

There	 is	 currently	 no	 consensus	 on	 GPFA	 character-
istics.	One	study	of	 scalp	EEG	reported	GPFA	to	have	a	
mean	amplitude	of	293	uV,	length	of	1.6	s,	and	frequency	
of	11.1	Hz48;	another	study	reported	a	mean	amplitude	of	
88.3	uV,	length	of	1–4	s,	and	frequencies	of	11–20	Hz.41	An	
automated	GPFA	detector	found	bursts	as	low	as	3	Hz	in	
some	 subjects	 and	 up	 to	 16–18	Hz	 in	 others.34	 GPFA	 in	
Cluster	1	had	a	mean	length	of	1.9	s,	FPP	of	19.6	Hz,	alpha	
BP	of	467.8,	and	sigma	BP	of	500.0.	This	characterization	
may	be	a	useful	benchmark	for	future	studies,	including	
differentiating	 GPFA	 from	 generalized	 polyspike	 trains,	
which	have	overlapping	features.31,47

4.3	 |	 Aberration of sleep spindles in LGS

The	lower	spindle	rate	in	LGS	subjects	compared	to	healthy	
controls	 is	 consistent	 with	 lower	 global	 rates	 of	 sleep	
spindles	during	N2	sleep	reported	in	other	epilepsies.49,50	

F I G U R E  5  Mean	features	of	
automatically	detected	sleep	spindles	
across	all	control	and	LGS	subjects.	
Sleep	spindles	in	healthy	controls	had	a	
significantly	greater	(A)	spindle	count,		
(B)	spindle	length,	(C)	spindle	spread,	and	
(D)	peak	frequency	compared	to	spindles	
in	LGS	subjects.	Significance	levels	are	
*p	<	.05,	**p	<	.01,	and	***p	<	.001,	with	
p-	values	modified	using	the	Bonferroni	
method.	LGS,	Lennox–Gastaut	syndrome.
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However,	LGS	subjects	have	significantly	less	stage	2	sleep	
compared	to	age-	matched	controls,50	which	could	reduce	
the	 likelihood	 of	 spindles	 occurring	 within	 the	 NREM	
EEG	clips	in	our	study.	The	presence	of	sleep	spindles	in	
LGS	can	also	be	masked	by	concurrent	epileptiform	activ-
ity,	which	confounds	visual	classification.

4.4	 |	 Candidate high frequency EEG 
biomarkers for LGS

Our	automated	time–frequency	analysis	identified	beta	and	
gamma	 band	 EOIs	 as	 candidate	 EEG	 biomarkers	 of	 LGS.	
These	events,	found	in	Clusters	4	and	7,	had	generally	low	
feature	values,	similar	to	controls,	yet	78%	of	the	events	in	
these	 categories	 originated	 from	 LGS	 subjects.	 The	 EOIs	
in	both	clusters	were	unrecognizable	 to	epileptologists,	as	
64.6%	of	all	EOIs	in	Cluster	4	and	83.3%	of	EOIs	in	Cluster	7	
were	labeled	as	“nothing”	by	at	least	one	rater.

It	is	noteworthy	that	the	remaining	EOIs	in	Clusters	4	
and	7	were	not	interpreted	to	be	muscle	artifacts.	Muscle	
artifact	has	outlying	high	amplitude,	 long	duration,	and	
high	 electrode	 spread	 in	 the	 temporal	 and	 frontopolar	
channels,	 in	 contrast	 to	 the	 features	 described	 in	 these	
two	 clusters.51,52	 However,	 the	 EOIs	 in	 Clusters	 4	 and	 7	
do	share	characteristics	with	paroxysmal	EEG	waveforms	
suggested	 to	 be	 a	 biomarker	 of	 epileptogenesis	 in	 chil-
dren,	which	have	peak	frequencies	in	the	beta	and	gamma	
bands	and	durations	>200	ms.53

4.5	 |	 Limitations and future directions

There	 are	 several	 limitations	 to	 our	 study.	 EOIs	 were	
detected	 solely	 in	 the	 Fz	 channel,	 although	 our	 time–
frequency	method	could	be	adapted	to	multi-	channel	de-
tection,	with	additional	criteria	to	avoid	double-	counting	
EOIs	that	span	multiple	channels.	This	expanded	approach	

(A) Significant LGS categories (B) Significant control categories

No. EOIs No. LGS EOI (%) Category No. EOIs NO. LGS EOI (%) Category

393 291	(74.1%) δHLSD 180 48	(26.7%) δhLSd

57 38	(66.7%) θHlSD 839 248	(29.6%) θhlsd

711 463	(65.1%) θHLSD 371 87	(23.4%) θhlSd

20 17	(85.0%) αHlSd 421 71	(16.9%) θhLSd

109 80	(73.4%) αHlSD 256 82	(32.0%) θHLsD

147 83	(56.5%) σHlsD 144 33	(22.9%) θHLSd

214 168	(78.5%) σHlSD 862 217	(25.2%) αhlsd

77 61	(79.2%) βhlsD 143 34	(23.8%) αhlsD

7 7	(100%) βhlSd 255 79	(31.0%) αhlSd

39 35	(89.7%) βhlSD 107 10	(9.4%) αhLsD

245 194	(79.2%) βHlsD 74 13	(17.6%) αhLSd

1 1	(100%) βHlSd 82 7	(8.5%) αhLSD

221 194	(87.8%) βHlSD 62 14	(22.6%) αHLsd

1 1	(100%) βHLsd 254 53	(20.9%) αHLsD

17 17	(100%) βHLsD 327 94	(28.8%) σhlsd

68 65	(95.6%) βHLSD 27 1	(3.7%) σhLsD

6 6	(100%) γhlsD 35 2	(5.7%) σhLSd

1 1	(100%) γhlSD 65 5	(7.7%) σhLSD

259 180	(69.5%) γHlsD 78 16	(20.5%) σHLsD

281 231	(82.2%) γHlSD 22 3	(13.6%) σHLSd

13 12	(92.3%) γHLsD 1 0	(0%) βhLsD

56 53	(94.6%) γHLSD 1 0	(0%) γHlsd

1 0	(0%) γHlSd

Note:	The	five-	character	strings	indicate	the	frequency	of	highest	band	power	(δ,	θ,	α,	σ,	β,	γ),	followed	
by	characters	indicating	low/high	height	(h/H),	length	(l/L),	spread	(s/S),	and	density	(d/D),	based	on	a	
comparison	to	the	median	value	across	all	subjects.
Abbreviations:	EOI,	event	of	interest;	LGS,	Lennox–Gastaut	syndrome.

T A B L E  1 	 Feature	categories	with	
significantly	more	LGS	or	control	EOIs.
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would	 be	 supported	 by	 the	 use	 of	 high-	resolution	 EEG,	
which	would	also	improve	the	estimates	of	EOI	spread.	In	
addition,	the	10	min	of	EEG	analyzed	for	each	subject	is	
a	relatively	short	duration	for	characterizing	paroxysmal	
activity,	as	prior	studies	used	recordings	of	up	to	24	h.46,47	
The	amount	of	EEG	data	available	for	analysis	can	be	in-
creased	 through	 automated	 removal	 of	 artifact,	 such	 as	
muscle	activity.54	This	would	enable	analysis	of	EEG	re-
corded	 during	 wakefulness	 and	 automated	 selection	 of	
EEG	 epochs	 to	 reduce	 the	 bias	 associated	 with	 manual	
selection.	The	use	of	high	sampling	rate	EEG	(≥1000	Hz)	
would	also	facilitate	this	approach.	The	computational	ef-
ficiency	 of	 this	 work	 can	 also	 be	 improved	 through	 im-
plementation	of	the	fast	S-	transform,	enabling	analysis	of	
longer	EEG	recordings	with	a	higher	sampling	rate	and	a	
larger	subject	population.55	The	EEG	visual	analysis	pro-
cedure	was	also	different	from	standard	clinical	review,	as	
raters	viewed	15	s	of	isolated	EEG	surrounding	the	EOI,	
rather	than	scrolling	through	continuous	recordings.

Future	 work	 may	 focus	 on	 improving	 the	 clustering	
techniques.	 The	 k-	means	 provided	 broad	 separation	 be-
tween	features	but	was	ineffective	for	differentiating	EEG	
waveforms	 with	 overlapping	 properties,	 such	 as	 sleep	
spindles	 and	 GPFA.	 Other	 clustering	 methods,	 such	 as	
hierarchical	 clustering	 or	 decision	 trees,	 may	 be	 able	 to	
address	this	limitation.	Further	validation	of	our	findings	
with	an	independent	data	set	comprising	healthy	controls,	
children	with	LGS,	and	patients	with	other	types	of	pedi-
atric	epilepsy,	is	paramount.

5 	 | 	 CONCLUSION

s-	EPIC	is	a	robust	computational	approach	to	biomarker	
discovery	based	on	 the	 time–frequency	 features	of	EEG.	
This	method	can	be	applied	to	normal	or	abnormal	EEG	
recordings	 to	 help	 establish	 quantitative	 definitions	 of	
EEG	 biomarkers	 without	 visual	 review.	 Ultimately,	 this	
can	reduce	 the	reliance	on	empirical	definitions	of	EEG	
waveforms,	 increase	 the	 accuracy	 of	 known	 EEG	 bio-
markers,	and	facilitate	the	discovery	of	novel	biomarkers	
of	health	and	disease.
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