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Methods for Quantifying Source‐Specific Air Pollution
Exposure to Serve Epidemiology, Risk Assessment, and
Environmental Justice
Xiaorong Shan1 , Joan A. Casey2 , Jenni A. Shearston3 , and Lucas R. F. Henneman1

1Department of Civil, Environmental, and Infrastructure Engineering, College of Engineering and Computing, George
Mason University, Fairfax, VA, USA, 2Department of Environmental and Occupational Health Sciences, School of Public
Health, University of Washington, Seattle, WA, USA, 3Department of Environmental Science, Policy, & Management,
School of Public Health, University of California Berkeley, Berkeley, CA, USA

Abstract Identifying sources of air pollution exposure is crucial for addressing their health impacts and
associated inequities. Researchers have developed modeling approaches to resolve source‐specific exposure for
application in exposure assessments, epidemiology, risk assessments, and environmental justice. We explore six
source‐specific air pollution exposure assessment approaches: Photochemical Grid Models (PGMs), Data‐
Driven Statistical Models, Dispersion Models, Reduced Complexity chemical transport Models (RCMs),
Receptor Models, and Proximity Exposure Estimation Models. These models have been applied to estimate
exposure from sources such as on‐road vehicles, power plants, industrial sources, and wildfires. We categorize
these models based on their approaches for assessing emissions and atmospheric processes (e.g., statistical or
first principles), their exposure units (direct physical measures or indirect measures/scaled indices), and their
temporal and spatial scales. While most of the studies we discuss are from the United States, the methodologies
and models are applicable to other countries and regions. We recommend identifying the key physical processes
that determine exposure from a given source and using a model that sufficiently accounts for these processes.
For instance, PGMs use first principles parameterizations of atmospheric processes and provide source impacts
exposure variability in concentration units, although approaches within PGMs for source attribution introduce
uncertainties relative to the base model and are difficult to evaluate. Evaluation is important but difficult—since
source‐specific exposure is difficult to observe, the most direct evaluation methods involve comparisons with
alternative models.

Plain Language Summary Air pollution sources lead to adverse health impacts and inequities. To
better understand these effects, researchers have created various models to quantify air pollution exposure from
specific sources. These models are used in studies that look at the health effects of pollution, help assess risks,
and address environmental justice issues. We identified six types of models used to estimate exposure from
pollution sources like cars, power plants, factories, and wildfires. The models use different approaches to
approximate the physical processes that dictate exposure. They also vary in the exposure metrics they produce—
some use concentration units, while others rely on indirect indices. Researchers should consider and state
explicitly what information might be gained or lost depending on which model they use. Evaluating these
models is important but can be challenging, as it often requires comparing results with other models, which can
be time‐consuming and resource‐intensive.

1. Introduction
Exposure to ambient air pollution increases the risk of adverse health outcomes and mortality in humans (Brauer
et al., 2019; Burnett et al., 2018; L. Henneman et al., 2023). In response to these risks, the United States has
established regulations such as the National Ambient Air Quality Standards (NAAQS) (US EPA, 2014) for six
criteria air pollutants: ozone (O3), nitrogen dioxide (NO2), particulate matter (<10 and 2.5 μm in aerodynamic
diameter, PM10 and PM2.5), carbon monoxide (CO), sulfur dioxide (SO2), and lead (Pb), based on their risk‐based
toxic limits. Given the health concerns and potentially high cost of regulations, a growing number of studies have
sought to identify the specific sources contributing to air pollution exposure with direct applications in epide-
miology (Déglin et al., 2021; Diao et al., 2021), risk assessment (Dahmardeh Behrooz et al., 2021; Thakrar
et al., 2020), and environmental justice (Alvarez, 2023; Johnston & Cushing, 2020).
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Exposure to air pollution from a given source is influenced by that source's emissions, physical and chemical
atmospheric processes (San José et al., 2008). Additionally, social determinants of health play a role on the
duration of exposure and personal intake. Researchers have employed models of varying complexity to simulate
source‐specific air exposure (i.e., pollution from a specific source or source category), ranging from distance‐
based metrics from individual sources (L. R. F. Henneman et al., 2019, 2021) to more complex methods that
incorporate air pollution transport and chemistry (Lawal et al., 2022; Spiridonov et al., 2019). While more
complex models offer sophisticated parameterizations of emissions and atmospheric processes, they typically
face trade‐offs between spatial resolution and spatial coverage due to their large computational demands. These
models can provide either high‐resolution local or regional modeling or coarser resolution over larger spatial
scales, but not both. An additional limitation of these models is the need for expert‐level knowledge for their
proper implementation and interpretation.

Source‐specific exposure metrics can either be reported in physical units (e.g., concentration) or as an indirect/
scaled index (e.g., the number of nearby industrial facilities (Masroor et al., 2020) or total gasoline consumption
in an exposed population density zone (Tong &Azevedo, 2020; Q.Wang et al., 2020)). Indirect/scaled indices are
limited in their comparison to regulatory standards or existing concentration response functions, but they can still
provide useful information for exposure assessment especially when direct measurements are not feasible due to
budget, time, or data constraints.

Because source‐specific metrics are often not quantitatively evaluated against observations, the uncertainty in
exposure assessed by these metrics is difficult to quantify. While ground truth observations of source‐specific
exposure are possible through targeted measurement campaigns (J. Xu et al., 2022), limited spatial and tempo-
ral coverage of these observations precludes their use for evaluation population‐scale exposure models.

Techniques such as factor analysis, including positive matrix factorization (Xie et al., 2012; T. Zhang et al., 2024),
are often used to derive observation‐based source‐specific exposure estimates. Unfortunately, these methods
require significant interpretation by researchers and are highly sensitive to outliers that can skew results. Re-
searchers have developed approaches for improving PMF source characterization such as dispersion‐
normalization and differential concentration‐weighted trajectories (Masiol et al., 2019; Sofowote et al., 2015).
Moreover, they are limited in spatial coverage, as they rely on measurements from stationary sources and do not
provide the comprehensive insights that modeling‐based source apportionment approaches can offer.

We explore six source‐specific exposure model classes by their ability to (a) incorporate emissions and atmo-
spheric processes and (b) report exposure in terms of physical units or scaled indices. In addition, we review the
evaluation of these models and provide application examples in epidemiology, risk assessment, and environ-
mental justice. The six model classes are: Photochemical Grid Models (PGMs), Data‐Driven Statistical Models,
Dispersion Models, Reduced‐Complexity chemical transport Models (RCMs), Receptor Models, and Proximity
Exposure Estimation Models.

Other approaches, such as satellite remote sensing (Demetillo et al., 2020; Muthukumar et al., 2022), have been
increasingly used in recent years, particularly for investigating pollution sources like NO2. Satellite instruments
such as the Tropospheric Monitoring Instrument (TROPOMI) (Goldberg et al., 2021) are used to analyze local
variations in NO2, the Geostationary Environment Monitoring Spectrometer (GEMS) captures diurnal variation
characteristics (Y. Li et al., 2023), and Tropospheric Emissions: Monitoring of Pollution (TEMPO) provides near‐
real‐time air quality data (Di et al., 2020). Satellite data has been combined with chemical transport modeling to
identify sources (Goldberg et al., 2017), and has been integrated into LUR (X. Yang et al., 2017) and paired with
source apportionment modeling (C. J. Lee et al., 2015). Additionally, low‐cost air pollution monitoring (Idrees &
Zheng, 2020) and microenvironmental modeling (Che et al., 2021) have also been employed for exposure
assessments.

Existing reviews (Baker et al., 2020; Fann et al., 2012; L. R. F. Henneman et al., 2019) have described full
complexity and reduced complexity approaches for assessing exposure to total air quality (e.g., all atmospheric
PM2.5), but reviews focused specifically on source‐specific exposure approaches are lacking. Thunis et al. (2019)
explored source apportionment methods, primarily focusing on quantifying incremental changes in concentra-
tions attributable to specific sources or source categories. The authors identify three broad approaches for esti-
mating pollution concentrations contributions from source categories at receptor locations: emissions reductions
impact methods, mass transfer methods, and incremental methods.
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In our analysis, emissions reductions fall under the CTM model category because of applications of sensitivity
and tagging approaches that compliment emission reduction approaches. We categorize mass transfer methods
and incremental methods together within a broader receptor models category because they both use information at
monitors. Distinct from the overview by Thunis et al. (2019), we explore benefits, limitations, and assumptions
inherit to source‐specific exposure assessment methodologies and discuss implications for epidemiology, risk
assessment, and environmental justice applications.

Our study makes the following specific contributions: First, we provide a description of currently used source‐
specific exposure metrics, aiding in model choice. Second, we offer insights for evaluating exposures esti-
mated using these models. Finally, we present a framework for choosing and assessing source‐specific exposure
metrics in epidemiology, risk assessment, and environmental justice.

2. Source‐Specific Exposure Assessment Categories
2.1. Source‐Specific Exposure, Epidemiology, Risk Assessments, and Environmental Justice

We explore the application of source‐specific exposure assessments in four domains: epidemiological studies,
risk assessments, and environmental justice (Table 1). Air quality exposure assessments involve quantifying the
degree of exposure to pollutant sources, pathways, and chemical concentrations and identifying when and how
such exposure occurs (Shaddick et al., 2018; Committee on Human and Environmental Exposure Science in the
21st Century et al., 2012). A traditional exposure assessment typically involves identifying the source of interest
and its emissions, as well as estimating the contributions to air pollution concentrations in the environment.
Exposure at the individual level is difficult to quantify without personal monitors; therefore, ambient exposure
studies often estimate population‐level aggregate concentrations.

Epidemiologists identify patterns, causes, and impacts of diseases in populations (Déglin et al., 2021; Shaddick
et al., 2018). In air pollution epidemiology, this typically involves quantifying the association between exposure
and health outcomes to establish exposure [or concentration]‐response functions (Alexeeff et al., 2015; Dionisio
et al., 2016), which are often presented as relative risks or odds ratios. Source‐specific exposure metrics evaluate
factors leading to health outcomes from specific pollutants or sources. Epidemiological studies frequently guide
environmental policymakers in setting regulatory limits (Johns & Linn, 2011; Koning &Organization, 1987) such
as the NAAQS in the US and the WHO guidelines.

Air pollution risk assessments combine information from exposure assessments, epidemiological studies and
baseline health information to estimate a health burden (Déglin et al., 2021). In combination with economic
valuation, risk assessments can be extended to estimate monetary burdens or benefits of specific actions. Such
analysis aids in formulating preventive strategies, for example, by developing cost‐benefit analyses of proposed
regulations. This practice is required for EPA regulations, even though the Clean Air Act prohibits consideration
of regulatory cost (Popp, 2003). Risk assessments also inform reactive actions, such as Air Quality Alerts or fines
issued by the EPA.

Environmental justice in air pollution quantifies disparities in exposure and health burdens across populations of
different age, race, income, and education levels, and other factors (D’Evelyn et al., 2022; Gallagher & Hollo-
way, 2022). These elements often converge, particularly affecting communities comprised of racially minoritized

Table 1
Research Domains in Which Researchers Apply Source‐Specific Air Pollution Exposure Metrics

Research domain Goal

Exposure Assessment Measurement or simulation of air pollutant exposure, including
sources, pathways, and concentrations

Epidemiology Analysis of the exposure [or concentration] ‐response functions
between air pollutants and human diseases

Risk Assessment Quantification of health burden associated with air pollutant
exposure

Environmental Justice Ensuring equitable air quality benefits across all community
segments like race, income, or socio‐economic
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individuals, or those of lower education or lower income, communities typically situated near heavy industrial
zones with significant pollution exposure (Alvarez, 2023; Rickenbacker et al., 2019).

This concept is demonstrated in Figure 1, which outlines the interplay between exposure assessment, risk
assessment, epidemiology, and environmental justice within air quality research. This figure demonstrates how
data from air exposure assessments, when combined with epidemiological insights into pollution sources and
risks, is used in risk assessments. Results from exposure assessments, risk assessments, and epidemiology may be
used directly in environmental justice assessments (Johnston & Cushing, 2020). Researchers have argued that
exposure assessments, risk assessments, epidemiological analyses, and environmental justice studies targeting
individual sources yield more actionable results than quantifying impacts from air pollution from all sources
(Gardner‐Frolick et al., 2022; Wambebe & Duan, 2020). Focusing on individual sources facilitates more precise
policy‐making to reduce adverse health outcomes and inequities.

2.2. Individual‐Source Exposure Metric Design

We have identified air pollution modeling techniques that are used as source‐specific air pollution exposure
metrics and have summarized (a) the approach used by each model to account for emissions and atmospheric
processes, and (b) the units produced by the metrics. Our primary goal is to classify these metrics, understand the
rationale for their selection, evaluate efforts made to assess their uncertainty, and make recommendations for each
of the four types of studies.

2.3. Processes Incorporated

Three categories of processes dictate exposure to air pollution sources: emissions processes, physical processes,
and chemical processes (Thakrar et al., 2020; Q. Wang et al., 2020; B. Xu et al., 2020). A fourth process category,
which considers human activities such as mobility and inhalation, is important (Amato‐Lourenço et al., 2020;

Figure 1. Information flow among source‐specific air pollution exposure assessment, risk assessment, epidemiology, and
environmental justice research.
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Faridi et al., 2021) but not considered here as we are primarily interested in interventions to reduce emissions from
specific sources (source‐level interventions) rather than individual‐level interventions.

Emissions can be directly measured, as with large power plants under EPA mandates (Lavoie et al., 2017) or
estimated using emission factors and activity data (Shen et al., 2021; Tainio et al., 2021). Estimated emissions
generally have more uncertainty than measured emissions. Atmospheric processes that dictate pollution spread
include plume rise, transport influenced by meteorology, aerosol microphysics, and wet and dry deposition
(Seinfeld & Pandis, 2016). Additionally, pollutants chemically react with other chemical species, transforming
into new compounds termed “secondary” air pollution species such as O3 and PM2.5.

We group models based on the approach they use to incorporate atmospheric processes into three categories: (a)
first principles, (b) statistical, or (c) not explicitly considered. First principles approaches, also known as
deterministic modeling, are based on a fundamental scientific understanding of the process; for example, the
advection‐diffusion‐reaction equation represents a full characterization of the known processes that dictate
pollutant transport and reactions in the atmosphere (Seinfeld & Pandis, 2016). While even the advection‐
diffusion‐reaction equation applied in photochemical grid models involves discretization and empirical ap-
proximations, we categorize any model that is derived from first principles in this category.

First principles models include the Community Multiscale Air Quality (CMAQ), Comprehensive Air Quality
Model with Extensions (CAMx) and Weather Research and Forecasting model with Chemistry (WRF‐Chems).
Even with a first principles grounding, the most sophisticated models still cannot fully incorporate all known
physical processes and chemical reactions.

Distinct from deterministic models, which are directly grounded in the physical understanding of atmospheric
transport and chemistry, statistical models—including traditional land use regression and more flexible machine
learning techniques that can better identify non‐linear relationships between inputs variables—use observed data
to establish correlations between pollutant exposure and variables such as population density, land use, and
proximity to emission sources (Wilkins et al., 2022; Yao et al., 2023).

2.4. Exposure Metric Units

We have identified two types of metrics used to quantify exposure: (a) air pollution concentration units and (b)
relative non‐concentration indices (Table 2). Physical air pollution concentration units may be volumetric (e.g.,
parts per million by volume, ppmV) or mass‐based, such as micrograms per cubic meter (μg/m3). In the United
States, gas concentrations are typically reported in volumetric units while particulate matter concentrations are
reported in mass units (other countries tend to use mass units for gases and particles). Employing concentration
units in source‐specific exposures allows for direct comparison against regulatory standards, ground‐based
measurements, satellite observations, and/or outputs from other models. These comparisons should be made
with an important limitation in mind: ambient air pollution observations generally do not measure source‐specific
concentrations. Concentration‐response functions developed using concentration unit exposure metrics may be
compared more directly to previous studies.

Under a second framework, exposure assessments do not use concentration units. Instead, researchers use relative
indices assumed to reflect exposure to a source. For example, researchers have used such indices to identify
assumed environmental concentration variability across different geographical locations (Coudon et al., 2018),
temporal spans (Zhou & Lin, 2019), or hypothetical scenarios.

An advantage of using these metrics in air pollution is their ability to translate the potentially abstract nature of air
pollutant concentrations into more accessible descriptors of specific sources (e.g., number of nearby sources, or
distance from a source), which may be of interest to regulators or the public. A disadvantage is the inability to
compare exposure to existing standards or observed or modeled concentrations, leading to additional exposure
misclassification above existing uncertainties in the model. For instance, a population living within 1 mile of a
refinery may be assigned the same exposure as another population living nearby a different refinery; in contrast, a
population assigned an exposure of 5 ppmV has the same exposure as a separate population being assigned
5 ppmV by the same model.
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2.5. Spatial and Temporal Exposure Scales and Coverage

Exposure to individual sources varies in time and space. Depending on the outcome of interest and the population
data available, epidemiologists (and by extension, risk assessors) can leverage both spatial and temporal vari-
ability to establish a health risk associated with a specific source or source category.

In contrast, while environmental justice studies typically rely more on spatial variability, recent advances in
satellite remote sensing have allowed for the investigation of both spatial and temporal changes in air pollution
related to environmental justice. For instance, (Kerr et al., 2021, 2024) used high resolution (5 × 3.5 km)
TROPOMI data along with even finer (1 × 1 km) emissions and concentration data derived with satellite inputs,
combined with sociodemographic data including population and race distribution, to explore how pollution
distribution evolved over time in relation to vulnerable communities. Colmer et al. (2020) combined 36 years of
PM2.5 concentrations across the U.S. with census tract and economic data to determine that the most polluted
areas have remained largely unchanged over time.

As finer resolution satellite data become more available, these spatiotemporal analyses in environmental justice
are likely to expand. Similar to exposure assessment methods that quantify exposure to all air pollution sources,
there is often a disconnect between the temporal or spatial scale on which an exposure is modeled and the
population or health data available. For example, while air quality models might provide data at an hourly res-
olution, health outcome data might only be available on a monthly or annual basis. Similarly, exposure models
might offer high‐resolution data for a specific neighborhood, but health data might only be available at the county
or city level. This disconnect has been discussed in depth elsewhere (Cui et al., 2022). In the next section, we
highlight the spatial and temporal scales covered by each type of model.

3. Examples of Specific Models
3.1. Individual‐Source Exposure Model Classes

We have characterized each of the six model categories according to the their handling of the processes described
above (Table 3). We categorize the models by their typical application.

3.1.1. Photochemical Grid Models (PGMs)

Photochemical Grid Models (PGMs), also referred to as chemical transport models (CTMs) or full‐complexity
models, incorporate parameterizations of the key known physical‐chemical processes that determine ambient
air pollution concentrations and their responses to meteorology and emissions perturbations using the advection‐
diffusion‐reaction equation (Ha Chi & Kim Oanh, 2021). PGMs use an Eulerian (fixed grid) reference frame
(Zheng et al., 2020). They capture the transport and transformation processes of pollutants in the atmosphere to
estimate air pollution concentrations (Lawal et al., 2022; Q. Li et al., 2019). Despite uncertainty in model inputs
and internal parameterizations and numerical errors, the predictive capability of these models is generally
considered sufficient for regulatory applications (Emery et al., 2017), as evidenced by their ability to predict
ground‐based observations for criteria air pollutants. PGMs are limited by their relatively coarse grid resolutions,
though as computing power increases, finer‐resolution applications are becoming increasingly common (Visa
et al., 2023).

Multiple approaches have been developed to leverage PGMs for single‐source exposure assessments. These
include the brute force (or “zero‐out”) method (Kelly et al., 2015), where emissions from specific sources are set
to zero to assess their impact. This method provides a direct comparison by observing how the removal of
emissions from one source alters pollutant concentrations.

Adjoint approaches (Dedoussi et al., 2020; Hakami et al., 2007; Voshtani et al., 2022) estimate the marginal
change in concentration across a specified region and/or period from a marginal change in emissions in each grid
cell. Direct sensitivity approaches such as CMAQ's Decoupled Direct Method (CMAQ—DDM) (Baker
et al., 2023) do the opposite, estimating how marginal emissions perturbations from individual source categories
affect concentration levels within each model grid cell. Both approaches can simultaneously quantify the in-
fluence of numerous sources in a single model run. These approaches are particularly useful in large‐scale studies
that require the assessment of multiple emission sources.Ta
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Tracer methods, such as CAMx's Ozone Source Apportionment Technology (CAMxOSAT) (Ge et al., 2021; Shu
et al., 2023) and Particulate Source Apportionment Technology (PSAT) (Coelho et al., 2022; Z. Li et al., 2022),
along with CMAQ's Integrated Source Apportionment Method (CMAQ—ISAM) (Kitagawa et al., 2021), track
the contributions from specific sources or regions. These methods provide source attribution and identify the
contribution of each tagged source category to species concentration in each model grid cell.

Evaluating adjoint, direct sensitivity, and tagging approaches is difficult because the results are generally
compared against brute force results, which have similar uncertainty as the base model run along with potential
additional uncertainty from changing atmospheric chemical regimes. The marginal nature of adjoint/direct
sensitivity approaches suggest they are better suited for quantifying environmental justice and health outcomes
changes associated with marginal emissions changes, whereas source apportionment is more suitable assessing
the full burden of a given source category. However, direct sensitivity and source apportionment approaches have
both been used for population‐scale exposure and environmental justice research.

PGMs are useful for source‐specific exposure assessments when coarse exposure detail is sufficient, substantial
computing power is available, detailed emissions data are accessible, and there is a preference for understanding
the total impacts from a source category rather than the impacts from a single source (adjoint methods can resolve
impacts of all sources in a certain grid cell). Given their complexity, PGMs require substantial training to operate.

3.1.2. Data‐Driven Statistical Models

Data‐driven statistical models, including Land Use Regression (LUR) and Machine Learning (ML), utilize
techniques to predict pollutant concentrations based on variables such as traffic, land use, and meteorology.

LUR describes statistical models that use predictor variables to estimate pollutant concentrations at locations
where direct measurements are unavailable (Doris et al., 2024). Typically, LUR incorporate meteorological data
and land use factors such as weighted traffic volume, population density, physical geography (e.g., altitude) and
land coverage (Hoek et al., 2008). Traditionally, land use was the main input for LUR models; however, more
recent applications include a wider range of inputs, such as satellite data, CTMs outputs, and other remote sensing
data to improve their accuracy. A strength of LURs is the ability of trained models to predict features at finer
spatial resolutions with relatively low computational expense compared to other modeling approaches. LUR
models have been applied at city, regional, and global scales (Di et al., 2019, 2020; Requia et al., 2020; van
Donkelaar et al., 2015), and the resulting exposure fields have enabled large‐scale exposure assessments,
epidemiological studies, and risk assessments (Burnett et al., 2018).

LUR can be applied to predict source‐specific concentrations from receptor models and chemical transport
models at locations and times when such models are not available. They have been applied to estimate traffic‐
related air pollution (TRAP) (Brokamp et al., 2017) and pollutants from industrial sites, restaurants (Saha
et al., 2022; Q. Zhang et al., 2011), and gas production activities (Doris et al., 2024). However, LURs are not well‐
suited for source‐specific analyses in scenarios where users attempt to modify independent variables to explore
hypothetical “what if” situations—such as removing a road from the input data and rerunning the model. Spatial
correlations among input variables can introduce confounding effects during the model training process, leading
to statistically significant but potentially non‐causal relationships.

LUR models are appropriate for applications in need of high‐resolution spatial data on pollutant concentrations
(but the relevant high‐resolution inputs are needed to develop such estimates). The models can provide useful
information about spatial variability not available from central monitors or coarse PGM output. LURs generally
do not incorporate physically based parameterizations of atmospheric weather processes, and, similar to other
source‐specific models, are difficult to evaluate without observations of source‐specific exposure.

ML models extend traditional LUR by employing more flexible algorithms to uncover non‐linear relationships
between predictors and source‐specific impacts. These algorithms are typically used to predict pollution levels
based on variables such as weather, proximity to pollution sources, and human activity. Additionally, ML models
can be used to test the sensitivity of different parameters that influence air pollution levels. Common methods for
sensitivity analysis in ML include feature importance, where techniques like decision trees, random forests, or
gradient boosting rank the relative importance of variables in predicting pollution levels. In an example appli-
cation (Xiao et al., 2018) used an ML model to ambient PM2.5 concentrations using satellite‐observed Aerosol
Optical Depth (AOD) with 0.25° latitude × 0.3125° longitude. While ML approaches have been used to create
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total PM2.5 exposure fields, their application in source‐specific work is still limited. We are not
aware of any ML applications for predicting source‐specific exposure, and this presents a po-
tential area for future research in source‐specific exposure studies.

3.1.3. Dispersion and Trajectory Models

Dispersion and trajectory models simulate how pollutants move from their sources through the
surrounding environment (Leelőssy et al., 2014). In their most basic implementation, dispersion
models account for atmospheric transport of emissions from a single source. More sophisticated
implementations parameterize other factors such as chemical reactions and atmospheric condi-
tions like chemical transformations, radioactive decay, and wet deposition. Incorporation of each
additional process into dispersion models has the potential to increase accuracy along with
computational demand.

Dispersion models were originally designed to estimate concentrations of pollutants from indi-
vidual pollutant sources, so their application is typically source‐specific. Two examples of
dispersion models are the American Meteorological Society/Environmental Protection Agency
Regulatory Model (AERMOD), which is used for short‐distance transport (under 10 km), and the
Hybrid Single‐Particle Lagrangian Integrated Trajectory Model (HYSPLIT) (Ma et al., 2020; F.
Wang et al., 2010), which is better suited for analyzing long‐range transport. Dispersion models
are most often used to develop exposure estimates in concentration units, but recent application
have characterized exposure using air parcel counts (L. R. Henneman et al., 2019) or as exposed/
unexposed based on whether the model predicts a location is in the path of an emissions plume
(Kim et al., 2020). Another example, the High‐Resolution Rapid Refresh (HRRR) Smoke model
tracks smoke plumes generated by wildfires, providing forecasts of smoke impact for affected
communities at different spatial resolution scales (Chow et al., 2022).

Dispersion models are useful when emissions and meteorological data are available, and they are
suitable for both proximate sources using dispersion models and distant sources with trajectory
models. They are most useful for quantifying concentrations of non‐reactive pollutants, like black
carbon. They can generally be applied to a small number of sources with limited computing
capabilities, but interpreting the inputs and results requires domain knowledge.

3.1.4. Reduced Complexity Models

While all models represent a simplification of the real world, there has been increasing interest in a
specific class of models broadly referred to as “Reduced Complexity Models (RCMs).” Adjoint‐
based RMCs encode physical and chemical parameters within their calculated sensitivities (Henze
et al., 2007; Kuylenstierna et al., 2020), enabling the models to efficiently compute how variations
in input parameters, such as emissions or meteorological conditions, influence output variables,
such as pollutant concentrations.

RCMs differ in how they approximate these processes, but most are trained on an initial run or
series of runs of a full‐scale PGM. The models enable users to relatively quickly quantify spatial
fields of total and source‐specific exposure.

The Intervention Model for Air Pollution (InMAP), Estimating Air Pollution Social Impacts
Using Regression (EASIUR), and the Air Pollution Emission Experiments and Policy (APEEP,
formerly AP2) models have been applied to conducting health risk and policy analysis (Baker
et al., 2020). These RCMs models incorporate emissions information from all known sources—
including elevated point sources and ground‐based sources like automobiles and agriculture.
Other models, including the HYSPLIT Average Dispersion (HyADS) model (L. R. F. Henneman
et al., 2019), estimate exposure to point sources only.

Such methods prove particularly beneficial under specific conditions: when detailed emissions
data are available, when there is a need to understand exposure from specific source categories or
individual sources, when only a partial representation of physical and chemical processes suffices,
and when computational resources are limited. The models often assume fixed backgroundTa
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chemistry and meteorological conditions to the period used for the initial PGM runs on which the RCMs were
trained.

3.1.5. Receptor Models

Receptor modeling, or source apportionment, uses observations of pollutants at a specific site to attribute these
pollutants to different source categories that emit these pollutants together (Hopke, 2016). For example, wildfires
emit high amounts of both potassium (K) and calcium (Ca), and co‐variation of these species in observed PM2.5

samples may signal influence of wildfire smoke.

In their most basic form, receptor models incorporate only information about emission source profiles (e.g., which
chemicals are emitted from a given source) and the observed pollutant concentrations, although recent appli-
cations incorporate information about pollutant atmospheric transport using atmospheric dispersion. Researchers
may use backward trajectory models such as HYSPLIT to evaluate their results (Chen et al., 2022). The two most
popular categories of these models include factor‐based approaches such as Positive Matrix Factorization (PMF)
(Gao et al., 2018; Sharma et al., 2016), and Chemical Mass Balance (CMB) (S. Lee et al., 2008).

In PMF applications, emissions source profiles (i.e., the amount of each species emitted from specific sources or
source categories) are resolved using factor analysis that requires positivity in the factors. In CMB, source profiles
are specified by the user rely on a pre‐established library of emission profiles. This method directly compares the
measured concentrations of pollutants with the known profiles from different sources, making it a deterministic
approach that depends on accurate prior knowledge of source characteristics.

Receptor models provide useful observation‐based context for source‐specific exposure. However, receptor
models are sensitive to noisy measurements, outliers, and researcher interpretation. Both models have limitations
in resolving large numbers of sources (they can typically resolve between 3 and 11 source categories) or pin-
pointing specific source locations, such as a single factory (Cesari et al., 2016).

Receptor models prove most suitable when there are high‐quality observations of many air pollution species and
specific source profiles are available. Their application requires domain expertise, and it is useful to have
knowledge of major air pollution emissions sources in any region that receptor models are applied to aid in
interpreting model output.

3.1.6. Proximity‐Based Exposure Models

Proximity‐based methodologies implicitly incorporate both stated and unstated assumptions about the relation-
ship between pollution exposure and distance to sources (Gonzalez et al., 2022). Although these metrics do not
directly capture the full complexity of emissions and atmospheric physical and chemical processes, they are
generally easier to implement and often simpler to interpret.

Prevalent examples include assigning exposure based on distance to pollution sources (Aggarwal & Tosh-
niwal, 2019; Wendt Hess et al., 2019), utilizing buffers around sources or receptors, and determining exposure by
counting the number of sources within a certain distance or specified geopolitical areas (Casey et al., 2018).
Refinement of these metrics for more specific air source exposure assessments is possible by integrating activity
data, such as the number of vehicle miles traveled on certain roadways (Tong &Azevedo, 2020) or the operational
status of a factory (L. R. F. Henneman et al., 2021). Proximity metrics can be categorized as either discrete,
involving counts of nearby sources or binary exposed/unexposed classifications, or continuous, measuring the
distance to the nearest source or applying inverse‐distance weighting (IDW) to account for all sources. In a
representative study, Similarly, (Willis et al., 2024) examined the impact of electronic tolling on traffic dynamics
and infant health outcomes in Texas. By comparing births within 500m of tolled roads to those 2–5 km away, they
suggested that reduced local traffic and air pollution from tolling led to better health outcomes.

Proximity‐based models are suitable when atmospheric modeling expertise is lacking and there is a need for
readily interpretable exposure assessments. These models are also relevant for policy interventions, such as
determining safe setback distances from point sources of pollution when siting facilities or building new housing,
schools, or other sensitive receptors. Typically, these approaches do not require large computational resources but
are limited by their inherent assumptions about exposure being directly related to proximity.
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3.2. Evaluating Source‐Specific Exposure Metrics

There exist a few options for directly evaluating source‐specific exposure metrics. First, they can be compared
against source‐specific exposure metrics from other models. This has the benefit of direct comparisons but can be
limited by low availability of comparable estimates from alternative models. For example, researchers have
compared CMAQ‐DDM sensitivities to brute force CMAQ (Cohan et al., 2005; Napelenok et al., 2006), and
dispersion‐based and distance‐based approaches have been compared against GEOS‐Chem adjoint model results
to assess individual‐source exposures (L. R. F. Henneman et al., 2021). Source impacts from a receptor model
offer an additional benefit of being grounded in observations but can be limited receptor models' ability to resolve
impacts from source of interest. Unfortunately, all comparisons are reliant on uncertainties in the assumed
“ground truth,” meaning results should be interpreted in light of each method's overall uncertainties.

Source‐specific metrics can be evaluated indirectly through comparison with ambient observations, for example,
at stationary air pollution monitors or using satellite products. These have the benefit of reflecting actual ambient
conditions, but they are primarily limited in this application because they observe total concentrations, and not the
portion attributable to the source of interest. To make the comparison more direct, researchers can perform
evaluations with observations at locations or times that are expected to be influenced by the source of interest. In
addition, researchers can upweight any evaluations made with tracer species associated with emissions only from
sources of interest. For example, potassium (K) is often used as a marker for biomass burning.

Emery et al. (2017) recommend specific metrics for evaluating PGMs that can be extended to any evaluations
between exposure metrics using consistent units. These include metrics assessing the magnitude of the estimated
exposure: mean bias (MB), where a positive MB indicates model overestimation and a negative MB indicates
underestimation; mean error (ME), where lower ME values indicate more accurate model predictions; and root
mean square error, which is similar to ME, but extreme differences are weighted more heavily. MB and ME can
be normalized by the mean of the “true” value and multiplied by 100% to calculate normalized mean bias (NMB)
and normalized mean error, respectively, which present the error in terms of percent of the true value. An
additionally informative metric is the correlation coefficient (R), which indicates the linear relationship between
the variables being compared. It is recommended to calculate all of these evaluation metrics for a full under-
standing of uncertainty in modeled values, and quantitative evaluations should be interpreted qualitatively. Re-
searchers have considered evaluating variability in space (Cohan et al., 2005; Napelenok et al., 2006), time
(Emery et al., 2017), or space and time (L. R. F. Henneman et al., 2021).

3.3. Case Studies in Which Source‐Specific Exposure Assessment Models Are Evaluated

We provide two case studies to highlight evaluations of models assessing exposure to major point sources. In the
first, Baker et al. (2023) justify comparisons between modeled source exposure from full‐complexity PGMs and
total NO2 because the source of interest is a large fractional contributor to total NO2 in the region. In the second, L.
R. F. Henneman et al. (2021), evaluate a dispersion‐based RCM model and a distance‐based metric against
comparable exposure metrics from a more complex model.

3.3.1. Case Study: Modeling Power Plant Source Impacts Using Complex Models

Baker et al. (2023) applied multiple PGMs with sensitivity tools to quantify a group of power plants' exposure
contributions to NO2 and O3 in nearby communities (Baker et al., 2023). The model results—both total modeled
concentrations and source‐specific contributions—were compared with ground‐based and aircraft total NO2

column measurements matched in time and space with the model output. Since the industrial facility was the
largest source in the region, the authors justified the modeled source‐specific NO2 with satellite observations of
total NO2.

In primarily qualitative comparisons of concentration maps, the authors identified which PGM sensitivity tool and
grid resolution produced best matched total NO2 column observations. The results indicate that the modeling
system's ability to depict plume behavior accurately is largely due to consistent meteorological conditions, such as
wind patterns. However, the model shows limitations in capturing the plume from a facility on Lake Michigan's
furthest downwind extent, likely due to the meteorological model's difficulties in accurately simulating complex
wind patterns at the land‐lake interface. This issue impacts the model's capacity to fully represent dispersion
processes in the afternoon, which are influenced by increased photochemical reactions.
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Overall, this article shows use of varied data sources (multiple models, ground‐based observations, and aircraft
observations) and evaluation approaches (e.g., qualitative comparisons of maps and assessment of maximum
concentrations) needed to assess modeled source‐specific contributions.

3.3.2. Case Study: Modeling Power Plant Source Impacts Using Reduced Complexity Models

L. R. F. Henneman et al. (2021) applied a dispersion‐based RCM and a proximity‐based exposure model to
quantify exposure to each coal power plants across the United States. The authors used a PGM—GEOS‐Chem, a
more sophisticated model with first principles parameterizations of emissions and physical and chemical at-
mospheric processes—to evaluate the simpler exposure models. GEOS‐Chem was run with the adjoint module to
estimate the contribution of emissions from each grid cell to PM2.5 concentrations in each US state. The adjoint
modeling enabled direct comparisons between facility‐specific impacts modeled by the simpler methods and
the PGM.

Using quantitative evaluation metrics, they found that the RCM and proximity‐based approaches estimated
similar exposure fields on an annual basis, and that they two approaches performed similarly when compared
against GEOS‐Chem adjoint sensitivities. However, the performance of the proximity‐based method degraded
further away from the sources relative to the RCM. This study provides a useful case study in comparing relatively
simple exposure estimate approaches with a more complex first‐principles‐based model.

4. Conclusions
We described six model frameworks utilized for source‐specific exposure assessment. We provided suggestions
for their evaluation and examples of how they can be applied in exposure, epidemiology, and risk assessment
research. While most of the examples provided focus on applications in the United States, these frameworks can
also be adapted for use in other regions. Most generally, decisions on which exposure assessment approach to
apply depends on the source data available and importance of explicitly accounting for emissions and atmospheric
processes; the need (or not) for concentration units; and the spatial and temporal scales of interest. Additional
considerations include the availability of atmospheric modeling expertise and computational capacity available.

New source‐specific exposure assessment methods are being developed. In particular, satellites such as TEMPO,
which is geostationary over the United States and provides fine‐scale, hourly observations, and Multi‐Angle
Implementation of Atmospheric Correction (MAIAC) (Martins et al., 2017), which offers speciated observa-
tions, will provide new approaches to characterize source‐specific exposure. Since the models observe total
column concentrations, results will need to be combined with other methods such as inverse emissions modeling
chemical transport modeling, dispersion modeling, and receptor methods—to derive source‐specific exposure
information. Inverse emissions models, for example, work by estimating the emissions responsible for observed
concentrations by “inverting” the transport process and comparing observed satellite data to model predictions
(Elguindi et al., 2020).

Outside the United States, the Geostationary Environment Monitoring Spectrometer (GEMS) (Q. Yang
et al., 2023), a satellite‐based instrument designed to monitor air quality over East Asia in near real‐time operates
from a geostationary orbit and captures high‐resolution data, such as AOD and nitrogen dioxide (NO2) levels,
with a spatial resolution of 7 km × 8 km and hourly temporal resolution. Sentinel‐4, scheduled for launch aboard
the Meteosat Third Generation Sounder (MTG‐S) satellite (Abdon et al., 2021), will also operate from a geo-
stationary orbit over Europe. While these satellites do not directly assess source‐specific exposure, their high‐
resolution data can be integrated with models like receptor or chemical transport models to enable source
attribution and refine estimates of exposure linked to specific pollution sources.

We recommend that the decision to apply any source‐specific exposure metrics should be made with a priori
statements about the extent that emissions, physical atmospheric processes, and chemical atmospheric processes
are important for the exposure of interest, and users should establish whether it is important to assess exposure in
physical units. This includes identifying the key physical processes that determine exposure and then using some
of these processes to calculate an exposure metric. Researchers should acknowledge the potential information
gained or lost by selecting one method over others. Evaluation is important but difficult—the most direct eval-
uation methods involve comparisons with alternative models, which require resources to develop.
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