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Abstract

Human knowledge accumulates over generations, amplifying
our individual learning abilities. What is the mechanism of
this accumulation? Here, we explore how language allows ac-
curate transmission of conceptual knowledge. We introduce a
novel experimental paradigm that allows direct comparison of
learning from examples and learning from language. In our
experiment, a teacher first learns a Boolean concept from ex-
amples; they then communicate this concept to a student in a
free conversation; finally, we test both teacher and student on
the same transfer items. We find that learning from language
is both sufficient and efficient: Students achieve accuracy very
close to their teachers, while studying for less time. We then
explore the language used by teachers and find heavy reliance
on generics and quantifiers. Taken together, these results sug-
gest that cultural accumulation of conceptual knowledge arises
from the ability of language to directly convey generalizations.
Keywords: concept learning; cultural ratchet; communi-
cation

Introduction
The human species is remarkable: We are able to learn by ob-
serving the world around us, forming new concepts that sup-
port prediction and manipulation (Tenenbaum, Kemp, Grif-
fiths, & Goodman, 2011). Yet human concept learning has
limits: Life is only so long and a person can only be in
one place at a time. Individual learning from observations
is thus unlikely to fully explain the ecological successes of
our species (Henrich, 2015). If we are able to faithfully trans-
mit our knowledge to the next generation, then limited indi-
vidual learning can accumulate over generations to arrive at
powerful systems of knowledge—a process termed the “cul-
tural ratchet” (Tomasello, 1999). How does the ratchet work?
What aspects of cognition support faithful transmission?

Cultural transmission has been often studied through the
lens of imitation. This mechanism is particularly useful for
learning procedural knowledge and rituals (Legare & Nielsen,
2015). Reproducing the behaviors of conspecifics, however,
does not easily address ideas that go beyond the here-and-
now: our generalizable knowledge and intuitive theories.
Language, on the other hand, is a tool by which humans can
convey abstract information. It allows us to transmit knowl-
edge that would be otherwise difficult or unsafe to observe
directly (e.g., which plants are poisonous; Gelman, 2009;
Tessler, Goodman, & Frank, 2017).

Prior experimental work in cultural transmission has sug-
gested that language may be a sufficiently expressive channel

for conveying hard-to-discover knowledge (Beppu & Grif-
fiths, 2009; Morgan et al., 2015). For example, Morgan et
al. (2015) found that knowledge about stone flaking and tool
making were best transmitted via verbal language. This work
did not examine in detail, however, the kinds of natural lan-
guage expressions utilized in the transmission of knowledge,
nor relate it to the concepts being transmitted. In this pa-
per we introduce a novel experimental paradigm that allows
to explore how language can support the “first crank” of the
cultural ratchet: how concepts learned from examples by one
person are faithfully transmitted to a second via language.

Typical concept learning experiments are structured so that
a single subject is presented with examples of objects that be-
long to (and don’t belong to) a new category (Bruner, 1956;
Piantadosi, Tenenbaum, & Goodman, 2016). We extend this
paradigm by asking the initial learner to convey the concept
to a second person. We allow them to do so freely using
language. We then separately test the initial and secondary
learner on the category. This allows us to explore detailed
questions about whether and how language allows faithful
transmission of these concepts: Is language sufficient for con-
veying concepts? How efficient is language compared to di-
rectly studying examples? What aspects of language are used
to convey concepts?

In the remainder of the paper we introduce our experimen-
tal paradigm and then explore the resulting data with a variety
of analyses. We find that language is sufficient and efficient
for concept learning, and that certain linguistic forms seem to
underlie this efficacy.

Methods
Participants
We recruited 224 participants from Amazon’s Mechanical
Turk (MTurk). This number was chosen to yield approx-
imately 10 dyads per concept. Participants were restricted
to those with U.S. IP addresses and at least a 95% work ap-
proval rating; in addition, participants who self-reported a na-
tive language other than English or failed to partake in the ex-
periment (accepted the hit but then discussed matters entirely
unrelated to the experiment) were excluded. In total, 11 pairs
were excluded on this basis. The experiment took on average
15 minutes and participants were compensated $1.25 with an
additional performance bonus (described below).
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Figure 1: During the concept learning phase (A) the teacher (above) clicked through a grid of creatures, revealing the labels for
creatures in the train set, while the student (below) waited. During the concept communicating phase (B), the teacher explained
the concept to the student in a chatroom. During the concept testing phase (C), both participants were shown the same grid of
held-out test creatures. Each selected the creatures (yellow) that they believed belonged to the concept. Finally, the participants
were shown their scores for the round (D).

Concepts and stimuli
Participants learned concepts generated by 5 different rules
(i.e. logical forms): Single Feature, Conjunction, Disjunc-
tion, Conjunctive Disjunction, and Disjunctive Conjunction.
Rules were realized in specific concepts by varying Boolean
properties of programatically generated images of creatures,
from five different kinds: flowers, bugs, birds, fish, and trees
(see Figure 1 for an example). Each kind had 5 to 7 Boolean
features that we used to realize our concepts. Each of the 5
rules was realized twice in each creature kind, yielding a to-
tal of 50 concepts (listed on the axis of Figure 3). For each
concept, we generated 100 specific creatures, split into 50 for
training and 50 for testing. We ensured some positive exam-
ples of the concept even for very restrictive rules by first ran-
domly selecting 6 positive instances of the concept and then
adding 44 items chosen at random from all remaining items
(i.e., according to the true concept base rate).

Procedure
Every pair of participants was placed in a game, where one
was assigned the role of the “teacher” (initial learner) and
the other was assigned the role of the “student” (secondary
learner). Each game consisted of 5 rounds, each with a new
concept from a new rule. Each of a game’s 5 concepts used a
different creature kind, and each concept was presented with
a different nonce word as the species name. The ordering
of concepts was randomized so that there was no standard
ordering of rule types across the games.

On each round, participants went through three phases:
concept learning, concept communicating, and concept test-
ing (Figure 1). During the concept learning phase, the teacher
was presented a grid of training creatures and was instructed
to click on individual creatures to reveal whether or not they

belonged to the species defined by the concept. Once the
teacher clicked on every creature in the grid, they were pre-
sented a message advising them to review the creatures for
as long as they needed. When the teacher ended the concept
learning phase, they proceeded to the concept communicating
phase, where they entered an online chatroom and were were
instructed to teach the concept to the student. Participants
were provided no additional instructions for the chatroom,
and they were allowed to talk freely. In order to prevent a
teacher from rushing through the chatroom without properly
communicating with their student, only the student was given
the ability proceed to the final concept testing phase. In the
final phase both participants were (separately) given the same
grid of test creatures and asked to tag the creatures that they
believed belonged to the species. Neither participant had ac-
cess to their chatroom messages during this phase.

Once both participants completed concept testing for a
concept, they were provided feedback in the form of their
own and their partner’s score, computed as: # of hits −
# of false alarms. We encouraged them to learn concepts
thoroughly and communicate effectively with a monetary
bonus equal to the sum of both players’ scores (in cents).
Participants were made aware of the task structure and bonus
mechanic prior to starting the first round; they had to answer
5 comprehension questions correctly to begin to the game.

Analysis and Results
Our experiment yielded rich data for exploring whether and
how concepts are learned from language, and how learning
from language compares to learning from examples. We first
examine performance during the concept testing phase for
both the student and teacher participants. We then explore
the time spent learning from each type of evidence. Finally,
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we explore the actual language used to teach concepts in the
concept communicating phase.

Concept learning performance
Participants assigned to be the teacher take part in a standard
Boolean concept learning paradigm, and results are in accord
with expectations. The five rule types we used in our ex-
periment cover a range of complexity in terms of description
length (Feldman, 2000), which manifests in variable perfor-
mance in test accuracy across types (Figure 2).

Figure 2: Average accuracy of teachers and students during
the concept communicating phase of the experiment. Error
bars denote bootstrapped 95% confidence intervals.

Students have access to the concept only through the lan-
guage conveyed by their partner. The average student ac-
curacy during the concept testing phase should thus be no
greater than the average teacher accuracy, which appears to
be true for our 5 rule types in Figure 2. To assess the po-
tential accuracy differences between learning from examples
vs. from language, we built a Bayesian mixed-effects model
predicting whether or not a participant responded accurately
during the concept testing phase as a function of the rule, the
participant’s role (teacher vs. student), and their interaction.
We included random intercepts and effect of rule for partic-
ipants and random intercepts and effect of role for each of
the 50 concepts. All regression models were created in Stan
(http://mc-stan.org/) accessed with the brms package (Brkner,
2017). We find a main effect of role such that students were
less accurate than teachers (posterior mean and 95% credible
interval: β = −0.41(−0.69,−0.12)). However, this effect is
very small in absolute terms—the average difference in ac-
curacy for students vs. teachers is just 5.3% (95% credible
interval: 2.7%, 8.2%). Thus language appears to be sufficient
to convey concepts; students are able to learn concepts from
language, yielding performance very close to their teachers,
who had access to the actual training examples.

Performance on individual concepts (rules reified in par-
ticular stimuli) reveal substantial variability in learning. Fig-
ure 3 shows the average performance of teachers and stu-
dents for each of the 50 concepts along with the concept-
specific chance accuracy1. Teachers perform above chance in

1Chance is defined here as the accuracy achieved by guessing at

all concepts, but there is significant variation in performance
for concepts within a given rule. Such variation is expected
given the known importance of feature salience and other
stimulus properties on concept learning (Nosofsky, 1986).
Notably, the gap between teacher and student performance
also varies.2 This variability cannot be attributed to stimulus
features, which are shared between teacher and student, but
rather reflect the language available for conveying different
features. Inspection reveals that concepts with a large gap in
teacher-student performance have a small number of teachers
who used language in idiosyncratic ways. For example, one
teacher described creatures belonging to the concept “bugs:
no wings” as “like a worm ... [with a] straighten[ed] body”.
Another teacher described “flowers: purple petals OR thorns”
as “no color ... a flower with sharp edge branches and some
tails”. In both cases the teacher fails to use a simple word
for the relevant feature (“wings”, “thorns”) unlike most other
participants. These cases may arise from particularly con-
fused teachers, particularly difficult to describe features, or
an interaction. We return to this question below.

Often, how well a person learns depends on the particular
person they learned from. We find a strong linear relation-
ship between average student accuracy and (corresponding)
teacher accuracy across the 50 concepts (r = .88, p < .001;
Figure 4). We further find that this correlation remains strong
at the individual level (r = .60, p < .001; Figure 4).

While this suggests that students make mistakes when their
teacher does, we may further ask whether they make the same
mistakes. Since teachers and students are presented the same
held-out test examples in the same order during the concept
testing phase of the experiment, we can measure the simi-
larity between teacher and student responses at the level of
individual stimuli using Hamming distance (the total number
of times the student and teacher responded differently). The
average distance between teacher and student in our data set
is 11.1 differences (out of 50 possible). To calibrate this num-
ber we computed a baseline by randomly permuting teacher-
student pairings, which yields average distance 19.9 (95%
CI [19.84,19.96]). A second, tighter, baseline considers per-
mutation of student-teacher pairs only within each concept
(matching evidence seen by teachers). This yields average
distance 13.53 (95% CI [13.18,13.91]). Thus we can con-
clude that students’ pattern of responses is more similar to
their own teachers’ responses than to other teachers in the
same concept (and in the whole data set). Language seems
to be sufficient to convey the concept as understood by the
teacher, even when the teacher has learned the wrong thing.

We do not have a direct measure of teacher confidence that

random but with the base rate of positive examples shown for that
concept. This is a stronger comparison than random guessing.

2Generally teachers do better than students. Ten concepts show
the opposite trend, to varying extents. Three of these differences are
driven by a few outliers where the teacher attained low accuracy in
the final phase even though they properly communicated the con-
cept. Seven of these concepts have students that are negligibly more
accurate than teachers, i.e. correctly identify 1-2 more stimuli, of
the 50 presented.
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Figure 3: Accuracy on each concept. Black dots denote the average teacher accuracy on the test set; gray dots denote the
average student accuracy. Gold squares denote chance accuracy.

we could use to explore the impact of confidence on the ef-
ficacy of language for transmission. Instead, we analyze an
indirect measure of teacher confidence: the mean teacher ac-
curacy within a concept. Figure 5 shows the relationship be-
tween teacher accuracy and distance from teacher to student
responses. We find a strong relationship: language seems to
yield stronger alignment between students and teachers when
the teachers are (expected to be) confident in what they have
learned (r =−0.75, p < 001).

Study time for observation vs. language
As we saw above, language appears to be relatively sufficient
for conveying concepts, how efficient is language compared
to directly learning from observed examples? We could con-
sider efficiency in terms of amount of evidence required to
learn or amount of effort required. In our experiment the
amount of evidence was fixed in the concept learning phase,
but the study time was controlled by participants. We thus
consider study time as a proxy for learning effort. Since the
amount of time spent in the concept communicating phase
was similarly controlled by participants, we use time as a
proxy also for effort required to convey a concept with lan-
guage. Using time to measure learning effort makes it possi-
ble to directly compare effort required to learn from observa-
tions and from language.

For each concept, we recorded the amount of the time that
teachers spent in the concept learning phase. During the con-

cept communicating phase we recorded the time that elapsed
between the moment a participant began typing a message
into the chatbox and the moment they sent the message to
their partner. Since some messages may have been unrelated
to learning (e.g. pleasantries or commentary), we coded ev-
ery message in the data set as “Informative”, “Follow-Up”,
“Confirmation”, “Miscellaneous”, or “Social”. Informative
messages were those related to the concept that were sent by
teachers without prompting from the student. Messages in
the ensuing dialog that were relevant to the concept were la-
beled as Follow-Up. Social pleasantries (“hi”, “hello”, etc.)
were labeled as Social, and messages that were unrelated to
the current concept (e.g. commentary about performance on
previous rounds) were labeled as “Miscellaneous”. Overall,
there were 1012 Informative, 1751 Follow-Up, 160 Social,
and 300 Miscellaneous messages in the data set. For our time
analysis, we only considered the concept-related messages:
the Informative and Follow-Up messages that constituted the
majority of participants’ conversations.

To compare the study time of learning from examples vs.
from language (Figure 6), we built a Bayesian mixed-effects
model with fixed effects of rule, participant role, and their in-
teraction; in addition, we included random intercepts and ef-
fects of rule for each participant and random intercepts and
effects of participant role for each concept.3 We observe

3The data was modeled as being generated from a lognormal dis-
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Figure 4: Accuracy of student-teacher pairs in concept testing
phase. Small dots indicate individual teacher-student pairs,
while larger dots indicate mean accuracy of teachers and stu-
dents for a concept. Lines indicate bootstrapped 95% confi-
dence intervals of teacher and student accuracy for a concept.

that the simplest rule (Single Feature) took the teacher sub-
stantially less time to study than average (comparison to the
grand mean: β = −0.25(−0.37,−0.12)) and the most diffi-
cult rule took substantially more time to study than average
(β = 0.20(0.08,0.31)). Crucially, study time was system-
atically shorter when learning from language than from ex-
amples (β =−0.64(−0.82,−0.48)), which translated into an
average 57 seconds (42, 75) less time for learning from lan-
guage. There were no interactions between role and rule that
were plausibly different from 0.

This suggests that learning from language may be more

tribution.

Figure 5: Average accuracy of the teacher versus the aver-
age hamming distance between student and teacher responses
during concept testing phases of all 50 concepts.

Figure 6: Time spent by teachers learning concepts from ob-
servation and time spent by teacher-student pairs communi-
cating about concepts. Circles denote average time for a con-
cept, error bars are bootstrapped 95% confidence intervals.
Lines pair the same concept.

efficient than learning from observing examples. This con-
clusion warrants further study however, as our measures of
study time likely depend on specific paradigm choices. For
instance, teachers were forced to click on all 50 creatures dur-
ing the concept learning phases of the experiment—it may be
that not all of this time was needed for belief updating (as op-
posed to rote clicking of the stimuli).

Language used for knowledge transmission
We have seen that language is a sufficient and (probably) effi-
cient means for transmitting concepts in our experiment. Now
we turn to the question of what specific aspects of language
were used by teachers to convey concepts. We first coded
each of the messages in the game as Informative, Follow-Up,
Social, or Miscellaneous, as described above. A vast major-
ity of the messages (2763 of the 3223) were concept-relevant,
i.e. Informative or Follow-up.

Figure 7: Distribution of concept-relevant messages.

When properties are predicated on categories, the result-
ing linguistic expression is typically a quantified sentence
(e.g.,“All wugs have orange heads”; “Most feps have purple
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Table 1: Utterance Categories & Examples

Category Example(s)
Generics “morseth[s] come in a variety of colors”

“they have saber teeth”
Quantifiers “some will have wings”

“all morseth[s] have long whiskers”
Conditionals “if the left wing is orange click it ”
Exemplars “12 white feathers ... no tail ...”

“12 white feathers ... 5 white tail...”
Imperatives “so click on the teeth!”

“focus on orange fish...”
Adverbials “usually their wing colors match their...”

“stems are usually colored as well”
Numerics “2/3 of them are the ones that qualify”

“75% of what I clicked on was a zorb”
Yes/No “nope”, “k”,

“yes”, “okay”
Other “this sounds difficult”

“okay idk what else to say”

wings”) or a generic sentence which lacks explicit quantifi-
cation (e.g., “Morseths have saber teeth” Carlson & Pelletier,
1995). Rather than talking about categories explicitly, par-
ticipants could convey the actual examples they saw using
numerical language (e.g., “4 of them ...”) or describing in-
dividual exemplars (e.g., “white-tail with feathers, white-tail
with no feathers, ...”).

The first author first identified Generics consistent with
other coding schemes used for generic sentences (Gelman,
Goetz, Sarnecka, & Flukes, 2008), then identified Quanti-
fiers, Numerics, and Exemplars, before grouping the remain-
ing messages by the following linguistic constructs: Condi-
tionals, Imperatives, Adverbials, and Yes/No statements. Re-
maining messages were grouped as “Other”. See Table 1 for
examples of messages across these categories.

Figure 7 shows label counts for concept-relevant messages
in our data set. The majority of these messages use gener-
ics or quantifiers to convey information about the category,
with generics being the most common. Examining this dis-
tribution within rules, we find that this pattern holds for all
except disjunction, where quantifiers are more prevalent than
generics. Additionally, we find that the number of generics
(%G) and quantifiers (%Q) amongst concept-relevant mes-
sages does not vary appreciably across the rules: single fea-
tures: (35%G, 21%Q); conjunction (34%G, 22%Q); disjunc-
tion (21%G, 26%Q), conjunctive disjunction (24%G, 21%Q);
disjunctive conjunction (31%G, 22%Q).

The remainder of the responses are mostly made of other
commentary about the concepts and Yes/No responses. It is
important to note that teachers could have directly instructed
the students what to choose (with Imperatives) or described
their specific experience (e.g. “there were three morseths with
blue wings”); they chose instead to use linguistic constructs

that convey generalizations across categories.

Discussion
In this paper we introduce the first experimental paradigm
that permits apples-to-apples comparison of learning con-
cepts from examples and from language. We found that lan-
guage is sufficient for faithful concept transmission, in the
sense that the student who learns from language is nearly as
accurate as the teacher who learned from examples (and as
inaccurate, making similar mistakes). We have also seen pre-
liminary evidence that language is efficient for concept trans-
mission: that it may take less time to learn a concept from
helpful language than to learn it from observations.

Most work on cultural transmission either investigates
well-controlled experimental paradigms but with heavily
restricted modes of transmission (e.g., sharing direct ob-
servations; Efferson et al., 2007; Kalish, Griffiths, &
Lewandowsky, 2007; Griffiths, Lewandowsky, & Kalish,
2013; Kirby, Cornish, & Smith, 2008; Smith, Kalish, Grif-
fiths, & Lewandowsky, 2008; Martin et al., 2014) or use
open-ended modes of transmission (e.g., creating an instruc-
tional video) but on complex tasks where a ground-truth is
difficult to establish (Muthukrishna, Shulman, Vasilescu, &
Henrich, 2014; Caldwell & Millen, 2008; Morgan et al.,
2015). In this paper, we chart a middle course: investigating
a well-studied phenomenon (Boolean concept learning) with
a relatively open-ended mode of transmission (free language
production).

This allows us to perform parallel analyses of what is be-
ing learned and how that knowledge is conveyed. Recent
advances in natural language processing have demonstrated
potential in training and parameterizing classifiers according
to language (Andreas, Klein, & Levine, 2017; Srivastava,
Labutov, & Mitchell, 2018). Meanwhile, there has been a
growing body of research aimed at understanding effective
teaching and learning within Cognitive Science (Chi, Roy, &
Hausmann, 2008; Chi, Siler, Jeong, Yamauchi, & Hausmann,
2001; Kapur, 2014). We believe that bringing the pedgagog-
ical perspective to machine learning will be instrumental to
improving models that learn from language. Importantly, our
novel experimental method allows for scalable data collection
of language-based instruction and provides a clear classifica-
tion task, i.e. training models to learn from discourse and
demonstrate understanding by predicting student responses.

In our experiment, we found substantial evidence that
quantifiers and, especially, generics are used by teachers to
convey their knowledge about concepts. In one sense this
is unsurprising, as these linguistic constructs are about cat-
egory generalization. Yet our results provide the first di-
rect evidence for the connection between these aspects of
language and cultural transmission of knowledge. This in
turn provides initial support for a strong hypothesis about
the mechanisms of knowledge accumulation: The cultural
ratchet arises specifically out of the ability of language to
convey generalizations through generics and quantifiers.
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