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Introduction 

One of the main reasons for studying high energy nuclear collisions 

is the hope that under the extreme conditions (p £ 2p , E* *- ICO MeV/nucleon) 

generated in such collisions new phenomena will be observed associated 

with the coherent interactions of a large number of nucleons. In this 

talk I will discuss the possibility that pionic instabilities could occur 

under those conditions. Other exotic possibilities at high nuclear 

densities such as density isomers and quark matter are discussed else­

where in these proceedings (see talks o£ W. Greiner and A. Kerraan). 

Here, I shall concentrate on coherent pion processes. 

The discussion is organized into the following sections. 
1 2 3 

1. Pion condensation and pionic instabilities ' in excited nuclear 

systems. 

a) Thermal e q u i l i b r a t e d , T ~ 50-100 MeV 

b) Non-equilibrium, E,., ~- GeV/nucleon 
2 

2. Dynamical effects of instabilities 

a) Critical scattering phenomena 

b) Unstable pion fields 

3. Pion Production 

a) Multiplicity distributions4 

b) Pion lasers and the 2TT inclusive 
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1. Pionic Instabilities 

The first model calculations of pion condensation were carried out 

for nuclear matter in its ground state (i.e. T - 0 ) . Since the pioneering 

work of A. B. Migdal , the literature on this problem has been growing 

steadily (see talk of W. Weise elsewhere in these proceedings as well as 

Ref. 7 for further references). The present status of such calculations 

is that if pion condensation in non-excited nuclear matter occurs at 

all it would be for densities p £ 2p Q , In fact, the roost recent calcula-
8 9 

tions of Weise and Meyer-ter-Vehn cast considerable pessimism about 

the likelihood of pion condensation in finite nuclei. 

The point made in Ref. (8) is that the density dependence of 

the effective nucleon mass m (p) tends to increase p very much. The 

point made in Ref. (9) is that the correlation parameter g,as determined 

from low lying excited states of finite nuclei, is significantly larger 

(g = 0.7 ± 0.1) then previously estimated ' , g - 0*5 ± 0.1. These two 

points decrease very much the possibility that pion condensation could 

occur in non-excited nuclear matter. 

However, nuclear matter formed during heavy ion collisions is 

very far from its ground state and can easily reach densities well over 

2p . The following points should then also be kept in mind. (1) While 

m (p) is a decreasing function of p, in (p,T) may be an increasing 

function of T. Thus the effect of m (p,T) on pion condensation could 

well be less for T > 0 systems. (2) The value of g determined from 

finite nuclei takes into account the strong two body correlations that 

keep nucleons apart. However, in excited nuclear systems, especially 

during the non-equilibrium phase of the collisions, the effective 
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value of g(E ) may be less than g(E = 0) since the nucleons can approach 

each other much closer due to their high relative momenta. Of course 

nothing is really known about g(E ) f and we can only treat g as an unknown 

parameter for excited systems. The sensitivity of the results to 

variations in g must then always be emphasized. 

Another important point to note is that collective instabilities 

in non-equilibrium systems can be fundamentally different from those 

in equilibrated systems. The instabilities that occur in colliding 

plasmas are particularly good examples of this (see fief. (2)). As we 

will also emphasize below, the most dramatic effects of pionic insta­

bilities are in fact expected during the non-equilibrium phase of the 

collision. 

It is clear that no definitive statements can be made about the 

existence or non-existence of pionic instabilities in excited nuclear 

systems. Therefore, the calculations reported here are only presented 

in the spirit of exploration of what exotic phenonema could at least 

in principle occur in nuclear collisions. Eventually, we nust turn • 

to experiments for definitive statements. For now we simply explore 

what could happen and what observables could be sensitive to novel 

phenomena. 

The central quantity in these investigations is the pion propaga-

tor 6' 7 

A(w,iO = (a)2-k2-mTi
2 - I K u J O ) " 1 , (1) 

where II is the pion proper self energy or the polarization operator 

that results from the TTN and NN interactions in the medium. The form 



of II that includes the strong P-wave TiHN and TiNi interactions as well 

as hard core NN and NA interactions i s ' ' ' 

V + .V.— . (2) i-s/k 2^ + I W 
See Refs. (2,3,6,7) and the talk of W. Weise in these proceedings for 

further details. 

The main reasons for studying A(oj,k) are as follows: 

(1) The pion spectrum co(k) in nuclear systems (including collective 

excitations (phonons) carrying the pion quantum numbers) can be obtained 

from A (w,k) - 0. 

(2) The linear response of the medium to a pion depends on the residue of 

A(ijJ,k) at its singularities. 

(3) The decay rate of excited nuclear systems due to pionic instabilities 
2,3 can be estimated via 

/
4 

^-^. log e(io,k) (3) 

where the pion "dielectric" function 

& (ui.ib -1 
e(u,k) - — (l+-4-ir(oJ,k)) . (4) 

A<U),k) k* 

If there exist complex roots of A (oi ± iY.k) = 0, i.e. complex 
2 zeros of e(u,k), then linear response theory shows that the system 

is unstable. In particular, small spin-isospin perturbations in the 

system are amplified (i.e. grow exponentially in time) at a rate y. 

Of course, external perturbations are not necessary to bring on this 

instability. Quantum fluctuations are sufficient to induce the decay 

of the system when y * 0 via Eq. (3). 



To study whether pionic instabilities could occur in excited 

nuclear systems, two extreme models of the nucleon momentum discribution 

were considered in Refs. (1-3): 

(a) Thermal equilibrated 

~ 1 r 2 n I - 1 

n(p) = sxp [<p /2m-p)/lJ + 1 , (5) 

(b) Non-equilibrium 

n(p) - e ( p F - i; + p J ) + e ( p F - I S - P ^ I ) • (6) 

With Eq. (5), we calculated the pion analogue of the Curie 

temperature in ferromagnets. With Eq. (6), we studied the analogue of 

the two stream instability in colliding plasmas. 

The results for the thermal system are shown in Fig. I. The 

essential feature to note is the rather steep slope of T . (p), 

indicating that for p > (2-3) p quite a high temperature is required 

to destroy this second order phase transition. In fact, the solution 

of the Rankine shock equation (see Ref. 6 in Ref. 1) indicates that 

for the densities expected during nuclear collisions, the temperature 

is likely to be below T .. for p > 2p . Of course, these results are 

sensitive to g, but if the appropriate value of g is less than 0.6, 

then the above conclusion remains valid. 

Encouraged by those results, we turn next to the non-equilibrium 

phase of the collisions where Eq. (6) is appropriate. Again complex 
-1 ° 3 

roots of A - 0 can be found. ' The contour plot of the growth rates 
Y(k ,6) (in units of 0.1 m^) are shown in Fig. II. The angle 0 is 



that between k" and the beam axis p . In Fig. II the plot for p * 4m if cm o r r c m ^ 
(kinetic energy ~ 670 MeV/nucleon) is shown as a typical example. The 
essential points we focus on here are (1) unstable modes are again found 

for g < 0.6 , (2) the average growth rates per mode are 
22 -1 

<y> ~ 0.1 m^ * 2 x 10 sec , and (3) the momenta of the unstable modes 
is k == (2-3) m . Clearly the exact boundaries of phase space where 
unstable pion modes occur depend sensitively on g (compare Figs. Ila, 
lib). Nevertheless, the features mentioned above are not so sensitive 
to g. The importance of (2) is that it indicates that during the non-

-23 
equilibrium phase (lasting — 5 * 10 sec) at least a few phonons can 

be created in each unstable mode» i.e. where Y(k) ̂  0. Note in 

particular that only a few phonons can be created in a given mode k, 

but there are many unstable modes. Typically, the number of such modes 2 3 3 is found to be * ~ V/X . Therefore, the term pion condensation is not 
appropriate for nuclear collisions, since a condensate implies that there 
are many phonons in a few modes. On the other hand, the term pionic 
instabilities is quite suitable. 

The importance of feature (3) is that the wavelengths of those 
unstable modes are then small ~(3-5) fm. Therefore, such phonons can 
exist In the finite dimensions of the nuclear systems considered. 

He conclude from these calculations that provided the effective 
strength of g is less than 0.6, pionic instabilities can occur during 
nuclear collisions in spite of (1) the high excitation energies B (2) 
the short interaction times, and (3) the small nuclear dimensions. 
Having thus shown the possibility of pionic instabilities, we turn now 
to what effects they could have on the dynamics of nuclear collisions. 
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2 2. Dynamical Effects 

There are two major effects of collective instabilities familiar 

from solid state and plasma physics: 

a) the modification of two body scattering rates via critical 

scattering phenomena, 

b) the growth of strong collective fields via spontaneous phonon 

pair production. 

The first effect can be easily pictured as follows: In free space, 

two particles scatter via the exchange of bare mesons so that in the 

Born approximation their scattering amplitude is proportional to the 

free meson propagator A (tu,k). In a many body medium, the propagation 

of a meson is modified by its interactions with the medium as illustrated 

in Fig. Ilia. This interaction "dresses" the meson thereby converting 

it to a phonon, i.e. a coherent many particle-many hole state. The 

scattering amplitude is then proportional to the dressed propagator 

A(w,k). Therefore, the effective cross section of two particles which 

are distinguishable from the constituents of the medium is related to 

the free space cross section via 

da . (7) 
k(ai,k)| 2 

Equation (7) is the familiar plasma kinetic theory result relating da 

and da via the dielectric function, o 
Critical scattering occurs when there exists a to = 0 phonon mode 

lc , i.e. such that cfO.k ) = 0. In that case do _d •+• °° ! c* ' * c' ef,f 
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As an aside we note that it is easy to see why the existence of 

m = 0 modes is intimately related to collective instabilities. A phase 

transition occurs when the state $ of the system becomes degenerate 

with some other states $'. When w » 0 modes are available, (J) becomes 

degenerate with the set of states <J>1 differing from $ by any number of 

these soft phonon excitations. Consequently* the system decays by building 

these collective excitations into itself. In the case of pion condensa­

tion the new phase is characterized by a spin-isospin lattice. * 

Returning to the scattering mechanism, we note that "q. (7) 

is not generally applicable. Self-consistency and finite size effects 
2 3 

modify Eq. (7) as * 

d C Teff * *< u>10*r o (8) 

2 3 where the polarization from factor P(w,k) is much less singular ' than 

|e((d,k)|" . For detailed discussion of Eq. (8) refer to Refs. (2,3). 

The only point we stress here is that the scattering rates are modified 

due to pionic instabilities as in Eq. (8). 

The second major effect of instabilities, i.e. the growth of 

collective fields, can be understood in terms of spontaneous phonon 

pair creation as illustrated in Fig. Illb for TT V" phonons. This is 

associated with those quantum fluctuation^ in the system involving 

virtual phonon pair creation. For example, a virtual IT meson is 

created at some time together with a neutron particle-proton hole (np) 

excitation. As the TT propagates through the medium its interactions 

(further particle-hole excita .ions) converts it into a ir phonon. 

Similarly, as the np excitation propagates through the medium, it 
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is converted into a IT phonon. Note that we use the term phonon here 

as a generic name for the quanta associated with the singularities of 

£(u,k). As mentioned before, they are cohsrent many particle-many 

hole states of the system. 

If there exists an u)=0 mode for some k , then the virtual 
c 

fluctuation described above can "materialize" since both energy and 

momentum can be conserved. As more and more phonons are created in 

this way, a structural change (i.e. phase transition) of the system 

occurs. In addition, after sufficiently many phonons are created the 

[ion field will acquire a finite expectation value; <(Ji(x)> ̂  0. This 

is quite analogous to the growth of collective electric ;:'ields as a result 

of plasma instabilities in colliding plasmas. 

Both effects of collective instabilities described above are 
2 closely related. In fact the only difference between (a) and (b) is 

that in (a) the energy momentum (w,k) of the phonons js on jhe particle-

hole branch of the phonon spectrum. These phonons simply decay to 

1 particle - 1 hole excitations. The decay of a pair of such phonons 

is thus completely equivalent to a two body scattering as illustrated 

in Fig. Ilia. 

Having discussed these effects, we turn to an estimate of their 

importance in nuclear collisions. To that end we note the results of 

Refs. (2,3), where it was shown that the decay rate of the system can 

be estimated from its complex correlation energy (sum of ring diagrams 

in RPA) giving 



r - r . + r , 
col scat 

i-« -- 1 ^ - - eff ~ ~ i p l _ p 2 l 

k P r p 2 

In Eq. (9), F , measures che rate of spontaneous phonon pair creation col 
for phonons that do not decay to lp-lh excitation, and P is the 

Boltzmann collision integral measuring the rate of two body scattering 

in the mediun. The effective cross section in T ^ includes both 
scat 

elastic (NN-*NN) and inelastic (NN+NA and NN-+AA) contributions. 

The polarization form factor in Eq. (8) was computed in 

Ref. (3) (Eq.(26)). It was found that P(u),it) had logarithmic singu­

larities that led to typical enhancements of o* f f / o ~ (2-4) for both 
3 the elastic and inelastic cross sections. In addition, we found 

that T , < T in these models calculations indicating that effect col scat ° 
(a) should dominate effect (b). In other words, two body scattering 

is expected to dominate mean field effects. 

The first important conclusion we draw from these calculations 

is that we do not expect any drastic effects of pionic instabilities! 

What we can expect is a moderate increase of the scattering rates that 

would lead to more rapid thermalization in the system. Taken together 

with T . < T , these results suggest then that a hydrodynamic or 

cascade approach to nuclear dynamics is most appropriate. 

Me can now see the following dilemma with regard to observing 

effects of such instabilities. If pionic instabilities occur, then 

they will lead to more rapid thermalization than if da ,, were 
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identical to dc in Eq. (8). However, once the nucleons reach thermal 

equilibrium, the memory of the interesting dynamical path is lost! 

Therefore, the bulk of the single nucleon inclusive cross section, da M, 

would not show any effects of such instabilities. 

It may seem at first sight that the "knock-on" contribution 

to dc., would be sensitive to the form of da £ , in Eq. (8). This knock-on N erf 
contribution is in the region of phase space beyond the quasi-elastic peak, 

i.e. the high momentum end of the nucleon spectrum. Those nucleons are 

thought to be projectile nucleons that have undergone only one scattering 

in the target. Therefore, it is tempting to assume that this knock-on 

region of do could be used to determine P(w,k). However, most of the 

nucleons observed at high momenta come from the peripheral region of 

the interaction region. That is simply because the number of mean free 

paths a projectile nucleon must traverse is much smaller in the 

perpheral region than in the central region. (Experimentally, the 

perpheral nature of the knock-on contribution could be tested by looking 
1/3 for an A dependence.) In a peripheral collision, however, only a 

small amount of nuclear matter interacts, and, consequently, collective 

phenomena would be greatly supressed, i.e. P(to,k) -»• 1 in peripheral 

collisions. Therefore, we would only measure the free space cross 

sections in the knock-on region. 

We conclude, therefore, that the nucleon inclusive cross section 

is not expected to be sensitive to dynamical effects of pionic insta­

bilities. In the next section, we therefore turn to pion production 

with the hope that it is more sensitive to such phenomena. 



-12-

3. Pion Production 

A. Multiplicity Distribution 

In Ref. (3), we found that one possible effect of pionic insta­

bilities is to enhance the inelastic rates T(NN -*• NA) by a factor "(2-4). 

It is then natural to ask whether this should lead to an enhancement 

of the average number of pions <n > produced. As we shall see, the 

answer is no! 

To see why < n > remains approximately the same, note that pions 

are produced mainly during the non-equilibrium phase of the collision. 

After the nucleons reach thermal equilibrium with T ~ 50 MeV, the 

relative momenta are generally below IT production threshold. Simple 

estimates, in fact, reveal that ir production rates during equilibrium 

are smaller by a factor "-10 or more than the rates during the 

non7equilibrium phase, where the relative momenta are well above 

threshold. Therefore, we can estimate 

<n7T> « r(NN-*NA) T c h , (10) 

where T , is a characteristic thermalization time tn 

T a = « Mil 
th tot T(NN-^NN) + T(NN-»-NA) ' K J 

°NN 

Now if both the elastic and inelastic rates are increased by a factor 

X (due to pionic instabilities), then pions are' indeed produced X times 

as fast, but only for a time 1/X as long. This decrease of the 

thermalization time compensates for the increase of the TT production 

rate J 
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U'o therefore do not e>:pect copious pion production as a result 

of the pionic instabilities discussed here. 

To check whether the observed pion multiplicity distribution 

can in fact be accounted for without copious pion production, we report 

here on two simple model calculations: 

a) Thermodynamic Fireball Model 

b) Non-equilibrium Impulse Approximation 

In (a) the pions are assumed to come to chemical as well as thermal 
12 equilibrium with the nucleons. The average pion multiplicity in a 

12 fireball of volume V and temperature T is then 

<n r> - / 
(277)-* 

4 
The.thermodynamic ca lcu la t ion for the m u l t i p l i c i t y d i s t r i b u t i o n P(n J 

71 

is found to give a convoluted multiple Poisson. However, for the volumes 

and temperatures expected in nuclear collision at energies ~ 2 GeV/ 

nucleon, it was shown in Ref. (4) that P(n ) reduces to a simple Poisson 

for each impact parameter b, i.e. 

P(n. fb) = e- < n7T ( b ) > — * — , (1 ± 0.05) , (13) 

with correction -5%. 

4 The results of that calculation for the TT distribution in 

Ar + Pb 0 at 1.8 GeV/nucleon are shown in Fig. IVa, Curve 2, which 

incorporates the trigger bias of the data, is seen to correctly 

account for all features of the data. Figure IVb shows the contributions, 
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Eq. (13), to P(n_) from different impact parameters. Note, in particular, 

that Fig. IVa shows that no copious pion production is observed. 

Of course, the Poisson aspect of P(n ,b) in Eq. (13) is not 

severely tested in Fig. IVa. It would be, in fact, very desirable 

to isolate experimentally the b ^ O contribution to P(n ) to test for 

the Poisson form. As shown in Ref. (4), deviations from the Poisson 

form could serve as strong evidence for unusual correlated pion produc­

tion mechanisms. The point is that the average pion multiplicity 

<nT7> can be correctly accounted for by a large variety of production 

mechanisms. However, the fluctuations around <n >, i.e. the form of 

P(n ; b ) , is sensitive to correlated pion production mechanism. 

An example of a completely different (uncorrelated) production 

mechanism that yields identical results to the thermal model is 

model (b). The assumption here is that pions are produced only during 

the first collision each projectile nucleon suffers. Then 

<Vb)> = < V p p Ap(b) , U4) 

where A (b) is the number of projectile nucleons that interact with 

the target at a fixed b, and < n > ^ 0.7 is average number of pions 

produced per nucleon-nucleon collision at these energies. (The average 

number of TT is one-third of Eq. (14)). Equation (14) together with 

the fact that the multiplicity distribution in elementary NN collisions 

is approximately Poisson then imply that P(n_,b) is a Poisson in 

Eq. (13) with mean in Eq. (14). Numerically, this model gives the same 

quality of fit as curve 2 in Fig. IVa. 
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To conclude this discussion of P(n ) , we emphasize again that the 

only way to gain information on coherent plon processes from P(n ) is by 

isolating a single impact parameter (preferably b = 0) and by looking for 

deviations from Poisson. 

B. Pion Lasers and the 7t ir inclusive 

In searching for more sensitive tools to study pion coherence, 

we turn next to the TT TT~ inclusive cross section. As we shall see, 

this offers perhaps the most exciting possibility to eventually determine 

the degree of coherence of the pion field. 

The basic idea here is simply to extend familiar concepts of 

13 quantum optics into the realm of pion physics. A detailed discussion 

of "Pion Quantum Optics" is in preparation. 

The starting point is the assumption that the pion source can 

be treated as a classical (c-number)- function, i.e. 

J?'int " 4><5,t> J (x,t) , (15) 

where $ is the pion Heisenberg field and J(x,t) is a space-time source 

function. For illustrative purposes $ is treated as a scalar field here. 

Complications due to the isospin structure of $ and J will be considered 

in Ref. (5). 

In reality, J is a transition current operator involving the 

nucleon and possibly Zu field operators. The physical assumption 

we make is that as long as the amplitude of the pion field produced is 

small, we can replace J by its matrix elements between nuclear wave-

functions. Thus Che recoupling of the emitted pion fields to the 

nucleon fields is neglected. Since only a relatively small fraction 1 2 
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(i 10%) of hadronlc matter in nuclear collisions consists of pions, 

this may be a rather good approximation. We therefore assume J(5,t) 

Is a £iven function of space-time. 

With Eq. (15), the pion field <J>(x,t) can be explicitly solved 

for . 

obtained in closed form'1' 

More importantly, the S-matrix in the pion sector can be 
14 

S - exp */*[' (k)aT(k) + j (k)a(k) (16) 

where a (k) , a(k) are the creation and destruction operators of the 

pions and 

jOO 

with k - tu. 

• / 
A 

ikx 

V, 
J(x.O (17) 

(2TT) J2U. 

• V k +m being the (on-shel l ) space-time Fourier transform 

of the pion source cu r r en t . 

Given Eq. (16) , the asymptotic outgoing pion f ie ld i s given by 

|ir,out> = S ' | 0 , i n> 

-n /2 e exp - i f d 3 k j ( k ) a + ( k ) |0 , in> (18) 

5 - f d3k I J 00 I (19) 
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The important point to note about Eq. (18) is that |7T,out> is a coherent 

superposition of states uith arbitrary numbers of pions. Such states 
13 are known as coherent states in quantum optics and actually characterize 

laser fields.' Thus, a classical source produces a laser field. We 

return to this point below. 

However, first we note that the exclusive and inclusive distribu­

tions of pions are simply obtained with Eq. (16). Of particular interest 

is the inclusive probability P (k., ... , k ) for observing m pions with 

P (k,,...,kj - V _L_fdk„.,...dk |< k,...k |S + 

m l a i ^ (n-m)!j n + 1 n 1 n 

|j(k 1)| 2 ... | j ( k m ) | 2 . (20) 

This incredibly simple result has also been derived in Ref. (15). 

However, the connection of the j's to the pion source currents was 

not made there. 

It is also easy to show that the multiplicity distribution of 

the pions is a simple Poisson with a mean n given in Eq. (19). 

We can now define an m order correlation function 

c*<h V- w'l"w - 1 • < 2 1 > 
For a pure classical source, Eq. (20) then shows that C • 0 for all m. 

m 
This is in fact the distinguishing property of laser fields from chaotic 
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fields that we use to characterize what exactly is meant by a pion 

laser. 

To see how chaotic fields are produced, consider a source j(k) 

that is composed of an incoherent sum of sources j. as 

j(k> - 2_, e hik) ' ( 2 2 ) 

where the <|>, are random phases . Then, the inc lus ive d i s t r i b u t i o n in 

Eq. (20) must be averaged over these phases 

2ir 
d t , dc J a l i dc„ , , 

•W-4 13(̂ )1 --I3CVI • 
(23) 

For a chaotic source (N>1) in Eq. (22), this averaging leads to C * 0. 

In fact, the Hanbury Brow-Twiss (HBT) effect, which for pions is called 

the GGL? effect, can be derived from Eq". (23) in the limit N-*«\ 

This is accomplished by considering sources in Eq. (22) of the form 

/
, ikx 

d \ e f(x-J i)g(t-t i) , (24) 
V(2ir) 32w k 

where f and g describe the spacial and temporal development of the 

individual currents, and the space-time points (x.,t.) are randomly 

distributed with probability density p(x,t). It then follows in the 

limit K + » 'hat 

C2(k,k + 5) - |p(q,\7+m7)| 2 . (25) 
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Therefore C- measures directly the space time Fourier transform of the 

pion source region. Equation (25) is the GGLP effect which this 

derivation shows holds only for completely chaotic sources (N-*-00). While 

this limit is appropriate for light emerging from stars as in the 

original HBT effect, for pions from nucleon collisions, this limit may 

not be applicable. In particular, Eq. (25) does not hold if there 

is coherence in the pion field. 

An important feature of Eq. (25) is that the q = 0 point is 

C 2<k,k) 1 . (26) 
chaotic 

for completely chaotic sources, which is in sharp contrast to 

C2(k,k) = 0 (27) 
coherent 

for coherent sources. An example of such a. coherent source is one where 

all the J, in Eq. (22) add with fixed phases. 

It is now obvious that partially coherent fields can also be 

produced for which C 2(k,k) is between 0 and 1. In particular for 

finite N, Eqs. (22,23) yield 

£ H i * ̂ i <£ + 5) Jj<k) jja + q)) 
^ ^ ' " / A T n ^ • ( 2 8 ) 

Therefore, the q • 0 intercept i s given by 
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JS 

r°l C2(k,k) - 1 - " B — (25) 

- 1 - d(k) (30) 

We now define the degree of coherence of the pion mode k as d(k) from 

Eqs. (29,30). The properties of d(k) that make it particularly attractive 

as the definition of that degree of coherence are 

(1) 0 <: d(k) < 1 

(2) d(k) could differ for different k 

(3) d(k) « 1 for N * 1, i.e a pure coherent source as in Eq. (22) 

with fixed phases $. 

(U) d(k) = TT for N identical chaotic sources with random <K 

(5) d(k) •» 0 for coniplaLaly chatoic source ((*-*•=>) 

In particular, Eqs. (26,27) are included as special cases of 
Eq. (30). 

The important point we want to stress here is that not only the 
space-time evolution of the pion source, but also the degree of coherence 
of the pion field can be deduced from the second order correlation 
function. Experimentally, C, can be measured from the 
2fl and In inclusive cross sections. 

This double virtue of C,(k,k+q) as illustrated in Fig. V has 
also been emphasized by Fowler and Weiner in Ref. (17). What we have 
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presented here is a simple field theoretic derivation from which the 

connection of these effects to specific properties of the pion source 

can be easily seen. 

We are now in the position to discuss how the measurement of C„ 

would be useful in looking for coherent pion processes as discussed 

in sections 1 and 2. As we discussed before, neither the nucleon 

inclusive cross section nor the average pion multiplicity are expected 

to be sensitive to pionic instabilities. On the other hand, d(k) 

provides a subtle measure, mode by mode, of coherence. Thus even 

if no unusual signal is observed in either the nucleon or pion distri­

butions, d(k) could still be non-zero for certain critical modes 

(kc ~ (2-3) *„). 

However, it is also clear that d(k) is not easy to measure. 

First, a fixed impact parameter (b * 0) must be isolated to avoid a 

b average in Eq. (23). Then high statistics in a small region cf 

phase space are required. Finally, dynamical correlations from final 

state n TT interactions must be eliminated by methods such as those 

used in Ref. (18). Nevertheless, the effort is worth it.' In the absence 

of any more spectacular signals, d(k) offers a powerful tool to look for 

coherent pion processes in nuclear collisions. 
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Figure Captions: 

I. Critical temperature for pion condensation as a function of 

density. T is shown for g a 0.5 (See Ref. 1 for other g ) . exit 
Curves AB and BC illustrate the compression and decompression 

phases during nuclear collisions. 

Contour plot of growth rates Y(k 

non-equilibrium nuclear matter, Eq. (6). This example is 

for p rcm 
of 0.1 m . 

b) Contour plot of growth rates y(k,8 ) for pion modas in 

non-equilibrium nuclear matter, Eq. (6). This example is for 

p * 4ra„ and g • 0.6. Units of contours are multiples of 
cm 7T r 

0.1 m . 
7T 

Ilia) Illustrating difference between two body scattering in free 

space and in a many body medium 

b) Illustrating spontaneous TT TT phonon pair production. 

IV a) IT" multiplicity distribution for Ar + *b-fit. a t 1 * 8 GeV/nucleon. 

Data from Ref. (11), curve 2 is the final curve for the thermal model 

from Ref. (4). 

b) P(n-b) for various impact parameters for Ar + Pb at 1.8 GeV/nucleon. 

V. The two ir~ correlation function for the general case of partial 

coherence, p is the Fourier transform of the space time region 

containing the pion source points (x.,t.) in Eq. (24). d(it) 

is the degree of coherence of pion mode k. 
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