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Introduction

The principal function of the skin is to provide a protective 
barrier against the transcutaneous loss of water and electro-
lytes, which is essential for the survival of a mammal in a ter-
restrial environment. This epidermal permeability barrier is 
localized to the stratum corneum, the outermost layer of the 
skin.1 Stratum corneum consists of corneocytes, terminally 
differentiated keratinocytes which provide the mechanical 
strength of the skin, and a hydrophobic, lipid-enriched extra-
cellular matrix, which provides the barrier to the movement of 
water and electrolytes. These extracellular lipids are primarily 
composed of cholesterol, ceramides and free fatty acids. On a 
total lipid mass basis, human stratum corneum contains 50% 
ceramides, 25% cholesterol and 15% free fatty acids.1 These 
lipids are delivered to the extracellular spaces of the stratum 
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Triglycerides and phospholipids play an important role in 
epidermal permability barrier formation and function. They 
are synthesized de novo in the epidermis via the glycerol-
3-phosphate pathway, catalyzed sequentially by a group 
of enzymes that have multiple isoforms including glycerol-
3-phosphate acyltransferase (GPAT), 1-acylglycerol-3-
phosphate acyltransferase (AGPAT), Lipin and diacylglycerol 
acyltransferase (DGAT). Here we review the current knowledge 
of GPAT, AGPAT, Lipin and DGAT enzymes in keratinocytes/
epidermis focusing on the expression levels of the various 
isoforms and their localization in mouse epidermis. Additionally, 
the factors regulating their gene expression, including calcium 
induced differentiation, PPAR and LXR activators, and the effect 
of acute permeability barrier disruption will be discussed.
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corneum by the secretion of lamellar body contents by differen-
tiated keratinocytes.1 Lamellar bodies contain cholesterol, glu-
cosylceramides and phospholipids, and following lamellar body 
secretion the glucosylceramides are metabolized to ceramides, 
a reaction catalyzed by β-glucocerebrosidase, and the phospho-
lipids are metabolized to free fatty acids, a reaction catalyzed 
by secretory phospholipases.1-4 Inhibition of cholesterol, fatty 
acid, ceramide or glucosylceramide synthesis in the epidermis 
results in abnormal lamellar body formation indicating that the 
synthesis of sufficient quantities of these lipids (ceramide, glu-
cosylceramide, cholesterol, fatty acids) is required for normal 
permability barrier homeostasis.1

The free fatty acids produced in the epidermis serve as pre-
cursors for both phospholipids and ceramides, which are essen-
tial components for lamellar body formation. In human stratum 
corneum, fatty acids are predominantly straight chained, with 
C

22
 and C

24
 chain lengths being the most abundant.5 These fatty 

acids include the essential fatty acid linoleate, which is present 
in acylceramides, and the absence of linoleate (in essential fatty 
acid deficiency animals) leads to abnormal structure and func-
tion of the epidermal permability barrier,6-9 indicating that the 
essential fatty acids are required for maintaining permeability 
barrier homeostasis. Recently, mice deficient in comparative gene 
identification-58 (CGI-58), a lipid droplet associated protein that 
facilities triglyceride hydrolysis, have been shown to develop a 
severe permeability barrier defect.10 This along with studies in 
DGAT-2 deficient mice (see below) indicates that the synthesis 
and breakdown of triglycerides is also required for permeability 
barrier homeostasis.

Whereas much is known about the enzymes of sphingolipid 
and cholesterol synthesis in the epidermis/keratinocytes, little is 
known about the enzymes required for triglyceride and phospho-
lipid synthesis. In this review, the focus will be on the expres-
sion levels and factors that regulate the key enzymes responsible 
for triglyceride and phospholipid biosynthesis in keratinocytes/
epidermis.
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The initial committed step in triglyceride/phospholipid syn-
thesis via the glycerol phosphate pathway is the acylation of 
glycerol-3-phosphate by glycerol-3-phosphate acyltransferase 
(GPAT, EC 2.3.1.15).13-15 The resulting product lysophospha-
tidic acid is further acylated by 1-acylglycerol-3-phosphate acyl-
transferase (AGPAT, EC 2.3.1.51) to produce phosphatidate.13,16 
Phosphatidate is a branch point in lipid synthesis: it can serve 
as a precursor for either acidic phospholipids (PI, PG, CL) or 
diacylglycerol biosynthesis. The conversion of phosphatidate to 
diacylglycerol is catalyzed by lipins, a group of hydrolyases which 
have phosphatidate phosphatase (PAP1) enzyme activity. Finally, 
diacylglycerol is converted to triacylglycerol through the action 
of diacylglycerol acyltransferase (DGAT), or serves as precursor 
for phospholipid (PC, PS, PE) synthesis.17,18

The Expression and Regulation of Key Enzymes 
in the Biosynthetic Pathway of Triglyceride/

Phospholipid in Keratinocytes/Epidermis

GPATs. In eukaryotic cells, several GPAT isoforms exist that dif-
fer in subcellular localization, sensitivity to N-ethylmaleimide 
(NEM) inactivation and substrate preferences.12-14 So far, four 
GPAT genes (GPAT-1, -2, -3 and -4) have been cloned and their 
products demonstrated to have GPAT activities.13,14 GPAT-1 
encodes a NEM-resistant enzyme, which is located to the outer 
membrane of mitochondria with a substrate preference for satu-
rated palmitoyl-CoA. GPAT-2 encodes a NEM-sensitive mito-
chondrial isoform, but it is expressed in limited tissues and to 
date only has been found in testis and liver. Both GPAT-3 and 
GPAT-4 are ER-associated, NEM-sensitive enzymes, which uti-
lize a broad range of long-chain fatty acyl-CoAs, including both 
saturated and unsaturated species, as substrates.12-14

In both cultured human keratinocytes and mouse epider-
mis, GPAT-1, -3 and -4 mRNAs can be detected using real-time 
PCR, with C

T
 values of ~24–25 for GPAT-1, ~23–24 for GPAT-3, 

and ~27–28 for GPAT-4 (Table 1). In contrast, under the same 
experimental conditions, GPAT-2 is not detected in either human 
keratinocytes or in mouse epidermis (but is found in mouse 
liver),19 (Table 1). GPAT-3 and -4 are mainly localized to the 
upper epidermis (stratum corneum/granulosum/spinosum) and 
GPAT-1 is found in both the upper and lower (stratum basale) 
epidermis in mice.19

In fetal rat, epidermal stratification begins on day 17, a burst 
of lipid synthesis occurs on day 19, a multilayered stratum cor-
neum with a competent barrier to transepidermal water loss is 
formed between day 19 and 21, and the rat is born with a com-
petent barrier on day 22.20,21 Similar to cultured human kerati-
nocytes and mouse epidermis, GPAT-2 mRNA is not detected in 
fetal rat epidermis.19 The mRNA levels of GPAT-1 and GPAT-3 
are found to increase on day 19, reaching a peak on day 20, and 
declining thereafter. GPAT-4 mRNA levels also change from 
days 17–22, but to lesser extent.19 These results indicate that the 
expression of GPAT-1 and GPAT-3 significantly increases dur-
ing the late stage of fetal epidermal development, concurrent 
with the formation of lamellar bodies and SC extracellular lipid 
membranes.21

Biosynthetic Pathway of Triglycerides  
and Phospholipids

In mammals, triglycerides are synthesized through two major 
pathways, the glycerolphosphate (Kennedy) pathway and the 
monoacylglycerol pathway while phospholipids are synthesized 
via the glycerolphosphate (Kennedy) pathway.11,12 The glycerol 
phosphate pathway is responsible for the majority of de novo 
biosynthesis of triglycerides in most cell types, while the mono-
acylglycerol pathway is very important in triglyceride synthesis 
in the small intestine.11,12 Here we focus on the glycerol phos-
phate pathway, in which the acylation of glycerol 3-phosphate  
occurs through a stepwise addition of activated fatty acyl  
groups, each of which is catalyzed by distinct enzymes  
(Fig. 1).

Figure 1. The glycerol phosphate pathway for de novo phospholipid/
triacylglcerol synthesis in keratinocytes/epidermis.

Table 1. CT values of GPAT, Lipin and DGAT isoforms in human keratino-
cytes and mouse epidermis.�  

GPAT Isoforms CHKs Mouse epidermis

GPAT1 24~25 24~25

GPAT2 nd* nd

GPAT3 30~32 23~24

GPAT4 27~28 27~28

Lipin-1 23~24 28~30

Lipin-2 27~28 25~28

Lipin-3 25~27 23~27

DGAT1 29~30 30~33

DGAT2 34~35 23~25

nd*, not detected. CT values are inversely proportional to the amount 
of target mRNA in the sample (i.e., the lower the CT level the greater 
the amount of mRNA in the sample). CT ≤ 29 indicate abundant target 
mRNA in the sample. CHKs, cultured human keratinocytes.
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lysophosphatidylcholine acyltransferase family, with only weak 
AGPAT activity.29-31 Finally, AGPAT-10, which is identical in 
sequence to GPAT-3 and localized to the ER, has been reported 
to have both AGPAT32 and GPAT activity.33

In mouse epidermis, AGPAT-3, -4 and -5 have relatively high 
constitutive expression levels, while AGPAT-1 and -2 have low 
constitutive expression levels.23 Localization studies demonstrated 
that all five isoforms of AGPAT are expressed in all nucleated 
layers of mouse epidermis. Of note is in other tissues, including 
brain, heart, lung, liver, kidney and spleen, both AGPAT-1 and -2 
are expressed at relatively high levels.24 Similarly, all five AGPATs 
are expressed in cultured human keratinocytes. AGPAT-3, -4, 
and -5 are expressed at high constitutive levels while AGPAT-1 
and -2 expression levels are relatively low.23 Like GPATs, the 
physiological role of these different isoforms of AGPAT in kerati-
nocytes/epidermis remains unclear.

The expression pattern of AGPATs during fetal rat skin bar-
rier development has been determined. The mRNA levels for 
both AGPAT-2 and -5 increase progressively in the epidermis at 
days 17–22, peaking on day 19, while mRNA levels for AGPAT-
1, -3 and -4 remain unchanged.23 There is a parallel increase in 
the total AGPAT activity on day 19, which may be due to the 
increased expression of AGPAT-2 and -5.23

Unlike GPAT3, which is induced during keratinocytes dif-
ferentiation, AGPAT expression is not altered by exposure to high 
calcium treatment for 6–10 days. Additionally, treatment with 
PPAR or LXR activators also had a minimal effect on AGPAT 
expression.

Acute disruption of the permeability barrier by tape-stripping 
results in a rapid increase in the mRNA levels of AGPAT-1, -2 
and -3.23 AGPAT-5 mRNA also increases after tape-stripping 
but to a lesser extent. In contrast, the mRNA levels of AGPAT-4 
remain unchanged.23 These observations were verified by using 
another method (acetone) to disrupt the barrier, and similarly, 
the mRNA levels of AGPAT-1, -2, -3 and -5 increase by 1 hour 
after acetone treatment with no change in the mRNA levels of 
AGPAT-4.23 In parallel with the increase in mRNA levels, there 
is a corresponding increase in total AGPAT enzyme activity in 
mouse epidermis following tape-stripping.23 Thus, acute disrup-
tion of the permeability barrier stimulates an increase in both 
mRNA levels and enzyme activity of AGPATs in mouse epider-
mis. Since upregulation of AGPAT mRNAs after tape-stripping 
can be partially reversed by artifical restoration of the perme-
ability barrier by occlusion with an impermeable membrane, it 
can be postulated that the increase in the expression of AGPAT is 
linked to permeability barrier requirements.23

Lipins. At the third step of triglyceride/phospholipid bio-
synthesis, phosphatidic acid, produced by the action of AGPAT 
enzymes, is dephosphorylated to form diacylglycerol for the syn-
thesis of triglycerides and phospholipids (PC, PE and PS). This 
dephoshorylation process is catalyzed by phosphatidate phos-
phatase (PAP1), which is localized in the cytosol and transiently 
translocates to the ER membrane to encounter phosphatidic acid 
substrate for performing the phosphatase reaction. PAP1 enzymes 
are Mg2+-dependent, NEM sensitive and are responsible for most 
of PAP activity involved in the glycerol phosphate biosynthetic 

It is well recognized that high calcium induces keratinocyte 
differentiation. In response to high calcium, GPAT-3 mRNA lev-
els markedly increase whereas both GPAT-1 and GPAT-4 mRNA 
levels decrease by ~50% at most time points in primarily cultured 
human keratinocytes.19 In parallel, total GPAT activity increases 
(two-fold) in keratinocytes cultured in high calcium medium 
versus that in low calcium control. Further analysis reveals that 
NEM-sensitive GPAT activity, which is encoded by GPAT-3, 
increases about three-fold, with no alteration in NEM-resistent 
activity, which is encoded by GPAT-1.19 Together, these studies 
demonstrate that GPAT isoforms are differentially regulated dur-
ing keratinocyte differentiation, with GPAT-3 expression increas-
ing, leading to an increase in total GPAT activity, attributable to 
the GPAT-3-encoded NEM-sensitive GPAT activity.

PPAR-α, -δ, γ- and LXR-α, -β, are expressed in keratinocytes/
epidermis and activation of these nuclear hormone receptors has 
numerous effects on keratinocyte function.22 When keratino-
cytes are treated with PPAR and LXR activators, GPAT-3 gene 
expression increases significantly, with PPAR-γ > PPAR-δ > LXR 
> PPAR-α.19 Activators of RXR also slightly increase GPAT-3 
mRNA levels. In contrast, GPAT-1 and GPAT-4 mRNA levels 
are not altered by PPAR or LXR activators.19 The increase in 
GPAT-3 gene expression by PPAR-γ or PPAR-δ activators occurs 
at the level of transcription since treatment of keratinocytes 
with either PPAR-γ or PPAR-δ activators does not alter GPAT-3 
mRNA stability. However, PPAR activators increase the expres-
sion of GPAT-3 promoter constructs.19 Finally, the increase in 
GPAT-3 gene expression by PPAR activators leads to a significant 
increase in microsomal GPAT activity (which is consistent with 
an increase in GPAT-3), resulting in an increase in glycerolipid 
synthesis.19 Thus, PPAR or LXR activators specifically upregu-
late GPAT-3 expression but not other GPAT isoforms in cultured 
human keratinocytes.

Acute permeability barrier disruption by either tape-stripping 
or acetone treatment did not alter GPAT in mouse epidermis.

AGPATs. The end product of GPAT action is lysophospha-
tidic acid, which is further acylated to phosphatidic acid by add-
ing an acyl group to the sn-2 position of the glycerol backbone, 
catalyzed by AGPAT enzymes (Fig. 1). AGPAT is also known 
as lysophosphatidic acid acyltransferase. Like GPAT, mul-
tiple AGPAT isoforms have been identified in mammals, each 
encoded by a distinct gene.13,23,24 These AGPAT isoforms display 
tissue-specific variation in expression and activity as well as dif-
ferent substrate preferences, suggesting tissue-specific functions. 
New AGPAT isoforms have been identified recently and the cur-
rent understanding of the biological role of AGPATs is far from 
complete. Originally, five isoforms were found in mice and six 
in human, with mouse AGPAT-1-5 having validated enzyme 
activity.25 Additionally, mouse AGPAT-2 has two-fold higher 
enzyme activity than AGPAT-3, -4 and -5 in an in vitro system 
by direct comparison.24 Recently, AGPAT6-10 has been reported. 
Since AGPAT-6 has microsomal GPAT activity and is localized 
to the ER, it is now renamed as GPAT-4.26 AGPAT-8, which is 
highly related to AGPAT-5, has been shown to have acyl-CoA: 
lysocardiolipin acyltransferase activity27,28 and AGPAT activ-
ity.27 AGPAT-7 and AGPAT-9 are reported as members of the 
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whereas lipin-2 is expressed at high levels in liver, 
brain, and kidney, and lipin-3 is detected at low 
levels in several visceral tissues, including small 
intestine and liver.36 In human keratinocytes under 
proliferating conditions (maintained in low cal-
cium medium), lipin-1 expression is relatively high 
(C

T
: 23~24), followed by lipin-3 (C

T
: 25~27) and 

lipin-2 (C
T
: 27~28) (Table 1). In mouse epidermis, 

however, lipin-3 expression is relatively abundant 
(C

T
: 25~26), while lipin-1 and -2 expression levels 

are in similar ranges (C
T
: 28~29). All three lipin 

mRNAs are localized to the upper epidermis, 
while lipin-2 mRNA is also found in the lower 
epidermis.

Acute permeability barrier disruption by tape 
stripping results in an increase in Lipin 1 mRNA 
levels as early as 1 hour after barrier disruption by 
tape stripping with an ~5.5-fold increase at 3 hours, 
returning towards baseline levels at later times 
(Fig. 2). Similar changes occur in lipin-2 mRNA 
levels after permeability barrier disruption, albeit 
the magnitude of the increase is smaller (Fig. 2). 
In contrast, no alteration occurs in lipin-3 mRNA 
levels (Fig. 2). To confirm these observations, 
acetone treatment was employed to disrupt perm-
ability barrier function. As shown in Figure 3, 
3 hours after acetone treatment, both lipin-1 
and -2 mRNA levels increase, with no change in 
lipin-3 mRNA levels. However, occlusion follow-

ing permeability barrier disruption does not block the increases 
in lipin-1 and -2 expression, suggesting that the upregulation of 
lipin gene expression may be due to an injury reaction rather than 
being mediated by the loss of permeability barrier function.

Calcium induces differentiation, and treatment of keratino-
cytes with either high calcium, or PPAR/LXR activators has 
a limited effect on the expression of all three lipin isoforms in 
keratinocytes.

When skin structure and function were examined in the 
lipin-1 deficient mice,43 neither epidermal morphology, surface 
pH, SC hydration, basal trans-epidermal water loss (a sensitive 
marker of permeability barrier function), or the recovery of per-
meability barrier function following acute barrier disruption 
were altered in the lipin-1 deficient mice compared to wild type 
controls (data not shown). Thus, epidermal structure and func-
tion is not abnormal in lipin-1 deficient mice, presumably due to 
compensation by lipin-2 and -3.

DGAT. In the final step of triglyceride biosynthesis, dia-
cylglycerol is converted to triglyceride, a reaction catalyzed by 
diacylglycerol acyltransferase (DGAT).44 In mammals, there are 
two DGAT isoforms, DGAT-1 and DGAT-2. DGAT-1 has 6–12 
putative trans-membrane domains and is a member of the mam-
malian acyl-CoA: cholesterol acyltransferase gene family, whereas 
DGAT-2 has two trans-membrane domains and is a member of 
a gene family that includes DGAT-2 and three monoacylglycerol 
acyltransferase isoforms.11,18 Both DGAT-1 and DGAT-2 recog-
nize DAG and monoacylglycerol as substrates for triglyceride 

pathway.13 (Of note PAP2 has lipid phosphate phosphatase activ-
ity that is Mg2+-independent, NEM resistent, localized to the 
plasma membrane and is not involved in triglyceride synthesis 
through glycerol phosphate pathway).34 The PAP catalytic motif 
is present in the carboxyl-terminal lipin domain (C-LIP) of lipin 
proteins.35,36 This motif is critical for PAP function, as conver-
sion of aspartate residue to glutamate in this motif completely 
abolishes PAP activity.37 In addition, a naturally occurring 
glycine to arginine mutation in amino-terminal lipin domain 
(N-LIP) dramatically reduces PAP activity in mouse, indicating 
the importance of N-LIP domain as well.38,39 Finally, the PAP1 
family is composed of three members, Lipin-1, -2 and -3.13,40,41 
In addition to its enzyme activity Lipin-1 serves as a transcrip-
tional co-activator interacting with PPARα, PPARδ, PPARγ, 
hepatocyte nuclear factor 4α, and the glucocorticoid receptor 
to enhance transcriptional activity.37 Human lipin-1 and mouse 
lipin-1, lipin-2 and lipin-3 all have PAP activity, which is spe-
cific for phosphatidic acid and no activity for other related lipid 
phosphate substrates, including LPA, sphingosine phosphate, 
ceramide-1-phosphate.35,36 Furthermore, while lipin genes are 
conserved across a broad range of eukaryotes, including verte-
brates, fly, nematodes and yeast, lipin orthologs in all species have 
conserved regions of both C-LIP and N-LIP.42 This evolutionary 
conservation of lipin proteins indicates the important role of lipin 
proteins in cellular function.

There is a distinct tissue distribution of the three lipin family 
members. Lipin-1 is mainly found in adipose tissue and muscle, 

Figure 2. The time course of lipin gene expression in mouse epidermis after acute 
barrier disruption by tape stripping. Skin samples were collected from mice at 0, 1, 3, 6 
and 24 hours after tape stripping and from control mice as described previously in refer-
ence 54. Epidermis was isolated and total RNA was prepared for real-time PCR analysis. 
Relative mRNA levels of lipin-1, -2 and -3 (36B4 as internal control) were determined by 
RT-PCR. Data are expressed as percentage of control (100%) for each time point and 
presented as mean ± SEM (n = 6). The experiment was repeated once using a different 
batch of mice with similar results. *p < 0.05; **p < 0.01.
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synthesis.45,46 However, they bear little sequence simi-
larity and there are functional differences in their cata-
lytic properties, subcellular localization, physiological 
function and regulation.18,45,47,48

Both DGAT-1 and -2 are widely expressed in mam-
malian tissues, including small intestine, liver, adipose 
tissue, mammary gland, skeletal muscle, heart, spleen 
and pancreas.49,50 In neonatal mouse skin, DGAT-2 is 
expressed at higher levels in the epidermis than der-
mis.51 DGAT-1 is barely detectable in both epidermis 
and dermis of neonatal mice skin.51 Using RT-PCR, 
DGAT-1 and 2 mRNA can be detected in adult mouse 
epidermis but DGAT-2 expression is much more robust 
than DGAT-1 (Table 1). The lower epidermis (basal 
layer) accounts for the majority of DGAT-2 expres-
sion (Fig. 4). While DGAT-1 is not highly expressed in 
adult mouse epidermis it is very abundantly expressed 
in sebaceous glands.52

In cultured human keratinocytes the expression 
levels of DGAT-1 is as expected modest (Table 1). 
However, very surprisingly, in cultured human kera-
tinocytes the expression level of DGAT-2 is very low 
(C

T
 = 34–35) compared with that in mouse epider-

mis (C
T
 = 23–25) (Table 1). That the low abundance 

of DGAT-2 mRNA in human keratinocytes is not a 
technical problem is shown by the ability to detect sig-
nificant amounts (C

T
 = 29–30) of DGAT-2 mRNA in 

Hep3G cells, a human liver cell line. Why the level of 
expression of DGAT-2 is different between human keratinocytes 
and mouse epidermis is unclear. It could be a species difference 
or perhaps due to the procedures used to grow human kerati-
nocytes. It would be of interest to measure DGAT-2 mRNA in 
human epidermis.

Treatment of keratinocytes with either high calcium, or 
PPAR/LXR activators did not alter the expression of DGAT-1 
or -2 in keratinocytes. Additionally, neither DGAT-1 nor 
DGAT-2 expression changed following acute barrier disruption 
by tape-stripping in hairless mouse epidermis, indicating that 
basal DGAT expression suffices to meet the permeability barrier 
requirement in adult mice.

The skin of Dgat2-deficient mice lacks elasticity and is shin-
ing, dry and cracked shortly after birth.51 Dgat2-deficient mice 
rapidly loss weight from dehydration owing to impaired perme-
ability barrier function and increased transepidermal water loss.51 
Structurally, light microscopy of Dgat2-/- skin reveals compact 
hyperkeratosis of affected stratum corneum, thinning of the epi-
dermis and flattened of the dermo-epidermal interface owing 
to the effacement of the epidermal rete ridges/papillary projec-
tions.51 Electron microscopy of Dgat2-/- skin further reveals a 
reduced number of lamellar membranes and lamellar bodies with 
decreased lipid content, reflecting abnormalities in the lamellar 
body secretory system.51 A 96% reduction in triglyceride con-
tent is found in Dgat2-/- skin, with normal levels of other lipids.51 
Further analysis reveals a drastically reduction (>90%) of linoleic 
acid content in triglycerides and free fatty acids. Most interest-
ingly, there is a marked reduction (>60%) in the content of 

Figure 3. Lipin gene expression in mouse epidermis after acetone treatment. 
Mouse skin was treated with acetone (filled bar) or phosphate buffered saline (as 
control) (empty bar). Three hours after treatment, skin samples were collected and 
epidermis was prepared. Total RNA was prepared for real-time PCR analysis, and 
the relative mRNA levels of lipin-1, -2 and -3 (36B4 as internal control) were deter-
mined. Data are expressed as a percentage of phosphate buffered saline control 
(100%) and presented as mean ± SEM (n = 4). The experiment was repeated once 
using a different batch of mice with similar results.  **p < 0.01, *p < 0.05.

Figure 4. Localization of DGAT-2 in mouse epidermis. The upper and 
lower epidermis was prepared and the relative mRNA expression levels 
of DGAT-2 (36B4 as internal control) were determined. Results are ex-
pressed as a percentage of the upper epidermis (100%) and presented 
as mean ± SEM (n = 7). The experiment was repeated once using a dif-
ferent batch of mice with similar results. *p < 0.05.
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expresses multiple isoforms is unclear but there are a number of 
possible explanations. First, having multiple different enzymes 
ensures that a mutation in a single enzyme is not likely to sig-
nificantly compromise triglyceride or phospholipid synthesis, 
which is essential to form a functional permeability barrier. The 
exception to this is DGAT, where mice deficient in DGAT-2 die 
shortly after birth, in part due to an abnormality in permeability 
barrier function. Second, the epidermis is structurally very com-
plex with undifferentiated proliferating cells in the basal layer 
and markedly differentiated cells in the outer layers. It is possible 
that expression of different isoforms differs for each cell type. 
Third, each isoform may localize to a different site within the 
cell. For example GPAT-1 is located in the mitochondria whereas 
GPAT-3 is located in the endoplasmic reticulum, which could 
result in different functional roles. Fourth, keratinocyte have a 
wide variety of fatty acids, including very long chain fatty acids, 
and it is possible that different isoforms have specificity for cer-
tain fatty acids. To utilize the diverse variety of fatty acids in 
keratinocytes may require different isoforms. Finally, the fac-
tors that regulate the expression or catalytic activity of different 
isoforms could differ allowing for a more precise regulation of 
triglyceride and phospholipid synthesis in keratinocytes. Future 
studies will need to address the roles of these various isoenzymes 
in epidermal metabolism.
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acylceramide, a skin lipid containing linoleic acid that is critical 
for skin barrier maintenance.53 Thus, the lack of DGAT2 results 
in a decrease in triglyceride synthesis leading to abnormal lamel-
lar body formation and secretion, and ultimately impaired skin 
permability barrier function.

Furthermore, there are striking differences in the phenotype 
of DGAT-1 and DGAT-2 knock-out mice: Dgat2-deficient mice 
die shortly after birth, owing to severe abnormalities in both 
energy metabolism and skin permeability barrier function.51 In 
contrast, Dgat1-deficient mice are viable and healthy, but have 
significant changes in lipid metabolism in several tissues includ-
ing white adipose tissue and skin, particularly the sebaceous 
glands.52 Dgat1-deficient mice developed dry fur and hair loss 
after puberty and exhibited impaired water repulsion and hypo-
thermia due to the defective production of fur lipids, in particu-
lar type II wax diesters.52 These changes are accounted for by 
abnormalities in sebaceous gland function. Dgat1-deficient mice 
do not have epidermal abnormalities and permeability barrier 
function is normal.

Conclusion

The biosynthesis of triglycerides and phospholipids requires mul-
tiple steps each of which are catalyzed by several different enzyme 
isoforms. Studies have shown that the epidermis expresses three 
GPAT isoforms, at least five AGPAT isoforms, three lipin iso-
forms, and two DGATs (in the mouse DGAT-2 is predominant 
with relatively low expression of DGAT-1). Why the epidermis 
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