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The Place of Cognitive Architectures
in a Rational Analysis

John R. Anderson
Department of Psychology

Carnegie-Mellon University

This paper contains a summary of the main points that | will be making in my
presentation at the Cognitive Science Meetings. Some more details will be in that
presentation. All the details and formal derivations will be found in Anderson (in press).

This paper will consider the Soar architecture of Laird, Newell, and Rosenbloom (in press),
my own ACT* architecture (Anderson, 1983), and the PDP architecture of McClelland and
Rumelhart (Rumelhart & McClelland, 1986, McClelland & Rumelhart, 1986). Now that there
are numerous candidates for cognitive architectures, one is naturally led to ask which might
be the correct one or the most correct one. This is a particularly difficult question to
answer because these architectures are often quite removed from the empirical phenomena
which they are supposed to account for. In actual practice one sees proponents of a
particular architecture arguing for that architecture by reference to what | call signature
phenomena. These are empirical phenomena which are particularly clear manifestations of
the purported underlying mechanisms. The claim is made that the architecture provides
particularly natural accounts for these phenomena and that these phenomena are hard to
account for in other architectures. In this paper | will argue that the purported signature
phenomena tell us very little about what is inside the human head. Rather they tell us a
lot about the world in which the human lives. The majority of this paper will be devoted to
making this point with respect to examples from the SOAR, ACT*, and PDP architecture.

As a theorist who has been associated with the development of cognitive architectures for
15 years | should say a little about how | came to be advocating this position. | have
been strongly influenced by David Marr's (1982) metatheoretical arguments in his book on
vision which are nicely summarized in the following quote:

An algorithm is likely to be understood more readily by understanding the nature
of the problem being solved than by examing the mechanism (and the hardware) in
which it is solved.

Marr made this point with respect to phenomena such as stereopsis where he argued that
one will come to an understanding of the phenomena by focusing on the problem of how
two two-dimensional views of the world contained enough information to enable one to
extract a three-dimensional interpretation of the world and not by focusing on the
mechanisms of stereopsis. He thought his viewpoint was appropriate to higher-level cognition
although he did not develop it for that application. As recent as a few years ago | could
not see how his viewpoint applied to higher level cognition (Anderson, 1987). However, in
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the last couple of years | have come to see how it would apply and have realized its
advantages The basic point of Marr's was that if there is an optimal way to use the
information at hand the system will use it. | have stated this as the following principle:

Principle of Rationality. The cognitive system operates at all times to optimize the
adaptation of the behavior of the organism.

One can regard this principle as being handed to us from outside of psychology--as a
consequence of basic evolutionary principles. However, | do not want to endorse this
viewpoint on that principle because there are many cases where evolution does not optimize.
Rather, | view it as an empirical hypothesis to be judged by how well theories that embody
the principle of rationality do in predicting various cognitive phenomena. Developing a
theory in a rational framework involves the following 6 steps:

1. Precisely specify what the goals of the cognitive system are.

2. Develop a formal model of the environment that the system is adapted to (almost
certainly less structured than the experimental situation).

3. Make the minimal assumptions about computational costs.
4. Derive the optimal behavioral function given (1)-(3).

5. Examine the empirical literatures to see if the predictions of the behavioral function
are confirmed.

6. |If predictions are off, iterate.

The theory in a rational approach resides in the assumptions in (1) - (3) from which the
predictions flow. | refer to these assumptions as the framing of the information processing
problem. Note this is a mechanism-free casting of a psychological theory. It can be
largely cast in terms of what is outside of the human head rather than inside. As such it
enjoys another advantage which is that its assumptions are potentially capable of
independent verification.

SOAR--Power Law Learning

The signature phenomenon | would like to consider for the SOAR theory is power-law
learning which is referenced in many of the SOAR publications. This refers to the linear
relationship that is obtained between the logarithm of the amount of practice and the
logarithm of response time which implies that the performance measure is a power function
of practice. In the Soar model the power law falls out of the chunking learning mechanism
plus some critical auxiliary assumptions. Chunking refers to the collapsing of multiple
production firings into a single production firing that does the work of the set. It is
assumed that each chunk produces a performance enhancement proportional to the number
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of productions eliminated Chunks are formed at a constant rate--either on every opportunity
or with equal probability on every opportunity. The final critical assumption is that as
chunks span larger and larger units the number of potential chunks grows exponentially. As
a consequence of the last assumption, learning will progress ever more slowly because it
takes more experience to encounter all of the larger chunks.

I will offer a rational analysis of power law learning which will also explain the forgetting
and massing functions. This will be part of a larger rational analysis of human memary
which is the topic of the next section.

A Rational Analysis of Human Memory

The claim that human memory is rationally designed might strike one at least as
implausible as the general claim for the rationality of human cognition. Human memory is
always disparaged in comparison to computer memory--it is thought of as slow both in
storage and retrieval and terribly unreliable. However, such analyses of human memory fail
both to understand the task faced by human memory and the goals of memory. | think
human memory should be compared with information-retrieval systems such as the ones that
exist in computer science. According to Salton and McGill (1983) a generic information
retrieval system consists of four things:

(1) There is a data base of files such as book entries in a library system. In the human
case these files are the various memories of things past.

(2) The files are indexed by terms. |In a library system the indexing terms might be
keywords in the book's abstract. In the human case the terms are presumably the concepts
and elements united in the memory. Thus, if the memory is seeing Willie Stargell hit a
home run the indexing terms might be Willie Stargell, home run, Three Rivers Stadium, etc.

(3) An information retrieval system is posed queries consisting of terms. In a library
system these are suggested keywords by the user. In the case of the human situation it is
whatever cues are presented by the environment such as when someone says to me “Think
of a home run at Three Rivers Stadium”.

(4) Finally there are a set of target files desired by which we can judge the success of
the information retrieval.

One thing that is very clear in the literature on information retrieval systems is that they
cannot know the right files to retrieve given a query. This is because the information in the
queries does not completely determine what file is wanted. The best information retrieval
systems can do is assign probabilities to various files given the query. Let us denote the
probability that a particular file is a target by P[A]. In deciding what to do informational
retrieval systems have to balance two costs. One is what Salton an McGill call the
precision cost and which | will denote C,. This is the cost associated with retrieving a file

which is not a target. There must be a corresponding cost in the human system. This is
the one place where we will see a computational cost appearing in our rational analysis of
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memory. The other cost Salton and McGill call the recall cost and we will denote it C,. It

is the cost associated with failing to retrieve a target. Presumably in most cases it is much
larger than the precision cost for a single file or memory.

Given this framing of the information processing problem we can now proceed to specify
the optimal information-processing behavior. This is to consider memories (or files) in order
of descending P[A] and stop when the expected cost associated with failing to consider the
next item is greater than the cost associated with considering it or when

PIA] Cy < (1-PA)) Cp (1)

We now have a complete theory of human memory except for one major issue--how
should the system go about estimating P[A]. | propose that the system should use the
item’s past history of usage and the elements in the current context to come up with a
Bayesian estimate of that probability. A particularly transparent way of stating this is with
the Bayesian odds ration formula which we can state

PIA|H, &Q) PlA|H,) P(i|A)
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where P(A|H,&Q) is the posterior probability that the memory is needed given its past history
and the cues in the current context, P(K|Hk&0) is 1-P(A|H,&Q), P(A[H,) is the posterior
probability given just the history, P(K[HA)=1-P{A|HA). P(i|A) is the conditional probability that i

would be in the current context if A is needed, and P{i|ﬁ) is the conditional probability if A
is not needed. This way of formulating the relationship nicely breaks up the need
probability into the product of a history factor P(A[H,)/P(A|H,) plus a context factor the

product involving the P(i/A)/P(i/A). Note that in this context factor we are assuming the
individual cues are independent of one another in order to obtain a product. | neither want
to argue that this is really true nor that the human system actually acts as if it is. | am
only using this as an approximation to get an indication of what the rational predictions are.

The History Factor

In investigating the implications of this rational analysis for the power-law learning function
we need to focus on the history factor in the above equation. In particular we need to
specify P(A|H,). To determine this we need to know how the past history of usage of a

memory trace predicts whether it will be currently used. To determine this in a truly valid
objective way we would have to follow people around, determine when they use particular
facts, and induce what the empirical relationship is. It is nearly impossible to imagine
collecting such objective statistics in the human case but such statististics are available for
other information retrieval systems. For instance, there is data about how past borrowings
from a library predict future borrowings(Burrell, 1980; Burrell & Cane, 1982). There is data
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about how past accesses to a file predict future accesses(Stritter, 1977). The data for
these different domains is quite similar in terms of the nature of the functional relationship
between past use and current use. | propose that these relationships are true of all
information retrieval systems including the human one.

Burrell developed a model for library borrowings which provides a good analytical starting
point. There are three basic assumptions in Burrell's model. The first is that the items in
a system vary in their desirability. Burrell assumes that the distribution of desirability is a
gamma distribution with parameter b and index v. He is able to basically show such a
distribution of borrowings in the case of a library system. The second assumption that
Burrell makes is that there is an aging process such that items will decay in their borrowing
rate with the passage of time. Again he can empirically validate that such an aging
process does occur. This means that if we take an item from the gamma distribution with
initial desirability X\ its desirability after time t will be Xr(t) where r(t) describes the rate of
decay. Burrell uses a simple exponential decay in rate of the form. The third assumption
of Burrell is that borrowings are a Poisson process and that times until next borrowing are
exponentially distributed with rate Ar(t).

With these assumptions we can derive what | call the recency-frequency function RF(n.t)
which is the probability that an item introduced t time units ago and used n times over that
period will be needed in the current time unit. It produces a linear relationship between
number of uses, n, and need probability. This is a special case of a power function.

When we consider plausible monotonic transformations from need probability to latency the
linear relationship disappears but the power function relationship remains. Because of the
aging factor r(t) we wind up predicting the forgetting function quite accurately as well.

Thus, we have shown that power law learning can be predicted from a rational perspective
which sees human memory as adapting to the statistics of information use. Thus, it is what
is outside the human head not what is inside that is controlling the memory performance. |
should emphasize that this does not deny that chunking may be one of the mechanisms the
mind uses to achieve this adaption. However, the argument is that the real explanation is
in the outside world and not in the internal mechanisms.

ACT*--The Fan Effect

Now | would like to turn to the second architecture, ACT*, and consider a signature
phenomenon which has played a key role in its development. This is the fan effect
(Anderson,1983) . A typical experiment is focused on subjects’ ability to recognize sentences
that they have learned. According to ACT*, upon being presented with a sentence such as
“The lawyer is in the park” the subject activates the concepts in the sentence such as
lawyer, in, and park. Activation spreads from these concepts along various network paths.
The time to recognize a sentence is a function of the amount of activation reaching the
proposition node. The critical additional assumption in the ACT* theory is that the amount
of activation that can spread out of a node is fixed and that the more paths emanating out
of a concept the less activation can go to any one proposition and so the slower
recognition will be. Fan refers to the number of such paths and is manipulated by
manipulating the number of facts studied about a concept like lawyer.
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We can extend our previous rational analysis of the fan fan effect to accomodate the fan
effect. Here we will be interested in analyzing the context factor rather than the history
factor since we are manipulating properties of the memory cues that we presented to
subjects That is we want to focus on the quantities P(i|A)/P(i/A) where the i are concepts
like lawyer and the A are the sentences to be recalled. We can rewrite these as

PlilA)  PIA[IVPLIVPIA)

PGUA)  PLA|I)PLVPIA) i

The P(i) drop out. Since P(A) must be near one (there are millions of traces and no one
can be very probable) it can also be ignored. To an approximation we can also ignore
P(Ali). This is a good approximation to the extent that the probability of needing a trace
remains low even in the presence of a predictive cue. If we allow this approximation we
get the following which is very easy to analyze:

PuijA)  PlA[G

—_—
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Our claims do not depend on making this approximation. It is just that they are a lot
easier to see with the approximation. In our experiments P(A) is basically constant for all
items and so the critical factor turns out to be the probability that the trace is relevent
given a particular cue. This is precisely what is manipulated by fan in a typical experiment.
The more facts associated with a particular concept the less likely any one is given the
concept. Basically if the fan is n the probability is 1/n. Anderson (1976) did an experiment
that decorrelated fan and probability by manipulating the probability of testing various facts
associated with a particular concept. That experiment showed conclusively that the critical
factor is probability and not fan.

Thus, the fan effect is a consequence of memory using the correlation between cues and
a memory's relevence to predict when the memory is needed. It may be that spreading
activation is one of the mechanisms that the mind uses to compute the correlation.
However, for current purposes the critical fact is once again that the explanation of the
phenomena lies in what is outside of the human head and not what is inside.

PDP -- Categorization

PDP models involve representing knowledge in a distributed form where specific
experiences do not have specific encodings. On the other hand PDP models do learning
locally such that changes in strengths of connection between specific elements must underlie
these distributed encodings. This leads PDP models to naturally produce generalization
phenomena such that they extract central tendencies out of the experience of specific
instances. In introducing PDP models, McClelland, Rumelhart, & Hinton(1986) give a lot of
play to categorization phenomena which is the identification of common categories in a set
of tendencies. It receives more page space in their article than any other phenomena.
There is a substantial literature in cognitive psychology on categorization behavior.
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McClelland et al. do not actually simulate any specific experiment in this literature but
rather offer a simulation of the extraction of the characteristics of the members of two
gangs (the jets and the sharks) as a prototype of the experiments in the literature.

To develop a rational analysis of categorization behavior the first thing we need to ask is
what are the goals of the cognitive system in forming categories. In much of the
experimental literature on categorization one gets the feeling that the driving force behind
categorization is some sort of social conformity--that we need to learn to use the same
labels to describe objects as do other people. However, this clearly cannot be all of the
picture, particularly because people can learn to identify categories in the absence of any
labels. | think the real function of categorization is to maximize the system's ability to
predict properties of objects including their labels. Clearly, a system that can make
accurate predictions will be in a position to maximize its goals.

The reason people form categories to maximize prediction is because of the nature of
objects in the external world. Formally, the following is the characterization that | will
assume in my rational derivations. | will assume that the world seen so far has consisted
of n objects which are partitioned into s disjoint sets or categories. Each object can be
classified according to some r dimensions (for simplicity | will only consider cardinal
dimensions) where each dimension i has some m, values. The members of a category

belong in that category by virtue of possessing theoretical probabilities Pi; that they will

display value | on dimension i. These probabilities provide the intensional definition of a
category in contrast to its extensional definition which can be gotten simply by listing the
category members.

These assumptions are intended as descriptions of the external world not just of the
perception of the world in the human head. One can ask why the objects in the world
should partition themselves in disjoint partitions defined by conjunctions of features. |
cannot say | know the total answer but there are some obvious things to point at. For
instance there is the genetic phenomenon of species which enforces a disjoint (no
crossbreeding) partitioning of conjunctively defined categories (the common genetic code
within a species). Other types of objects like physical elements and tools tend to produce
similar disjoint partitionings of conjunctively defined categories. One can also question the
probabilistic definition of category membership since this is in contradiction to the tradition in
the artificial intelligence work on categories. However, | think it is indisputable that category
members do display their features with only certain probabilities. Most labradors are black
and have four legs but neither feature is displayed universally.

From these assumptions one can derive a Bayesian algorithm to assign objects to
categories and to estimate the theoretical probabilities Pyj: Again, | do not have the space

to go into the details of the algorithm. | have applied the algorithm to the now classic
data of Medin and Schaffer (1978) where it did better than their original model using only a
single parameter rather than their many. | have also applied it to the long series of
experiments involving the Posner and Keele (1968) stimuli using an encoding of these
materials developed by Hintzman (1986). It accounts for all the phenomena that Hintzman
lists for these materials. | have also successfully predicted the results of a complicated
experiment of Elio and Anderson (1981) which no model before Hintzman's was able to
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account for. Rather than discussing the specific experiments in detail it is worthwhile listing
some of the major phenomena that are known about human categorization and explaining
how the model accounts for each:

1. Clearly the research indicates that, to a degree, people extract the central tendency of
a set of instances in that their behavior is a function of the distance from that central
tendency. This simply reflects a sensitivity to the statistical correlation between features and
category identity which amounts to using conditional probabilities in a Bayesian analysis.

2. In addition to distance from a central tendency the literature has found an effect of
distance from specific examples(eg., Medin & Schaffer, 1978). This is produced by the
tendency of the model to break diverse categories into subcategories where the features
cluster together. The reason for this is that predictive power is gained by such
decomposition.

3. It has shown that when a category has multiple central tendencies subjects can pick
this up (Neumann, 1977). As with point (2) this is produced by the tendency to break a
large diverse category into smaller categories that increase predictability.

4. There is an effect of category size as was discussed with respect to the Posner &
Keele task. This is simply a sensitivity to base rates.

5. Rosch, Mervis, Gray, Johnson, Boyes-Braem (1976) has documented the many
circumstances in which there appear to basic level categories. The existance of such
categories in our framework is simply a consequence of the fact that these categories
maximize the predictability of the world--which is basically Rosch's original point.

6. It is not necessary for feedback on category membership to be given in order for
categories to emerge(Fried and Holyoak, 1984). Categories will emerge any time they
increase in predictability of the universe. However, by applying category labels we increase
the amount of structure that can be predicted and so enhance the value of category
membership. So, labels should enhance categorization but are not essential.

7. The more things that can be predicted from category membership the more likely a
category is to be formed even though this means one has to |learn more about a category
(Billman, 1983).

Thus it seems that categorization phenomena can be again explained from a rational
perspective assuming that the controlling factor is the structure of the world and not the
structure in the human head. Note again this analysis does not deny that PDP mechanisms
may be the way that the mind implements this rational analysis. However, it denies that
PDP models provide an adequate explanation of the phenomena.
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In summary we have looked at three cognitive architectures For each we have have
taken a signature phenomenon and developed a reasonable model of the world in which
that phenomenon occurs and the goals of humans operating in that world. We have made
a few assumptions about computational costs which are not at all mechanism specific We
have derived the signature phenomena as solutions to the optimization problems we defined
In each case this rational analysis led to an account that was as accurate or more accurate
than the original mechanistic account.

Now we come to the hard question of what the implications are of these demonstrations.
I am not really sure what the implications are but | will hazard a guess. This is that
cognitive architectures should be viewed as notations for expressing the behavioral functions
that emerge as the solutions to the optimization problems in a rational analysis. The real
theory lies in the assumptions made in the statement of the optimization problem--i.e.. the
assumptions about the goals, the world, and the computational limitations. These
assumptions do not have the same identifiability problems that the mechanistic models do
and lead to a much deeper explanation of the phenomena at hand. However, something
computationally powerful like a Turing-equivalent architecture is necessary if we are going to
be able to express the solution to these optimization problems.

Thus the theory is in the framing of the information processing problem and the
architectures provide notation for expressing the solutions to the optimization problems. |
see a one-to-many mapping between f-amings and architectures. That is, one can take a
single framing and for every architecture find some configuration of its mechanisms that
enable the optimal behavior to be computed. Choice among architectures is then not to be
determined by veracity of empirical predictions. Rather it is to be determined by how easy
it is to work out the optimal behavior in that architecture. Ease of use is the classic
criterion for selecting among notations. Empirical veracity is reserved for theories.
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