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CIBER de Epidemioloǵıa y Salud Pública, Madrid, Spain

Paloma Botella-Rocamora*

Universidad CEU-Cardenal Herrera, Valencia, Spain

(*Correspondece author: pbotella@uch.ceu.es)

Sudipto Banerjee

University of California, Los Angeles (UCLA), USA

February 9, 2015

Abstract

Multivariate disease mapping enriches traditional disease mapping studies by analysing sev-

eral diseases jointly. This enables one disease to borrow information from the others and produce

improved estimates of the geographical distribution of their risks. Beyond multivariate smooth-

ing for several diseases, several other factors, such as sex, age group, race, time period, and so

on, could also be jointly considered to derive multivariate estimates. The resulting multivariate

structures should induce an appropriate covariance model for the data. In this paper, we intro-

duce a formal framework for the analysis of multivariate data arising from the combination of

more than two factors (geographical units and at least two more factors), what we have called

Multidimensional Disease Mapping. We develop a theoretical framework containing both sep-

arable and non-separable dependence structures and illustrate its performance on the study of

real mortality data in Comunitat Valenciana (Spain).

1 Introduction

Multivariate disease mapping continues to attract considerable attention from spatial analysts,

statisticians and epidemiologists. See, for example, Dobra et al. (2011); Maŕı Dell’Olmo et al.
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(2014); Macnab (2011). These statistical models enable us to reliably estimate the geographical

distribution of the risks corresponding to several diseases over a set of small areas making up the

region of study. Traditional disease mapping methods borrow information from other geographical

units, especially neighboring units, in order to improve the risk estimates on every study unit.

Multivariate methods also use the information on the spatial distribution of other potentially related

diseases to estimate the joint spatial distribution for this set of diseases. Dependence among the

geographical distributions of these diseases will make their estimated multivariate risks to reflect

better the underlying risks since they are based upon much more information.

Recently, Martinez-Beneito (2013) proposed a versatile framework colligating a variety of mul-

tivariate disease mapping models arising from Gaussian Markov Random Field (GMRF) models

with separable and non-separable covariance structures. Furthermore, Martinez-Beneito (2013)

meld different spatial dependence patterns with different covariance models between diseases, pro-

ducing a large number of models as special cases. A further modification by Botella-Rocamora

et al. (2015) accrues substantial computational benefits. This enables joint modeling for a larger

collection of diseases (tens of them) and integrates information from the spatial patterns asociated

with each disease.

The multivariate disease mapping literature has presented models with just two factors—

diseases and geographical units. We are aware of only two articles dealing with more than two

factors. Zhang et al. (2006) considered a separable dependence structure with four factors: (i) time

period, (ii) sex, (iii) age group, and (iv) geographical unit for studying the incidence of colorectal

cancer. Tzala and Best (2008) studied three factors: (i) disease, (ii) time period, and (iii) geo-

graphical unit in studying gastric cancers in Greece. Although these two papers are examples of

multivariate studies with more than two factors, they deploy specific models suitable for the data

in their papers, i.e., they do not set any theoretical framework for the joint study of geographical

patterns defined by the combination of three or more factors. The current article seeks to generalize

the framework of Martinez-Beneito (2013) and Botella-Rocamora et al. (2015) to more than two

factors (geographical units and at least two more factors). We refer to this as multidimensional

modelling, in contrast to the more common two-factor multivariate modelling. We will introduce

some general guidelines intended to be useful in multidimensional studies instead of introducing a

particular model to be used in some specific dataset.

This paper is organized as follows: Section 2 introduces some basic tensor algebra that will be
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later used for building up the models in the rest of sections. Section 3 shows how to generalize the

separable multivariate modelling proposal to the multidimensional case. Section 4 introduces non-

separability into the multidimensional context and describes the high number of models that arise

when separability is no longer assumed. Section 5 shows two examples illustrating multidimensional

modelling in a real setting. First, we show on a trivariate study example how separability can be

a restrictive assumption in some cases and how we could use the theory introduced in the former

sections to overcome the separability assumption. Second, we undertake a four-dimensional study

considering two unstructured factors (Disease and Sex) and two structured ones (Geographical unit

and Period). Finally, Section 5 contains some conclusions about the results and models developed

in the previous sections.

2 Basic tensor algebra

We introduce some notations that we use later. We define an N -th order tensor, or array, of

dimensions (L1, L2, . . . , LN ) as any element in the set {X : X ∈ RL1×L2×...×LN }. We denote

tensors by calligraphic uppercase letters. Vectors and matrices are first and second order tensors,

respectively. Following convention, we denote vectors by boldface lowercase letters (v instead of V)

and matrices by boldface uppercase letters (A instead of A). The symbol · on subscripts of tensors

means that we are referring to all the possible values of the corresponding subindex. Therefore,

both X··k and X··k denote the matrix corresponding to the three-dimensional tensor X with its

third index set to k. The vector eni is n × 1 with all entries equal to 0, except the i-th, which is

1. We also denote by In the n× n identity matrix and Bdiag({Ai}ni=1) denote the block-diagonal

matrix with block-diagonal elements given by {A1, . . . ,An}.

The vector unfolding of X into the column vector x = (x1...1, x2...1, . . . , xL1...1, . . . , xL1,...,LN )′

is denoted by vec(X ). Similarly, reordering the elements of a tensor into a matrix will be called

matrix unfolding. Thus, the n-dimension matrix unfolding of the tensor X , denoted by X(n), is just

the Ln ×
∏N
i=1,i 6=n Li matrix [x1...1·1...1 : x2...1·1...1 : . . . : xL1...1·1...1 : . . . : xL1...Ln−1·Ln+1...LN ], where

xi1...in−1·in+1...iN with “·” in the n-th position is the Ln× 1 vector with entries xi1...in−1,j,in+1...iN for

j = 1, 2, . . . , Ln.

More generally, let α = {1, . . . , N|α|} be a subset of {1, . . . , N} for some integer N|α| < N . The

α-matrix unfolding of the tensor X , denoted by X(α), is the (
∏
i∈α Li)× (

∏
j∈{1,...,N}\α Lj) matrix
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formed by stacking the column-vectors

{vec(x·...·iα+1...iN ); iα+1 = 1, . . . , Lα+1; . . . ; iN = 1, . . . , LN} .

The α-matrix unfolding can further be generalized to any set of indices by simply performing a

permutation of the indices before applying the above definition. We will refer to the inverse process

of unfolding a tensor as folding.

The n-dimensional product of a tensor X with an Ln ×Ln matrix A is defined as the tensor Y

resulting from folding AX(n) into a tensor of the same dimension as X . This is denoted using ◦n

as follows:

Y = A ◦n X ←→ Y(n) = AX(n) . (1)

We also generalize the n-dimensional product analogous to how we defined the α-matrix unfolding

as follows. Given an index set α, if A is a (
∏
i∈α Li)× (

∏
i∈α Li) matrix, then the tensor obtained

from folding AX(α) into a tensor with the same dimensions as of X will be referred to as the

α-product of a tensor X with A. We denote this product as A ◦α X .

3 A fully-separable multidimensional proposal

Let us elucidate further with the example of a trivariate setting, which presents all the challenges

in the multidimensional approach. Therefore, for easier exposition, we restrict our attention to

the trivariate setting and, when required, point out any specific attributes of models with more

than three factors. Here, we are interested in modelling the spatial distribution of risks for several

combinations of two factors. The first factor in this setting will always be the geographical unit,

while one of the other two factors will usually be the disease (from a set of diseases) and the third

factor may either be unstructured, such as Sex or Race, or structured in some way such as Time

period or Age group. The spatial term may also be considered as a special case of a structured

factor. Let Oijk and Eijk denote, respectively, the number of observed and expected outcomes for

the i-th geographical unit of study and for the specific combination of the other two factors in

the study, indexed with subindexes j and k. In disease mapping, one customarily assumes that

Oijk ∼ Po(EijkRijk) for i = 1, . . . , I, j = 1, ..., J and k = 1, ...,K), where Rijk, the relative risk for

the i-th geographical unit and (j, k) values for the second and third factors in the study, satisfies
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log(Rijk) = µjk + θijk. Modelling θijk in a rich, flexible and computationally efficient manner is the

main goal of multidimensional modelling and, hence, of the current article.

3.1 The fully-separable model

Consider the expression in (1). This expression, when applied to the first dimension of a matrix X,

yields A ◦1 X = AX(1) = AX. Similarly, for its second dimension, we obtain B ◦2 X = BX(2) =

XB′. Consequently, the matrix expression AXB′ can be expressed as

AXB′ = (AX)B′ = B ◦2 A ◦1 X . (2)

Alternatively, the associative property of matrix products further yields

AXB′ = A(XB′) = A ◦1 B ◦2 X. (3)

This extends easily to produce the following for a general n-dimensional array:

vec(A ◦n X ) = (ILN ⊗ ...⊗ ILn+1 ⊗A⊗ ILn−1 ⊗ ...⊗ IL1)vec(X ). (4)

The expression AXB′ was the key starting point in the multivariate disease mapping work of

Martinez-Beneito (2013). It also forms the basis for our multidimensional proposal. The matrices

A and B, when applied to a Gaussian random noise matrix X, induce, respectively, dependence

between diseases and within diseases into the model. Since each row of AX is a linear combination of

the rows of X, A introduces spatial dependence among geographical units. Similarly, B combines

information across the different columns of X and introduces dependence between the different

diseases. This interpretation is apparent from expression (2)—both A and B represent identical

operations on the different dimensions of the random matrix X.

Expression (2) also tells us how to generalize the approach in Martinez-Beneito (2013) to the

multidimensional context. Adapting to the trivariate case, we obtain

θ = M3 ◦3 M2 ◦2 M1 ◦1 X , (5)

where M1, M2 and M3 are matrices of suitable dimensions inducing dependence on θ along each

5



of the three factors considered in the model and Xijk ∼ N(0, 1) ∀i, j, k. Applying (4) successively

to the previous expression, we easily obtain

vec(θ) = (M3 ⊗M2 ⊗M1)vec(X )

and, therefore,

vec(θ) ∼ N
(
0, (M3M

′
3)⊗ (M2M

′
2)⊗ (M1M

′
1)
)
.

In this manner, we can easily build a fully separable dependence structure for all the factors

considered, by means of succesive ◦i operations, with differents values of i. Applying (2) and (3) to

the trivariate case in (5) reveals that the order in which dependence on the factors are introduced

in the separable case is irrelevant; they all yield identical models. Thus, for the separable case, the

introduction of dependence on the different factors is a commutative operation.

Let us now turn to the definition of the Mi’s. For any of the factors considered in the analysis,

we will distinguish between those factors having a completely unstructured covariance matrix (Sex,

Race, Disease, ...) from those having some kind of structure. For example, we may want to account

for an ordinal structure for Age group or Time period and for the obvious spatial arrangement

(neighborhood structure) for the set of geographical units. For any unstructured factor, such as

a set of causes for mortality, Botella-Rocamora et al. (2015) suggests that a reasonable modelling

choice for M is to assume that each of its elements follow N(0, σ2) for a suitable value of σ2.

On the other hand, for a structured factor, the dependence arising from the structure should be

incorporated within the corresponding Mi. Here, MiM
′
i is the covariance matrix for the elements

of that factor and Mi is chosen so as to yield the desired covariance matrix. For example, in

a time-structured factor, such as the years within the period of study, we could be interested in

considering a first-order autoregressive structure. The entries in the covariance matrix among years

is given by

Σi,j = σ2
ρ|i−j|

1− ρ2
,

so the corresponding Mi matrix inducing temporal dependence on the observations could be, for
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example, the lower Cholesky matrix of Σ,

σ



(1− ρ2)−1/2 0 0 · · · 0

ρ(1− ρ2)−1/2 1 0 · · · 0

ρ2(1− ρ2)−1/2 ρ 1 · · · 0
...

...
...

. . .
...

ρJ−1(1− ρ2)−1/2 ρJ−2 ρJ−3 · · · 1


. (6)

Any other decomposition of the form Σ = MiM
′
i can, in principle, be used although the Cholesky

usually offers numerical stability and relative computational efficiency.

Spatial dependence is introduced in a similar manner with Σ being a suitable spatial covariance

matrix. Some attention to the size of Σ is usually warranted because the models cease to be feasible

for larger covariance matrices. As argued by Martinez-Beneito (2013), we can conveniently recast

(5) as

θ = M3 ◦3 M2 ◦2 Y , (7)

where the spatial dependence on the first dimension of Y = M1◦1X has already been incorporated,

i.e.,

vec(Y) ∼ N
(
0, IL3 ⊗ IL2 ⊗ (M1M

′
1)
)
.

Unfortunately, covariance structures arising from tensor products may not be identifiable. For

example, in the trivariate setting, M1, λM2 and λ−1M3 would lead to the same covariance matrix

for every nonzero scalar λ ∈ R\{0}. We need to impose constraints on the Mi’s to ensure identifi-

ability, once again, distinguishing between structured and unstructured factors. Structured factors

usually have a scalar variance term that scales the correlations. Fixing this scalar variance term

to 1, for example, will resolve the aforementioned identifiability issue. To ensure identifiability in

separable models, we cannot have separate variance terms associated with each factor. Instead, a

single global variance term will absorb the variability due to all structured factors.

Matters are somewhat more lenient with unstructured factors and one can restrict the unstruc-

tured Mi’s matrices in several different ways to ensure identifiability. We point out one such model,

which is especially convenient from a computational standpoint. Botella-Rocamora et al. (2015)

propose to model the elements on the unstructured Mi matrices, say M2 and M3, as Gaussian

random effects. Identifiability is guaranteed by simply setting the variances of these random effects
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to be equal, whence the entries in M2 and M3 will have similar scale parameters. Now matrices

such as λM2 and λ−1M3, for any arbitrary nonzero scalar λ 6= 1, are inadmissible because they

would introduce different scales.

Imposing one of these restrictions on every factor will remove the identifiability issues during

the inference. This comment also applies to the non-separable settings we describe below.

4 A non-separable multidimensional proposal

The separable model discussed in the previous section is a straightforward extension of the sep-

arable model in Martinez-Beneito (2013) subjected to the M -based reparameterization proposed

in Botella-Rocamora et al. (2015). However, it is not difficult to envision situations where sepa-

rable disease mapping models are inappropriate. For example, seeking different between-diseases

covariance matrices for males and females would lead to nonseparable models. Spatio-temporal

situations where every disease is likely to have its own temporal auto-regressive processes (with

disease-specific parameters) is another example where separable models may be too restrictive. Af-

ter all, why should all the diseases share a common temporal dependence structure? Here, we show

how tensor algebra can be exploited to construct nonseparable multidimensional disease mapping

models. We first extract some tools from the separable proposal and then use them to construct

nonseparable models. As earlier, we elucidate with the three-factor case.

4.1 Going beyond separability

Under separability, dependence is separately introduced for every factor by means of an n-dimensional

product of a tensor with the corresponding structured matrix. For nonseparable models, the de-

pendence structure for one factor will change according to the different levels of the other(s). For

example, if space and disease are two factors, then each disease (i.e., each “level”) will have its own

spatial covariance matrix. To fix matters, let us assume that we want to introduce non-separable

covariance structures between the second and third factors in the trivariate setting.

In the separable case, dependence of these two factors was induced using (7). Following (4),

the separable case yields

vec(θ) = (M3 ⊗ IL2 ⊗ IL1)(IL3 ⊗M2 ⊗ IL1)vec(Y) .
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We introduce nonseparable structures by nesting the dependence structure for one factor within

the levels of the other. For example, we can nest level 2 into level 3 by generalizing the preceding

expression to

vec(θ) = (M3 ⊗ IL2 ⊗ IL1)(Bdiag({M2(i) : i = 1, ..., L3})⊗ IL1)vec(Y). (8)

Alternatively, factor 3 could be nested into factor 2 as

vec(θ) = (Bdiag({M3(i) : i = 1, ..., L2})⊗ IL1)(IL3 ⊗M2 ⊗ IL1)vec(Y) (9)

yielding a different covariance structure and, therefore, a different model.

The complexity in nonseparable dependence structures depend upon the number of variables

defining each of them and will vary as long as the numbers of levels in factors 2 and 3 are different.

Unlike in separable models, where the order of the factors is irrelevant because the matrix products

in (5) are commutative, for nonseparable models the order matters because the matrix products are

not commutative in (8) and (9). Therefore, we can further generate two new models from (8) and

(9) based upon the order in which the factors appear. Consequently, the nesting of two variables

will generate four different models.

Nesting factors, as above, is not the only way to generate nonseparable models. Consider the

expressions in (8) and (9) and the models obtained by reversing the order of the variables in the

model. These can be viewed as alternative expressions for

vec(θ) = (M(2,3) ⊗ IL1)vec(Y) ,

for some M(2,3) with a specific structure. This expression could also be alternatively formulated as

θ = M(2,3) ◦(2,3) Y. (10)

An obvious way to generalize these expressions is to consider M(2,3) as an unstructured (L2L3)×

(L2L3) matrix as opposed to the nested design. Therefore, non-separability can also be induced

between factors as a kind of factorial design since expression (10) does not consider a factor to

be put into the other, as in the nested design. Instead, it models any possible combination of

the two factors at hand. In this case, every combination of the levels of the factors is modelled
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as a single factor in a multivariate problem considering as much flexibility as possible to model

their interaction. Therefore, factorial interactions between two factors may be considered the most

flexible way to induce dependence on them.

Hitherto, we have only considered interactions between two factors. Interactions between three

or more factors is treated analogously. Factorial nonseparability for higher orders is fairly straight-

forward to achieve by considering the α-product of a matrix with a tensor, where α is a vector of

length greater than two. To introduce dependence among more than two factors, we can nest one

factor within a combination of others. One example of this interaction is to allow the parameter(s)

controlling the spatial structure to vary, for example, for every combination of disease and sex.

However, for three or more factors the number of different interactions that could be defined is

much higher than for only two factors. This is not dissimilar to the explosion in the number of

models arising in ANOVA when considering high-order interactions. This problem is further exac-

erbated because under non-separability the order in which the dependence structures are included

into the model also matter. Hence, we advise caution when introducing high-order interactions

within multidimensional settings in order to avoid a large number of models.

To summarize, multidimensional disease mapping models can be treated as a series of operations

on an array X

Mα1 ◦α1 Mα2 ◦α2 . . .Mαn ◦αn X , (11)

where αi (i = 1, . . . , n) are subsets of {1, ...N} with one or more elements and Mαi (i = 1, . . . , n) are

(
∏
j∈αi Lj)×(

∏
j /∈αi Lj) matrices. If αi = (j) for any j ∈ {1, . . . , N} and j /∈ αi′ , ∀i′ 6= i, then factor

j will be separable with respect to the rest of factors in the model. In contrast, if one factor belongs

to just one of the αi’s, whose length is greater than one, then it will have a non-separable covariance

structure with regard to the rest of factors included in αi but a separable covariance structure with

regard to the rest of factors in the model. Moreover, whenever nonseparable dependence structures

are present, i.e., αi is of length greater than 1, some of the operations in (11) will cease to be

commutative. More precisely, if αi and αj satisfy αi ∩ αj = ∅ then both operations ◦αi and ◦αj
will commute; otherwise they will not. Besides, since we have at least two different tools (nesting

and factoring) for defining Mαi , where αi has length greater than one, the number of nonseparable

multidimensional models grows rapidly with growing numbers of factors.
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4.2 The trivariate case

We now illustrate, in greater detail, the three-dimensional setting. First, we are going to introduce

the following nomenclature to name the different models that can be built with the above-described

tools. We use i· to denote the model where a separable dependence structure is induced for the i-th

factor. We let i(j)· represent when factor i is nested within factor j, i.e., the covariance matrix for

factor i varies by the levels of factor j, while ij· denotes a factorial covariance structure for factors

i and j in the model. Thus, 1 · 2 · 3· denotes the trivariate model, while 1(2) · 23· represents the

model where the covariance matrix for the levels of the first factor varies across the levels of the

second factor, and the second and third factors are modelled using a factorial covariance structure.

Finally, for any two dependence structures (separable or nonseparable), x · y· depicts the model

where the dependence structure on x precedes that on y. Hence, in general, the x · y· model is

different from y · x·.

Multidimensional modelling can be seen as a combination of mathematical operations on an

unfolded Gaussian array. These elemental operations for the trivariate case are shown in Table 1.

For instance, the fully separable model is a combination of operations corresponding to a separable

structure for the first (1·), second (2·) and third (3·) factors in the model. Table 1 also shows, in the

unstructured cases, the matrix (matrices) involved and the number of variables in it (them). The

different number of variables in every model indicates the different levels of complexity. It is also

instructive to note that if, for example, L2 > L3, then nesting factor two within factor three (i.e.,

2(3)·) yields a more complex model than nesting factor three into factor two. Consequently, these

two nesting operations produce different models. Moreover, the number of parameters implied by

any nesting design is lower than that in the corresponding factorial design. This, again, shows the

added complexity in factorial models.

Each row of Table 1 corresponds to a different Mα◦α operation for different values of α and Mα.

The last two columns of Table 1 reveal these two values, for every elemental operation shown. These

operations can involve one, two or three factors altogether and they can induce separable, nested,

factorial or mixed (nested/factorial) covariance structures. These operations impart structure to

the variance in different ways. They range from the simplest model, which assigns structure for

all three factors (the fully-separable model), to the most complex, which, by separate, assigns a

factorial dependence structure for all three factors (the 123· model).
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The fifth column in Table 1 depicts Mα corresponding to every elemental operation in that

table. Note that each of these operations lead to mathematically different expressions, thereby

yielding different covariance structures. Furthermore, for any of the rows in Table 1 and any

k /∈ α, the corresponding Mα is either a Kronecker product or the sum of Kronecker products of

matrices with their k-th component being equal to ILk . The product of a square matrix with a

suitable identity matrix is commutative. This implies that Mα◦α and Mα′◦α′ commute for any

two mutually disjoint index sets α and α′.

We also remark that certain combinations of elemental operations, while mathematically le-

gitimate, may lack statistical interpretability. For example, the combination of the 12· and 23·

operations is difficult to interpret because they assume that factors one and two on one side and

two and three on the other side are combined with as much flexibility as possible for every one of

these pairs. In that case, it would seem much more natural to consider instead a 12(3)·, a 23(1)·

or a 123· relationship.

Table 1 considers that factors one, two and three in multidimensional modelling are unstruc-

tured. However, in our context there will always be a structured factor among these—the spatial

component. We will henceforth assume that the spatial units correspond to the levels of the first

factor. As is customarily assumed in spatial models, we specify certain spatial process or distribu-

tion such as Intrinsic CAR or proper CAR to induce spatial dependence on the geographical units.

Now the operations 12·, 13·, 123·, 12(3)· and 13(2)· in Table 1 will no longer be sensible because

they produce unstructured relationships for both the spatial units and the other factor, which con-

tradicts the assumed spatial structure for factor one. Therefore, for structured factors in general

(and not just for spatial), nesting appears to be the only practical way of building nonseparable

relationships with other terms in the model as it preserves the original dependence structure of

factors.

However, models incorporating any factor(s) nested within the spatial factor do not seem rea-

sonable either. These models would allow some covariance matrix (for any of the factor(s) in the

model) to vary by every spatial unit. This would surely yield overparameterized models since the

number of geographical units is typically much higher than the number of levels in the rest of the

factors in the model. Hence, although the combination of operations in Table 1 could generate a

large number of models, all these considerations will limit that quantity to some extent and, as we

will see in the next example, that quantity will be (at least for the trivariate case) very reasonable
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in practice.

We conclude this section with some remarks on the practical implementation of the proposed

models. Although Mα in Table 1 can appear to be very intricate, they are usually much easier to

implement in practice. For example, to induce a separable covariance structure we simply consider

the product between one of the dimensions of a Gaussian array and a matrix endowed with the

appropriate structure. Second, if we want to nest that structure within another factor, for example

j, the only change that we need to do is to allow that matrix to change for every level of the j-th

factor. Finally, if we wanted to introduce a factorial interaction between two factors, we would

just have to consider every combination of both of them as a single factor and would have to

introduce a separable covariance structure, as described above, for that combination of factors.

These mathematical operations are conceptually straightforward and computationally inexpensive.

In fact, for the illustrations in the next Section, all the models (three and four-dimensional) were

easily implemented using the Bayesian software WinBUGS (Lunn et al., 2000).

5 Performance on Comunitat Valenciana’s mortality data

We have carried out two separate multidimensional studies with Comunitat Valenciana’s mortality

data. The dataset corresponds to the Spatio-temporal Mortality Atlas of Comunitat Valenciana

(Zurriaga et al., 2010), which comprises the deaths occurred in that region (540 municipalities)

during the period 1987-2006. The first of the examples shows the effect of different kinds of non-

separable trivariate structures, illustrating the models introduced in Section 3.2. We demonstrate

the inappropriateness of the separable hypothesis and illustrate how nonseparable models, con-

structed using our approach, offer vastly improved fits. Finally, we analyze a second dataset with

four factors: two unstructured factors (Sex, Disease) and two structured factors (Period and ge-

ographical unit). We again investigate the influence and sensitivity of the different models we

estimate.

All the models we describe below have been implemented in WinBUGS 1.4.3 (Lunn et al., 2000)

and the programs are available at http://www.uv.es/∼mamtnez/MultiDim.html. For each model,

we have considered proper CAR distributions to model the spatial dependence among geographical

units. We ran three chains for each model with a total of 15, 000 iterations per chain. The first

5, 000 of these, were discarded as burn-in and only one of every 30 iterations was retained for
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subsequent posterior analysis. Thus, a total of 1, 002 iterations (334 per chain) were finally saved.

The different chains used for every model were run in parallel in order to speed up computations.

That is, instead of sending all three chains in a single call to WinBUGS, we made three different calls

(one per chain) by means of an R (R Development Core Team, 2009) function developed for this

purpose. Instead of running all three chains in a single core (as is the default in WinBUGS), each

chain was run in a different core of the processor(s). This accrues considerable computational

savings. Convergence was assessed by means of visual inspection of the history of the Deviance and

a sample of variables in the models (models will typically contain thousands of variables) during

the MCMC process.

5.1 A non-separable trivariate mortality study

We next consider two trivariate scenarios with factors: Geographical Unit (540 levels), Disease (2

levels) and Sex (2 levels). We will refer to them as factors 1 to 3, respectively. We embark upon

two separate studies. First, we consider the joint study of Colon and Rectum Cancer for both sexes

and, second, the study of Lung Cancer and Diabetes also for both sexes. For these two studies

we have ran all those models arising from the combination of the elemental operations in Table 1.

Nevertheless, some of those combinations were not implemented because they produce trivial or

uninterpretable models. Thus, for all models leading to identical fits because they just permute

commutative operations (such as the 1 · 2 · 3·, 1 · 3 · 2·, 3 · 1 · 2·, . . . models), we ran just one of these

equivalent choices. Moreover, we did not consider the nesting of the factors disease or sex into the

geographical component since, as alluded to earlier, this does not have much sense. We neither

considered any factorial design composed of the geographical factor since that model would miss the

spatial structure inherent to the geographical component. Finally, for computational convenience

and to exploit Expression (7), we restricted ourselves to models with the spatial factor entering

first.

Table 2 shows the DIC, Deviance Information Criterion (Spiegelhalter et al., 2002), for the

implemented models and for both datasets. Model 1 in Table 2 corresponds to a fully separable

dependence structure, Models 2–8 modify Model 1 by nesting one factor inside other(s) and Model 9

corresponds to a factorial relationship for Disease and Sex. Other models are also possible combining

two or more of the elemental operations implemented in models of rows 2–9 in Table 2. Model 10

is the only such model we implemented as it was expected to yield some improvement, for the lung
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Table 2: DIC for the Colon cancer/Rectum cancer and the Lung cancer/Diabetes studies. Fifth
column shows the computing times (in minutes) for every model implemented for the Lung can-
cer/Diabetes study.

Model Dependence DIC DIC Computing
structure (Colon/Rectum) (Lung/Diabetes) time

1 1.2.3. 7546.9 9674.9 18.5

2 1(2).2.3. 7553.4 9669.6 20.8
3 1(3).2.3. 7539.1 9677.4 21.5
4 1(23).2.3. 7545.3 9670.4 18.0
5 1.2(3).3. 7547.2 9672.5 20.4
6 1.3.2(3). 7556.0 9689.6 16.5
7 1.2.3(2). 7551.0 9671.0 17.4
8 1.3(2).2. 7549.7 9670.9 14.5

9 1.23. 7552.0 9666.8 67.8

10 1(2).23. - 9670.5 66.9

cancer/disease study, as mentioned below.

For the Colon/Rectum study, the model with the lowest DIC is Model 3. This model accom-

modates spatial dependence parameters for the CAR models to vary across sexes. We point out

that none of the models accounting for nonseparability between Disease and Sex (Models 5–9) show

notable improvements with respect to the fully separable model. Model 10 was not run for this

study because it too considered nonseparability between Disease and Sex and was not expected to

yield any improvement.

In contrast, nonseparability between Disease and Sex seems to improve the fit for the Lung/Diabetes

study. One such model with the factorial structure delivers the lowest DIC. Nesting of the geo-

graphical component within the other factors may also yield some improvement in some occasions,

mainly the nesting of the geographical component within diseases. Therefore, we have run the

model incorporating a factorial interaction between Disease and Sex and nesting the geographical

structure within diseases. However, this model does not perform better than that incorporating

only the factorial relationship between Disease and Sex. The fifth column of Table 2 shows, for

illustrative purposes, the computing time needed to run every model for the Lung/Diabetes study

(for the Colon/Rectum study those times were basically the same). These times are very reasonable

although the factorial relationship substantially increases computational time.

Table 3 shows the estimated correlations (posterior means and 80% Credible Intervals) between

the different maps for the 1 · 23· model in both studies. Results in that table correspond to the
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Table 3: Estimated correlations matrix (posterior means and 80% Credible Intervals) between the
different maps for the 1 · 23· model in both studies. Upper/lower row of every cell corresponds,
respectively, to the Colon/Rectum and Lung/Diabetes studies.

Disease 1 Disease 2 Disease 1 Disease 2
Men Men Women Women

Disease 1 1 0.73 [0.53,0.89] 0.84 [0.70,0.96] 0.63 [0.39,0.85]
Men 1 0.62 [0.49,0.74] 0.40 [0.22,0.58] 0.40 [0.29,0.51]

Disease 2 1 0.79 [0.60,0.95] 0.77 [0.57,0.94]
Men 1 0.00 [-0.22,0.24] 0.77 [0.69,0.86]

Disease 1 1 0.63 [0.33,0.90]
Women 1 -0.24 [-0.45,-0.02]

Disease 2 1
Women 1

model considering a factorial non-separable relationship between Disease and Sex. The upper and

lower rows of every cell correspond, respectively, to the Colon/Rectum and Lung/Diabetes studies.

For the Colon/Rectum study, the fully-separable model yielded a posterior mean of the correlation

between diseases of 0.79 (80% Credible Interval: [0.62, 0.93]) and a correlation between sexes of

0.92 (80% Credible Interval: [0.83, 0.99]). Therefore, the improvement of jointly considering both

sexes in this study is higher than that of considering both diseases altogether.

Table 3 reveals that for the factorial relationship in the Colon/Rectum study, correlations

between maps are mainly driven by the product of those correlations in the fully separable model.

This explains why models imposing nonseparable relationships on these two factors in Table 2 were

performing worse. On the other hand, for the Lung/Diabetes study, correlation between diseases

was estimated as 0.35 (80% Credible Interval: [0.23, 0.46]) and that between sexes was 0.62 (80%

Credible Interval: [0.53, 0.71]) for the fully-separable model. In this case, the combination of these

values does not reproduce the correlation matrix shown for these diseases in Table 3, which even

yields a somewhat counter-intuitive negative correlation for Lung cancer and Diabetes in women.

For these two diseases, a separable relationship between Disease and Sex is clearly an excessively

simplistic assumption.

Figure 1 shows all four maps for the Colon/Rectum (upper row of the plot) and Lung/Diabetes

(lower row of the plot) studies. Results for the Colon/Rectum study correspond to the 1(3) · 2 · 3·

model, while results for the Lung/Diabetes study correspond to the 1 · 23· model; these produce

the best fit in their respective cases. For the Colon/Rectum study, all four maps appear to be very

similar. The more appreciable discrepancies in them correspond to both different diseases and sexes.
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Relationships among maps are somewhat more intricate for the Lung/Diabetes study. Here, both

maps for men share common features but the two maps for women are very different, perhaps the

most different among all pair-wise comparison of maps. This suggests, again, the nonseparability

of Disease and Sex in this study.

5.2 A four-dimensional mortality study

We now present a four-dimensional version of the Lung/Diabetes study from the previous Section.

We consider the same dataset, dividing the whole period of study (1987-2006) into five different

four-year periods. Hence, we have a new factor, the Time period, to include in the multidimensional

study. This factor, unlike Disease and Sex, has a specific structure reflecting temporal dependence

that should, ideally, be accounted for. We assume a first-order autoregressive structure to model

this factor and specify the resulting dependence structure using the matrix in (6).

As in our earlier experiments, we have again run several models and compared their perfor-

mances using the DIC. Results are shown in Table 4. When a model engenders an alternative by

permuting the order in which dependence is introduced to the factors, the alternative model is

shown in the right-hand-side of the table. Since Time period has a specific (temporal) structure,

no factorial interaction with any other factor of the model has been considered. These models

incorporate only non-separable modifications of the fully-separable model involving two factors. If

more than one model performed better than the fully-separable model, such as the 1(4) · 2 · 3 · 4·

and 1 · 23 · 4. models, we combined them into a single one in a second step of the analysis, e.g., into

a 1(4) · 23 · 4 model.

Results in Table 4 are shown in the following way. Row 1 shows the DIC for the fully-separable

model, rows 2–3 show the results for models imposing nonseparability for the new factor in the

study (Time period), and rows 4–11 show the results for those models assuming separability for

Time period. As can be appreciated, models in rows 2–3 perform worse than the fully-separable

model. This suggests that a nonseparable dependence structure for Time period is not appropriate.

Put differently, temporal evolutions for every combination of Disease and Sex can be considered as

first-order autoregressive processes of a common parameter. When time is considered a separable

factor, results are quite similar to the trivariate case. A nonseparable relationship between Disease

and Sex enjoys credence and the spatial parameters do not seem to vary for any of the factors

considered in the model. Moreover, no nonseparable relationship between Time period and either
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Figure 1: Posterior mean of the Relative Risk for every municipality. Results in the first row corre-
spond to the Colon/Rectum study and those in the second row correspond to the Lung/Diabetes
study.
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Table 4: DIC for the models run. Rows two and three consider Time period as a non-separable
factor while rows four to eleven consider it as a separable factor. Models in the right-hand-side
of the table correspond to the left-hand-side models changing the order in which dependence is
induced into the factors of the models.

Model DIC Model DIC

1.2.3.4. 29008.7 – –

1.2.3.4(2). 29014.9 1.3.4(2).2. 29021.3
1.2.3.4(3). 29015.7 1.2.4(3).3. 29015.4

1(2).2.3.4. 29013.5 – –
1(3).2.3.4. 29008.3 – –
1(4).2.3.4. 29020.3 – –
1.2(3).3.4. 29003.6 1.3.2(3).4. 29007.9
1.2.3(2).4. 29019.9 1.3(2).2.4. 29002.5

1.23.4. 29002.5 – –
1.2(4).3.4. 29025.2 1.4.2(4).3. 29018.8
1.2.3(4).4. 29028.9 1.2.4.3(4). 29039.9

Disease or Sex seems appropriate. The only two modifications substantially improving the fully-

separable models (models 1 · 3(2) · 2 · 4· and 1 · 23 · 4·) propose a nonseparable relationship between

Disease and Sex, with the factorial model being more general than the nested. It makes little sense

to combine these two models because the factorial model is the most general proposal incorporating

nonseparability between these factors.

Regarding computing times for the models run in this study, the fully-separable model took 780

minutes to run. This time is about 40 times higher than the corresponding trivariate model. We

have also run the four-dimensional model without considering any particular temporal structure for

Time period and the computing time decreased to 351 minutes. Therefore, the temporal structure

seems to considerably slow down the MCMC sampling. For the remaining models, the increase

from the three to the four-dimensional case is similar. The best-performing model, the factorial

1 · 23 · 4· model took 2.223 minutes to run. All models revealed excellent convergence and could

surely have been run with less iterations than those simulated in our study.

Models 1 · 3(2) · 2 · 4· and 1 · 23 · 4· have been selected as the most appropriate models based

on Table 4. These two models, obviously without modeling Time period, also produced excellent

results in the trivariate case. Hence, the results from both analyses clearly agree. Regarding the

1 · 23 · 4· model, which has the best DIC score in the trivariate case, the parameter controlling

the temporal correlation of the auto-regressive process has a posterior mean of 0.92 (80% Credible

Interval: [0.90, 0.94]), which is strongly indicative of high temporal dependence for all four combi-
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nations of Disease and Sex. The correlation matrix between every combination of Disease and Sex

for the four-dimensional study (results not shown) is very similar to that shown in Table 3 for the

Lung/Diabetes study. Again, the results clearly agree for both studies.

Finally, we have also included, as supplementary material to the paper, the maps of the first,

third and fifth period of study for every combination of Disease and Sex. These maps clearly show

temporal dependence, although they also show temporal variability for each of these combinations.

Such a temporal coherence of maps between periods is very rewarding because all of them are based

upon a very limited amount of information that is compensated for by the sharing of information

between maps.

6 Conclusions

This paper has tried to settle some theoretical bases for the development of multivariate disease

mapping analyses involving more than one factor besides the geographical factor, what we have

called multidimensional disease mapping studies. Very clear links can be drawn between the multi-

dimensional disease mapping problem and tensor algebra-calculus therefore the latter offers a clear

contextual framework where multidimensional methods can be developed, formalized and studied.

In our opinion the establishment of new links between these two areas of research may yield new

tools and very valuable ideas for the development of multidimensional models.

The models developed within this framework, despite their high complexity due to the difficulty

of incorporating several factors within a unique dependence structure, are reasonably affordable

from an applied point of view. All of them can been run within WinBUGS what makes this method-

ology available for a very large community of users. Moreover, computing times are also reasonable

what makes this methodology available in practice for the joint study of several factors altogether.

Finally, multidimensional modelling makes possible to decompose the data in smaller geographical

or temporal pieces since other diseases, sexes, races, ... will provide complementary information

making it possible to yield reliable estimates in such a small units. This paper introduces some

guidelines that will make possible some new studies on that direction and allowing to work with

smaller units than those currently used.
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