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Abstract

Groundwater-r aquifers worldwide
compounded by population growth, economic development, and climat
Managed aquifer recharge provides one tool to alleviate fl ood risk and re
groundwater. However, concerns grow that intentional fl ooding of
groundwater recharge, a practice known as Ag-MAR, may increase the leaching of
pesticides and other chemicals into groundwater. This study employs a physical
based unsaturated flow model to determine the fate and transport of residues of four
pesticide in three vadose zone profiles characterized by differing fractions of sar
(41%, 61%, and 84%) in California’s Central Valley. Here, we show that the complex
heterogeneity of alternating coarse and fine-grain hydrogeologic units controls t
transit times of pesticides and their adsorption and degradation rates. Unsatur

zones that contain a higher fraction of sand are more prone to support preferential
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fl ow, higher recharge rates (+8% ), and faster (42%) water fl
transport, more flooding-induced pesticide leaching (about 22%), as well as more salt
leaching correlating with i1increased r
Interestingly, considering preferential flow predicted higher degradation and retention

rates despite shorter travel times, attributed to the trapping of pesticides in immobile

zones where they degrade more effectively. The findings underscore the importance

of considering soil texture and structure in Ag-MAR
environmental risks while enhancing groundwater recharge. The study also highlights

that selecting less mobile pesticides can reduce leaching risks in sandy areas.

KeywordsY DRUS, Particle swarm obprtd fieireanttiicad Pleeticide

leaching; Capillary barrier

How do managed aquifer recharge and soil heterogeneity affect fate and transport of
pesticide residues?
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1 Introduction

California is leading the United States agricultural produ
different products including fruit, vegetable and specialty crops such as to
(70 % ), b el 1 p e p p e r s ( 3 8 % o f
( L u C 1 e ro. I a mn ,id th al] ge br oea |
chlorantranilipaabanethoxyfenozdde common pesticides used to cultivate
many of these crops. Pesticides have played a substantial role in improving
yields, but also bear the risk of polluting freshwater resources Ww
harmful impacts on humamn health whe
(Tudi et al., 2021). Diffuse pesticide leaching from agricultural fields is the dominant
source of pesticides in streams and groundwater.

Pesticide management practices for runoff or groundwater protection areas have
been adopted in the US since the 1980; mandating for example minimum irrigation
amounts (6 — 25 mm) and banded applications to reduce surface runoff or leaching
risk to groundWP&tRA, 1985h)e main processes controlling the fate
pesticides in the environment are degradation, retc¢
atmospheric dispersion, runoff, and 1é¢Mdhtteg et al., 20.1@nce pesticides
enter the soil or vadose zone, their fate is controlled by adsorption to clay particles or
organic matter, transformation and degradation processes, soil water flow, and crop
uptake (Kohne et al., 2009).

While pesticide fate and transport has been studied at soil column to plot
catchment scales for decades, understanding their fate in natural or structured soils
has been a particular challenge since structured soils can
pesticides or other contaminants via non-equilibrium preferential flow pa
macropore flow) before they can degrade or be adsorbed. Most agricultural soils are
structured soils that contain various soil horizons with contrasting soil hydraulic or
chemical properties. In addition, agricultural soils receiving pesticide appli

often undergo a variety of natural processes (e.g. wetting-drying cycles, shrink-swell
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behavior) and management practices (e.g. tillage, plowi
preferential flow.

Because structured soils are prone to preferential fl ow, pe.
models (e.g. MACRO, HYDRUS, PEARL, DAISY, CRK
PESTLIS, SIMULAT) that explicitly consider preferential flow have been shown to
outperform model¢Ktthhated®t naolt. , 2009; Scorza and
2005). For example, Holback et al. (2022) used the agrohydrological model DAISY
to simulate the transport of bentazone and imidacloprid to drainpipes in a cracking
clay field. After incorporating preferential flow features such as biopores and cracks
into the model, it simulated satisfactorily water flow and pesticide leaching to drain
tiles (Holbak et al., 2022). Imig et al. (2023) observed the transport of four herbicides
(metolachlor, terbuthylazine, prosulfuron, and nicosulfuron) in two lysimeters filled
with a sandy gravel and clayey sandy silt over 4.5 years and simulated transport in
HYDRUS-1D. They found that pesticide transport could be adequately des
using nonequilibrium (i.e. dual-porosity) models, where each model had a differently
sized mobile and immobile zones. For the clayey sandy silt the relativ
mobile zone was dominating solute transport, leading to higher solute concentration
in the column drainage (Imig et al., 2023a). Dusek et al. (2015) simulated the fate and
transport of fiateapenei,cithasw a(quin, sulfome:
metolachlor, and Jmndaglopdidturbed tropical Oxisol soi
experiment by considering (or not) chemical nonequilibrium in HYDRUS-1D. They
showed thatatrazine, sulfometuron methyl, and S-metolachlor were better described
considering kinetic sorption, while the other two pesticides could be s
characterized using the chemical equilibrium model (Dusek et al., 2015). Sidoli et al.
(2016)investigated the fate and transport of metolachlor and its two metabolites in
column-leaching experiments in glaciofluvial soils, considering both physi
chemical nonequilibrium in HYDRUS-1D. They identified a strong i1
chemical nonequilibrium on the fate of metolachlor b

4
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(Sidoli et al., 2016). Kohne et al. (2006) applied multiple physical and nonequilibrium

models in HYDR BSmhtlhaetef ate and transport of isop
terburazine, and bromid¢ idBaggregated loam columns subjected to multiple
irrigation cycles. They showed that simultaneous consideration of preferential flow
and kinetic adsorption (using the dual-permeability model with two-site sor
provided the best model performance (Kohne et al., 2006).

Many studies to date have focused on pesticide leaching in agricultural soi
under controlled conditions (e.g. soil column or lysimeter experiments) or nat
precipitation or irrigation regimes to evaluate soil mar
management practices for different soil types. These studies have resulted in pesticide
best management practices such as pesticides with medium or high mobility should
n ot b e a pplie d t o s atur ated S O
(Waskom, 1995) However, not many studies have focused on the fate and transport
of pesticides under large water applications (> 150 mm [6 inches]), in coarse textured
soils (e.g. soils that support large percolation rates), considering preferential flow and
kinetic transformation processes (Pang et al., 2000). The study of pesticide fate under
large water applications is of particular interest, as many groundwater-d
a g r 1 ¢ u 1 t wuwu r a 1 r e g 1 o n s
(Perez et al., 2024), requiring managed aquifer recharge of depleted aquifers by using
agricultural lands for both, agricultural production and managed aquifer r
(MARDahlke et al., 2018; Levintal et al
2023bAgricultural managed aquifer recharge (Ag-M:
groundwater is actively replenished by spreading flood flows onto agricultural lands,
may exacerbatethe leaching of pesticide residues from the root zone to groundwater
because of the large amounts of water (e.g. 0.5 to over 10 m of recharge) applied for
MAR (Bachand et al., 2014; Guo et al., 2023; Levintal et al., 2023a; Murphy et al.,

2021; Waterhouse et al.D202i0¢d knowledge of the fate and transport of

pesticides in the vadose zone of agricultural soils when flooded for MAR is needed to
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adequately inform the placing of suitable Ag-MAR locations. Evidence that th
systems or conditions require more research can be gleaned from a few studies that
observed early arrivals of pesticides at the groundwater table in response to strong
precipitation or irrigation events soon after pesticides were applied in coarser, more
h e t e r o (g € = & P a 15 es to 1 al 1s . | 1
1995). Addressing this gap helps us assess the feasibility of implementing Ag-MAR
while avoiding (or minimizing) groundwater pollution.

In this study, we combine field observations and non-equilibrium flow modeling
in HYDRUS-1D to describe the fate and
(imidacloprid, thiamethoxam, chlorantraniliprole, and methoxyfenozide) and bromide
in the vadose zone of three Ag-MAR field sites in the Central Valley, Californi
USA. Our main research objectives are 1) to capture and compare the
transport of the four pesticides in three agricultural soils in response to one large (1.2
m) water application using water balance and mass balance approaches; 2) evaluate
the role of vadose zone heterogeneity (e.g. soil hydraulic and chemical properties) on
the occurrence of non-equilibrium preferential flow at the three sites and its impact on
the water and contaminant (e.)g.trpmesitti diideess; Bamd 3) analyze
sensitivity of solute transport and reaction parameters in HYDRUS, their calibration
using global optimization methods, and how they related to dominant processes and

factors governing the fate and transport of pesticides.

2 Methods

2.1 Study site and soil texture profiles
The Ag-MAR experiment was conducted at the Terranova Ranch (36°34'27"N

120°05'39"W, 50 m), located southwest of Fresno, CA, USA (Fig. 1a), within the
Kings River basin, which is underlain by a predominantly sand and gravel aquifer

bound by the Corcoran Clay at a depth of 140 m, a thick aquitard that spans th
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western half of the Kings River basin. The depth of the groundwater t
approximately 70 meters at the time of data acquisition (February 2021).

The soil at the site is a Traver fine sandy loam (fine-loamy, mixed, ther
Natric Haploxeralf). Laboratory sediment analysis of undisturbed soil samples of the
top 2.5 m of each soil profile (P1, P2, and P3) showed progressively inc
fractions of sand from P1 (41%) to P3 (61%) and
(Fig. 7 and Table S1), with a cemented duripan at around 1 m depth at P1 and P3
(Bachand et al., 2014).

2.2 Application of flood water, bromide tracer, and pesticides
A 32,376 m(8 acres) recharge pi{big. 1bwas flooded in February 16-24,

2021, using pumped groundwater. A total of 38,774.74 wf water (1.2 m in depth)
was applied at a flow rate of ~3.3fmin.The start times of flooding at each soil
profile location were deduced from the time of water content increase, which was
12:50 on Feb. 16 at P3, 14:00 on Feb. 17 at P2, and 8:00 on Feb. 18 at P1. The end
times of flooding at each soil profile were deduced from the endpoints of decreasing
levels in surface ponding, which were 12:40 on Feb. 24 at P3, 19:50 on Feb. 24 at
P2, and 19:50 on Feb. 24 at P1.

At each profile, 541 g of B806 g of KBr) dissolved in 100 L of water were
applied. The area of the tracer applicatioiX%ag @ifhin each profile (Fig.
1c). The KBr solution was applied on February 15", 2021, at P1 and P2, on February
16", 2021, at P3, between 7:30-10 am. Br” was thus applied at a concentration of 5410
ppm at an irrigation rate of 0.00381 cm/min.

Table S2 shows the history of pesticide applications and their rates for the four
pesticides stumidd choepoaide t cdhdomantraamndiprole
methoxyfenozjddd able S3 provides the basic physical and chemical properties of

these pesticides.
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Fig. 1.A schematic of the study site in California, USA (a), the recharge plot, three
soil profiles P1, P2, P3, and the potassium bromide (KBr) application location in each
profile (b), sensors and suction cups in each profile (c), and sampling details (d).

2.3 Field monitoring and data collection
The meteorological dataluding precipitation (P) and potential evaporation

(E)), were obtained from station 2 (Five Points

(https://cimis.water.ca.gov/).

Sensors were installed at depths of 0.2, 0.6, 1.0, and 2.5 m at each soil profile.
Sensors measuringonding depth (CS-451, Campbell Scientific, Logan, UT, USA),
soil water content, electrical conductivity (EC), and soil temperature (TEROS

METER Inc., San Francisco, CA, USAhigaxid RE-25, Figaro Sensors,


https://cimis.water.ca.gov/

195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222

Rolling Meadows, IL, USA), and oxidation-reduction potential (ORP; built in house)
were logged at a 10-minute time interval (Fig. 1c-1d).

Breakthrough curve data for the KBr tracer and pesticides were collected using
high-volume dual-chamber suction cups (Model 1920 F1L24-B02M2, SoilMoisture
Inc., Goleta, CA, USA), which were installed at depths of 20, 60, 100, 175, and 250
cm and sampled at 7:00, 11:00, 15:00, 19:00, and 23:00 every day during flooding.
The suction cups were installed appy¥0xam atrelpm one anovhelrin a
h o r i z o n t a I d 1 s t a n c¢ e o f

(Fig. 1c-1d).

2.4 HYDRUS-1D model setup
Water flow and the transport of potassium bromide (KBr) and pesticides in the

unsaturated zone were simulated using the single and dual-porosity models (SPM and
DPM) of the HYDRUS-1D softwaré¢Simutnek et al., 2016) SPM assumes that flow
and transport processes in soil are uniform and can be described using the Richards
and advection-dispersion equations, respectidetydeldRMe soil pore space
into mobile and immobile regions (i.e., considering preferentia
Water flow or solute transport occurs only in the mobile region, as described by the
Richardand advection-dispersion equations, respéctithelyame time, there
can be water/solute transfer between these two regions. The model setup, including
input data, initial/boundary conditions and governing equations, is shown in Fig. 2
and Table S4. More details about the governing equations can be found in Text S1
(Supporting Information).

The 250 cm soil profile was divided into five modeling layers ranging from 0-46
cm, 47-76 cm, 77-122 cm, 123-182, and 183-250 cm by grouping the original soil
texturef the profile (Table S1) and associating each model layer with one sensor
d e pt h (s e n s o r i n s t a1l 1 e d a t

The simulation period was 104 days long, from 0:00 on Dec. 17, 2020, to 24:00 on

9
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Mar. 31, 2021, which included pre-flooding, flooding (Feb. 16~Feb. 24, 2021), and
post-flooding periods. The spatial discretization was 1 cm throughout the soil profile,
while the temporal discretization was variable, with a minimum time step of 0.0
minutes.

The initial soil pressure head profile was obtained from measured soil w:
contents at four soil depths (20, 60, 100, and 250 cm) and soil water retention curves
of typical soil textu¢Radlakisee and Simanakd 20d8)linearly
i n t e r p o I a t e d b e t w e e n a n y
Br concentrations were set to zero throughout the soil profile, while the initial soil
water pesticide concentrations were prescribed based on field measurements.

For water flow, the upper boundary condition (BC) was set to an atmospheric
flux (with a maximum allowed surface water layer of 50 cm, i.e., the height of the
berms). The potential water flux across the soil surface is the difference between daily
values of potentiaE,euapopa¢copP)toridinood irrigation
(F). The lower BC at the soil depth of 250 cm was set to free drainage because of the
1 o w w a t e r t a b 1 e a t t h e s 1 t ¢
the upper BC was prescribed as a solute flux (i.e., a Cauchy BC), with brc
concentrations and irrigation fluxes during the bromide application as inputs.
model then automatically adjusts surface bromide concentrations depending on the
depth of the surface water level, evaporation, precipitation, irrigation fl
associated bromide concentrations. The lower BC was j
concentration gradient (i.e., a Neumann BC when only a convective

occurs).

10
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248 Figure 2Conceptual model setups for the (a) single-porosity and (b) dual-porosity
249 models (SPM and DPM, respectively). Note that “W” and “S” represent water flow
250 and solute transport, respectively. The explanations of each variable are shown

251 Supplemental materials S1.
252

253 2.5 Parameter optimization and sensitivity analysis
254 In this study, we adopted a two-step optimization. Since bromide transport is

255 largely unaffected by adsorption/desorption and degradation, measured breakthrough

256 curves (BTCs) of bromide were used first to estimate the soil hydraulic and.basic
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(e.g., dispersivity) solute transport parameters for both the single and dual-porosity

models.

In the single-porosity modeld; was not optimized. Instead, the default values

of corresponding soil textures were adopted first and then manually adjusted to obtain

a better model fit. Therefore, five parameters €, a, n, K, and 4) were optimized for

each layer (25 parameters in totdlhe ranges of other parameters (Table S5) were

prescribed as 1/5th and 6/5th of the minimum and maximum of their initial values for

all soil textures in each modeling layer, obtained from the Ro

HYDRUS-1D, based on measured soil textural data (Table S1).

To reduce the number of optimized parameters in the dual-porosit

0, » was set to zero, as done in many similar studiéllaws et al., 2005; Simtnek et

al., 2001)Therefore, eight paramélgss, @, n, K, 05, 05 ,, w,, and4) were

optimized for each layer (40 parame:t

a, n, K,, and 4 (Table S7) were the same as those in the single-porosity models. The

upper boundary of 0,,, ; and 05, , were the same as ranges of 0, in the single-porosity

models, while the lower boundary was set as 0.1 and 0.01, respectively. The ranges

off5, andw, (Table S7) were set (bmliglet al., 20RBWKrT7e-3

min’ (Brunetti et al., 2016), respectively.

In the second step, the par#metexrsK,, and4 in the single-porosity

model of,.,,, @, n, K, 05,, 05, w,, and4 in the dual-porosity model obtained

during the fi rst step were fi xed, while

(i.e., adsorption and degradation) were optimized based on measured pesticide BTCs.

I'n thiscdhteunmdiyc,al nonequilibrium

two parameters &€, and #) were optimizedfor each layer (10 parameters in total) in

the single-porosity model, while three parameters (K4, #, and ;) were optimized for
e a c¢ h 1 a y e r ( 1 5 p a r
model. Measurements of degradation or sorption parameters specific to the study site

were unavailable. The ranges of K, (Tables S6 and S8) were prescribed as 0 and 6/5

12

a

w

a

m

the

S

€

n

[



285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312

times the maximum &£.#*TOC (i.e., the total organic carbon content) for all soil
textures in each modeling layer (Tables S1 and S3Dhe ranges of# (Tables S6 and
S 8 ) w e r e p r e s c¢c r i b e d a s 0 a n
In2y, for all soil textures in each modeling layer (Table S3). Tl
w, (Table S8) were set to 0~7e-3 min! (migetal. 2023)

The parameterwaptpmifatmoend using the par
optimization (PSO) algoustilmmhe PySwarm LibramyPythonA swarm of
candidate solutions is moved around in the search space in the PSO according to a few
equations. The movement of the particles is guided by their optimal positions and
that of the whole swarm. Once improved positions are discovered, they guide th
swarm's movement. This process is repeated until the global optimal position that all
particles tend to follow is fo(Sd and Eberhart, 1998)ore details about PSO
can be found (Brunetti et al., 20W®yunetti et al., 2017; Brunetti et al., 2022;
Zhou et al., 2022).

The PSO parameters (€¢ogh.i2t6 Ve paachnanle pearmr a
€>=3.395; inertia-weight0.444(Brunetti et al., 20Wéye used in this study.
The number of swarm particles and iterations is 200
optimization had 40,000 runsThe Python script produces an input parameter space,
overwrites the input parametamnd lmins the executable modullecY DRUS-
Il DF or e a ¢ h P S O r un f or t he water fl
parametersheKling-Gupta effi ciglc@E) indices for the dynamics of surface
ponding levels (KGE_sp), soil water c¢o
C 0 n C e n t r a t i O g ne S
(KGE_avg=0.7*KGE_wc+0.2* KGE_sp+0.1*KGE_B
determined based on the degree of trust in these three types of data) were calculated.
F o r e a ¢ h P S O r u n f o r t h e p
parametersheKling-Gupta effi ci€K&€yE) indices for pesticide concentrations
(1 . el. m i K GRKAGAhAEipa,r mi KIGG hEb _o m, an n t r

13
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KGE Methoxyfenozjdwere calculated. The KGE index compares the correlation
coeffi o©iLenhe(ratio of meaandathesrgtio of vari
(y) between simulated and observed data (Knoben et al., 2019). The value of the KGE

index is always smaller or equal to 1. The higher the KGE value, the better the fit
between the simulated and observed values.

KGE=1~[(1=rP+(1=p +(1—p)]" (22)

If a HYDRUS-1D run was not fpmeisdreid ewdi tthimme (i.e..
6 0 s for the single-porosity models and
models) or the length of the modeled hydrograph was shorter than the total simulation
period (149,760 minutes,)the run was considered non-convergentThe run was then
terminadad,a large negative vawas &shEgwedhe objective
functionOnly the parameters leading to the maximum KGE_avg were retained as
optimized parameters.

The Sobol' global sensitivity analywisny ath & Srecsatedity
Analysis Library (SALib) intByideartify the most influential transport and

reaction parameters of pesticides (Text S2).

3 Results

3.1 Model parameters and performance
The HYDRUS-1D single-porosity (SP) and dual-poro

transport models were first fit to the observed volumetric water contents, pondi
depths, and KBr tracer breakthrough data before pesticide adsorption and degradation

parameters were optiWivled few exceptions, the optimized soil hydraul
parameters (Tables S4-S5) fell within the typical ranges of other studies (Text S1).
Although all three Ag-MAR sites were classified as Traver fine sandy loam, the P1

and P3 sites exhibited a cleacemented duripanat 77-122 cm depth(Bachand et al.,

2 0,1 4 )h 1 ¢ h r e s ul t e d 1 n 1 o w e r
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(K,) at these depths (about 0.022 cm/min). In genedal,values were largest at P2,

the sandiest profile of the three (84% sand), and lowest at P1 (41% sand), while P3

(61 % sand) was in between the two. Optimized adsorp
coeffi cients for the pesticides (Tables S4-S6) were largest at P1 and lowest at P2
following the pattern of their total organic matter contents (Fig. 7). I
chlorantranilipradad methoxyfenozidead relatively highedsorption but lower
degradation coeffi cientmilanloprmldthiamethoxamdicating that they

were less mobile and more persistent in the environment.

The observed surface ponding levels (Fig. 3) quickly increased to their maximum
(about 11 cm, 12 cm, and 21 cm in profiles P1, P2, and P3, respectively) because of
continuous flooding. After that, the ponding level decreased when water application
stopped. The water contents at all depths (Fig. 4) exhibited increasing trends during
the flooding period and decreased during the post-flooding period.

The bromide BTCs at all depths (Fig. 5) first showed increased concentrations,
followed by decreased concentrations with time. The P2 profile over
lowest concentrations, the fastest arrival rates of peak conce
flooding, and the least pronounced tailing of BTCs. In contrast, the P1 profile had the
highest concentrations, the slowest arrival times of peak concentration:
flooding started, and the most pronounced tailing of BTCs.

Most pesticide BTCs (Fig 6 and Figs. S1-S3) showed reduced concentrations in
t h e s ur f a c e 1 ay e r s d u e t o 1 e
methoxyfenozwleich increased in concentration at 20 cm due to the pestici
transfer from the topmost layer. However, changes in pesticide concentrations within
the deeper layers varied a lot, from rising (mostly at P1), falling (mostly at P2), or
initially rising before falling (mostly at P2 and P3). These patterns indicate different
arrival rates of peak pesticide concentrations during flooding: slowest at P1, fastest at

P2, and medium at P3.
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In the single-porosity models (SPM) fitted to the BTCs, simulated wetting fronts
progressively arrived later at increasing depths than those observed, especially at P2
and P3. Similar to wetting fronts, simulated bromide breakthroughs arrived later than
those observed at depths at P2 and P3. The simulated bromide BTCs also had larger
tailings than those obBkevmdin mismanchesticide modediwgen
s 1T m u |l a t i1 o n s a n d o b s e r v a t
These may suggest the presence of preferential flow/transport at P2 and P3 due to the
occurrence of mobile and immobile zones and the solute mass transfer between them.
Due to fast water movement during flooding, mixing with immobile water is limited.
As a result, solute mixing occurs mainly within the avai
(Imig et al., 2023b) leading to higher observed solute concentrations and less tailing
than simulated by SPM at P2 and P3. This also highlights the potential utility
applying a w(eGiugphttae de tK @ IE. , 2009 ; L am
2020 which allows for specifying the relative importance of
components (i.e., correlation, variability bias, and mean bias between observed and
simulated values) to better capture solute arrivals (Table 1).

The dual-porosity models (DPM) improved the model performance in simulating
surface ponding levels, water contents, and bromide BTCs at P1, but worsened it for
pesticide BDPPM.improved the model performance in simulat
ponding levels and bwindaddopandthlorantranilBirnodeat P2.
However, it worsened the model performance in simulating soil water contents and
thehiametamodx@atmh o x y BeTn(osDiPdAM 1 mproved the m
performamnce at P3 1n simulating surfac
imidaclopraddnethoxyfenoBd&Ls. However, it worsened it for soil water
contents and thiamethoxam and chlorantraniliprole BTCs. In other words, the model
performance in simulating the bromide and pesticides BTCs cannot be imr¢

simultaneously, and it can even be worsened when switching from SPM to DPM.
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This may be because the solute transport parameters were optimized for bror
BTCs and thus may not apply to pesticide BTCs.

Overall, SPM and DPM coadgtho¢hthe general todmes vefd
surface ponding levels, soil water contents, and bromide/pesticide BTCs (Table 1).
Kohne et al. (2009) compared different pesticide transport models and concluded that
a model gives satisfactory predictions if the ratio between measured and model
concentrations is less than 3-5 tknidne et al., 200%he ratio was generally
less than 3 in this study, indicating that the fit was fairly
performancénfiodaclopthiibimethqxamikhlorantranilwpsotha ch
better than fwathoxyfenozillkis may be related to the omission of potential
chemical nonequilibrium in this study since rapid water fl ow
il o o d i n g m a d e 1t m o r e d 1 ffi c

(Dusek et al., 2015).
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Figure 3. Observed and simulated (using the single-porosity [SPM] and dual-porosity
[DPM] models) surface ponding water levels in the three soil profiles P1, P2, and P3
(left to right). The blue-shaded areas indicate the flooding period.
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Figure 4. Observed and simulated (using the single-porosity [SPM] and dual-porosity
[DPM] models) soil water contents at different depths (20, 60, 100, and 250 cm; top
to bottom) in the three soil profiles P1, P2, and P3 (left to right). The blue-shaded
areas indicate the flooding period.
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Figure 5. Observed and simulated (using the single-porosity [SPM] and dual-porosity

[DPM] models) bromide concentrations at different depths (20, 60, 100, and 250 cm;

top to bottom) in the three soil profiles P1, P2, and P3 (left to right). The blue-shaded
areas indicate the flooding period.

18



427 Imidacloprid

02 I 0.2

0.1

P1 p2 P3
L] o f v h
97550 cm sim_SPM 20 ¢m sim_SPM 20 cme sim_SPM
—— sim_DPM | 0.2 —— sim_DPM 1.0 . —— sim_DPM
0.50
\\' abs * obs s obs
0.25 : . . 0.3
— . = | o |
60 " - 5
cm . 0.2160 cm 10 60 om .

5 o2 ; T =
=) 2% 0. >
53 Y, 01 0.5 = S
Z 00 '] )
=] L g
o 100 cm ., 100 cm 100 cm ry
5 10 0.2 os . ¥
b=} . N . 0
c . - - »
e os = e
c = . .
8 LB 0.1 - 0.0 : ; | }
o 0.3 T T U
k] 175 cm 175 cm 0.75 L
£
[=}
o
o

175 cm &
0.50 -
d 0.25 o "
0.0
0.2 0.4 5 . v
250 cm 250 cm ' 250 cm
» 0.50 = 5a
0.1 0.2 z
. LI 0.25 .« L v .

02-16 0218 0220 0222 02724 0226 0228 02-16 02-18 0220 0222 0224 0226 0228 02-16 0218 0220 0222 0224 0226 0228

42 8 Time (Month-Day)

429 Figure 6. Observed and simulated (using the single-porosity [SPM] and dual-porosity
430 [DPM] models) imidacloprid concentrations at different depths (20, 60, 100, and 250

431 cm; top to bottom) in the three soil profiles P1, P2, and P3 (left to right).
432 The blue-shaded areas indicate the flooding period.
433
434  Table 1. Model performance (Kling-Gupta Efficiency) of the single-porosity [SPM]
435 and dual-porosity [DPM] models to simulate surface ponding levels, soil water
436 contents, and concentrations of bromide and four pesticides
437  (imidacloprid, thiamethoxam, chlorantraniliprole, and methoxyfenozide) in the three
438 soil profiles (P1, P2, and P3).

Variable P1 P2 P3

SPM DPM SPM DPM SPM DPM
Surface ponding level 0.67 0.76  0.02 0.1 044 0.6

Water content 087 089 094 093 0.83 0.8
Bromide 044 038 -0.69 -038 0.27 0.3
Imidacloprid 0.78 0.73 -0.08 0.7 0.7 0.73
Thiamethoxam 0.67 059 0.68 0.66 0.7  0.65
Chlorantraniliprole 081 056 024 031 089 0.75
Methoxyfenozide 0.65 0.58 02 0.14 081 085

439

440 3.2 Water mass balances and travel time of flooding water

441 The water balance and recharge amounts estimated with the SPMs and DPMs

442 s h o w e d distinec't diff erence s w it h
443 Table)2Groundwater recharge was largest at P2 (SPM: 89.7%, DPM: 90.

444 smallest at P1 (82.6%, 83.4%), and intermediate (but close to P1) at P3 (8"
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83.6%).The water mass balance varied by up to 8% between P2 and the other two
profiles.

Considering preferential flow by DPMs resulted in lower bromide travel times
by up to 23% and higher flow velocities by up to 31% compared to SPM
expected, the sandiest profile P2 had the highest flow velocity, followed by P1, while
P3 had the lowest. Accbrdmglkyfransport velocities between the th
profiles differed by about 42 %, ranging between 16.54 and 91.84 cm/day in the 2.5 m

near-surface unsaturated zone (Fig. 7, Table 3).

3.3 Pesticide mass balance
A m o n g t h e s 1 te s , P 2 s h o w e d t

(L,) with an average of 37.5%, followed by P3 at 19.4%, and P1 at 12.2%. The DPM
model predicted slightly higher leaching (1.8% on average) compared to the SPM
model, with P2 experiencing approximately 21.6% more leaching than the other sites
on averagelmidaclopridnd thiamethoxarhad significantly higher leaching rates,
averaging 22.3% more thamlorantraniliprodad methoxyfenozid&ig. 7, Table
4).
With respect to degradation (D), P1 had the highest degradation rate, averaging
31.9%, while P2 and P3 were at similar levels (27.7% and 26.6%, respectively). The
DPM model predicted about 2.7% more degradation on average than the SPM, with
P 1 s h owing a 4 . 8 % h i g h e r d e
Imidaclommdthiamethoabsw degraded more, with an average of 19.1¢
higher than chlorantraniliprole and methoxyfenozide (Fig. 7, Table 4).
In terms of retention (S, fnar), P1 and P3 retained the most (averaging 56.1% and
57.9%, respectively), while P2 retained the least (43.2%). Retention was about 3.8%
higher in the DPMs than in the SPMs, with P1 and P3 showing an average of 8.2%

more retention than P2Zlorantraniliprahed methoxyfenozidrhibited greater
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retention in the soil, averaging 33.9% midue lidyaminkdthiamethoxam
(Fig. 7, Table 4).

Regarding changes in pesticid&, st amad®S(pvz),imidacloprid
and thiamethoxam in general lost significant amounts of pesticides from both the root
zone and deep vadose zone, while chlorantraniliprole and methoxyfenozide typically
showed losses in the root zone but gains in the deep vadose zone (Fig. 7, Table 4).

Overall, P1 and P3 showed more retention or degradation, while P2 exhibited
greater leaching. These findings are supported by the fact that the adsorption
degradation coefficients were largest at P1, followed by P3, while they were lowest at
P2, as discussed in Section 3.1. Furthermore, the DPMs generally show

leaching, degradation, and retention than the SPMs
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Figure 7. Conceptual model of flow and pesticide transport processes, water and
pesticide mass balances, and bromide travel times during Ag-MAR in the top 2.5 m
of the three soil profiles (P1, P2, and P3). F: Flooding; E: Evaporation; H: horizontal
flow caused by a capillary barrier; D: Deep drainage. The two numbers to the right of

these terms are water mass amounts (in cm) calculated using the single-porosity

(SPM) and dual-porosity (DPM) models. The bottom bar plots show adsorption,

degradation, and leaching amounts (in ppb.cm) for the four pesticides, including

imidacloprid (IMCP), thiamethoxam (TMTX), chlorantraniliprole (CRNP), and
methoxyfenozide (MTFZ), at the end of the simulations. TOC and MIM represent the
total organic carbon content (%) and Mobile-Immobile zones, respectively.
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495 Table 2. Water mass balance components for the three soil profiles P1, P2, and P3 calculated using the SPMs and DPMs.

Term P1 P2 P3
SPM DPM Difference SPM DPM Difference SPM DPM Difference
cm % cm % (%) cm % cm % (%) cm % cm Y% (%)
P+I 128.4 128.4 128.6 128.6 128.4 128.4
E 21.7 16.9 19.5 15.2 -1.7 11.3 8.8 9.0 7.0 -1.8 14.3 11.1 14.1 11.0 -0.1
D 99.1 77.2 94.0 73.2 -4.0 119.7 93.1 114.2 88.8 -4.3 98.3 76.6 105.6 82.2 5.6
AS g, 4.6 3.6 4.4 34 -0.2 5.7 4.4 7.6 5.9 1.5 10.6 8.3 11.1 8.6 0.3
ASpy, 6.9 54 13.1 10.2 4.8 -4.3 -33 2.6 2.0 5.3 9.0 7.0 1.7 1.3 -5.7
GR 106.0  82.6 107.1 83.4 0.9 1154 89.7 116.8 90.8 1.1 107.3  83.6 107.3 83.6 0
496 P: precipitation, F: flood irrigation, E: evaporation, D: dkdinswarage change in the root zone 0~100%Mmz) and deep vadose

497 zone 100-250 cm&Spvz6, GR: groundwater recharge including D &n¥lvz (since water flow is considered one-dimensional, deep drainage
498 below the root zone will eventually recharge groundwater) (de Vries and Simmers, 2002).

499
500 Table 3. Travel times and average velocities of bromide (calculated by the peak displacement method) from the soil surface to different soil depths
501 at three soil profiles P1, P2, and P3 calculated using the SPMs and DPMs.
Term Depth (cm) P1 p2 P3
SPM DPM Relative difference (%) SPM DPM Relative difference (%) SPM  DPM Relative difference (%)
20 113 1.08 4.4 121 121 0 022 022 0
60 179 1.63 -8.9 1.83 171 6.6 113 113 0
Travel time (day) 100 267 229 -14.2 296 254 -14.2 247 213 -13.8
175 329  3.63 10.3 433 35 -19.2 438 372 -15.1
250 563 45 -20.1 517 3.96 234 593 488 -17.7
Flow velocity (cm/day) 20 17.71  18.53 4.6 16.54 16.54 0 91.84 91.84 0
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502 N ot e

503

60 33.54  36.83 9.8 328 351 7 532 532 0
100 37.46  43.68 16.6 3379 39.38 16.5 4052 47 16
175 532 48.22 9.4 4042 50.01 23.7 39.97  47.07 17.8
250 44.41 5557 25.1 48.36  63.14 30.6 42.17  51.25 21.5
t h at t h e p e ak displacemen:t me th od s t 1

(flooding) and output (different soil depths) of bromide BTCs (Zhou et al., 2023).
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504

505  Table 4. Solute mass balance components for the four pesticides at the three soil profiles P1, P2, and P3 calculated using the SPMs and DPMs.

Pesticide Term P1 P2 P3
Differen
SPM DPM SPM DPM Difference SPM DPM Difference
ce
ppbrcm % ppbrcm % % ppbrcm % ppbrcm % % ppbrcm % ppbrcm % %
Imidacloprid Sy init 280.2 363.6 316 33.1 147.2 117.68
L, 95 34 10.8 3.0 0.4 18.8 59.5 232 714 15.1 429 29.1 55.8 474 18.3
D, 180.9 64.6 161.6 444 202 0 0.0 170 514 547 51.0 34.6 43.1 36.6 2.0
S, final 89.0 318 189.7 525 20.7 12.8 40.5 145 4338 6.1 534 363 50.3 427 6.4
AS, r  -1205 -118.6 -18.2 -16.8 -102.1 79.0
AS,, 707 -55.3 -0.6 -1.9 8.3 11.6
Thiamethoxam S, init 1052.8 1527.8 592.8 4217 874.9 1643.9
L, 576.0 54.7 471.0 308 -23.9 164.0 277 1320 313 3.6 3285 375 234.6 14.3 233
D, 69.0 6.6 17.3 1.1 5.5 3827 64.6 2442 579 6.7 340.7 38.9 963.4 58.6 19.7
S, final 409.6 389 10327 676 28.7 45.0 7.6 356 8.4 0.8 206.3 23.6 5174 315 79
AS,r 2320 -309.7 -136.1 92.6 -303.4 182.7
AS,p 411 -185.5 -411.7 2935 -365.1 -666.5
Chlorantraniliprole S, ;¢ 4394.0 2599.6 1689.4 1054.9 702.9 561.6
L, 8.8 0.2 23.1 0.9 0.7 3624 215 5810  55.1 33.6 65.7 9.3 58.1 104 1.1
D, 1073.4 244 730.7 28.1 37 4482 26.5 2068  19.6 6.9 39.1 56 39.8 7.1 1.5
S, fnal  3304.1 75.2 18447 710 42 879.2 52.0 2899 275 703 598.4 85.1 460.6 82.0 -3.1
AS, r  -10353 -681.1 -861.2 2440 -181.0 -162.6
AS,p 547 -73.8 51.0 479.0 76.4 61.7
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Methoxyfenozide S ), i 440.0 336.4 170.4 120.7 3264 344.8
L, 7.4 1.7 9.8 2.9 1.2 29.1 17.1 193 160 1.1 13.2 40 12.0 3.5 0.5
D, 200.4 455 1371 408 47 0 0.0 17 1.4 1.4 55.1 16.9 487 14.1 2.8
Sy fnar 2321 52.8 1985 590 62 141.3 82.9 999 828 0.1 2582 79.1 285.4 82.8 3.7
AS, r  -1030 -69.3 32,6 24.6 5.8 -65.2
AS,p  -1049 -68.5 3.5 3.8 7.6 5.7

506 Note tha¥%. andSj« are the initial and final pesticide storages in the soil profilleisrebpempdstvidide mass leached through
507 drainage, D, is the pesticide mass degraded through chemical or biological reactions, and A S, is pesticide storage change in the root zone 0~100
508 cm (AS, ) and deep vadose zone 100-250 cm (A S, pvz).
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3.4 Model sensitivity analysis
The Sobol’ global sensitivity analysis was conducted to identify the most influ

parameters controlling the transport and reaction of pesticides within the SPMs (Table 5 and

T e x t hSe2 )r.e aTc t i o n p ar a m et e r s ( e s
(K;) of Layer 1 (thacsukdyer) were the most influential parameters in si
chlorantraniliprolet all three profiles andmidaclopridat P2. This finding underscores the

critical role that organic matter in the surface layer plays in the adsorption of pes
which, in turn, affects their movement through the soil (Fig. 2). In addition to the surfa
layer’s role, the degradatiom pdrhimee¢er3((the restrictive layer where
cemented Juwiapahnhhecmwsdg 1impactful p
imidaclopridhiamethoxapandmethoxyfenozida P1 and P3This is likely because the

presence of a restrictive layer at P1 and P3 increased the residence time of the infiltratin
water and the potential for degradation. This finding again validates the conclusion that P1

and P3 show more retention or degradation, while P2 show more leaching, as discussed in

Section 3.3.

Table 5. The most influential soil layers and reaction parameters (adsorption
coefficient
K ;; degradation coefficient #) for modeling (using the single-porosity [SPM]) of four
pesticides (imidacloprid, thiamethoxam, chlorantraniliprole, methoxyfenozide) at the three
soil profiles (P1, P2, and P3).

Profile P1 P2 P3
Pesticide Layer Parameter | Layer  Parameter Layer Parameter
Imidacloprid 3 u 1 K, 1 U
Thiamethoxam 3 U 5 U 3 U
Chlorantraniliprole 1 K, 1 K, 1 K,
Methoxyfenozide 3 u 3 u 1 U
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4 Discussion

4.1 Impacts of preferential flow on pesticide fate and transport
Preferential flow paths were more pronounced in the sandier profiles, such as P2 and

P3, as indicated by the earlier arrival of observed water and solute front:
concentrations, and narrower bromide and pesticide BTC
imidacloprid and chlorantraniliprole at P2 and thiamethoxam at P3) (Figs. 5-6 and Figs. S1-

S3). Preferential flow led to faster water flow (Table 3), more groundwater recharge (Table

2) and more pesticide leaching (Table 4) in the unsaturated zone at P2 and P3, especially for

more mobile pesticides likienidaclopridand thiamethoxamThe possible mechanisms that

c a u s e d p r e f e r e n t 1 a 1 w o
(Zhou et al., 2023).

Interestingly, considering preferential fl ow using the dual-porosit
predicted higher degradation and retention rates even though they showed sh
times. This is because DPMs account for the unique interaction |
immobile regions in the soil. In DPMs, pesticides can move quickly through the
regions, but a significant portion gets temporarily trapped in the immobile regions, where the
water is largely stagnant. This trapping allows pesticides to stay in contact with the soil for
l1 o n g e r p e r i o d s , w h i ¢ h e n h a n

(Ray et al., 2004).

4.2 Impacts of lateral flow on pesticide fate and transport
In addition to preferential fl ow, lateral flow also played a crucial rol

transport, especially in profi les P1 and P3. The
cm’/cn?’ at P1 and 0.05 cniYem® at P3, Fig. 4) in the deeper soil layers indicate unsaturated

soil conditions. These unsaturated conditions below the duripan and notably higher pesticide
concentrations at 100 cm than i(iFitd.e 60 talmedr Hagger S1-S3) in
P1 and P3 profiles could potentially be related to the restrictive layer forming a capi

barrier that promotes lateral flow within the low-conductivity layer to the overlying coarser-
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textured soil layers (Fig. 7). This lateral flow led to the perching of water and pesticides at
specifi ¢ diéphds et al., pOr2X3¢ularly aff ecting less mobile pe
chlorantranilipratddmethoxyfenozisehich exhibited higher degradation and retention

than other two pesticides (Table 4). This is also supported by the sensitivity analysis results

which indicate that the degradation coefficient of the restrictive layer is a key factor in the
behavior of less mobile pesticides like chlorantraniliprole and methoxyfenozide in profiles P1

and P3 (Table 5).

4.3 Differences in pesticide behavior
Our results reveal distinct differences in the behavior of the four pesticides studied—

imidacloptihidamethqgxdimorantraniligndnlethoxyfenohiidehlighting the
importance of both chemical properties an
Imidacloprid and thiamethoxam were more mobile (more prone to leaching as seen in Table

4 ) tchhalno r ¢g nw ha e h | i p r ©o d a s 1 s t e n t
(Tingle et al., 20B8g¢ause of thasidaclopmmidthiamethoxamre significantly

affected by preferential flow, particularly in the sandier P2 profile (discussed in Section 4.1).
Conversetylorantranilipndbeethoxyfenqgzwdeich are less mobile, were more
influenced by soil heterogeneity and lateral flow, leading to greater retention and degradation

in profiles with finer textures and more organic matter, such as P1 and P3 (disc
Section 4.2). The DPMs' ability to capture these nuanced behaviors underscores its value in

simulating the real-world dynamics of pesticide fate and transport in Ag-MAR systems.

4.4 Implications for Ag-MAR practice and future research
The three profiles had the same land use and hydroclimatological conditions, yet they

varied in the subsurface hydrogeology. Consequently, this study offers valuable insights into
the impacts of soil texture and heterogeneity on groundwater recharge and pesticide leaching
that may be encountered when implementing Ag-MAR.
In terms of groundwater recharge and pesticide residue leaching, P2 (the soil prc

with the highest sand content) tended to facilitate preferential flow, leading to faster water
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flow and pesticide transport (by about 42%) and increased recharge rates (by approximately

8%). These conditions also resulted in greater pesticide leaching due to flooding (by about
22%). Therefore, Ag-MAR should be implemented with caution in sandy soils. To reduce
this risk, it is recommended to apply pesticides well before any planned recharge activities,

g 1 v 1 n g t h e s o 1 I 't 1 m e t o a b s o
Choosing the right type of pesticides also matters. Imidacloprid and thiamethoxam, are more

likely to leach into groundwater, especially in sandy soils. In con
chlorantranihipdnodehoxyfenowhdeh are less mobile and break down n
easily, pose a lower risk.

For oxygen (O,) levels (Figs. S7-S9) during Ag-MAR flooding, there were noticeable
sharp drops especially for shallow layers at Pl and P3, wt
a ¢ ¢ u m u |l a t 1 o n a t s h a 1 1 o w
mentioned in . These signifi cant reductions of O, le
development of anaerobic conditions, which could po
Correspondingly, P1 and P3 alsoxhddtrehatieveulgtilomw o
(ORP) levels than P2 during Ag-MAR (Figs. S7-S9).

There were significagliectrical conductiv (EC) spikes (even higher than irrigation
water) at P3 during Ag-MAR, which highlighted a faster soil salt leach
groundwater salinization risk. These ions could originate from the mobilization and release
of fertilizer or pesticide residue in the topsoil. P2 and P1 also presented EC spikes, but i1
general lower than irrigation water and to a lesser extent than P3, suggesting some issu
with salt leaching and groundwater salinization but potentially more manageable.

In all, each profile illustrated different challenges and opportunities for grot
recharge, environmental protection, and agricultural productivity. Tailo
practices to the specific conditions reflected in these profiles can balance these aspects.

While this study provides valuable insights, it is important to recognize its limitations.

The reliance on HYDRUS-1D models, though robust, does not capturt

dimensional complexity of water and solute movement in the field. Additionally, the study
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focused on a limited set of pesticides, which may not represent the full range of behaviors
exhibited by other chemicals under similar conditions. Future research should aim to expand
the scope of pesticides studied and explore the use of three-dimensional models to capture

more detailed spatial variations in Ag-MAR systems.

S Conclusions

This study emphasized the signifi cant role of soil textu
influencing the fate and transports of pesticides in the vadose zonc¢
managed aquifer recharge (Ag-MAR) through detailed field experiment
modeling using both single and dual-porosity models in HYDRUS-1D. Based on these water
fl ow and pesticide transport information, the suitability of implementi
evaluated by combining other biogeochemical indicators inclu
reduction potential, and electrical conductivity levels in soil water.

The sandier profiles (P2) demonstrated more pronounced preferential flow, faster water
flow, higher groundwater recharge efficiency, but also more soil pesticide and salt leaching
c or r el atin g w i th 1incr e a s e d r i s
choosing less mobile cpied wtriccn dreaar di.grrlpd ey lemadi d e
extending the time interval between the last pesticide application and the Ag-MAR e
are important for reducing groundwater pollution risks. In contrast
textures (P1) showed less preferential flow, slower water flow, lower groundwater recharge
efi ciency, but raised concerns about the accumula
elongateanaerobic conditiamepper soil layers due to capillary barriers, which could
S e VvV e r e 1y 1 m p a ¢ t S 0 1 1
growth.

Our results underscore the necessity of considering soil heterogeneity and implementing
site-specific management practices in the design and operation of Ag-M
maximize groundwater recharge while minimizing environmental risks. Further

study calls for the integration of more advanced models that can adequately c:
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complex processes of pesticide fate and transports, suc
nonequilibrium processes. On the other hand, the relative

flow/transport and lateral flow remains to be distinguished.
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