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An empirical measure of resilience explains individual 
differences in the effect of tau pathology on memory change in 
aging

Lindsey Dobyns1, Kailin Zhuang1, Suzanne L. Baker2, Dan Mungas3, William J. Jagust1,2, 
Theresa M. Harrison1

1Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA.

2Lawrence Berkeley National Laboratory, Berkeley, CA, USA.

3Department of Neurology, University of California, Davis, Sacramento, CA, USA.

Abstract

Accurately measuring resilience to preclinical Alzheimer’s disease (AD) pathology is essential 

to understanding an important source of variability in cognitive aging. In a cohort of cognitively 

normal older adults (n = 123, age 76.75 ± 6.15 yr), we built a multifactorial measure of resilience 

which moderated the effect of AD pathology on longitudinal cognitive change. Linear residuals-

based measures of resilience, along with other proxy measures (education and vocabulary), were 

entered into a hierarchical partial least-squares path model defining a putative consolidated 

resilience latent factor (model goodness of fit = 0.77). In a set of validation analyses using 

linear mixed models predicting longitudinal cognitive change, there was a significant three-way 

interaction among consolidated resilience, tau and time on episodic memory change (P = 0.001) 

such that higher resilience blunted the effect of tau pathology on episodic memory decline. 

Interactions between consolidated resilience and amyloid pathology on non-memory cognition 

decline suggested that resilience moderates pathology-specific effects on different cognitive 

domains.

The neuropathological markers of Alzheimer’s disease (AD), amyloid-beta (Aβ) and 

hyperphosphorylated tau, accumulate in the brain decades before the onset of cognitive 

decline1. A model of the temporal sequence of preclinical pathology describes initial A– 

deposition, followed by tau deposition, then tau-mediated neuronal injury and dysfunction2. 
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Next, as AD moves from the preclinical to the clinical phase, structural brain atrophy 

progresses, memory function declines and finally patients experience generalized cognitive 

impairment. This general model does not, however, capture the individual heterogeneity that 

exists at each phase.

Cognitive aging trajectories are heterogenous, and differing capacity to cope with preclinical 

AD pathology is one source of variability in cognitive performance in older adults. Evidence 

that there is not a one-to-one correspondence between pathology and cognition initially 

came from autopsy studies that showed some older adults who are cognitively healthy 

at the time of death have substantial AD pathology, sometimes similar to those with 

dementia1,3. Several terms have been used to describe this variability in clinical expression 

of AD pathology including cognitive reserve and cognitive resilience4-6. These terms are 

overlapping and precise definitions can be difficult to operationalize, though there are 

coordinated efforts to do so7. The concept of resilience encompasses aspects of cognitive 

reserve and is often applied as relating to an individual’s ability to cope with pathology, 

which can be measured in neuropathological studies or with specific imaging or fluid 

biomarkers. The crucial idea behind both resilience and reserve is that individuals with 

higher reserve and/or resilience perform better than expected given their pathological burden 

whereas individuals with lower reserve and/or resilience will experience greater decline 

than expected. In other words, despite various measurement approaches in the literature, 

greater reserve and resilience is associated with reduced risk of progression to mild cognitive 

impairment or AD8,9.

Using a resilience framework and positron emission tomography (PET) neuroimaging 

biomarkers of Aβ and tau, the variability in cognitive performance relative to preclinical 

AD pathology can now be assessed in vivo. Measures of resilience in the literature are often 

indirect proxies of the concept, such as years of education or IQ, which are hypothesized 

to capture neural advantages underlying resilience10. Evidence suggests that proxy measures 

such as education capture early life experiences that cannot be modified in later life11. 

Another approach to measuring resilience is to use linear models to predict cognition with 

relevant predictors and use the residuals of the model as a measure of resilience because 

they represent the variance in cognition that cannot be explained with available data12. 

Residual measures may be better suited for capturing current resilience and have been shown 

to vary over time in older adults13. Finally, latent factor modeling approaches can be used 

to combine multiple putative measures of resilience into a single latent factor14,15. Here, 

we combine these approaches in a theory-driven manner, using a latent factor framework 

with both proxy-based (early-life) and residuals-based (later-life) measures, to attempt to 

best capture the concept of resilience in a single factor, which we refer to as ‘consolidated 

resilience’. Combined with PET measures of Aβ and tau in the same individuals, we 

can explore relationships among resilience, AD pathology and cognition in our cohort of 

cognitively normal older adults.

Accurate, quantitative measurement of resilience on the individual level is essential to 

uncovering factors related to successful aging outcomes. One approach to assessing the 

construct validity of a resilience measure is to test for an interaction between the measure 

and pathology on cognition7. For a valid measure, higher resilience should be related 
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to less pathology-associated cognitive decline. Another consideration is how resilience is 

related to decline in different cognitive domains16. Here, we address both of these issues 

by (1) assessing how resilience affects the relationship between pathology and cognition 

and (2) examining two domain scores weighted by confirmatory factor analysis (CFA), one 

composed of episodic memory tests and another composed of tests of executive functioning, 

processing speed and fluency (non-memory cognition).

The objective of the present study was to create a theory-driven, consolidated resilience 

score and validate this measure by examining its relationship with AD pathology and 

longitudinal cognitive trajectories. We deliberately chose to call our score a resilience 

measure because our aim was to assess cognitive resilience to AD pathology measured with 

PET imaging. A key validation step was the assessment of whether consolidated resilience 

moderated the relationship between pathology and cognitive decline7. We hypothesized that 

our consolidated resilience score would be associated with less cognitive decline over time 

in the episodic memory domain. Finally, we predicted that there would be a significant 

interaction between AD pathology and consolidated resilience on episodic memory decline 

such that individuals with higher resilience would show a blunted relationship between tau 

pathology and memory decline.

Results

Overview

We used latent variable modeling to create a consolidated resilience score and then related 

it to AD pathology and cognitive trajectories. Study participant data were obtained from 

the longitudinal, observational Berkeley Aging Cohort Study (BACS). All participants 

underwent neuropsychological testing, [11 C] Pittsburgh Compound B (PiB) PET scans 

to measure Aβ pathology, [18 F] flortaucipir (FTP) PET scans to measure tau pathology 

and magnetic resonance imaging (MRI) scans to measure brain structure and create regions 

of interest (ROIs). We focused on two cognitive domain scores, episodic memory and 

non-memory cognition, based on CFAs of our neuropsychological data (Fig. 1). CFAs 

were completed using all BACS participants. CFA-weighted episodic memory and non-

memory cognition domain scores were used to calculate a residuals-based measure of 

resilience. Separately, we used years of education and premorbid IQ (vocabulary score) to 

create a proxy-based measure of resilience. Together, our proxy-based and residuals-based 

measures were entered into a partial least-squares (PLS) path model to generate consolidated 

resilience scores for each individual participant (Fig. 2). The PLS path model was built using 

only BACS participants who had undergone MRI and PET imaging. Consolidated resilience 

scores were then entered into linear mixed effects models, which revealed moderating 

effects of consolidated resilience on the association between PET measures of tau and Aβ 
pathology and longitudinal change in episodic memory and non-memory cognition domain 

scores.

Participants

Demographic characteristics of the BACS participants included in each analysis are 

summarized in Table 1. The average age of the imaging cohort participants (n = 123) at 
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the cognitive session used in the PLS path model (closest to FTP-PET) was 76.75 ± 6.15 

years with 58% females and an average of 16.88 ± 1.88 years of education. The larger 

cohorts used for the CFAs did not differ from the imaging cohort in sex or years of education 

(all P > 0.05), but they were slightly younger (both P < 0.001). In the imaging cohort, 23% 

of participants carried the apolipoprotein ε4 allele, 42% of participants were PiB positive, 

and the average cognitive follow-up time was 5.81 ± 3.98 years with an average of 5.58 ± 

3.34 cognitive sessions. One participant did not have usable PiB data, so this participant was 

excluded from models including global PiB distribution volume ratio (DVR). A total of 18 

(out of 1,599) cognitive test scores closest to the baseline FTP-PET were imputed for the 

primary cohort. A total of 50 scores (out of 8,840) were imputed due to missingness across 

all cognitive sessions for all participants.

CFA-generated cognitive domain scores

Using CFA, episodic memory and non-memory cognitive domains were modeled; 493 

participants were included in the episodic memory CFA and 515 participants included in 

the non-memory cognition CFA based on our criteria requiring complete neuropsychological 

test data within each domain. The episodic memory model had a Comparative Fit Index 

(CFI) value of 0.998, a Tucker-Lewis Index (TLI) of 0.995, a root mean square error 

of approximation (RMSEA) value of 0.032 and a standardized root mean square residual 

(SRMR) value of 0.014, which all indicate that this model was a good fit for the data. This 

CFA model generated standardized factor loadings of 0.737 for California Verbal Learning 

Test Short Delay Free Recall (CVLT SDFR), 0.765 for California Verbal Learning Test Long 

Delay Free Recall (CVLT LDFR), 0.570 for visual reproduction I (VR I), 0.630 for visual 

reproduction II (VR II), 0.656 for logical memory and 0.642 for verbal paired associates 

(Fig. 1a). The factor loadings were then used as weights to calculate episodic memory 

domain scores for each participant. The non-memory cognition model generated through 

the CFA had a CFI value of 0.982, a TLI of 0.969, an RMSEA value of 0.052 and an 

SRMR value of 0.031, which all indicate that this model was a good fit for the data. This 

CFA model generated standardized factor loadings of 0.722 for Stroop in 60 s, 0.815 for 

digit symbol, −0.550 for Trail B-A, −0.564 for Trail Making Test A, 0.388 for backwards 

digit span, 0.535 for animal naming and 0.547 for vegetable naming (Fig. 1b). These factor 

loadings were then used as weights to calculate composite non-memory cognition scores for 

each participant.

Estimating a residuals-based measure of cognitive resilience

We used the residuals from multiple linear regressions predicting cognition (episodic 

memory domain and non-memory cognition domain separately) to create a residuals-based 

measure of resilience12. The results of these multiple linear regression models are shown in 

Supplementary Table 1. We observed a significant effect of hippocampal volume (β=0.018, 

P = 0.008) in predicting episodic memory. We observed significant effects of hippocampal 

volume (β=0.013, P = 0.03) and whole cortex thickness (β=63.540, P = 0.003) in predicting 

non-memory cognition. Residuals from these models were entered into the PLS path models 

as a residuals-based measure of cognitive resilience (Fig. 2).
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PLS path models

To calculate participant-specific consolidated resilience scores we built a PLS path model 

combining the residuals-based measures of cognitive resilience and common proxy-based 

measures from the literature. The PLS path model and corresponding loadings are shown in 

Fig. 2. The goodness-of-fit score of 0.77 indicates a good-fitting model. No indicator cross-

loaded onto another first-order latent trait (all crossloadings <0.46). Each first-order latent 

trait demonstrated clear unidimensionality (Dillon-Goldstein’s rho >0.78, first eigenvalue 

>1.28, second eigenvalue <0.79). Factor scores for the second-order latent factor were 

extracted from the PLS path model and used as our measure of consolidated resilience.

Consolidated resilience and AD pathology

We first examined cross-sectional relationships between consolidated resilience and 

measures of AD pathology to ensure these measures were not colinear. There was a 

nonsignificant trend negative correlation between consolidated resilience and ERC FTP 

SUVR across the whole imaging cohort (r = −0.164, P = 0.07; Supplementary Fig. 1a) and 

no significant associations in PiB+ participants (r = −0.117, P = 0.41) or PiB− participants 

(r = −0.134, P = 0.27) separately. The interaction between PiB status and consolidated 

resilience was not significant (P = 0.82). Associations with consolidated resilience were not 

significant for FTP measured in IT (whole cohort: r = −0.104, P = 0.25; PIB+: r = −0.052, P 
= 0.71; PiB−: r = −0.066, P = 0.59) or the temporal MetaROI (whole cohort: r = −0.085, P = 

0.35; PIB+: r = 0.00, P = 1; PiB−: r = −0.075, P = 0.54). Similarly, the correlation between 

consolidated resilience and global PiB DVR was negative but not significant in the whole 

cohort (r = −0.168, P = 0.06; Supplementary Fig. 1b) or in either PiB status subgroup (PIB+: 

r = −0.112, P = 0.43; PiB−: r = −0.212, P = 0.08).

Consolidated resilience, AD pathology and longitudinal cognition

We posited that higher resilience scores should be related to better longitudinal cognitive 

outcomes and should moderate the effect of AD pathology on cognitive decline. We used 

linear mixed effects models to test for these relationships using our consolidated resilience 

measure. Longitudinal cognitive domain data are plotted in Supplementary Fig. 2. In the 

model predicting episodic memory with ERC FTP SUVR, age and consolidated resilience 

showed significant main effects (p < 0.001; full model output is shown in Table 2a). In 

addition, the two-way interaction of ERC FTP SUVR with time was significant (P < 0.001), 

as well as our main predictor of interest, the three-way interaction between ERC FTP 

SUVR, consolidated resilience and time (P = 0.001). To illustrate this three-way interaction 

effect, we plotted the relationship between episodic memory and higher or lower ERC FTP 

SUVR over time in the context of higher or lower consolidated resilience (Fig. 3a). These 

plots reveal that high resilience is associated with a blunted effect of ERC FTP SUVR 

on episodic memory decline. The 2- and 3-way interactions were not significant in the 

model predicting longitudinal non-memory cognition (Table 2a and Fig. 3b). The results 

from both episodic memory and non-memory cognition models were similar using IT or 

MetaROI FTP SUVR values as the tau pathology measure, except episodic memory models 

also showed a significant two-way interaction between consolidated resilience and time (P = 

0.02; Supplementary Table 2). Additionally, the two-way interaction between IT FTP SUVR 
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values and consolidated resilience was significant for the non-memory cognition model (P = 

0.02; Supplementary Table 2).

Next, models predicting cognition (episodic memory and non-memory cognition) with 

global PiB DVR as the AD pathology measure showed significant main effects of age 

and consolidated resilience (P ≤ 0.01; Table 2b), a significant two-way interaction of global 

PiB DVR with time (P ≤ 0.01) as well as the three-way interaction between global PiB 

DVR, consolidated resilience and time (P < 0.02). An additional significant main effect of 

sex was found in the non-memory cognition model (P = 0.002). To illustrate the three-way 

interaction, we plotted the relationship between both episodic memory or non-memory 

cognition with higher or lower global PiB DVR over time in the context of higher or lower 

consolidated resilience (Fig. 4).

Finally, as an exploratory analysis to better understand the interactions between consolidated 

resilience and Aβ and tau pathology on cognition, we ran mixed effects models that included 

a four-way interaction term: global PiB DVR, ERC FTP SUVR, consolidated resilience and 

time. Full model results are shown in Supplementary Table 3. In the model predicting non-

memory cognition, but not episodic memory, the four-way interaction term was significant 

(P = 0.03).

Discussion

Using a multifactorial latent variable model, we created a measure of consolidated resilience 

that moderated the effect of AD pathology on cognitive decline in cognitively healthy 

older adults. Consolidated resilience interacted with tau measures and time in linear mixed 

effects models, demonstrating that greater consolidated resilience buffered the effect of tau 

pathology on episodic memory decline. In addition, we found that consolidated resilience 

interacted with Aβ pathology to predict non-memory cognitive decline over time. An 

exploratory model showed a four-way interaction accounting for Aβ, tau and resilience 

effects on cognitive decline was significant only for the non-memory cognition domain.

We interpret our results based on established findings that episodic memory declines early in 

aging and is strongly associated with pathological tau17-19. Given this, results demonstrating 

that consolidated resilience moderates the negative association between tau and memory 

are evidence that our measure captures information about functional resilience to tau 

pathology in older adults. Indeed, a recent consensus paper highlighted the importance 

of demonstrating that putative resilience measures moderate the effect of brain injury or 

pathology on cognition7. By using a rich, longitudinal cognitive dataset, we showed that 

the moderation of tau pathology by consolidated resilience affects cognitive trajectories, not 

just cross-sectional performance. Furthermore, consolidated resilience moderated the effect 

of tau on cognition regardless of which ROI was used to measure tau. It is remarkable that 

these findings were observed using a cohort of cognitively healthy older adults, and the 

finding suggests that there is sufficient variability in consolidated resilience in cognitively 

normal older adults to observe key moderation effects between pathology and cognitive 

decline.
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Previous studies have demonstrated moderating effects of reserve or resilience measures 

on cross-sectional relationships between tau and memory. One of these studies also 

found an attenuation of the relationship between tau and cross-sectional episodic memory 

based on the reserve proxy IQ, similar to the interaction effect we observe here with 

longitudinal cognitive data in cognitively healthy older adults20. In another study, a 

measure of brain resilience (for example, residuals from models predicting brain structure) 

interacted with tau pathology to predict MMSE scores in a group of mild cognitive 

impairment and AD patients21. Finally, several studies have examined left frontal functional 

connectivity as mechanism of resilience22,23, including in moderating the effect of tau on 

memory performance in cognitively normal older adults and patients with mild cognitive 

impairment24. These studies highlight the diverse approaches applied to studying resilience 

and demonstrate that there is likely a myriad of sources and substrates of resilience to tau 

pathology. Compared to the literature, our study is different in several ways, including (1) 

the use of longitudinal cognitive domain-specific performance data, (2) a cohort comprising 

only cognitively healthy older adults and (3) a composite measure of resilience that 

integrates published approaches.

Measures of reserve and resilience have also been shown to attenuate the relationship 

between Aβ and cognition in cohorts of older adults and AD patients25,26 and predict Aβ 
pathology burden in cognitively normal older adults27. In the present study, consolidated 

resilience moderated the relationship between global Aβ and episodic memory decline, 

but we interpreted this Aβ effect as being driven by the correlation between tau and 

Aβ pathology20, especially given the strength of the interaction between consolidated 

resilience and tau on episodic memory decline. Our interpretation is supported by a 

model including both Aβ and tau where the 4-way interaction term Aβ*tau*consolidated 

resilience*time did not significantly predict episodic memory. In contrast, our findings 

suggest that Aβ pathology may interact with consolidated resilience to predict non-memory 

cognition performance over time. A significant effect of Aβ*consolidated resilience*time 

was observed that was not likely to be explained by tau which, in a separate model, did not 

interact with consolidated resilience to predict non-memory cognition change. In line with 

this, the four-way interaction term Aβ*tau*consolidated resilience*time did significantly 

predict non-memory cognition change. The interpretation of this contrast in findings in the 

two cognitive domains is not entirely clear. First, it may be that Aβ pathology, which has a 

widespread spatial pattern of accumulation occurring across much of cortex simultaneously, 

is associated with more distributed cognitive functions, including executive function and 

processing speed28. Indeed a large meta-analysis showed the Aβ pathology is associated 

with decline in multiple cognitive domains and in global cognition in cognitively normal 

older adults29. Second, given the early expression of memory decline in aging and the close 

association with early tau pathology in the medial temporal lobe, it may be that relationships 

between resilience, pathology and executive function can only be observed in individuals 

with AD pathological change, or who are Aβ positive30.

Our consolidated resilience score predicted change in cognition above and beyond baseline 

performance, which was a major goal in developing a valid consolidated resilience 

score. Baseline cognitive performance predicts future performance such that individuals 

with higher baseline performance generally experience less decline compared to those 
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whose baseline performance was poorer, even in cognitively healthy older adults31,32. 

The consolidated resilience measure we constructed with a PLS path model included 

residuals from a linear model predicting cross-sectional episodic memory. As these residuals 

likely were correlated with cross-sectional episodic memory33,34, it was critical that our 

consolidated resilience measure was not simply a proxy of cross-sectional cognitive 

performance. In our mixed effects models, we included a random effect of participant 

intercept that adjusts the model for differences in baseline performance. Thus, the significant 

interactions we report from these models represent effects above and beyond the effect of 

baseline performance. Another key feature of a latent factor approach is that it allowed 

us to create a single consolidated resilience measure rather than separately conducting 

repeated tests to explore different proxy measures that likely capture small amounts of 

nonoverlapping variance in resilience. Finally, the consolidated resilience score is comprised 

of data available in many longitudinal observational cohort studies and may be easily 

replicated by other groups and related to different biomarkers.

FTP-PET was introduced into this present longitudinal observational study protocol when it 

became available in 2014. Here, we chose to build the PLS path model using cross-sectional 

cognitive domain scores closest in time to the FTP-PET (and corresponding PiB-PET) scan 

because we were interested in associations between consolidated resilience and pathology. In 

our mixed effects models, however, we thought it was important to use all the cognitive data 

available so for some participants the baseline cognitive session in the mixed effect model 

does not correspond to the session used in the PLS path model.

To ensure that this was not influencing our results, we ran PLS path models to create 

consolidated resilience scores using true baseline cognitive data and confirmed that our main 

findings remained consistent (Supplementary Table 4).

This study had several limitations. First, the cohort is relatively homogenous in regards 

to race/ethnicity, education and socioeconomic status. This homogeneity may limit the 

generalizability of our findings and is a pervasive limitation in human subjects research. 

We also observed increasing cognitive performance slopes in some of our participants 

indicative of practice effects which are common in longitudinal cognitive data in healthy 

older adults35. However, even in our relatively homogenous, cognitively normal sample, 

our results show that there was sufficient variability to generate meaningful consolidated 

resilience scores. Second, we encountered conceptual limitations in the choice of variables 

to include in the PLS path model. Variables included in the model cannot be used in later 

validation steps. As cognition, brain structure, pathology and demographic characteristics 

are all interrelated, there may exist circularity in the model between variables included 

and variables used to validate it. We attempted to reduce this by using variables to 

validate the model (AD pathology, change in cognition) that were not included in the 

model calculation. Finally, the use of proxy measures to capture abstract constructs such 

as reserve and resilience is inherently limited, and certain proxies may be related to other 

unmeasured factors. For example, having higher years of formal education likely confers 

many advantages over one’s peers, including factors not measured in the present study. 

In addition, there are other measures that were not available in the present cohort, such 

as occupational complexity and late-life social stimulation, that would have strengthened 
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our conceptual model of consolidated resilience. Using the data available in BACS, our 

approach attempted to consolidate different aspects of resilience across multiple measures 

to create a single factor that captured resilience across the constituent measures. Finally, 

the exploratory model examining the four-way interaction between Aβ, tau, consolidated 

resilience and time (Supplementary Table 3) may be underpowered given our sample size.

In summary, we created a single measure of consolidated resilience that moderates the 

effect of AD pathology on cognitive decline in a cohort of cognitively normal, older 

adults. Our findings provide evidence that latent factor models are a useful way to measure 

consolidated resilience and that moderation of pathology–cognition relationships can be 

observed in unimpaired individuals. In future work, we will further refine our approach with 

longitudinal AD pathology measures and data arising from a more diverse cohort. Given 

further refinement and study, a multifactorial modeling approach to defining resilience could 

act as an early screener tool for cognitively healthy older adults who are at higher risk for 

cognitive decline.

Methods

Participants

The BACS is an ongoing cohort study that has enrolled over 500 cognitively normal older 

adults and is composed of volunteers who were recruited into the cohort via advertisements 

and word of mouth. Recruitment for the cohort began in 2005 and is ongoing. BACS 

enrollment criteria include a Mini-Mental State Examination score ≥25, normal daily 

function, and scores on the California Verbal Learning and Visual Reproduction tests 

within 1.5 standard deviations of age, sex, and education-adjusted norms. Exclusion criteria 

include history of neurological disease, mental illness that could affect cognition, history of 

substance abuse, depression, or neuroimaging contraindications. In this study we examined 

BACS participants aged 60 or older who had demographic and neuropsychological data 

available. Additional requirements for the imaging cohort were completed FTP-PET and 

structural MRI scans. No statistical methods were used to predetermine sample sizes. We 

used the number of cumulative BACS participants who met our inclusion criteria for each 

analysis. Demographic variables were compared between analysis cohorts using two-sided 

independent t-tests for continuous variables and Fisher’s exact test for categorical variables.

Written informed consent was obtained from all participants and participants were 

compensated for their time ($75 for cognitive sessions, $150 for combined PiB- and 

FTP-PET scanning session). The study protocols have been approved by the University 

of California, Berkeley and Lawrence Berkeley National Laboratory (LBNL) institutional 

review boards (073H004-22AP23).

Image acquisition and processing

Radiotracers for the PiB- and FTP-PET scans were prepared at LBNL and the data were 

acquired on a Siemens Biograph PET/computerized tomography scanner. DVR values for 

PiB-PET images were generated with Logan graphical analysis on frames corresponding to 

35–90 min after injection using a cerebellar gray matter reference region36,37. Participants’ 
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global PiB DVR (Supplementary Fig. 3) was calculated as the mean in FreeSurfer-derived 

frontal, temporal, parietal and posterior cingulate ROIs as previously described38,39. A 

global PiB DVR > 1.065 defined PiB positivity.

FTP standardized uptake value ratio (SUVR) measures were based on mean tracer uptake 

80–100 min after injection normalized by mean inferior cerebellar gray matter40. Image 

processing was completed using SPM12 and MATLAB vR2019b. SUVR measures in 

FreeSurfer-derived ROIs41 were partial volume (PV) corrected using the Geometric Transfer 

Matrix approach42. PV-corrected ROI SUVR values were re-normalized by PV-corrected 

inferior cerebellar gray reference region. Tau pathology was measured using PV-corrected 

SUVR values for entorhinal cortex (ERC; Supplementary Fig. 3), inferior temporal gyrus 

(IT) and a MetaROI composed of temporal regions (entorhinal, amygdala, parahippocampal, 

fusiform, inferior temporal and middle temporal gyri)43. We chose ERC because this is the 

earliest cortical site of tau accumulation and it is related to memory, IT because it is an early 

region of tau spread outside the MTL and the MetaROI because it has been shown to best 

differentiate between AD patients and controls19,43.

Structural MRIs were collected for defining structural ROIs. MRI data were acquired on a 

Siemens 1.5 T Magnetom Avanto scanner at LBNL. Each participant received a structural, 

whole-brain three-dimensional T1-weighted magnetization prepared rapid gradient echo 

sequence with the following parameters: sagittal slice orientation, repetition time = 2,110 

ms, echo time = 3.58 ms, flip angle = 15°, and voxel size = 1 mm isotropic. MRIs 

were segmented into ROIs, including ERC, IT, subregions of the tau-PET MetaROI, whole 

hippocampus volume and mean cortex thickness, using FreeSurfer (v. 5.3).

Statistics and reproducibility

CFA-generated cognitive domain scores.—BACS participants undergo a standard 

neuropsychological battery that includes tests of verbal and visual memory, language, 

frontal/executive function and verbal memory. Using these data in all available participants, 

we completed a series of CFAs (using ‘lavaan’ in R v4.0.3) initially evaluating domains for 

episodic memory, executive functioning, processing speed, language and working memory. 

We determined neuropsychological tests optimally loaded onto two factors, one representing 

episodic memory and one representing non-memory cognition, including tests of executive 

function, processing speed, fluency and working memory.

CVLT SDFR, CVLT LDFR, VRI, VRII, logical memory total score, and verbal paired 

associates data were included in a single-factor solution to quantify the episodic memory 

composite (Supplementary Fig. 3). Additional covariance terms were included a priori in 

the model between CVLT SDFR and CVLT LDFR as well as between VRI and VRII to 

account for correlations expected between subscores of the same test (Fig. 1a). Stroop in 

60 s, digit symbol, Trail Making Test A subtracted from Trail Making Test B (Trails B-A), 

Trail Making Test A, Backward digit span, animal naming, and vegetable naming data 

were included in a single-factor solution to quantify the non-memory cognition composite 

(Supplementary Fig. 3). Additional covariance terms were included a priori in the model 

between animal naming and vegetable naming as well as between Trails B-A and Trails 

Making Test A (Fig. 1b).
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All BACS participants (≥60 years) who had neuropsychological testing data were initially 

included in CFAs. If a participant was missing one cognitive testing score in either the 

episodic memory or non-memory cognition domains, these data were imputed by using the 

average respective test score across all baseline BACS participants (≥60 years). A total of 

18 (out of 1,599) cognitive test scores closest to the baseline FTP-PET were imputed for the 

imaging cohort. A total of 50 scores (out of 8,840) were imputed due to missingness across 

all cognitive sessions for all participants. Eight participants with two or more missing test 

scores were excluded from the CFAs. The fit statistic cutoffs used to determine the validity 

of a standalone CFA model were: CFI value >0.95, TLI > 0.95, RMSEA value <0.06 and 

an SRMR value <0.08 (ref.44). These are commonly reported fit statistics which have been 

reported in previous factor analyses of neuropsychological batteries45,46.

Standardized factor loadings were used as numerical weights and multiplied to the 

corresponding cognitive test score for each cognitive domain. We then summed these 

weighted test data together to create episodic memory and non-memory cognition domain 

scores for every cognitive session for each participant in the imaging cohort. This is a 

common approach that correlates highly with factor scores (r > .92 for both episodic 

memory and non-memory cognition domain scores) and allows for application of weights to 

data not used in the original model construction47.

For all analyses, data collection was not randomized nor blinded. All data were modeled 

continuously. Data distribution was assumed to be normal, but this was not formally tested.

Residuals-based measures of resilience with linear models.—Linear models 

were used to calculate a residuals-based measure of resilience. In this approach, episodic 

memory and non-memory cognitive domain scores were regressed against age, sex, mean 

bilateral ICV-normalized hippocampal volume and mean bilateral whole cortex thickness. 

An individual with a positive residual from the regression model would indicate better-than-

expected cognition.

Because we were interested in the relationship between resilience and pathology, we focused 

on cross-sectional episodic memory and non-memory cognition domain scores from the 

cognitive session closest to baseline FTP-PET scan to estimate a residuals-based score. 

An average of 2.84 ± 1.69 months took place between the cognitive test session and the 

FTP-PET scan.

Residuals-based measure linear regression equation:

cog_score = β0 + β1age + β2sex + β3ℎippo vol + β4tℎickness + ε…,

where cog_score is either the episodic memory score or non-memory cognition score, age 
is the age of the participant, sex is the sex of the participant, hippo vol is the mean bilateral 

hippocampal volume normalized to intracranial volume, thickness is the mean bilateral 

whole cortex thickness, and ε is the residual term.
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The residual term was used as a residuals-based measure of cognitive resilience in the 

hierarchical model used to capture consolidated resilience (Fig. 2).

PLS path modeling to estimate consolidated resilience.—To create a consolidated 

resilience score, we used a multivariate PLS path model (‘plspm’ in R v. 4.0.3), an approach 

related to structural equation modeling that is used to model relationships between groups 

of variables48. One key feature of the PLS path model is that there is an assumption that 

the variables loading onto a single latent variable are related or correlated. This makes the 

PLS path model a good option for modeling data that are collinear. We built our PLS path 

model using a residuals-based measure of cognitive resilience (residuals terms described 

above) and a proxy-based measure. Years of education and score on the WAIS Vocabulary 

test (a putative measure of premorbid IQ) were used to form the proxy-based factor. The 

PLS path model was composed of an inner and outer model14. The outer model of the PLS 

path model used reflective measurement to derive latent variables from the residuals-based 

and proxy-based measures. For the inner model, the residuals-based factor and proxy-based 

factor contributed to a consolidated resilience latent variable. A repeated indicators approach 

was used to derive the consolidated resilience second-order latent variable from the two 

outer model latent variables. The model’s overall goodness of fit was assessed using 

both the average communality score and the average r2 value. A goodness of fit > 0.7 

is generally accepted as a good model48. Additionally, to assess a good-fitting model, no 

indicator should cross-load onto another first-order latent trait at a greater value than the 

loading on the intended latent trait. Finally, to ensure model unidimensionality we expect 

the Dillon-Goldstein’s rho > 0.7, the first eigenvalue > 1, and the second eigenvalue < 1 

(ref.48). The distribution of the consolidated resilience score in the Imaging cohort is shown 

in Supplementary Fig. 3.

Validating the consolidated resilience score.—To evaluate the consolidated 

resilience measure, we tested whether it was associated with AD pathology and longitudinal 

decline in neuropsychological performance. First, Pearson correlations were used to test 

the association between consolidated resilience and pathology measures. These bivariate 

correlations between consolidated resilience and pathology were used as a check that the 

resilience scores were not just proxies of tau or amyloid. Linear mixed effects models 

were used to explore effects of consolidated resilience and pathology on change in episodic 

memory and non-memory cognition domain scores across all available neuropsychological 

testing sessions while modeling random effects (varies by individual) of participant intercept 

and slope with sex and age as fixed effect covariates. Continuous independent variables were 

centered at their sample means. Our primary predictor of interest was a three-way interaction 

between consolidated resilience, ERC FTP SUVR and time.

R syntax for the linear mixed-effects model:

cog scores = AD patℎology measure ∗ consol resil ∗ time
+ sex + age + (time ∣ participant)…,

where cog_scores are repeated episodic memory scores or repeated non-memory cognition 

scores; AD pathology measure is the ERC FTP SUVR, global PiB DVR, temporal MetaROI 
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FTP SUVR, or IT FTP SUVR; consol resil is the consolidated resilience score; time is years 

since baseline cognitive session; sex is sex of the participant; age is age of the participant; 

and participant is the participant ID. (Note: R package ‘lme4’ (function: lmer).)

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1 ∣. CFA of two cognitive domains.
A graph of the CFA models used to generate episodic memory (a) and non-

memory cognition (b) factors. Latent variables are shown in ovals and the measured 

neuropsychological tests are shown in rectangles, all which have unique error terms, 

Σ. Numbers next to the arrows indicate standardized factor loadings between measured 

variables and first-order latent variables. Double-headed, dashed arrows show covariances 

between different variables that are subscores on the same test. CVLT SDFR, California 

Verbal Learning Test Short Delay Free Recall; CVLT LDFR, California Verbal Learning 

Test Long Delay Free Recall; VR I, visual reproduction I; VR II, visual reproduction II; LM, 

logical memory; VPA, verbal paired associates; Stroop, Stroop in 60 s; DS, digit symbol; 

Trail B-A, Trail Making Test A subtracted from Trail Making Test B; Trail A, Trail Making 

Test A; BDS, backwards digit span; Animals, animal naming; Vegetables, vegetable naming.
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Fig. 2 ∣. PLS path model defining consolidated resilience.
A graph of the PLS path model used to generate consolidated resilience scores. The 

goodness of fit is 0.77. The variables included in each latent trait are represented as 

rectangles (measurement variables), and the factor loadings are represented as the numbers 

next to the arrows. The second-order latent variable (consolidated resilience) and the first-

order latent variables (proxy-based measures, residuals-based measures) are depicted as 

ovals. Arrows pointing away from the first-order latent variables toward the measurement 

variables indicate reflective measurement. Arrows pointing away from the first-order latent 

variable towards the second-order latent variable indicate constructive measurement. The 

loadings for each first-order latent variable are presented above the arrows pointing to 

consolidated resilience. WAIS, Weschler Adult Intelligence Scale; hippo vol, bilateral 

hippocampal volume normalized by intracranial volume; mean cortical thickness, mean 

bilateral whole cortex thickness.
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Fig. 3 ∣. Consolidated resilience and ERC FTP interact to predict change in episodic memory.
Fitted longitudinal change in cognitive domain scores for episodic memory (a) and non-

memory cognition (b) are plotted for lower and higher levels of consolidated resilience 

defined by the values that correspond to 1 standard deviation (s.d.) below and above 

the group mean factor score (−0.75, 1.13). Lower and higher ERC FTP groups were 

created similarly using 1 s.d. below and above the group mean SUVR (1.04 and 

1.50). Shaded regions represent 95% confidence intervals. a, The plot demonstrates that 

greater consolidated resilience protects against ERC FTP-related episodic memory decline 

(consolidated resilience*ERC FTP*time; P = 0.001). b, The plot shows that consolidated 

resilience does not significantly protect against ERC FTP-related non-memory cognition 

decline (consolidated resilience*ERC FTP*time; P > 0.05). ERC, entorhinal cortex.
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Fig. 4 ∣. Interactive associations of consolidated resilience and global PiB DVR on cognitive 
domain scores.
Fitted longitudinal change in cognitive domain scores for episodic memory (a) and non-

memory cognition (b) are plotted for lower and higher levels of consolidated resilience 

defined by the values that correspond to 1 s.d. below and above the group mean (−0.75, 

1.13). Lower and higher global PiB DVR groups were created similarly using 1 s.d. below 

and above the group mean DVR (0.94, 1.36). Shaded regions represent 95% confidence 

intervals. a, The plot demonstrates that greater consolidated resilience protects against 

PiB-related episodic memory decline (consolidated resilience*PiB DVR*time; P = 0.009). 

b, The plot shows that greater consolidated resilience protects against PiB DVR-related 

non-memory cognition decline (consolidated resilience*PiB DVR*time; P = 0.02).
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Table 1 ∣

Analysis-specific cohort characteristics

Episodic
memory CFA
cohort (n = 493)

Non-memory
cognition CFA
cohort (n = 515)

Imaging cohort
(n = 123)

Age (yr) 74.04 (6.80) 74.01 (6.88) 76.75 (6.15)

Sex (M/F) 193/300 201/314 51/72

Education (yr) 16.74 (2.18) 16.76 (2.19) 16.88 (1.88)

MMSE 28.62 (1.52) 28.57 (1.57) 28.71 (1.23)

APOE ε4 (C/NC) – – 27/92 (4 NA)

PIB+/PiB− — — 52/70 (1 NA)

Cross-sectional episodic memory 127.32 (29.85) 126.83 (30.11) 132.89 (30.04)

Cross-sectional non-memory cognition 50.08 (40.61) 48.53 (42.69) 58.35 (26.82)

Cognitive follow-up (yr) — — 5.81 (3.98)

Global PiB DVR index >1.065 is classified as PIB+. F,female; M,male; MMSE, Mini Mental State Exam; NA, not available;–,not applicable.
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Table 2 ∣

Predicting longitudinal cognition: consolidated resilience with ERC FTP and global PiB DVR

Parameter Episodic memory Non-memory cognition

Estimate s.e. P Estimate s.e. P

A: ERC FTP

(Intercept) 133.668 2.710 <0.001 64.704 2.903 <0.001

Age −1.025 0.303 <0.001 −0.583 0.319 0.07

Sex (male ref.) −1.205 3.220 0.71 −10.227 3.364 0.003

ERC FTP −2.970 7.736 0.70 −3.643 8.527 0.67

Consol Resil 18.579 1.671 <0.001 16.459 1.843 <0.001

Time 0.506 0.355 0.16 −0.273 0.488 0.58

ERC FTP*Consol Resil −1.481 7.606 0.85 8.382 8.361 0.32

ERC FTP*time −6.103 0.800 <0.001 −2.159 1.596 0.18

Consol Resil*time 0.302 0.207 0.15 0.049 0.394 0.90

ERC FTP*Consol Resil*time 2.870 0.824 0.001 2.412 1.637 0.15

B: Global PiB

(Intercept) 133.040 2.707 <0.001 64.275 2.843 <0.001

Age −1.159 0.301 <0.001 −0.793 0.310 0.01

Sex (male ref.) −1.595 3.327 0.63 −10.813 3.404 0.002

Global PiB 6.689 7.741 0.39 6.225 8.353 0.46

Consol Resil 18.883 1.716 <0.001 16.550 1.854 <0.001

Time 0.677 0.397 0.09 −0.127 0.466 0.78

Global
PiB*Consol Resil

−2.862 6.338 0.65 10.451 6.815 0.13

Global PiB*time −3.352 1.235 0.008 −4.167 1.594 0.01

Consol Resil*time 0.341 0.285 0.24 −0.122 0.374 0.75

Global PiB*Consol Resil*time 2.712 1.010 0.009 3.099 1.304 0.02

A: number of observations = 680 (123 participants). B: number of observations = 673 (122 participants). Italicized P values indicate significance 
at < 0.05. Longitudinal analyses of cognitive domains (episodic memory and non-memory cognition) were performed using linear mixed-effects 
regression models with centered variables. Models assessed three-way interaction between a pathology measure, consolidated resilience (Consol 
Resil) and time. ERC,entorhinal cortex; s.e.,standard error.
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