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Abstract  
      Disease transmission is a complex spatio-temporal process. A great number of approaches 
have been developed to predict influenza epidemics. Few of them have focused on the temporal 
dynamics of individual infected locations. Location networks, where locations are nodes and 
disease flows between them are links, provide a promising approach for such dynamic analyses, 
but also present challenges. In this study, we employ a deep learning approach to capture the 
dynamics of disease flows in location networks. We also analyze how the attributes of locations 
have an impact on the prediction accuracy via a sensitivity analysis. 
1. Introduction 

Disease transmission is a complex spatio-temporal process (Ferguson et al., 2005; 
Charaudeau et al. 2014). Among the prevailing approaches to predicting the dynamics of 
influenza epidemics, few have focused on the transmission at a location-specific scale. Location 
networks, where locations are nodes and disease flows between them are links, provide a 
promising basis for such dynamic analyses (Zhong and Bian 2016), but also present challenges 
as each location might have peaks and troughs of different magnitudes throughout the epidemic 
(Bian et al. 2012). Conventional approaches are not adequate to capture such complex, dynamic 
patterns.  

The objectives of this study are two-fold. We explore the use of Deep Convolutional 
Networks (DCN), a deep learning approach, to capture and predict disease flow dynamics 
represented by the presence of links between locations. We also analyze how the attributes of 
locations impact the prediction accuracy via a sensitivity analysis.  
2. Data and Study Area 

The dataset consists of 73 daily disease flow networks of an urban area. In these networks, all 
1,026 location nodes remain the same across 73 days. Links can be present or absent depending 
on the occurrence of disease flow between locations on any particular day. The dataset was 
obtained from the China Information System for Diseases Control and Prevention. 
3. Methodology 

To achieve the objectives stated above, the methodology is divided into three parts: the first 
part describes the principle of DCN; the second part introduces the training and testing processes 
involved in the DCN; and the last part focuses on the sensitivity analysis. 
        3.1. Principle of DCN 
       In contrast to classic neural networks which require good features for supervised training, 
DCN is a training process where good features could be automatically learned from input data 
(LeCun et al. 2015). The workflow of DCN in this study (Figure 1) contains three processes: 1) 
the convolution process, where a convolution filter is applied on the input data (in a format of 
matrix) in order to amplify the feature signal and suppress the noise; 2) the pooling process, 
which extracts features that represent location characteristics in the past few days; and 3) the 
training and testing process, where the learned features are used as input to predict the presence 
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and absence of links between locations as output (Busseti et al. 2012; LeCun et al. 2015).  
Predictions are made from past observations and validated with current observations, The 
process is repeated as the time window moves forward. Of the three processes, training and 
testing process is further explained below. 

 
Figure 1. Schematic view of deep convolutional network workflow. 

3.2. Training and testing process 
        The features are represented by 13 attributes of locations in three categories. The first 
category of attributes describes the epidemiological behavior of locations, such as number of 
cases at locations, and the previous presence of disease flow between locations. The second 
category describes the characteristics of location nodes in the networks. These include path 
length between location pairs, degree, betweenness, closeness, clustering coefficient, eccentricity, 
bridge, radiality, stress and topological coefficient. The third category takes spatial information 
into consideration by counting the number of cases at locations’ nearest neighbors.    
         In the training process, we use DCN to build an optimized weight matrix W, which 
represents how the presence of link on a certain day is associated with its connecting nodes’ 
attributes in the past few days. The weight matrix W is trained according to Equation 1: 

Output (Yijm) ⇐ Input (Xijm-1,Xijm-2,…Xijm-n) * W       (1), 

where Yijm represents the presence/absence of the link between Locations i and j observed on 
Day m;  Xijm indicates the input attributes on Locations i and j observed on Day m.  Xijm-1,Xijm-

2,…Xijm-n represent attributes of Locations i and j observed one day, two days, up to n days prior 
to Day m, respectively. n is the temporal lag, which is initially set as five days. The 73 daily 
networks are divided into two parts, a training set and a testing set. The training set contains the 
daily network of the first 50 days, and the remaining 23 days are used as the testing set.    

 3.3. Sensitivity Analysis 
We perform a sensitivity analysis to evaluate the impact of the 13 attributes and the training 

parameters, i.e. the temporal lag and the length of training/testing sets, on the prediction. The 
impact of the 13 attributes is evaluated by removing them in two approaches: 1) a conventional 
approach in which one attribute is removed at a time, yielding 13 scenarios, and 2) an alternative 
approach in which the exhaustive combination of multiple attributes are removed, yielding 
2^13=8,192 scenarios. Regarding the impact of training parameters, the temporal lag n is varied 
from 3-10 days and the training set is lengthened to 50 to 59 days, while the testing set is 
shortened accordingly.   

Four criteria are utilized to evaluate the accuracy of predicted presence and absence of links: 
1) Overall Accuracy (OA): the sum of correctly predicted presence and absence divided by the 
sum of observed presence and absence over the testing period, 2) Precision of Presence (PP): the 
correctly predicted presence divided by the total number of predicted presence over the testing 
period, 3) Precision of Absence (PA): the correctly predicted absence divided by the total 
number of predicted absence over the testing period, and 4) F1 Score: the balance between PP 
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and PA as shown in Equation 3(Powers 2011). All accuracy measurements are standardized from 
0 to 1.  

F1 score=     (2* PP * PA) / (PP+PA)                       (3) 

For comparison purposes, the classic neural networks analysis (FNN) is also applied to the same 
73 daily networks to predict the present/absence of links, using the same set of attributes, 
temporal lag, training and testing length division, the sensitivity analysis, and the four accuracy 
criteria.  
4. Results and Discussion 

Figure 2 illustrates the prediction results using DCN (a) and classic neural networks (b), with 
respect to the varying temporal lag and training and testing length division. For the DCN results, 
OA and PA are above 92%. PP and F1 Score are above 80% when the temporal lag is within six 
days. As the observed peaks and troughs of the epidemic last approximately 12-14 days, the 6-
day half cycle corresponds to the rising slope of the epidemic peak before it declines. The same 
principle is applicable to the troughs. The training and testing length division does not have a 
noticeable impact on the prediction results. In addition, the DCN produces results with 
considerably higher accuracy than that generated by classic neural networks in terms of all four 
criteria (Figure b). 

 

 

Figure 2.Prediction results using DCN (a) and classic neural networks analysis (b). Each sub 
figure corresponds to one of the four evaluation criteria: OA, upper left; PP, upper right; PA, 
lower left, and F1 score, lower right  (x-axis: temporal lag; y-axis: length of training period; 
vertical axis: prediction accuracy).   
          Figure 3 illustrates the results from the sensitivity analysis regarding the impact of 
attributes on prediction results, with the F1 score reported as a balanced evaluation. Among the 

GIScience 2016 Short Paper Proceedings

382



13 scenarios yielded by removing one attribute at a time, The prediction is most sensitive to the 
removal of network path length. This attribute measures the length of disease flow pathways.  

 
Figure 3. Sensitivity analysis results with respect to the 13 attributes: a) 13 scenarios with one 
attribute removed at a time and b) 8,192 scenarios with multiple attributes removed at a time (x-
axis: scenario ID; y-axis: prediction accuracy).  

         Prediction results from the 8,192 scenarios fall into three groups (Figure 3b). The green 
circle highlights the scenarios whose accuracy is reduced by 17.75% on average, when two 
attributes, the previous presence of disease flow between locations and the path length, are 
removed. The blue circle highlights scenarios whose accuracy has decreased by 39.5% on 
average, when two attributes, degree and closeness, are removed. The red circle highlights 
scenarios whose accuracy has decreased by 40.87% on average, with two attributes, neighbors’ 
cases and eccentricity, are removed. These six attributes represent the source and pathways of 
disease flow. The prediction of links is sensitive to these attributes. These findings help develop 
location-oriented intervention strategies to mitigate the spread of disease, e.g. quarantine at 
location pairs of short path length. 
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