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Abstract—Voltage overscaling has been an option for energy-
reliability tradeoff. This work aims at exploring its efficiency
and potential for logic delay faults. Our case study on an ARM
Cortex-M0 processor with commercial 45nm libraries shows that
the number of delay faults increases dramatically after the first
failing operating point which implies that voltage overscaling will
be inefficient after the critical operating point. This suggests the
need of the monitoring schemes for tracking the critical operating
point.

I. INTRODUCTION

Voltage overscaling has been considered as an option for
energy-reliability tradeoff [1]–[4]. Its efficiency, however, de-
pends on how the circuit delay (and corresponding delay
faults) reacts to the scaled voltage. Similar analysis has
been performed on DSP [5] or as Critical Operation Point
Hypothesis [6]

This work aims at conducting a case study of the properties
of delay faults on a general-purpose, commercial embedded
processor. The focus of this case study is exploring the impacts
of circuit topology and workload on delay fault behaviors. Our
observation based on the case study results includes:

• The endpoint-based criticality analysis may not be a good
approach for delay fault analysis as multiple critical paths
can end at the same endpoint as fan-in.

• Single-bit-flip may not be a good model for delay faults as
most delay faults in our experiments are multi-bit failures,
as one critical path can end at multiple endpoints as fan-
out.

• Temporal distribution of delay faults has certain depen-
dence on the software workload in our study. More
throughout experiments are needed for generic workload.

The rest of the report is organized as follows. Section II
explains in detail about our experiment setup. Section III
presents and discusses the case study results. Section IV
concludes the report..

II. EXPERIMENT SETUP

This case study is performed on an ARM Cortex-M0
processor [7]. It is a 3-stage pipeline processor that supports
Thumb/Thumb-2 ISA. The processor is implemented using

commercial 45nm process technology and libraries. Logic
synthesis is performed using Cadence RTL Compiler [8].
Physical place and route is performed using Cadence En-
counter [9]. The implemented design has about 10K gates.
Detailed breakdown is shown in Fig. 1. The processor is
implemented with a frequency target of 250 MHz, i.e., with
critical path delay of 4 ns. The fraction of critical Flip-
Flops(FFs) under different timing slack values are plotted in
Fig. 2.

The case study is based on Verilog simulation with delay an-
notation. Synopsys VCS [10] is used as the verilog simulator.
The Delay annotation information, i.e., Standard Delay Format
(SDF) file, is generated with the physical synthesis tool. A
verilog testbench is used to drive the simulated processor with
all the memory transactions.

The sequential elements are configured to report any signal
switching within certain time window before the incoming
clock rising edge. The size of the time window is set to be
k + tsetup, where tsetup is the setup time of that particular
FF, and k is a user-defined value which is the same for all
FFs. When we over-scale the clock period, the data signals
start arriving within the time window and being reported as
warnings. The additional k is used to preserve the correct
operation while scaling the clock period. In this case study,
we set k to be 1 ns. Therefore, the designed no-fault operating
clock period becomes 5 ns.

Fig. 1. Gate count breakdown for the processor.



Fig. 2. Fraction of critical FF under different timing slack values

The software benchmark used in this case study is an
FFT program from Mibench [11]. The benchmark is cross-
compiled for the targeting processor and loaded into the ver-
ilog testbench as memory image. The input data is generated
as random numbers with controllable seed values. The FFT
program takes about 500K clock cycles on the processor.

III. CASE STUDY RESULTS AND DISCUSSION

With the experiment setup described in Section II, we repeat
the simulation with different clock period values. The reported
timing warnings are recorded and used for the delay fault
analysis in the rest of this section.

A. Delay Faults vs. Clock Period

There are two effects of changing clock period on the
circuits:

1) The number of potential faulty FFs increases with scaled
clock period.

2) The number of potential faulty paths ending at the same
FF increases with scaled clock period.

The trend of 1) can be inferred from Fig. 2, if we ignore
the path activation factor. But the effect of 2) depends on
both how many paths ends at the FF and how frequent are
the paths being activated. This depends on both the circuit
topology and workload. Based on the FFT program running
on the processor, the number of delay faults of one single FF
with different clock period values is shown in Fig. 3. Since we
are using static delay annotation in the experiments, the same
critical path will have the same delay regardless of the clock
period. Therefore, the increased delay fault count at reduced
clock period implies that there are new critical paths ending
at the same FF.

The number of delay faults of all FFs and one single FF with
different clock period values is plotted in Fig. 4. As analyzed
earlier, the effect of increased number of faulty FFs causes the
increase of overall delay fault count from the red curve to the
blue curve.

B. Number of Delay Faults in a Cycle

The correlation of the delay faults ending at different FFs
is also important for correctly modeling of delay faults. We
use the recorded timing warning log generated during the

Fig. 3. Number of delay faults of one single FF with different clock period
values

Fig. 4. Number of delay faults of all FFs(blue) and one single FF (red) with
different clock period values

simulation to identify the number of delay faults in each clock
cycle. The histogram of the number of delay faults at clock
period of 4050 ps is shown in Fig. 5. The results imply that
most delay faults occur in a single cycle are multi-bit faults.
We also plot the histogram at a much slower clock period of
4650 ps (see Fig. 6). A significant fraction of faults are still
multi-bit faults. This can be caused by a slow path fanning-out
into multiple FFs.

C. Temporal Distribution of Delay Faults

The temporal dependence of delay faults is also important
for exploring potential system-level and software-level mech-
anisms for handling delay faults, as they tend to have longer
turnaround time. The temporal distribution of delay faults at
clock period of 4050 ps is shown in Fig. 7, where each dot
represents the number of delay faults within 200 cycles. The

Fig. 5. Histogram of the number of delay faults in a cycle at clock period
of 4050 ps
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Fig. 7. Temporal distribution of delay faults at clock period of 4050 ps. Each dot represents the number of delay faults within 200 cycles

Fig. 8. Temporal distribution of delay faults at clock period of 4650 ps. Each dot represents the number of delay faults within 200 cycles

Fig. 6. Histogram of the number of delay faults in a cycle at clock period
of 4650 ps

delay faults are distributed along the software execution and
the length of fault-free segments are typically small.

As comparison, the temporal distribution of delay faults at
clock period of 4650 ps is shown in Fig. 8. We see similar
distribution of delay faults as in Fig. 7. The fault-free segments
are with larger length and occur with certain patterns. Further
analysis is required to identify the connection between these
patterns and corresponding software code segments or phases.

IV. CONCLUSION

We perform a case study of delay faults on a processor
with overscaled clock period. The results show that circuit
topology plays an important role in how the delay faults occur.

The results also show that workload has certain impact on
the temporal distribution of delay faults. Further analysis is
required to identify the cause of workload dependence.
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