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Abstract

The development of acquired drug resistance hampers the long-term success of B-RAF inhibitor
(B-RAFi) therapy for melanoma patients. Here we show V89%0EB-RAF copy number gain as a
mechanism of acquired B-RAFi resistance in four out of twenty (20%) patients treated with B-
RAFi. In cell lines, V600EB-RAF over-expression and knockdown conferred B-RAFi resistance
and sensitivity, respectively. In V60OEB-RAF amplification-driven (vs. mutant N-RAS-driven) B-
RAFi resistance, ERK reactivation is saturable, with higher doses of vemurafenib down-regulating
pERK and re-sensitizing melanoma cells to B-RAFi. These two mechanisms of ERK reactivation
are sensitive to the MEK1/2 inhibitor AZD6244/selumetinib or its combination with the B-RAFi
vemurafenib. In contrast to mutant N-RAS-mediated Y690EB-RAF bypass, which is sensitive to C-
RAF knockdown, VE00EB-RAF amplification-mediated resistance functions largely independently
of C-RAF. Thus, alternative clinical strategies may potentially overcome distinct modes of ERK
reactivation underlying acquired B-RAFi resistance in melanoma.

Introduction

Activating B-RAF V600 kinase mutations occur in ~50% of melanomas?, and the ATP-
competitive type | RAF inhibitors, PLX4032/vemurafenib and GSK2118436, display
remarkable activity leading to overall survival advantage in patients with V600B-RAF mutant
melanomas?-8. Acquisition of drug resistance leading to clinical relapse, however, develops
in virtually all patients treated with B-RAF inhibitors (B-RAFi)*°. Heterogeneous
mechanisms of acquired B-RAFi resistance hitherto uncovered fall into general MAPK-
redundant, AKT-dependent’8 or MAPK-reactivating®19 pathways, indicating specific
translatable therapeutic strategies to prevent or overcome resistance. Contrary to
expectation, Y6O0EB-RAF secondary mutations have not been found to account for acquired
B-RAFi resistancel®, suggesting V609EB-RAF-bypass mechanisms as the principal means to
ERK reactivation.

Here we observed an alteration in VB90EB-RAF, namely genomic copy number gain, in
tumors of melanoma patients whose cancer progressed after initial responses to B-RAF
inhibitors. We demonstrated that this Y60EB-RAF amplification results in V600EB-RAF
over-expression, which is necessary and sufficient for acquired resistance to B-RAF
inhibitor. This finding, along with a recent study reporting N-terminal truncation of V600ER-
RAF causing acquired B-RAFi resistance in melanomall, underscores key molecular
alterations in the drug target itself. We further suggest that Y800EB-RAF-instrinsic
(amplification, truncation) vs. V600EB-RAF-bypass (N-RAS mutations) mechanisms, both
reactivating the MAPK pathway, may offer insights into distinct therapeutic strategies to
overcome acquired B-RAFi resistance in melanoma.
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Results

Whole exome sequencing identifies Y600EB-RAF amplification

We assembled twenty sets of patient-matched baseline (prior to B-RAFi therapy) and
disease progression (DP) (i.e., acquired B-RAFi resistance) melanoma tissues and analyzed
them to identify the proposed mechanisms of acquired B-RAFi resistance in melanoma.
These reported mechanisms include N-RAS10 and MEK 112 mutations, alternative-

spliced V600EB-RAF variants!, and over-expression of RTKs (PDGFRpP’10, IGF1-R8) and
COT? (Tables 1 and Supplementary Table S1; Supplementary Fig. S1). For DP samples
negative for these mechanisms and where there was sufficient frozen and patient-matched
normal tissues (from patients #4, 5, 8, 14, 16, 17 & 18), we subjected triads of genomic
DNAs (gDNAs) from normal, baseline, and DP tissues to whole exome sequencing. In two
available data sets, we searched for somatic DP-specific non-synonymous single nucleotide
variants (nsSNVs) and small insertion-deletion (indels), which were exceedingly few in
number or absent, respectively, using our bioinformatic workflow (Supplementary Tables
S2 and S3). We also analyzed for DP-specific copy number variations (CNVs) from the
exome sequence data (Supplementary Table S2). This identified Y60EB-RAF copy number
gains in these two patients’ DP tissues (2.2 and 12.8 fold in patients #5 and 8, respectively)
relative to their respective baseline tissues (Fig. 1a; Table 1). Gain in V690EB-RAF copy
number was reflected in corresponding increased gene expression at the protein level (Fig.
1b).

VB00ER_RAF amplification was validated by gDNA Q-PCR, producing consistent fold
increases in DP-specific Y6O0EB-RAF copy number gain (relative to baseline) (2.0 and 14
fold increase in patient #5 and 8 respectively) (Fig. 1c). We then expanded the analysis

of VB0OER_RAF amplification to all twenty paired melanoma tissues and detected V6O0ER-
RAF copy number gains in DP samples from two additional patients (2.3 and 3 fold for DP2
of patient #9 & DP of patient #13, respectively) (Fig. 1c; Table 1). We note that these copy
number fold increases are likely underestimates of the true changes due to non-tumor diploid
cell contents and tumor heterogeneity, as most disease progressive tumors occur from stable
residual tumors as a result of partial responses seen in the vast majority of patients treated
with B-RAF inhibitors. An increase in the mutant B-RAF to WT B-RAF ratio was also noted
in all four cases of DP harboring B-RAF copy humber gain when compared to their
respective baseline tissues (Fig. 1d), consistent with selection for VB9EB-RAF (vs. the WT
B-RAF allele) copy number gain during acquisition of B-RAFi resistance. Y600EB-RAF
amplification was largely mutually exclusive with N-RAS mutations (nho enrichment in
MEK1 exon 3 mutation was detected in DP vs. baseline tumors), RTK over-expression (no
COT over-expression detected), as well as a novel mechanism involving Y600EB-RAF
alternative splicing!! (Table 1; Supplementary Fig. S1).

B-RAFi selects for V600OEB.RAF gain and over-expression

We have derived vemurafenib/PLX4032-resistant (R) sub-lines by providing continuous
vemurafenib exposure to seven human melanoma-derived Y60EBRAF-positive parental (P)
cell lines sensitive to vemurafenib-mediated growth inhibition. Four resistant sub-lines,
including M229 R5 and M238 R17:10, over-expressed PDGFRf compared to their parental

Nat Commun. Author manuscript; available in PMC 2012 December 26.
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counterpart. One sub-line (M249 R410) gained a mutation in N-RAS, and another (M397 R)
an alternatively spliced variant of Y600EB-RAF resulting in in-frame fusion of exons 1 and 11
(Supplementary Fig. S2). As in our tissue analysis, these mechanisms were identified in a
mutually exclusive manner. Another vemurafenib-resistant sub-line, M395 R, was derived
from a V0OEB-RAF-homozygous parental line, M395 P (Supplementary Fig. S3a).
Compared to M395 P, M395 R harbors increased copy numbers of Y600EB-RAF gDNA and
cDNA, consistent with a dramatic Y69°EB-RAF protein over-expression (Supplementary
Fig. S3b, ¢, and d). M395 R displays growth highly resistant to vemurafenib treatment
(Supplementary Fig. S4a), and titration of M395 R with vemurafenib (1 h) after a 24 h of
drug withdrawal revealed pERK levels to be highly resistant to acute V600EB-RAF inhibition
(Supplementary Fig. S4b). This pattern of MAPK reactivation was similar to that seen in a
mutant N-RAS-driven, vemurafenib-resistant sub-line, M249 R4, and contrasted with that in
the RTK-driven vemurafenib-resistant sub-line, M229 R5 (Supplementary Fig. S4b)7:10,
Expectedly, the levels of p-AKT are unchanged (Fig. 2b) comparing M395 P vs. M395 R,
consistent with a lack of RTK over-expression leading to MAPK-redundant, PI3K-AKT
signaling’. Accordingly, M395 R does not over-express either PDGFR or IGF-1R, in
contrast to M229 R5, which has been shown to over-express the RTK PDGFRf
(Supplementary Fig. S4c)”-8. Additionally, M395 R is WT for N-, H- and K-RAS and
MEKZ1, harbors no secondary mutations in Y60EB-RAF or an alternatively spliced variant

of VBOOEBR-RAF which results in a N-terminally truncated V609EB-RAF protein.

Modest V600OEB_RAF over-expression leads to B-RAFi resistance

Three different but uniformly modest levels of Y600EB-RAF over-expression were achieved
by infecting M395 P with varying viral titers and subsequent puromycin selection. This
resulted in relatively low (1.9 fold over empty vector virus control), medium (2.4 fold) and
high (2.8 fold) levels of V600EB-RAF RNA/cDNA over-expression (Supplementary Fig. S5),
with the corresponding protein over-expression levels shown in Figure 2a. In comparison, in
two sets of tissues (from patients #8 and #13) where flash-frozen tissues were available, the
RNA/cDNA levels of V600EB-RAF in the DP tumors were 9.5 and 1.4 fold relative to those
in their patient-matched baseline tumors. Notably, the DP tumor from patient #13 was
obtained by an intervention radiology-guided needle biopsy of a pelvic mass
(Supplementary Table S1) and contained a high admixture of normal and tumor contents
(latter indicated by S100), which likely contributed to an underestimation of the true change
in the V600EB.RAF RNA/CDNA levels.

VB00EB_RAF gain leads to drug-saturable resistance

The modest and incremental over-expression of V600EB-RAF at the RNA and protein levels
in M395 P conferred similar degrees of vemurafenib resistance (Fig. 2b). Interestingly,
further V600EB_RAF over-expression at a much greater level, as in the case of M395 R
relative to M395 P (increase in RNA/cDNA level shown in Supplementary Fig. S3c and S5;
increase in protein level shown in Fig. 2c) conferred enhanced drug resistance mainly at 1
UM vemurafenib but not 10 uM vemurafenib (Fig. 2d). Thus, a modest Y600EB-RAF copy
number gain and over-expression can confer vemurafenib resistance, and even high
amplitude VBO0EB-RAF amplification and over-expression can be readily saturable by
micromolar concentrations of vemurafenib.

Nat Commun. Author manuscript; available in PMC 2012 December 26.
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Moreover, V600EB-RAF knockdown in M395 R confers vemurafenib sensitivity (Fig. 2¢ and
d). Consistently, V60OEB-RAF over-expression in M395 P (at a level titrated to be
comparable to M395 R) and its knockdown in M395 R resulted in pERK resistance and
sensitivity, respectively, to acute vemurafenib treatment after a 24 h drug withdrawal (Fig.
2e). We predicted that, regardless of the cellular genetic context, MAPK reactivation due to
drug target (i.e., V600EB-RAF) over-expression would be saturable by higher doses of
vemurafenib, in contrast to mutant N-RAS-mediated MAPK reactivation where V600ER.-
RAF may be bypassed by the alternative use of C-RAF13. Indeed, dosing of vemurafenib
from 1 to 50 M revealed a significant difference in drug sensitivity of M249 R4 (Q61KN-
RAS) vs. M395 R (amplified VE9%EB-RAF) (Fig. 3a) (where the latter was highly sensitive to
vemurafenib at this drug concentration range), suggesting a potential therapeutic
opportunity. To rule out that these results were not due to a difference in genetic
backgrounds, we artificially rendered the Y600EB-RAF melanoma cell line, M229,
vemurafenib-resistant by either Q¢1KN-RAS or V600EB-RAF viral transduction (Fig. 3b).
Again, high dose vemurafenib treatment was more effective at overcoming drug resistance
in V600EB_RAF-transduced M229 than in the same cell line transduced with Q¢1KN-RAS.

MEK inhibition restores vemurafenib sensitivity

Since both N-RAS mutation and Y609EB-RAF amplification-driven acquired resistance
mechanisms would be anticipated to result in MEK reactivation, we tested the allosteric
MEKi, AZD6244/selumetinib, on the @¥1KN-RAS-driven M249 R4 and the V600EB-RAF
amplification-driven M395 R sub-lines. MEKi treatment resulted in decreased proliferation
in both cases, but the activity was noted at lower concentrations for the @¢1KN-RAS-driven
resistance mechanism (Fig. 3c). This differential pattern was reproducible by exposing
AZD6244/selumetinib to VB9EB-RAF melanoma cell lines M229 and M238 transduced with
high levels of Y60EB-RAF vs. a short-term culture, Pt55 R10, with @6IKN-RAS-driven
acquired B-RAFi resistance (Fig. 3d). We also tested the combination of B-RAFi with
MEKi, which is currently in clinical testing?, in three-day survival assays. A calculation of
combination index (CI) values using equal ratios of vemurafenib and selumetinib was
performed. The results were consistent with a highly synergistic effect of these two agents
combined in overcoming both mutant N-RAS-driven (M249 R4) and V600ER-RAF
amplification-driven B-RAFi resistance (M395 R) (Fig 3e and 3f), although the combination
tended to be more potent against mutant N-RAS-driven acquired resistance to vemurafenib.
This B-RAFi and MEKi combinatorial synergy was further corroborated in longer-term
clonogenic assays (Fig. 3g).

Differential C-RAF dependency of ERK-reactivating mechanisms

We also predicted that MAPK reactivation due to Y690EB-RAF over-expression would be C-
RAF-independent, in contrast to mutant N-RAS-mediated MAPK reactivation

where V600EB_RAF may be bypassed by the alternative use of C-RAF. Indeed, C-RAF
knockdown by shRNA sensitized the mutant N-RASsub-line, M249 R4, but not the V600ER-
RAF amplified sub-line, M395 R, to vemurafenib in three-day survival assays (Fig. 3h). C-
RAF knockdown restored vemurafenib sensitivity to M249 R4 (61KN-RAS/V600ER.RAF)
even more strikingly in a longer-term clonogenic assays which afforded fresh drug
replacement every two days (Fig. 3i). An independent C-RAF shRNA also restored
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vemurafenib sensitivity to M249 R4 (Supplementary Table S4). Additionally, B-RAFi and
MEK:i synergy and C-RAF-dependence in mutant N-RAS-driven acquired B-RAFi
resistance was confirmed in a short-term culture derived from a tumor with clinical acquired
vemurafenib resistance (Supplementary Fig. S6).

Discussion

Methods

Identification of VBO0EB-RAF amplification as a mechanism of acquired resistance in B-
RAFi treated patients provides evidence for alterations in the drug target causing clinical
relapse. Based on these studies, therapeutic stratification of MAPK reactivation underlying
B-RAFi resistance into drug-saturable or C-RAF-dependent pathways may be translatable
into the design of next-generation clinical trials aimed at preventing or overcoming B-RAFi
resistance (Fig. 4). These findings also provide pre-clinical rationale for dose escalation
studies in selected patients with B-RAFi-resistant Y600E'KB-RAF metastatic melanomas,
particularly given the wide range of effective dosing and the fact that the maximum tolerated
dose of GSK2118436 has not been determined. The combination of current B-RAF
inhibitors (or next-generation RAF inhibitors that enhance B-RAF potency or feature pan-
RAF inhibition) with MEK1/2 inhibitors may potentially broadly block MAPK reactivation.

Emerging evidence points to B-RAF mutant cancers of other tissue origin or lineage being
less responsive to specific B-RAF inhibition than B-RAF mutant melanomas. Mechanisms
of acquired B-RAF inhibitor resistance may turn out to be instructive for understanding
primary resistance of B-RAF mutant cancer types to B-RAF inhibitors, as primary (de novo)
and secondary (or acquired) drug resistance may be clinical manifestations from a spectrum
of molecular alterations that are mechanistically linked. Thus, multiple modes (e.g.,
mutation, copy number gain) of up-regulating oncogene activity, which may pre-exist in the
same tumor and/or patient, may help explain the range of heterogeneous responses of B-RAF
mutant cancers to direct B-RAF, MEK or ERK inhibition.

Cell culture experiments

Cells were maintained in DMEM with 10 or 20% fetal bovine serum and glutamine.
SshRNAs (Supplementary Table S4) for B-RAF and C-RAF were sub-cloned into the
lentiviral vector pLL3.7; pBabe B-RAF (V600E) was purchase (plasmid 17544, Addgene);
viral supernatants generated by co-transfection with three packaging plasmids into
HEK?293T cells; and infections carried out with protamine sulfate. Stocks and dilutions of
PLX4032 (Plexxikon, Berkeley, CA) and AZD6244 (commercially available) were made in
DMSO. Cells were quantified using CellTiter-GLO Luminescence (Promega) or crystal
violet staining followed by NIH Image J quantification.

Whole exome sequencing

Human tissues were obtained with patient-informed consent under UCLA Institutional
Review Board (#10-001089) approval. For each sample, 3ug of high molecular weight
genomic DNA was used as the starting material to generate the sequencing library. Exome
captures were performed using Agilent SureSelect Human All Exon 50mb and Agilent
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SureSelect Human All Exon 50mb XT for PT #5 and Pt #8, respectively, per manufacturers’
recommendation, to create a mean 200bp insert library. For Pt #5, sequencing was
performed on Illumina GenomeAnalyzerll (GAII) as 76+76bp paired-end run. The normal
sample was run on 1 flowcell lane and the tumor samples were run on 2 flowcell lanes each.
For Pt #8, sequencing was performed on Illumina HiSeq2000 as 50+50bp paired-end run
and 100+100bp paired-end run. The three samples (hormal, baseline and DP) were initially
mixed with 9 other samples and run across 5 flowcell lanes for the 50+50bp run. For the
100+100bp run, they were mixed with 3 other samples to be run across 5 flowcell lanes with
barcoding of each individual genomic sample library.

For Pt #5, approximately 62 million, 137 million, 147 million reads were generated for
normal tissue (skin), baseline melanoma and DP melanoma, respectively, with 75.2%,
78.1%, and 74.7% of the reads mapping to capture targets. Based on an analysis of reads
that uniquely aligned to the reference genome and for which the potential PCR duplicates
were removed, an average coverage of 52X, 88X, and 114X was achieved with 87%, 92%
and 93% of the targeted bases being covered at 10X or greater read depth for normal,
baseline and DP, respectively.

For Pt #8, approximately 198 million, 270 million, 256 million reads were generated for
normal tissue (skin), baseline melanoma and DP melanoma, respectively with 43.2%, 44.1%
and 42.3% of the reads mapping to capture targets. Based on an analysis of reads that
uniquely aligned to the reference genome and for which the potential PCR duplicates were
removed, an average read depth of 107X, 132X and 123X was achieved with 89%, 90% and
90% of the targeted bases being covered at 10X or greater for normal, baseline and DP,
respectively.

Sequencing data analysis

For Pt #8 where the samples were indexed and pooled before the sequencing, Novobarcode
from Novocraft was used to demultiplex the data. The sequence reads were aligned to the
human reference genome using Novoalign VV2.07.13 from Novocraft (http://
www.novocraft.com). For Pt #5, hg18 downloaded from UCSC genome database was used
and for Pt #8, b37 downloaded from GATK (Genome analysis toolkit) resources website
was used for the reference genome. SAMtools v.0.1.1616 was used to sort and merge the
data and Picard (http://picard.sourceforge.net/) was used to mark PCR duplicates. To correct
the misalignments due to the presence of indels, local realignment was performed using
RealignerTargetCreator and IndelRealigner of GATK’. Indel calls in dbSNP132 were used
as known indel input. Then, GATK CountCovariates and TableRecalibration were used to
recalibrate the originally reported quality score by using the position of the nucleotide within
the read and the preceding and current nucleotide information. Finally, to call the single
nucleotide variants (SNVs), the GATK UnifiedGenotyper was used to the realigned and re-
calibrated bam file while GATK IndelGenotyperV2 was used to call small insertion/
deletions (Indels). To generate a list of somatic variants for DP tumor, the difference in
allele distribution was calculated using one-sided Fisher’s exact test using normal sample or
the baseline sample. Variants with p-value<0.05 were included in the “somatic variant list”.
Low coverage (<10X) SNVs and SNVs with more than one variant allele in normal tissue
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and baseline melanoma were filtered out during the process. These somatic variants were
further annotated with SeattleSeqSNPannotation (http://gvs.gs.washington.edu/
SeattleSegAnnotation/). For DP-specific, non-synonymous SNVs that result in missense
mutations, we assessed the level of amino acid conservation using PhyloP score (provided in
UCSC genome database) where a score > 2 implies high conservation and the nature of
amino substitution using Polyphen-2 analysis18.

CNV analysis was performed using an R package, ExomeCNV1°, ExomeCNV uses the ratio
of read depth between two samples at each capture interval. Here, the read depth data
between baseline and DP melanomas were compared. Briefly, the read depth information
was extracted through the PILEUP file generated from the BAM file after removing PCR
duplicates using SAMtools. The average read depth at each capture interval was
calculatedand the classify.eCNV module of ExomeCNV was run with the default parameters
to calculate the copy number estimate for each interval. Subsequently, another R package
commonly used to segment the copy number intervals, DNAcopy?, was called through
ExomeCNV multi.CNV.analyze module with default parameters to do segmentation and
sequential merging. The genomic regions with copy number 1 were called deletion and any
regions with copy number >2 were called amplification. Circos2? was used to visualize the
CNYV data.

Protein detection

Western blots were probed with antibodies against p-ERK1/2 (T202/Y204), ERK1/2, C-
RAF, AKT (Ser473), AKT (Thr308), AKT (Cell Signalig Technologies; all at 1:1000), N-
RAS, B-RAF (Santa Cruz Biotechnology; both at 1:500), and tubulin (Sigma; 1:700). For B-
RAF immunohistochemistry, paraffin-embedded formalin-fixed tissue sections were
antigen-retrieved, incubated with the primary antibody (Santa Cruz Biotechnology; 1:50)
followed by HRP-conjugated secondary antibody (Envision System, DakoCytomation).
Immunocomplexes were visualized using the DAB (3,3’-diaminobenzidine) peroxidase
method and nuclei hematoxylin-counterstained.

Genomic DNA and RNA quantifications

For real-time quantitative PCR, total RNA was extracted and cDNA quantified by the
iCycler iQ Real Time PCR Detection System (BioRad). Data were normalized to TUBULIN
and GAPDH levels. Relative expression is calculated using the delta-Ct method. gDNAs
were extracted using the FlexiGene DNA Kit (Qiagen) (Human Genomic DNA-Female,
Promega). B-RAF relative copy number was determined by quantitative PCR (cycle
conditions available upon request) using the MyiQ single color Real-Time PCR Detection
System (Bio-Rad). Total DNA content was estimated by assaying -globin for each sample,
and 20 ng of gDNA was mixed with the SYBR Green QPCR Master Mix (Bio-Rad) and 2
pmol/L of each primer. All primer sequences are provided in Supplementary Table S4.

Data processing

Statistical analyses were performed using InStat 3 Version 3.0b (GraphPad Software);
graphical representations using DeltaGraph or Prism (Red Rock Software); and combination
index calculation using CalcuSyn V2.1 (Biosoft). Calculations were made by CalcuSyn
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software using the method of Chou and Taladay. Interpretation of CI values is summarized
as follows: ClI < 0.1 (very strong synergy); = 0.1-0.3 (strong synergy); = 0.3-0.7 (synergy);
0.7-0.85 (moderate synergy); = 0.85-0.9 (slight synergy); = 0.90-1.10 (nearly additive); and
= 1.10-1.20 (slight antagonism). The relevant correlated Logq (CI) values are shown as
follow: Logyg (CI 0.1) = -1; Log;g (ClI 0.3) = -0.5228787452803376; Logyp (C1 0.7) =
-0.1549019599857432, and Log1q (CI 0.85) = -0.07058107428570727.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Exome sequencing identifies Y690EB-RAF amplification as a candidate mechanism for
BRAFi resistance

(a) Copy number variations (CNVs) called from whole exome sequence data on two triads
of gDNAs using ExomeCNV and chromosome 7 as visualized by Circos (outer ring,
genomic coordinates (Mbp); centromere, red; inner ring, log ratio values between baseline
and disease progression (DP) samples’ average read depth per each capture interval; scale of
axis for Pt #5 -5 to 5 and for Pt #8 —2.5 to 2.5). Two patients whose melanoma responded to
and then progressed on vemurafenib. The genomic region coded orange represents the
location of B-RAF (chr7:140,424,943-140,524,564), which shows an average log ratio
value of 1.14 (2.2 fold gain; Pt #5) and 3.8 (12.8 fold gain; Pt #8). (b) B-RAF
immunohistochemistry on paired tissues derived from the same patients as in a (scale bar =
50 uM) (c) Validation of V60OEB-RAF copy number gain by gDNA gPCR (black and red by
B-RAF primer set 1 and 2, respectively) and recurrence across distinct patients (positives
highlighted in orange). PMN, peripheral mononuclear cells, and HDF, human dermal
fibroblasts for diploid gDNAs. (d) B-RAF V600 mutant to WT ratio increases with disease
progression or acquisition of B-RAFi resistance mediated by mutant B-RAF copy number
gain. Chromatograms from Sanger sequencing for melanoma samples from patients who
acquired B-RAFi resistance based on distinct molecular alterations: V690EB-RAF copy
number gain, Y600EB-RAF truncation, N-RAS mutation or RTK over-expression.
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Figure 2. V6O0EB_RAF levels modulate melanoma sensitivity to vemur afenib
(a, b) Western blot of V600EB-RAFV600E and p-ERK, tubulin is used as a loading control.

Growth curve of did not alter the pERK level in the absence of vemurafenib/PLX4032 but
conferred growth resistance to the parental line, M395 P when exposed to indicated
concentrations of PLX4032 for 72 h (relative to DMSO-treated controls; mean + SEM, n =
5). Dashed line, 50% inhibition. (c, d) Transduction of shRNA to knockdown BRAFV600E jn
the drug-resistant sub-line, M395 R, did not alter the pERK level in the absence of PLX4032
but restored growth sensitivity to PLX4032 (72 h; mean £ SEM, n = 5). (€) Increasing (in
M395 P) or decreasing (in M395 R) BRAFV600E |evels decreased or increased pERK
sensitivity to PLX4032 (0, 0.1, 1, 10 uM) treatments for 1 h, respectively.
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Figure 3. Differential B-RAFi/MEKi sensitivitiesand C-RAF dependency
(a) Survival curves of B-RAFi acquired resistant sub-lines, with indicated mechanisms of

resistance, to 72 h of B-RAFi (PLX4032) treatments, showcasing differential responses at
the micro-molar drug range. Results are shown relative to DMSO-treated controls (mean £
SEM, n = 5; dashed line, 50% inhibition). (b) Survival curves of cell lines, engineered by
viral transduction of M229 P to be B-RAFi resistant, to 72 h of B-RAFi (PLX4032)
treatments, showcasing differential responses at the micro-molar drug range. Results are
shown relative to DMSO-treated controls (mean + SEM, n = 5). Expression of indicated
viral expression constructs shown in Western blots. (c) Survival curves of B-RAFi acquired
resistant sub-lines, with indicated mechanisms of resistance, to 72 h of MEKi (AZD6244)
treatments, showcasing differential responses at the micro-molar drug range. Results are
shown relative to DMSO-treated controls (mean + SEM, n = 5). (d) Survival curves of cell
lines (engineered by viral transduction of M229 P and M238 P to over-express Y600EB-RAF
rendering these parental cells resistant to B-RAFi) to 72 h of MEKi (AZD6244) treatments,
showcasing differential responses at the micro-molar drug range. Pt55 R (double B-RAF and
N-RAS mutant) is a short-term melanoma culture derived from a tumor which acquired
PLX4032 (vemurafenib) resistance in a treated patient. Results are shown relative to
DMSO-treated controls (mean £ SEM, n =5). (eand f) Indicated cell lines were treated with
constant ratios of PLX4032 and AZD6244 and survival measured after 72h. Relative
synergies, expressed as logyg of Cl values, are shown. (g) M249 (R4) and M395 R were
seeded at single cell density and treated with indicated concentrations of PLX4032 and/or
AZD6244. Inhibitors and media were replenished every two days, colonies visualized by
crystal violet staining after 8 days of drug treatments, and quantified (% growth relative to
cells treated with 1 pM PLX4032; representative of 2 experiments). Photographs
representative of two independent experiments. (h) Survival curves of indicated cell lines
after shScrambled or shC-RAF transduction (inset) and when treated with PLX4032 for 72
h. (i) Clonogenic assays of cell lines in e with 14 days (M249 R4) or 18 days (M395 R) of
PLX4032 treatment. Results are representative of 2 experiments.
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Figure 4. M APK -reactivating mechanisms of acquired B-RAFi resistance and therapeutic
implications

Distinct strategies to overcome acquired resistance driven by amplification of mutant B-RAF
or mutations in N-RAS Schematic of ERK-reactivating pathways (V600EB-RAF
amplification indicated by stacked symbols, top; N-RAS mutation, bottom; mutant proteins
in red and WT proteins in grey) and proposed strategies to restore B-RAFi sensitivity
(increasing B-RAFi concentration or potency, top; switching B-RAFi to pan-RAFi, bottom).
Alternatively, the combination of B-RAFi and MEK:i are predicted to synergistically
growth-inhibit melanomas with acquired resistance to B-RAFi monotherapy stemming from
ERK reactivation.
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