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To appear in Physica D: Nonlinear Phenomena

CONTINUOUS DATA ASSIMILATION FOR THE 2D BÉNARD

CONVECTION THROUGH VELOCITY MEASUREMENTS

ALONE

ASEEL FARHAT, MICHAEL S. JOLLY, AND EDRISS S. TITI

Abstract. An algorithm for continuous data assimilation for the two-dimensional
Bénard convection problem is introduced and analyzed. It is inspired by the
data assimilation algorithm developed for the Navier-Stokes equations, which
allows for the implementation of variety of observables: low Fourier modes,
nodal values, finite volume averages, and finite elements. The novelty here is
that the observed data is obtained for the velocity field alone; i.e. no tem-
perature measurements are needed for this algorithm. We provide conditions
on the spatial resolution of the observed data, under the assumption that the
observed data is free of noise, which are sufficient to show that the solution of
the algorithm approaches, at an exponential rate, the unique exact unknown
solution of the Bénard convection problem associated with the observed (finite
dimensional projection of) velocity.

MSC Subject Classifications: 35Q30, 93C20, 37C50, 76B75, 34D06.
Keywords: Continuous data assimilation, two-dimensional Bénard convection

problem, determining projections.

1. Introduction

Accurate numerical simulations of nonlinear systems require high precision in
the initial data. For most applications however, initial data which should ideally be
defined on the whole physical domain, can be measured only discretely, often with
inadequate resolution. Data assimilation refers to the process of completing, or en-
hancing the resolution of the initial condition. The classical method of continuous
data assimilation, see, e.g., [10], is to insert observational measurements directly
into a model as the latter is being integrated in time. The natural mathematical
target for data assimilation is the global attractor. This set contains all the long
time behavior; it is compact, invariant, and finite-dimensional. Another key notion
is that of determining parameters. A projection (onto say a finite number of low
Fourier modes, or other types of interpolant projections based on nodal values and
volume elements) is said to be determining if, whenever the projection of two tra-
jectories on the global attractor approach each other, as t→ ∞, the full trajectories
approach each other, see, for example, [8, 14–18, 22, 26, 27] and references therein.
One way to exploit this is to insert low mode observables from a time series into the
equation for the evolution of the high modes. After a relatively short time interval
[t−1, t0] the solution to the equation for the high modes is close to the high modes
of the exact solution associated with the observables. At that point the low modes
and high modes can be combined to form a complete good approximation of the
state of the system at time t = t0, which can then be used as an initial condition for
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a high resolution simulation. This was the approach taken for the 2D Navier-Stokes
in [4, 5, 20, 25, 28, 30, 31]. Except for the work in [4] for the 3DVAR Gaussian
filter, and [3] using the determining parameters nudging approach of this paper
for data assimilation, the previously mentioned theoretical work assumed that the
observational measurements are error free. Notably, the authors of [25] present an
algorithm for data assimilation that uses discrete in space and time measurements.

An alternative approach in [1] uses the observables in a feedback control term.
The advantage is that, since no derivatives are required of the coarse grain observ-
able, this works for a general class of interpolant operators. The main idea can be
outlined in terms of a general evolutionary equation

du

dt
= F (u), (1.1)

where the initial data u(0) = u0 is missing. Let Ih(u(t)) represent an interpolant
operator based on the spatial observations of the reference solution of system (1.1)
at a coarse spatial resolution of size h. Consider

dv

dt
= F (v) − µ(Ih(v) − Ih(u)), (1.2a)

v(0) = v0, (1.2b)

where µ > 0 is a relaxation (nudging) parameter, and v0 is arbitrary. It is shown
in [2] that if one takes µ large enough, and h small enough (depending on µ), then
v(t) converges to the reference solution u(t) of the two-dimensional Navier-Stokes
equations, at an exponential rate, as t → ∞. An extension to this approach of [2]
to the case where the observations are contaminated with random errors is studied
in [3]. The feedback control approach to data assimilation plays a key role in the
derivation in [12] of a determining form for the 2D NSE, which is an ordinary
differential equation whose steady states are precisely the trajectories in the global
attractor.

The Bénard convection problem is a model of the convection of an incompressible
fluid layer in a box (0, L)× (0, 1) which is heated from below in such a way that the
lower plate is maintained at a temperature T0 while the upper one is at temperature
T1 < T0, where T0 and T1 are constants. After a change of variables (see [13]), the
non-dimensional two-dimensional Boussinesq equations that govern the velocity of
the fluid, the pressure p, and the normalized temperature (or the density) of the
fluid read

∂u

∂t
− ν∆u+ (u · ∇)u +∇p = θe2, (1.3a)

∂θ

∂t
− κ∆θ + (u · ∇)θ − u · e2 = 0, (1.3b)

∇ · u = 0, (1.3c)

u(0;x) = u0(x), θ(0;x) = θ0(x), (1.3d)

with the boundary conditions in the x2-direction

u, θ = 0 at x2 = 0 and x2 = 1, (1.3e)

and in the x1-direction, for simplicity, we will impose a periodicity condition

u, θ, p are periodic, of period L, in the x1-direction. (1.3f)
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The Boussinesq system (1.3) is usually referred to as the Bénard convection
problem. The global regularity of the two-dimensional Boussinesq equations was
established in [6] (see also[33]) following the classical methods for the Navier-Stokes
equations. The mathematical analysis of system (1.3) has been studied in [13]
(see also [33]), where the existence and uniqueness of weak solution in dimension
two and three were proved, along with the existence of a finite dimensional global
attractor was also established in space dimension two. It was also shown in [13]
that system (1.3) can be handled with different boundary conditions. For recent
results concerning the two-dimensional Boussinesq equations we refer the reader to
[7], [11], [21], [23], [24], [29], and references therein.

In this work, we present a new continuous data assimilation algorithm for the
Bénard convection problem (1.3). The twist here is that we can recover the reference
solution to (1.3) using coarse-grain data for the velocity alone; temperature data is
not needed. This is done by solving

∂v

∂t
− ν∆v + (v · ∇)v +∇p̃ = ηe2 − µ(Ih(v)− Ih(u)), (1.4a)

∂η

∂t
− κ∆η + (v · ∇)η − v · e2 = 0, (1.4b)

∇ · v = 0, (1.4c)

v(0;x) = v0(x), η(0;x) = η0(x), (1.4d)

with the boundary conditions

(1.3e), and (1.3f) hold with u, θ, and p replaced by v, η, and p̃,

respectively. (1.4e)

Here, p̃ is a modified pressure, and as for (1.2), v0, η0 may be chosen arbitrarily,
e.g., zero in each case. If we knew u0 and θ0 in (1.3d), then we could take v0 = u0
and η0 = θ0 in (1.4d) and the solution (v, η) would be identically (u, θ), by the
uniqueness of solutions of system (1.4), which will be shown below. The point,
again, is that in many applications, we do not know u0 and θ0. We emphasize
that in this algorithm, we construct our approximate solutions (v, η) using only the
observations of the velocity field solution, Ih(u), in the v-equation; no observations
Ih(θ) are needed for the temperature.

We will consider two types of interpolant observables. One is to be given by a
linear interpolant operator Ih : H1 → L2 satisfying the approximation property

‖ϕ− Ih(ϕ)‖L2 ≤ γ0h ‖ϕ‖H1 , (1.5)

for every ϕ ∈ H1, where γ0 > 0 is a dimensionless constant. The other type is
given by Ih : H2 → L2, together with

‖ϕ− Ih(ϕ)‖L2 ≤ γ1h ‖ϕ‖H1 + γ2h
2 ‖ϕ‖H2 , (1.6)

for every ϕ ∈ H2, where γ1, γ2 > 0 are dimensionless constants. One example of an
interpolant observable that satisfies (1.5) is the orthogonal projection onto the low
Fourier modes with wave numbers k such that |k| ≤ 1/h. A more physical example
is the volume elements that were studied in [26]. An example of an interpolant
observable that satisfies (1.6) is given by the measurements at a discrete set of
nodal points in Ω (see Appendix A in [2]).

In the next section we lay out the functional setting commonly used in the
mathematical study of the Navier-Stokes equations. We also recall the previous
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work on the Bénard problem establishing well-posedness and existence of a global
attractor. In section 3 we prove that solutions on the global attractor of (1.3)
are determined by the velocity alone, a fact which motivates our data assimilation
algorithm (1.4). The main results are in section 3. Assuming adequate resolution
in the observational data, and separately conditions (1.5) and (1.6), we prove the
well-posedness of system (1.4) as well as convergence (at an exponential rate) of the
approximate solution (v, η) of (1.4) to the reference solution (u, θ) of the Bénard
convection problem (1.3).

2. Preliminaries

For the sake of completeness, this section presents some preliminary material
and notation commonly used in the mathematical study of fluids, in particular in
the study of the Navier-Stokes equations (NSE) and the Euler equations. For more
detailed discussion on these topics, we refer the reader to [9], [32], [34] and [35].

We begin by defining function spaces corresponding to the relevant physical
boundary conditions. We define F to be the set of C∞(Ω) functions defined in Ω,
which are trigonometric polynomials in x1 with period L, and compactly supported
in the x2-direction. We denote the space of smooth vector-valued functions which
incorporates the divergence-free condition by

V := {φ ∈ F × F : ∇ · φ = 0} .

Remark 2.1. We will use the same notation indiscriminately for both scalar and
vector Lebesgue and Sobolev spaces, which should not be a source of confusion.

The closures of V and F in L2(Ω) will be denoted by H0 and H1, respectively.
H0 and H1 will be endowed with the usual scalar product

(u, v)H0 =

2
∑

i=1

∫

Ω

ui(x)vi(x) dx and (ψ, φ)H1 =

∫

Ω

ψ(x)φ(x) dx,

and the associated norms ‖u‖H0
= (u, u)

1/2
H0

and ‖φ‖H1
= (φ, φ)

1/2
H1

, respectively.

We denote by the closures of V and F in H1(Ω) by V0 and V1, respectively. V0 and
V1 are Hilbert spaces endowed by the scalar product

((u, v))V0 =

2
∑

i,j=1

∫

Ω

∂ju
i(x)∂jv

i(x) dx and ((ψ, φ))V1 =

2
∑

j=1

∫

Ω

∂jψ(x)∂jφ(x) dx,

and the associated norms ‖u‖V0
= ((u, u))

1/2
V0

and ‖φ‖V1
= ((φ, φ))

1/2
V1

, respectively.

Let D(A0) = V0 ∩H
2(Ω) and D(A1) = V1 ∩H

2(Ω) and let Ai : D(Ai) → Hi be
the unbounded linear operator defined by

(Aiu, v)Hi
= ((u, v))Vi

, i = 0, 1,

for all u, v ∈ D(Ai). The operator Ai is self-adjoint and A
−1
i is a compact , positive-

definite, self-adjoint linear operator in Hi, for each i = 0, 1. Thus, there exists a
complete orthonormal set of eigenfunctions wi

j in Hi such that Aiw
i
j = λijw

i
j where

0 < λij ≤ λij+1 for j ∈ N and each i = 0, 1.

We denote the Helmholtz-Leray projector from L2(Ω) onto H0 by Pσ and the

dual of Vi by V
′

i , for i = 0, 1. We define a map B0 : V0 × V0 → V
′

0 by

〈B0(u, v), w〉V0,V
′

0
= (((u · ∇)v), w)H0 ,
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for each u, v, w ∈ V0, and its scalar analogue B1 : V0 × V1 → V
′

1 by

〈B1(u, v), w〉V1,V
′

1
= (((u · ∇)v), w)H1 ,

for each u ∈ V0 and v, w ∈ V1. These bilinear operators have the algebraic property

〈B0(u, v), w〉V0,V
′

0
= −〈B0(u,w), v〉V0,V

′

0
, (2.1a)

and

〈B1(u, θ), φ〉V1,V
′

1
= −〈B1(u, φ), θ〉V1,V

′

1
, (2.1b)

for each u ∈ V0 and v, w ∈ V0 and θ, φ ∈ V1. Consequently, they also enjoy the
orthogonal property

〈B0(u, v), v〉V0,V
′

0
= 0, and 〈B1(u, θ), θ〉V1,V

′

1
= 0, (2.2)

for each u ∈ V0, v ∈ V0 and θ ∈ V1.
In the above notation, we write the incompressible two-dimensional Bénard con-

vection problem (1.3) in the functional form

du

dt
+ νA0u+B0(u, u) = Pσ(θe2), (2.3a)

dθ

dt
+ κA1θ +B1(u, θ)− u · e2 = 0, (2.3b)

u(0;x) = u0(x), θ(0;x) = θ0(x). (2.3c)

Next, we recall Ladyzhenskaya’s inequality for an integrable function ϕ ∈ Vi,
i = 0, 1:

‖ϕ‖2
L4 ≤ c1‖ϕ‖L2 ‖ϕ‖Vi

, (2.4)

where c1 is a universal, dimensionless, positive constant. Hereafter, c denotes a
generic constant which may change from line to line. We also have the Poincaré
inequality:

‖ϕ‖2
L2 ≤ λ−1

1 ‖ϕ‖2Vi
, for all ϕ ∈ Vi, (2.5a)

‖ϕ‖2Vi
≤ λ−1

1 ‖Aiϕ‖
2
L2 , for all ϕ ∈ D(Ai), (2.5b)

where λ1 is the minimum of the two smallest eigenvalues of the Stokes operators
Ai, i = 0, 1.

Furthermore, inequalities (1.5) and (1.6) imply that

‖Pσ(w − Ih(w))‖
2
H0

≤ c20h
2 ‖w‖2V0

, (2.6)

for every w ∈ V0, where c0 = γ0, and respectively,

‖Pσ(w − Ih(w))‖
2
H0

≤
1

2
c20h

2 ‖w‖
2
V0

+
1

4
c40h

4 ‖A0w‖
2
H0
, (2.7)

for every w ∈ D(A0), for some c0 > 0 that depends only on γ1 and γ2.
We will apply the following inequality which is a particular case of a more general

inequality proved in [26].

Lemma 2.2. [26] Let τ > 0 be fixed. Suppose that Y (t) is an absolutely continuous
function which is locally integrable and that it satisfies the following:

dY

dt
+ α(t)Y ≤ 0, a.e. on (0,∞),
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and

lim inf
t→∞

∫ t+τ

t

α(s) ds ≥ γ, lim sup
t→∞

∫ t+τ

t

α−(s) ds <∞,

for some γ > 0, where α− = max{−α, 0}. Then, Y (t) → 0 at an exponential rate,
as t→ ∞.

We recall the following existence and uniqueness results from [13, 33] for the
Bénard convection problem (2.3).

Theorem 2.3 (Existence and Uniqueness of Weak Solutions). Let T > 0 be fixed,
but arbitrary. Let ν > 0 and κ > 0. If u0 ∈ H0 and θ0 ∈ H1, then system (2.3)
has a unique weak solution (u, θ) such that u ∈ C([0, T ];H0) ∩ L2([0, T ];V0) and
θ ∈ C([0, T ];H1).

It was also shown in [13, 33] that the 2D Bénard convection system has a finite-
dimensional global attractor.

Theorem 2.4 (Existence of a Global Attractor). Let T > 0 be fixed, but ar-
bitrary. If the initial data u0 ∈ V0 and θ0 ∈ V1, then the system (2.3) has a
unique strong solution (u, θ) that satisfies u ∈ C([0, T ];V0) ∩ L

2([0, T ];D(A0)) and
θ ∈ C([0, T ];V1)∩L

2([0, T ];D(A1)). Moreover, the system induced by (2.3) is well-
posed and possesses a finite-dimensional global attractor A which is maximal among
all the bounded invariant sets and is compact in H0 ×H1.

We will use the following bounds on (u, θ) later in our analysis.

Proposition 2.5 (Uniform Bounds on the solutions). [13, 33] Let (u, θ) be a strong
solution of (2.3). There exists t0 > 0, which depends on norms of the initial data,
such that for t ≥ t0,

‖θ(t)‖H1
≤ 2L1/2, and ‖u(t)‖H0

≤
2L1/2

νλ
1/2
1

, (2.8)

∫ t+1

t

‖u(s)‖
2
V0
ds ≤ a3,

∫ t+1

t

‖θ(s)‖
2
V1
ds ≤ b3, (2.9)

‖u(t)‖
2
V0

≤ (a2 + a3) e
a1 =: J0, (2.10)

‖θ(t)‖
2
V1

≤ (b2 + b3)e
b1 =: J1, (2.11)

where

a2 = b2 =
cL

νλ
1/2
1

, a3 =
cL(1 + λ

1/2
1 )

ν2λ1
, b3 =

cL(1 + νλ
1/2
1 )

κνλ
1/2
1

,

and

a1 =
cL

ν5λ1
a3, b1 =

cL

κ3ν2λ1
a3,

for some dimensionless positive constant c.

Remark 2.6. Recall that all quantities in (2.3) are dimensionless, including the
parameters ν, κ, L and λ1. The proof of Proposition 2.5 in [13] was done for the
particular case λ1 = 1. We state it for arbitrary λ1, so that our ultimate results
can show this dependence.
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3. Convergence Results

In this section, we derive conditions under which the approximate solution (v, η)
of the data assimilation system (3.4) converges to the solution (u, θ) of the Bénard
convection problem (2.3) as t → ∞. We will prove the result for observables
operators that satisfy (2.6) and (2.7), in functional settings, respectively.

The idea to apply data assimilation using observations of velocity only is inspired
by the fact that solutions in the global attractor of (2.3) are completely determined
by their velocity component. That is, the values of the temperature (or the density)
θ(t;x) in A are completely determined by the velocity vector field u(t;x) for all time
in A.

Proposition 3.1. Let (u1(t;x), θ1(t;x)) and (u2(t;x), θ2(t;x)) be two trajectories
in A of (2.3). If u1(t;x) = u2(t;x) = u(t;x) in A for all t ∈ R, then θ1(t;x) =
θ2(t;x), for all t ∈ R.

Proof. Let θ1 and θ2 be two trajectories such that (u(t;x), θi(t;x)) ∈ A for i = 1, 2

for all t ∈ R. Define θ̃ = θ1 − θ2. Then, θ̃ satisfies the equation

∂θ̃

∂t
+ κA1θ̃ +B1(u, θ̃) = 0. (3.1)

Taking the H1 inner product of (3.1) with θ̃ and using the Poincaré inequality (2.5)
yields

1

2

d

dt

∥

∥

∥
θ̃
∥

∥

∥

2

H1

= −κ
∥

∥

∥
θ̃
∥

∥

∥

2

V1

≤ −κλ1

∥

∥

∥
θ̃
∥

∥

∥

2

H1

.

Using Gronwall’s lemma we have
∥

∥

∥
θ̃(t)

∥

∥

∥

2

H1

≤ e−2κλ1(t−s)
∥

∥

∥
θ̃(s)

∥

∥

∥

2

H1

, (3.2)

for all −∞ < s ≤ t <∞. Since the solutions on the global attractor A are bounded
in H ×H1 and V × V1, we can let s→ −∞ in (3.2) to obtain

∥

∥

∥
θ̃(t)

∥

∥

∥

2

H1

= 0, (3.3)

for all t ∈ R. �

In functional form the system (1.4) reads as

dv

dt
+ νA0v +B0(v, v) = Pσ(ηe2)− µPσ(Ih(v) − Ih(u)), (3.4a)

dη

dt
+ κA1η +B1(v, η) − v · e2 = 0, (3.4b)

v(0;x) = v0(x), η(0;x) = η0(x), (3.4c)

where (u, θ) is the strong solution of the 2D Bénard convection problem (2.3) on
the global attractor A.

Following the techniques that were introduced to prove the existence and unique-
ness of solutions for the Navier-Stokes equations and the Boussinesq equations (see
for example, [6], [9], [13], [33] and [35]). We can show the existence of the solu-
tion (v, η) of system (3.4) using the Galerkin method and the Aubin compactness
theorem. The uniqueness and the well-posedness will follow as in the case of the
two-dimensional Navier-Stokes equations and the two-dimensional Boussinesq equa-
tions using the Lions-Magenes lemma and Gronwall’s lemma.
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First, we will prove that under certain conditions on µ, the approximate solution
(v, η) of the data assimilation system (3.4) converges to the solution (u, θ) of the
Bénard problem (2.3) as t→ ∞ when the observables operators satisfy (2.6).

Theorem 3.2. Let Ih satisfy the approximation property (2.6) and (u(t;x), θ(t;x))
be a strong solution in the global attractor of (2.3). Let µ > 0 be arbitrary and
h << 1 be chosen such that µc20h

2 ≤ ν, then (3.4) has a unique strong solution
(v, η) that satisfies

v ∈ C([0, T ];V0) ∩ L
2([0, T ];D(A0)), (3.5a)

η ∈ C([0, T ];V1) ∩ L
2([0, T ];D(A1)), (3.5b)

and
dv

dt
∈ L2([0, T ];H0),

dη

dt
∈ L2([0, T ];H1). (3.5c)

Moreover, the strong solution (v, η) depends continuously on the initial data in the
V0 × V1 norm.

If we choose µ > 0 large enough such that

µ ≥
8

κλ1
+

8c21a3
ν

+
8c41J1b3
κ2λ1ν

, (3.6)

and h > 0 small enough such that µc20h
2 ≤ ν, where the positive constants a3(ν, L),

b3(ν, κ, L), and J1(ν, κ, L), are defined in Proposition 2.5. Then, ‖u(t)− v(t)‖2H0
+

‖θ(t)− η(t)‖
2
H1

→ 0 at an exponential rate as t→ ∞.

Proof. The existence of the solution (v, η) follows using the Galerkin method and
the Aubin compactness theorem. We refer the reader to the detailed proof of well-
posedness of the data assimilation system in [2]. The argument here would be
identical and will be omitted.

Define w = u− v, ξ = θ − η. Then w and ξ satisfy the equations

dw

dt
+ νA0w +B0(v, w) +B0(w, u) = Pσ(ξe2)− µPσIh(w), (3.7a)

dξ

dt
− κA1ξ +B1(v, ξ) +B1(w, θ)− w · e2 = 0, (3.7b)

w(0;x) = w0(x) := u0(x) − v0(x), (3.7c)

ξ(0;x) = ξ0(x) := θ0(x)− η0(x). (3.7d)

Since dw
dt and dξ

dt are bounded in L2([0, T ];H0) and L
2([0, T ];H1), respectively, using

the Lions-Magenes lemma, we can take the L2 inner product of (3.7a) and (3.7b)
with w and ξ, respectively, and obtain

1

2

d

dt
‖w‖

2
H0

+ ν ‖w‖
2
V0

+ (B0(w, u), w) =

∫

Ω

ξ(w · e2) dx − µ(Ih(w), w),

1

2

d

dt
‖ξ‖

2
H1

+ κ ‖ξ‖
2
V1

+ (B1(w, θ), ξ) =

∫

Ω

ξ(w · e2) dx.
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By Hölder’s inequality, Young’s inequality and the Poincaré inequality (2.5), we
have

∣

∣

∣

∣

∫

Ω

ξ(w · e2) dx

∣

∣

∣

∣

≤ ‖w‖H0
‖ξ‖H1

≤
κλ1
4

‖ξ‖
2
H1

+
1

κλ1
‖w‖

2
H0

≤
κ

4
‖∇ξ‖2H1

+
1

κλ1
‖w‖2H0

. (3.8)

Ladyzhenskaya’s inequality (2.4) and Young’s inequality yield

|(B1(w, θ), ξ)| ≤ ‖w‖L4 ‖ξ‖L4 ‖θ‖V1

≤ c1 ‖w‖
1/2
H0

‖w‖
1/2
V0

‖ξ‖
1/2
H1

‖ξ‖
1/2
V1

‖θ‖V1

≤
c21

κλ
1/2
1

‖w‖H0
‖w‖V0

‖θ‖
2
V1

+
κλ

1/2
1

4
‖ξ‖H1

‖ξ‖V1

≤
ν

8
‖w‖

2
V0

+
2c41
κ2λ1ν

‖w‖
2
H0

‖θ‖
4
V1

+
κ

8
‖ξ‖

2
V1

+
κλ1
8

‖ξ‖
2
H1

≤
ν

8
‖w‖

2
V0

+
2c41
κ2λ1ν

‖w‖
2
H1

‖θ‖
4
V1

+
κ

4
‖ξ‖

2
V1
, (3.9)

and

|(B0(w, u), w)| ≤ ‖v‖V0
‖w‖

2
L4

≤ c1 ‖u‖V0
‖w‖H0

‖w‖V0

≤
ν

8
‖w‖

2
V0

+
2c21
ν

‖u‖
2
V0

‖w‖
2
H0
. (3.10)

Thanks to the assumption µc20h
2 ≤ ν and Young’s inequality, we have

−µ(Ih(w), w) = −µ(Ih(w) − w,w) − µ ‖w‖
2
H0

≤ µ ‖Ih(w) − w‖H0
‖w‖H0

− µ ‖w‖2H0

≤ µc0h ‖w‖H0
‖w‖V0

− µ ‖w‖
2
H0

≤
µc20h

2

2
‖w‖

2
V0

−
µ

2
‖w‖

2
H0

≤
ν

2
‖w‖

2
V0

−
µ

2
‖w‖

2
H0
. (3.11)

Thus, it follows from the estimates (3.8)–(3.11) that

d

dt

(

‖w‖
2
H0

+ ‖ξ‖
2
H1

)

+
ν

2
‖w‖

2
V0

+
κ

2
‖ξ‖

2
V1

≤
(

4

κλ1
+

4c21
ν

‖u‖
2
V0

+
4c41
κ2λ1ν

‖θ‖
4
V1

− µ

)

‖w‖
2
H0
. (3.12)

Using the Poincaré inequality (2.5), we get

d

dt

(

‖w‖
2
H0

+ ‖ξ‖
2
H1

)

+
λ1
2

min{ν, κ}
(

‖w‖
2
H0

+ ‖ξ‖
2
H1

)

≤
(

4

κλ1
+

4c21
ν

‖u‖
2
V0

+
4c41
κ2λ1ν

‖θ‖
4
V1

− µ

)

‖w‖
2
H0
. (3.13)
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We denote by

α(t) := µ−
4

κλ1
−

4c21
ν

‖u‖
2
V0

−
4c41
κ2λ1ν

‖θ‖
4
V1
.

By Proposition 2.5, there exists t0 > 0 and such that for all t ≥ t0,
∫ t+1

t

‖u(s)‖
2
V0
ds ≤ a3, (3.14)

and
∫ t+1

t

‖θ(s)‖
4
V1
ds ≤ sup

s∈[t,t+1]

‖θ(s)‖
2
V1

∫ t+1

t

‖θ(s)‖
2
V1
ds ≤ J1b3, (3.15)

where the positive constants a3(ν, L), b3(ν, κ, L), and J1(ν, κ, L), are defined in
Proposition 2.5. Thus,

lim sup
t→∞

∫ t+1

t

α(s) ds ≥ µ−
4

κλ1
−

4c21a3
ν

−
4c41J1b3
κ2λ1ν

.

The assumption (3.6) implies that
∫ t+1

t

α(s) ds ≥
µ

2
> 0, and

∫ t+1

t

α(s) ds ≤
3µ

2
<∞. (3.16)

The inequality (3.13) can be rewritten as

d

dt

(

‖w‖
2
H0

+ ‖ξ‖
2
H1

)

+min{
νλ1
2
,
κλ1
2
, α(t)}

(

‖w‖
2
H0

+ ‖ξ‖
2
H1

)

≤ 0.

Define α̃(t) := min{ νλ1

2 , κλ1

2 , α(t)}, then α̃(t) satisfies (3.16). By the uniform Gron-
wall inequality, Lemma 2.2, it follows that

‖w(t)‖2H0
+ ‖ξ(t)‖2H1

→ 0,

at an exponential rate, as t→ ∞. �

Here we have the analogue of Theorem 3.2 but for observable operators that
satisfy (2.7).

Theorem 3.3. Suppose Ih satisfies the approximation property (2.7) and (u(t;x), θ(t;x))
is a strong solution, which is contained in the global attractor, of (2.3). Let T > 0,
β0 > 0 and β1 > 0 be arbitrary, but fixed, such that β0 ≥ J0 and β1 ≥ J1, where J0
and J1 are defined in (2.10) and (2.11), respectively. If v0 ∈ V0 and η0 ∈ H1 such
that

‖v0‖
2
V0

≤ β0, and ‖η0‖
2
H1

≤ β1, (3.17)

and µ is large enough, such that

µ ≥
96c21(β0 + β1)

ν
+

8c21
νλ1

K3 +
4c21
κλ1

J1 + 4
λ21 + 1

κλ21
, (3.18)

and h > 0 be small enough such that µc20h
2 ≤ ν, where K3 is a positive constant

defined in (3.29), then (3.4) has a unique global solution such that

v ∈ C([0, T ];V0) ∩ L
2([0, T ];D(A0)), (3.19a)

η ∈ C([0, T ];H1) ∩ L
2([0, T ];V1), (3.19b)
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and
dv

dt
∈ L2([0, T ];H0),

dη

dt
∈ L2([0, T ];V

′

1 ). (3.19c)

Moreover, ‖u(t)− v(t)‖2V0
+ ‖θ(t)− η(t)‖2H1

→ 0, at an exponential rate, as t→
∞.

Proof. Define w := u − v and ξ := θ − η. Since by assumption, (u, θ) is a solution
which is contained in the global attractor of (2.3), in particular, it satisfies the
global estimates in Proposition 2.5, then showing the global existence, in time,
of the solution (w(t), ξ(t)) is equivalent to showing the global existence, in time,
of the solution (v(t), η(t)) of system (3.4). To be concise here, we will show the

global existence of the solution (w(t), ξ(t)) and show that ‖w(t)‖
2
V0

+ ‖ξ‖
2
H1

decays
exponentially, in time, which will prove the convergence of the approximate solution
(v(t), η(t)) to the exact solution (u(t), θ(t)), exponentially in time.

Taking the difference between system (2.3) and system (3.4), we see that w and
ξ satisfy the equations

dw

dt
+ νA0w +B0(v, w) +B0(w, u) = Pσ(ξe2)− µPσIh(w), (3.20a)

dξ

dt
− κA1ξ +B1(v, ξ) +B1(w, θ) − w · e2 = 0, (3.20b)

w(0;x) = u0(x)− v0(x), (3.20c)

ξ(0;x) = θ0(x)− η0(x). (3.20d)

Next, we will prove some formal apriori estimates that are essential in proving
the global existence of solutions of system (3.20). These estimates can be justified
rigorously by using the Galerkin method and the Aubin compactness theorem (see
e.g. [9]).

Since ‖v0‖
2
V0

≤ β0 and ‖η0‖
2
H1

≤ β1 then by the continuity of ‖v(t)‖
2
V0

and

‖η(t)‖2H1
, there exists a short time interval [0, T̃ ) such that

‖v(t)‖
2
V0

+ ‖η(t)‖
2
H1

< 12(β0 + β1), (3.21)

for all t ∈ [0, T̃ ). Assume [0, T̃ ) is the maximal interval such that (3.21) holds. We

will show, by contradiction, that T̃ = ∞. Assume that T̃ <∞, then it is clear that

lim sup
t→T̃−

(

‖v(t)‖
2
V0

+ ‖η(t)‖
2
H1

)

= 12(β0 + β1),

otherwise (3.21) will hold beyond T̃ . Taking the H0 and H1 inner products of
(3.20a) and (3.20b), respectively, with A0w and ξ, respectively, and using the or-
thogonality property (2.2), we have

1

2

d

dt
‖w‖

2
V0

+ ν ‖A0w‖
2
H0

+ (B0(v, w), A0w) + (B0(w, u), A0w)

=

∫

Ω

ξ(A0w · e2) dx− µ(Ih(w), A0w),

and
1

2

d

dt
‖ξ‖2H1

+ κ ‖ξ‖2V1
+ (B1(w, θ), ξ) =

∫

Ω

ξ(w · e2) dx.
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Using integration by parts, Hölder’s inequality, Ladyzhenskaya’s inequality (2.4),

the Poincaré inequality (2.5) and (3.21), we have on the time interval [0, T̃ ):

|(B0(v, w), A0w)| ≤ ‖v‖V0
‖∇w‖

2
L4

≤ c1 ‖v‖V0
‖w‖V0

‖A0w‖H0

≤
ν

8
‖A0w‖

2
H0

+
2c21
ν

‖v‖
2
V0

‖w‖
2
V0

≤
ν

8
‖A0w‖

2
H0

+
24c21(β0 + β1)

ν
‖w‖

2
V0
. (3.22)

Also, by Ladyzhenskaya’s inequality (2.4) and the Poincaré inequality (2.5), we
have

|(B0(w, u), A0w)| ≤ ‖w‖L4 ‖∇u‖L4 ‖A0w‖H0

≤ c1 ‖w‖
1/2
H0

‖w‖
1/2
V0

‖u‖
1/2
V0

‖A0u‖
1/2
H0

‖A0w‖H0

≤
c1

λ
1/2
1

‖A0u‖H0
‖w‖V0

‖A0w‖H0

≤
ν

8
‖A0w‖

2
H0

+
2c21
νλ1

‖A0u‖
2
H0

‖w‖2V0
, (3.23)

and

|(B1(w, θ), ξ)| ≤ ‖w‖L4 ‖ξ‖L4 ‖θ‖V1

≤ c1 ‖w‖
1/2
H0

‖w‖
1/2
V0

‖ξ‖
1/2
H1

‖ξ‖
1/2
V1

‖θ‖V1

≤
c1

λ
1/2
1

‖w‖V0
‖ξ‖V1

‖θ‖V1

≤
κ

4
‖ξ‖

2
V1

+
c21
κλ1

‖θ‖
2
V1

‖w‖
2
V0
. (3.24)

Integration by parts, the Cauchy-Schwarz and Young inequalities yield
∣

∣

∣

∣

∫

Ω

ξ(A0w · e2) dx

∣

∣

∣

∣

≤ ‖w‖V0
‖ξ‖V1

≤
κ

4
‖ξ‖

2
V1

+
1

κ
‖w‖

2
V0
. (3.25)

Moreover, by the Cauchy-Schwarz and Young inequalities,
∣

∣

∣

∣

∫

Ω

ξ(w · e2) dx

∣

∣

∣

∣

≤
κ

4
‖ξ‖

2
V1

+
1

κλ21
‖w‖

2
V0
. (3.26)

Using (2.7), Young’s inequality and the assumption µc20h
2 ≤ ν, we can show that

−µ(PσIh(w), A0w) = µ(w − PσIh(w), A0w)− µ ‖w‖
2
V0

≤
µ2

ν
‖w − Ih(w)‖

2
H0

+
ν

4
‖A0w‖

2
H0

− µ ‖w‖
2
V0

≤
ν

2
‖A0w‖

2
H0

−
µ

2
‖w‖

2
V0
. (3.27)
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It follows from the estimates (3.22)–(3.27) and the Poincaré inequality (2.5) that

on the time interval [0, T̃ ):

d

dt

(

‖w‖
2
V0

+ ‖ξ‖
2
H1

)

+
min {ν, κ}

2

(

‖A0w‖
2
H0

+ ‖ξ‖
2
V1

)

≤

(

48c21(β0 + β1)

ν
+

4c21
νλ1

‖A0u‖
2
H0

+
2c21
κλ1

‖θ‖
2
V1

+ 2
λ21 + 1

κλ21
− µ

)

‖w‖
2
V0
.

(3.28)

We denote by

α(t) := µ−

(

48c21(β0 + β1)

ν
+

4c21
νλ1

‖A0u‖
2
H0

+
2c21
κλ1

‖θ‖2V1
+ 2

λ21 + 1

κλ21

)

.

Since by assumption (u, θ) is a solution that is contained in the global attractor
of (3.4), by Proposition 2.5, one can show that there exist positive constants K3 =
K3(ν, κ, λ1, L) such that for all t ≥ 0,

‖A0u(t)‖
2
H0

≤ K3, (3.29)

moreover,

‖θ(t)‖2V1
≤ J1, (3.30)

for all t > 0. Therefore, assumption (3.18) implies that α(t) > 0 for all t ≥ 0.

Consequently, and by virtue of Gronwall’s lemma, we have that ‖w(t)‖
2
V0
+‖ξ(t)‖

2
H1

is finite and

‖w(t)‖
2
V0

+ ‖ξ(t)‖
2
H1

≤ (‖w0‖
2
V0

+ ‖ξ0‖
2
H1

)e−
∫

t

0
α(s) ds

≤ (‖w0‖
2
V0

+ ‖ξ0‖
2
H1

)e
−

(

48c21(β0+β1)

ν
+

4c21K3
νλ1

+
2c21J1
κλ1

+2
λ2
1+1

κλ2
1

)

t
,

(3.31)

for all t ∈ [0, T̃ ). Since ‖w0‖
2
V0

≤ 4β0 and ‖ξ0‖
2
H1

≤ 4β1, then ‖w(t)‖
2
V0
+‖ξ(t)‖

2
H1

≤

4(β0 + β1), for all t ∈ [0, T̃ ). Thus, ‖v(t)‖
2
V0

+ ‖η(t)‖
2
H1

≤ 10(β0 + β1), for all

t ∈ [0, T̃ ). This, in turn, will lead into a contraction since

12(β0 + β1) = lim sup
t→T̃−

(

‖v(t)‖
2
V0

+ ‖η(t)‖
2
H1

)

≤ 10(β0 + β1).

This contradicts the assumption that [0, T̃ ) is the maximal interval such that (3.21)

holds and proves that T̃ = ∞.
This proves that w(t) and ξ(t) exist globally, in time, for all t ≥ 0 and that

‖w(t)‖
2
V0

+ ‖ξ(t)‖
2
H1

decays at an exponential rate. That is, v(t) and η(t) exist

globally, in time, for all t ≥ 0 and ‖v(t)‖
2
V0

+ ‖η(t)‖
2
H1

≤ 12(β0 + β1) for all t ≥ 0.

The proof of the uniqueness of the solution (v, θ) follows similar steps as to those
above for proving the convergence. The estimate (3.31) shows that

‖u(t)− v(t)‖2V0
+ ‖θ(t) − η(t)‖2H1

→ 0,

at an exponential rate, as t→ ∞. �
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4. discussion and final remarks

It is typical when implementing data assimilation to choose a relaxation param-
eter such as µ which is effective for the spatial resolution h of the available data.
The goal of our analysis, however, is to estimate µ in terms of physical parameters
through rigorous bounds on the solutions in the global attractor. A sufficiently
small value of h is then determined in terms of µ. Thus, indirectly, the necessary
spatial resolution depends on the physical parameters, which is natural.

We mention that the basis for this reduced assimilation method using velocity
alone, namely Proposition 3.1, should carry over to the three-dimensional case, if
one could prove the existence of global strong solutions of the 3D Bénard problem.

It is natural to ask if it is possible to nudge using only temperature measurements.
This would require a temperature to velocity version of Proposition 3.1, which
remains an open question. It may very well be false, in which case, we would hope
to construct a counterexample.

We also plan to carry out numerical work to demonstrate the effectiveness of this
approach to data assimilation. Numerical simulations in [19] (see also [25]) have
shown that, in the absence of measurements errors, the continuous data assimilation
algorithm (1.2) performs much better than analytical estimates in [2] would suggest.
This was also noted for a different data assimilation algorithm in [30] and [31]. It is
likely that the data assimilation algorithm studied in this paper will also perform
much better than our analysis guarantees.
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