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Abstract

Estimates of the land area occupied by wind energy differ by orders of magnitude due to

data  scarcity  and inconsistent  methodology.  We developed a  method that  combines  machine

learning-based imagery analysis and geographic information systems and examined the land area

of 318 wind farms (15,871 turbines) in the U.S.  portion of the Western Interconnection.  We

found that prior land use and human modification in the project area are critical for land-use
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efficiency and land transformation of wind projects. Projects developed in areas with little human

modification have a land-use efficiency of 63.8±8.9 W/m2 (mean±95% confidence interval) and a

land transformation of 0.24±0.07 m2/MWh while values for projects in areas with high human

modification are 447±49.4 W/m2 and 0.05±0.01 m2/MWh, respectively. We show land resources

for wind can be quantified consistently with our replicable method; a method that obviates >99%

of the workload using machine learning. To quantify the peripheral impact of a turbine, buffered

geometry can be used as a proxy for measuring land resources and metrics when a large enough

impact radius is assumed (e.g., >4 times the rotor diameter). Our analysis provides a necessary

first  step  towards  regionalized  impact  assessment  and  improved  comparisons  of  energy

alternatives.

Keywords:  Wind  Energy;  Machine  Learning;  Land  Use;  Environmental  Impact  Assessment;  Image

Segmentation; Geographical Information System; Remote Sensing; Life Cycle Assessment.

Synopsis: Macro-energy analyses lack data inventories necessary to accurately quantify land impacts of

energy.  Combining machine learning, geographic information systems, and energy systems analysis, this

research  quantifies  and  maps  the  direct  land  impacts  of  wind  power  across  the  U.S.  Western

Interconnection.

Graphic for Table of Contents (TOC)

Introduction

Large-scale wind power is among the most important renewable and affordable alternatives

to fossil fuels for achieving a decarbonized energy system.1,2 Despite decarbonization benefits, the

large extent of land required for the growth of wind power has been identified as a critical barrier
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to its deployment.3–5 Compared to other energy technologies, wind power is perceived to have a

relatively low capacity-based land-use efficiency (LUE), defined as the ratio of the nameplate

capacity of a wind farm to its land requirement in W/m2.  Recent studies on wind farms have

documented a capacity-based LUE of  4.3 W/m2 (standard deviation = 3.5 W/m2) (Harrison-Atlas

et al. (2022)6) or as low as a mean of ~2 W/m2 (Miller and Keith (2019)7), an order of magnitude

lower than utility-scale solar PV.8 Such estimates provide critical information for energy systems

planning and decisions about future energy siting. However, it is widely acknowledged that land

area directly impacted by wind energy development constitutes only a small fraction (typically

<5%) of the total project area, as wind turbines are sited to optimize electricity generation from

the kinetic energy of air in the free troposphere.6,9,10 Wind farms often co-occur on landscapes

with other human activities,  such as agriculture.  When accounting only the directly impacted

land, LUE can be as high as 200 W/m2.11 The representativeness of LUE values is limited in

energy systems planning due to the focus on the wind farm rather than the directly impacted land

footprint.  

Early studies that quantified relationship between wind energy and land in the U.S. were

performed at relatively smaller scale.12,13 Extrapolating such relationships at geospatial scales was

therefore  inappropriate  and  further  challenged  by  the  lack  of  publicly  accessible  project

information (e.g., turbine location, turbine capacity, and turbine diameter).14 One such early and

foundational study examined land-wind energy interactions by assessing capacity-based LUE for

both “total  impacted” and “directly  impacted” land using data  from published environmental

impact statements.15 The authors defined the “total impacted” land as leased area used by the

entire wind farm and  the “directly impacted” land as the area disturbed by the wind turbines,

access roads and other infrastructure.

More recently,  the integration of imagery analysis and geographic information systems

(GIS) has improved the quantification of relationships between energy developments and land.

Geospatial methods have been used in the analyses of other energy infrastructure types16–19 as they

support  a  better  understanding  of  land-use  and  land-cover  change  patterns  across  diverse

geographies.  Typical  methods  include  manual  delineation  and  geoprocessing. With  manual

delineation, an analyst delineates the boundaries of the different elements of an energy project,

producing an  annotated map of the directly impacted land. Diffendorfer and Compton (2014)
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applied manual delineation and conducted a detailed examination on how land cover, topography,

and turbine configuration are related to the extent of land transformation.20 

Geoprocessing, on the other hand, avoids the burden of mapping the directly impacted land

and  uses  automatically  generated  zones  (e.g.,  circular  buffered  zones,  minimum  bounding

geometries and Thiessen polygons) around wind turbines as an approximation of impacted land.

Large scale analysis to the extent of countries is possible with this approach 21–23 but results may

not be accurate. Underestimation can occur when the analysis does not account for the full extent

of the access roads.  Overestimation can occur if the analysis neglects to account for land that was

already  developed  prior  to  the  construction  of  wind  farms.  For  example,  the  geoprocessing

approach may result in overestimated LUE estimates for the two following reasons.  First, the

buffered areas around turbines include land in use for agriculture that are not used by the turbines

themselves. Second, the development of wind farms in these regions use existing roads networks,

so the related infrastructure requires less new land (i.e., a land sparing opportunity).24,25 While

results using geoprocessing suggested that the LUE of wind has been decreasing over time, 6,7

Diffendorfer et al.25 showed that new projects use existing road networks (with evidence from

manual  delineation)  and thus  require  less new land.  Systematic categorization of  wind farms

considering land cover type is thus needed to support a better understanding of impacts on lands

with and without pre-existing infrastructure developments.   

Manual  delineation can be challenging and time consuming for energy infrastructure that

requires  a  large  population  of  facilities  across  extensive  regions,  such  as  wind turbines  and

natural  gas  production  sites,  especially  when using  high  resolution  imagery.  For  example,  a

previous study demonstrated that >130 hours is needed for the manual delineation of 60 km2 of

land use by natural gas production, which could represent the time of manual delineation needed

for one wind farm, which has an median area of ~80 km2 in the U.S.6,26 As turbines with larger

rotor diameter becoming more available, future workload of manual delineation could become

greater as turbines needs to be spaced at a larger distance from each other. Advanced automatic

delineating methods present enormous potential reducing the workload of quantifying directly

impacted land of large-scale energy infrastructure, as shown in Dai et al. (2023), which quantifies

the land use of natural gas production using a machine learning-based approach and reached a

processing speed higher than 3.2 second/km2.27 
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We introduce a novel automatic delineation approach based on computer vision and deep

learning (hereafter, image segmentation) to map land directly impacted by wind farms at a large

scale. Image segmentation is the task of assigning a pre-defined land-use class label (e.g., “Access

Road”), to each pixel found in an image. Image segmentation has been widely applied to land-use

quantification and land-cover classification, yet has primarily been used in energy studies focused

on  solar  energy  development.28–32 We combined  image  segmentation  with  GIS  analysis  in  a

workflow  that  includes  image  preparation,  image  segmentation,  and  postprocessing  for  the

accurate mapping of wind energy infrastructure. Results include the capacity-based LUE and land

transformation (m2/MWh). Land transformation is the ratio of land use to the life-time electricity

generation of a power plant and facilitates a consistent comparison of land use for wind energy

and other  types  of  power  generation technologies,  from a life  cycle  perspective.33 Our  study

provides a transparent and practical solution for determining the land area for large-scale wind

energy  infrastructure,  extending  the  use  of  machine  learning  to  new applications  in  energy

systems analysis. Our approach and results will be a steppingstone to regionalized environmental

impact assessments by providing a solid base for the evaluation of the land-use impacts in areas

with varying  levels  of  human development. Such information has  implications  for  life  cycle

assessment  (LCA)—a cradle-to-grave  analysis  of  the environmental  burdens  of  products  and

processes—which mainly relies on background literature or limited inventories to quantify land

impacts.34 LCA has been advancing in its capacity to incorporate spatiotemporal information into

environmental impact methods for land,35,36 which have been challenged by the lack of spatially

explicit inventories.37,38 More recently, a life cycle inventory for all power plants in the United

States  has  been  developed;  yet,  spatially  explicit  land-use  data  remains  limited. 39,40 Impact

assessments for wind energy development on ecosystems, landscape, and ecosystem services also

require spatially explicit data and high resolution maps.41,42,43,44 Results here are presented in terms

of LUE (W/m2) but  also provided in a format for broader  applicability that  includes  energy

systems planning and LCA.

Materials and Methods

Study Area and Data Sources. Our study area is the U.S. part of the Western Interconnection

(Figure 1a).45,46 Wind turbine locations and attributes were sourced from the US Wind Turbine

Database,14 and projects  that  were constructed between 1981 and 2018 were included in this

study. Aerial imageries with a resolution of 1 meter or less acquired in 2018 from the National
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Agriculture Imagery Program (NAIP) are used when applicable, and images from 2017 or 2019

when  required  since  NAIP  are  typically  collected  every  other  year  (image  sources  are

documented in Supporting Data). 

Figure 1. (a) Wind turbines in the U.S. portion of the Western Interconnection are located across a
variety of ecoregions and show geographical variations of landforms (b) Annotation approach and the

temporal variation of both turbine size and turbine spacing for two different projects: Directly-impacted
land for older projects constructed before January 2003 (upper images) is segmented using a two-class

scheme (i.e., background and actively-used), whereas for newer projects constructed after December 2002
(lower images), we used a three-class scheme (background, actively-used, and regenerating).   

The  main  infrastructure  elements  of  wind  energy  development  include  access  roads,

service  roads,  a  circular  surface  land  clearing  for  turbine  installation,  roadside  clearing,  and

surface land clearing for buried cable. We simplify and categorize the land requirement by wind

energy infrastructure into three classes, i.e., background, actively-used, and regenerating, based

on  their  land  occupation  characteristics  and  visual  appearance  on  imagery  (Figure  1b).  The

background class is area not directly impacted by wind farm construction. The actively-used class

includes access roads and service roads that shows a bright and smooth texture in an imagery.

The regenerating class may include temporary roads, roadside clearings, temporary storage and

laydown areas, land use by buried cable, and the circular clearing, which show a dim and rough

texture in imagery. For older projects (typically before January 2003 in the WECC), we assume

that  the  regenerating  class  has  fully  reclaimed  and  thus  we  use  a  two-class  scheme  (i.e.,

background and actively-used).

The workflow to determine land use via imagery segmentation includes three steps: deep

learning model development, deep learning model application, and postprocessing.

Deep Learning Model Development. This step includes training set preparation, model training,

and model validation.  The images in the training set  are discretely sampled according to the
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turbine locations across the study area to allow the deep learning model to recognize the various

landscapes  among  wind  projects.  The  training  set  was  manually  delineated  in  ArcGIS  Pro

supported by turbine location information from the USGS Wind Turbine Database. The manual

recognition of NAIP pixel classes (e.g., whether a pixel should be categorized as background,

actively-used, or regenerating) was aided by the reference world topographic map and world hill

shade map in ArcGIS Pro.47 In challenging landscapes, experts in the Expert Review Panel (see

Acknowledgement) were consulted to ensure accuracy and quality. The training set preparation

process and the delineation results were presented to the Expert Review Panel to guarantee the

quality of the training set. >90% of the delineation was completed by the first author to ensure

consistency using the quality assurance noted above. Detailed process of creating the training set

can be found at Supplementary Note 1.

A dense version of U-Net network is used for training our model, which is an “encoder-

decoder” type of architecture where the input image is translated to a low dimensional latent

space using the encoder and then the decoder takes back the latent space to the image space to

output the segmentation mask.48 The encoder and decoder of the network consist of five blocks

and each block consists  of  a dense convolutional  block followed by batch normalization and

ReLU non-linearity (Figure S1). U-Net is one of the most widely used deep-learning frameworks

for image segmentation and has showed state-of-the art performance compared to its followers, as

shown in recent studies in a variety of areas, including land-cover mapping.49–52 There are max-

pooling layers after each subsequent encoder block and upsampling layers after each subsequent

decoder block. For upsampling, a simple bilinear interpolation operation is employed. The output

segmentation mask is trained by supervising it with a cross-entropy loss over the ground truth.

The network is trained for 400 epochs using Adam optimizer and a learning rate of 0.001. The

network  is  developed  and  trained  using the  PyTorch  framework  on  an  NVIDIA  RTX  8000

GPU. Notably,  the following geographical processing is independent on the selection of deep

learning  method,  so  our  framework  is  flexible  to  incorporate  other  image  segmentation

approaches. 

We trained two separate dense U-Net models: one old project model and a new project

model due to their differences in turbine size, turbine configuration, and vegetation reclaiming

status. The old project model is trained on 301 images and their annotations (25 test images). The

new project model is trained on 1687 images (75 test images). For validation, we separate the test

7

25

26
166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

27

28



data, which consists of manual annotations and are not part of the training dataset. The model

performance is evaluated based on F1 score, which is defined as: 

F 1=
2TP

2TP+FN +FP
( 1 )

where TP, FN, and FP correspond to the number of true positives (i.e., correctly classified), false

negatives (i.e., wrongly classified as another class), and false positives (i.e., wrongly classified

from another class to the current class) in the output prediction, respectively. Detailed description

of our model training can be found at Supplementary Note 2.

Model application and postprocessing are conducted on a cluster basis, with each cluster formed

by a predefined minimum number of turbines,  N t, that are located within a search distance,  ds

(Supplementary Note 3 provides further detail).

Energy Systems Analysis. We calculated the capacity-based LUE and land transformation of the

selected  projects  based  on  the  annual  net  generation  from  the  U.S.  Energy  Information

Administration and the USGS Wind Turbine Database (Version 3.0.1). As a variety of metrics

have  been  used  in  energy  systems  analysis,53,54 we  selected  capacity-based  LUE  and  land

transformation based on their frequency and acceptance of usage on comparative assessments of

energy technologies and life cycle assessments.55,56  

We use the EIA-86057 and EIA-92358 to identify the capacity factor of the wind turbines

within the U.S. Wind Turbine Database. The capacity factor is the ratio of the actual amount of

electricity generation to capacity-based generation. First year data has been neglected as turbines

are usually not running steady in this period.59 For turbines with missing turbine year or missing

turbine capacity in the U.S. Wind Turbine Database, we assigned them with project averaged

values. Projects with missing turbine information are listed in Supporting Data. Results  from

Hamilton  et  al.  (2020)  on  the  temporal  trend  of  capacity  factor  were  used  when  electricity

generation data are not available from the EIA files.59 A turbine lifetime of 30 years is assumed. 

We  compare  capacity-based  LUE  among  projects  under  three  types  of  land-use

circumstances:  1)  the  initial,  which  includes  all  the  original  construction  land  uses,  2)  the

reference-year  (i.e.,  2018),  which  represents  the  identified  directly  impacted  area  using  the

marchine-learning approach, and 3) the actively-used (or “permanent land use”), which includes
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only the land impacted by the actively used class and represents a scenario that the vegetation

reclaiming process is completed. These three circumstances represent the reclamation process of

the disturbance by project construction. We use results from the reference-year circumstance for

agricultural projects and the initial circumstance results for other projects to compare the land

transformation among projects  for  consistency considering the variation of  project  ages.  The

initial  land use was obtained by adjusting the reference year  land use to  initial  land use by

applying the averaged measurements of the area of initial  circular  clearing,  roadside clearing

width, and width of clearing for buried cable.   

Description of direct  land use.  Existing studies  have focused  on how the LUE of  wind

energy projects changes with variations in wind power project attributes, such as turbine capacity

and year. However, we argue that to consistently identify patterns of LUE among wind farms, it

is important to first limit the scope of the study to projects located at a comparable level of human

modification due to the large variations in the composition of land-use elements. We limit our

analysis to the core area of wind farms located in non-agricultural areas. The core area is defined

as the area where turbines are connected by service roads but excluding the main access road.
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We propose a site-residue model to describe the patterns of directly impacted land within

the core area. This model decomposes the directly impacted land into two parts: the sites and the

residues (Figure 2). The sites are assumed as linearly stacked and evenly distributed, forming into

a single string. The area of such a string of sites can be estimated as a function of the turbine

capacity. The difference between the real impacted area and the estimated impacted area between

every two neighboring sites is defined as a residue. For example, for a wind project with parallel

string configuration,  the distance between strings  of  turbines  is  usually  larger  than twice the

turbine spacing. In cluster configuration, multiple service roads are often observed. Further details

on the model are documented in Supplementary Note 4. 

Figure 2. Directly impacted land by wind farms can be described as a combination of sites and
residues.

The outreach impact of the turbines. We mapped and quantified the directly impacted land and

the  occupancy  of  surface  land.  However,  the  noise  and  visual  impacts  of  turbines  are  not

negligible, as the turbine diameter is greater than that of the circular clearing area. Researchers

focused on energy systems planning  have applied a buffer distance from 300 meters to 1,000

meters to quantify this effect, as summarized by Harrison-Atlas et al.  (2022). 6 For large-scale

studies,  existing  estimates  also  applied  a  universal  buffer  distance  for  all  turbine  sizes  for

convenience,  regardless  of  the  turbine  diameter.  Here,  we  examine  the  outreach  impact  of

turbines  by  creating  a  buffer  geometry  extending  from  the  directly  impacted  land  that  we

determined using the deep learning approach. First, a circular buffer area is created around the

turbine with a buffer distance from 1 to 10 times (step = 0.2) of the turbine diameter. Clusters of

turbines without a valid rotor diameter in the USGS Wind Turbine Database were excluded from

10

37

38
240

241

242

243

244

245

246

247

248

249

250
251

252

253

254

255

256

257

258

259

260

261

262

39

40



the  analysis.  The  buffered  geometry  is  then  dissolved  into  the  directly  impacted  land.  This

dissolving process merged the polygons from both the directly impacted land and the buffered

geometry into a single polygon. We then calculated how the dissolve process impact the metrics

by calculating the relative error of area ( R EA ) and relative error of LUE (R ELUE ¿, as follows:

ℜA=
Adissovled−Abuffer

Adissolved

ℜLUE=
LU Ebuffer−LU Edissolved

LU E dissolved

where  Adissolved and  LU Edissolved  are the area and  LUE  calculated from the dissolved polygon,

respectively;  and  Abuffer and  LU Ebuffer  are  the  area  and  LUE  calculated  from  the  buffered

geometry around wind turbines, respectively. 

Results and Discussions

Mapping of Directly Impacted Land by Wind Power Development. Our framework combines

imagery analysis with machine learning to support  efficient  and accurate large-scale land-use

mapping of wind energy infrastructure. We mapped the directly impacted land of more than 300

wind farms (>15,000 Turbines) in the U.S. part of the Western Interconnection by processing

>90,000 images with an average processing speed of ~1.85 seconds/image, and where each image

represents an area from ~1.05 km2 to ~0.26 km2 (imagery resolution 1- 0.5 m, respectively) (Table

S1). 

Our workflow achieved at least 99% accuracy in quantifying the area of directly impacted

land  without  manual  delineation.  By  segmenting  the  imagery  into  background  and  directly

impacted land, the deep learning models identify the directly impacted land from background

land cover with a median background F1 score of 99.6% for old projects and 99.8% for new

projects  (i.e.,  demonstrating  high  performance).  The  median  F1  score  for  the  three-class

classification scheme (i.e., background, actively-used, and regenerating) is 96.4% for the clearing

class  and  96.2%  for  the  actively-used  class.  The  classification  error  mainly  came  from  the

actively-used class being classified as background class (Figure S6). 

The  machine  learning  model  substantially  reduces  the  time  and  effort  required  for

obtaining the directly  impacted land for  wind farms.  By employing machine learning,  >99%

workload has been reduced compared to manual delineation since our model correctly identified
11
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the majority of areas of interest, especially for the entire road network, and the remaining <1%

workload is related to identifying false negatives and false positives (e.g., making up the circular

clearing and removing noise in background). Due to the common existence of colocation in wind

farms, manual delineation is and will be a general required step to obtain the directly impacted

land for solving tasks of differentiating the purposes of land with the same land use class. For

example,  a machine learning model  can extract  all  the road pixels  for a  wind power  project

located in agricultural area but determining which roads are used by a wind farm needs human

determination.  The  accuracy  of  automatic  classification  is  critical  for  obtaining  final  results

efficiently since processing inaccurate automated extraction results costs more time compared to

pure manual processing. Compared to processing imagery with a similar resolution with an area

over  64  km2, our  approach  uses  only  0.2%  to  1.6%  of  the  time  required  for  the  existing

commercial automated extraction tools.26 

Characteristics of Land Use in Wind Farms. Based on the human modification level in the

project  area,  we categorized the wind farms into four types:  Access Road,  No Access Road,

Agricultural  Area,  and  Mixed,  to  show  how  a  different  configuration  of  land-use  elements

impacts the performance of LUE (Figure 3a and Figure S2-S5). An Access Road project,  located

in an area with minor human disturbances, requries the construction of an access road to connect

the wind farm region with existing road network.  An access road is  not  required for the No

Access Road projects since they utilize existing road. Agricultural Area projects are entirely or

partially situated within agricultural production areas, where most of the land has been modified

by human activities. Mixed projects are a mix of old and new wind farms in the same area. Since

the turbine size in old projects is much smaller (~1/3 in terms of rotor diameter), only part of the

existing infrastructures can be utilized for the construction of new wind farms. Service roads and

circular clearings are usually still required to construct the new projects.  
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Figure 3. (a) Three types of wind farms based on the level of human modification in the project area. (b)
The distribution of capacity based LUE. “Mixed Projects” are a mixed of new projects and old projects in
the same area. “Actively-Used Land” represents a scenario with only actively-used class being occupied
and all regenerating class are reclaimed. “Initial Land Use” is a scenario where all the initial disturbances

are considered. “Reference Year” considers land use in the reference year of this study (2018) (c) The
spatial distribution of LUE in the Western Interconnection. 

Our results reveal that the key to improve the capacity-based LUE is to utilize existing

roads (Figure 4b). In all  three circumstances, Access Road projects have the lowest capacity-

based LUE (a mean of 63.8 with 95% confidence interval of ±8.9 W/m2 in initial circumstance

and 275±43.6 W/m2 in actively-used circumstance). Access roads can account for up to ~70%

and a mean of ~25% of the total road length for the Access Road projects. Being able to share

access/service roads with agricultural production activities, the Agricultural Area projects have a

capacity-based LUE of 95.5± 6.0 W/m2 under the initial circumstance, which is comparable to

the  No  Access  Road  type  and  the  Mixed  type  (98.7±17.9  W/m2  and  80.4±9.8  W/m2,

respectively). Benefited from the capability of reusing a majority of the disturbed land (e.g., the

circular clearing and land above buried cables), the capacity-based LUE of the Agricultural Area
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type in the reference-year circumstance achieves 447±49.4 W/m2,  close to their actively-used

circumstance (517±44.5 W/m2). Another reason for the high LUE of the Agricultural Area type is

that the service road can be very short and connects only 1-2 turbines. The capacity-based LUE of

Mixed type is  80.4±9.8 W/m2 in  the initial  circumstance and rises  to  256±34.7W/m2  in  the

reference-year circumstance. The increase can be attributed to the fully reclaimation of land for

projects built before 2003. 

Similarly, our results show that the projects of the Mixed type and the Access Road type

have higher land transformation (0.27±0.06 m2/MWh and 0.24±0.07 m2/MWh, respectively).

While the higher land transformation of Access Road type is from its higher initial land use,

compared to No Access Road which has a land transformation of 0.16±0.05 m2/MWh), the land

transformation of Mixed type (0.28±0.04 m2/MWh) is driven by their low lifetime generation.

This may be because of the Mixed projects’ low capacity factor due to the existence of the older

models of turbines. The Mixed type also has a higher variation in land transformation, with the

medium land transformation lower than the Access Road type. Wind farms in agricultural area, as

expected, have the lowest land transformation at 0.05±0.01 m2/MWh.

The range of our results  for capacity-based LUE are consistent  with the results  of  the

previous manual  delineation studies  (e.g.,  Diffendorfer  and Compton (2014)20 and Ferrel  and

Conaway (2015)11)  and the Mixed type with a  majority  of  projects  built  before  2003 shows

consistency with the estimation of Denholm et  al.  (2009)15.  Estimates using a geoprocessing-

based approach, however, could be significantly lower, to ~2.8 W/m2, which is due to the directly

impacted land in our study is only portion of the zones (e.g., the Theissen polygons or circular

buffered areas). .

It  should  be  noted  that,  although  we  mapped  the  directly  impacted  land  for  132

Agricultural Area projects, 84 Mixed projects, 50 Access Road projects, and 39 No Access Road

projects, metrics can only be calculated for a portion of the projects when the required data (e.g.,

turbine capacity) are available.

14

53

54
333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

55

56



Understanding the Variability in the Directly Impacted Land.  Our results suggest that the

LUE of wind farms is positively coupled with turbine capacity and is related to the number of

turbines in a farm. Area of a site, as defined in Figure 2, is mainly related to two factors: turbine

spacing and the radius of circular clearing. Estimation of minimum turbine spacing (Eq. S9 and

Eq. S10) suggests that existing turbines are not  necessarily spaced at the optimum suggested

distance (Figure S12a). Circular clearing is less dependent on turbine rotor diameter and has a

smaller variation compared to turbine spacing. The relationships with other land-use elements can

be regarded as minor.  As a result,  under current  wind project  configurations,  the increase of

turbine capacity is higher than the increase of the site area, which leads to the increase of LUE as

turbine rotor diameter increases. 

When accounting for the residues, we found that as turbine capacity increases, both the

area of residues and the proportion of site area out of total area increases. Therefore, for projects

with a fixed number of turbines, the LUE increases as turbine capacity increases (Eq. S8). For

projects with turbines of a capacity less than 0.5 MW, the residue area is ~200% the site area. For

wind farms built before 2003, the turbine spacing can be barely larger than the rotor diameters

and there are circumstances where the service roads do not connect two turbines directly but

instead form a “claw” shape, which increases the total residue area. When turbines are larger than

1.5 MW, the residue area remains steady, and the site area increases as to the turbine spacing

increases (Figure S12b). This could be due to the service road length per turbine nearing the

distance  between  turbines,  resulting  in  a  reduced  fraction  of  additional  service  road  needed

(Figure S7). The area of several sites exhibits a decline for projects using turbines with a capacity

>3 MW as these turbines are located closer than those with smaller capacities (Figure S12a). 

We observed that  projects with a small  number of wind turbines (<6 typically) have a

much higher LUE as turbines in such projects can form a single line of sites. As the number of

turbines increases, an increasing residue area is often required to form multiple lines of turbines

(e.g., a parallel configuration). So, for projects with a fixed turbine capacity, it is reasonable to

assume that, as the number of turbines increases, the ratio of the site area to the residue area is

constant or decreases, which can thus lead to a decrease in LUE. However, we did not see this

trend. Projects with similar turbine capacity appear to have a similar LUE as the project capacity

increase (Figure S12c). One potential reason is that as the number of turbines increases, the ratio

of turbine spacing to turbine rotor diameter decreases (Figure S8).  
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Parametric  buffer  analysis  and  rotor  diameter.  By  parametrically  increasing  the  buffer

distance  surrounding  the  turbine,  the  margin  of  error  of  LUE  based  on  buffering  geometry

diminishes  exponentially  (Figure  4a).  When  the  buffer  factor  exceeds  four,  the  discrepancy

between both  R E A and  R ELUEfalls below 5% for all projects. When employing methods that

rely on buffering geometry to quantify LUE, large errors arise for wind farms located in areas

with  little  human  modification  due  to  the  larger  amount  directly  impacted  land  (e.g.,  the

additional land use by the access roads). 

With increasing buffer distance, the directly impacted area becomes inconsequential due to two

factors.  First,  the  buffered  geometry  completely  covers  the  directly  impacted  land  (i.e.,  the

circular clearing and service roads are dissolved into the geometry). Second, the magnitude of

land-use components is minuscule in comparison to the buffer diameter. Manual measurements

indicate  that  the  width  of  service  roads,  roadside  clearings,  and  cable  remains  relatively

diminutive and consistent among projects, with maximum magnitudes not exceeding 15 meters,

18 meters, and 17 meters, respectively. Conversely, the magnitude of turbine diameter can be an

order of magnitude greater for larger turbines.  Regardless, specific land uses, such as agriculture,

occur right up to the base of the turbine, rendering the buffer a meaningless proxy for specific

impacts.
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Figure 4. (a) The changes of the relative error of land use efficiency (LUE) with buffer
distance (b) The changes of the relative error of area with buffer distance (c) Impact of buffer

distance on the impacted area for different wind turbine configurations (d) Minimum bounding
geometry could be applied for estimating land use when the turbine impact is considered as small

to fill the holes in the impacted area.

Furthermore,  the  accuracy  of  buffer-based  methodologies  is  contingent  upon  the

configuration of the turbines (Figure 4).  For a smaller  buffering factor (e.g.,  1X), there is  an

absence  of  overlap  among  the  buffered  geometry,  rendering  the  geometry  unsuitable  for

evaluating the land-use impact, except in instances where the gaps between turbines are occupied

by pre-existing infrastructure, such as in developed or agricultural areas. For single string and

parallel string configurations, as buffering factor increases, the buffered geometry overlaps and

dissolves (Figure 4c).  Service roads are  dissolved into the buffer-based geometry and only a

minuscule fraction of the area is  excluded from these areas. In such cases,  the land-use area

serves as an adequate proxy for directly impacted land. 
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For projects with a cluster configuration, when the buffering factor is not large enough,

additional analysis may be necessary, as additional gaps or holes can be generated within the

impacted areas (Figure 4c). Another option for obtaining the amount of land-use is to  create a

minimum bounding convex polygon (Figure 4d),  as have been applied in previous studies in

energy system planning oriented studies.43 The minimum bounding geometry is dependent on the

configuration of projects and includes all of the area between turbines. However, a large fraction

of undisturbed land (e.g., the purple pixels in Figure 4d) is likely to be included with a convex

polygon approach. The magnitude of error could increase when the buffering distance increases.

The  buffering  distance  and  the  configuration  of  turbines  are  thus  critical  factors to

accurately assess the land-use impact of an existing wind farm. If the regionalized impact from a

turbine is considered as small (e.g.,  <4 times of rotor diameter),  it  is important to obtain the

directly impacted land to avoid overestimating the land-use impact in areas with high levels of

human  modification  and  to  avoid  underestimating  it  in  areas  with  low  levels  of  human

modification. Further analysis on the uncertainty of our method is documented in Supplementary

Note 5.

Future Research and Contribution

The workflow we developed can serve as a prototype for mapping the land use of wind

farms in other regions and other types of energy projects. The current workflow involves manual

delineation  work  in  both  training  set  preparation  and post  processing  (Table  S2).  We chose

manual processing to solve the challenges associated with co-location of wind power and other

human activities.  In  addition,  we  opted for  manual  processing   because  our  primary  goal  is

achieving  accurate  land-use  mapping.  The  current  model  helped  mitigate  the  majority  of

workload.  Although  the  deep  learning  model  can  be  potentially  improved  by  adding  new

annotated images, there is a tradeoff between model performance and overall time consumption.

Limited by resource and time, the performance of the existing model could be inadequate for

land-cover types that are beyond the geographical scope (i.e., the WECC). In such a case, our

post-processed results can be used as an additional training set. Region-specified training set can

also  be  obtained  based  on  the  documented  steps  in  Supplementary  Note  1.  Similar  to  wind

turbines, oil/natural gas production wells/pads are also dispersedly distributed across landscape,

and due to the longer history and >2 orders larger number of facilities, automated approaches are
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in demand for quantifying land use by oil/natural gas production to understand the landscape

consequences as manual delineation is still a main approach for land use quantification.27,60,61 Due

to the dearth of data, natural gas infrastructure is generally compared to the entire wind farm in

planning studies, rather than solely the infrastructure for wind.62 The utilization of these values

yields  incommensurable  results,  potentially  misleading  decision-makers.  This  research  fills  a

much-needed gap in LCA and planning inventories that will enable more robust examination of

new and developing impact assessment methods.

The significance of this study lies in its introduction of an approach that enables spatially

explicit, empirical measurement of the direct land impacted by wind power at a large scale. The

analysis  utilizes  a  machine  learning  approach to  enable  the  development  of  data  inventories

critical to the analysis of large-scale and regional impacts of wind development; for example,

such  inventories  have  not  ever  before  been  developed  for  use  in  life  cycle  assessment  and

planning studies. Importantly, we have also defined the key concepts and impact factors involved

in identifying patterns of land-use by wind energy. Combined with recent studies, 27 results set the

stage for the first consistent comparisons on environmental sustainability across different energy

technologies, whether in the context of LCA, environmental impact analysis or energy systems

planning for net zero emissions.   

Supporting Information

Additional results, methodology description, and supplementary notes are documented in

Supporting Information.docx. 

Wind farms with missing turbine information, classification of wind farms, image sources,

land  transformation,  and  land  use  efficiency  are  documented  in  Supporting  Data.xlsx.

Postprocessed results at a cluster level are stored at supporting_map.gdb. 
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